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Equations de Ginzburg-Landau et équations phénoménologiques
de transport dans les supraconducteurs1)

par F. Rothen
Institut für Theoretische Physik V der Philipps-Universität, Marburg (Allemagne)2)

(26 VI 68)

Summary. It will be shown that in the neighbourhood of the critical temperature the application
of the theory of irreversible processes to the supraconductors necessitates no other specific hypothesis

but that of the validity of the time-dependent Ginzburg-Landau equations. Especially the
vanishing of the thermoelectric effects and the particularly simple form of the thermal
conductivity in supraconductors are connected with the fact that the pseudo-wave function xp

introduced by Ginzburg-Landau satisfies a diffusion equation in the mentioned temperature region.

Introduction

Dans un supraconducteur au voisinage de la température critique les relations
entre courants et champs électromagnétiques sont locales, ce qui permet l'application
de la théorie des phénomènes irréversibles sous forme également locale ; or ce même
domaine de température est domaine de validité de la théorie de Ginzburg-Landau3),
qui doit donc pouvoir trouver place dans un cadre plus large, compte tenu des
différents développements que divers auteurs lui ont donnés pour décrire également
les phénomènes non stationnaires [2]. Le fait que l'équation du mouvement pour la
pseudofonction d'onde xp(x, f) introduite primitivement par GL est une équation de
diffusion appelle nécessairement la référence aux phénomènes irréversibles, comme
Schmid l'a déjà fait [2] ; il est par ailleurs souhaitable de procéder systématiquement
en la matière.

Le présent travail a deux buts distincts: d'une part il tente de montrer que la
théorie GL s'inscrit naturellement dans le cadre de la théorie des phénomènes irréversibles

appliquée aux supraconducteurs, à laquelle elle a pour effet principal d'apporter
un certain nombre de restrictions quant à la forme de certaines équations; d'autre
part il montre que cette généralisation permet d'interpréter simplement l'absence
d'effets thermoélectriques et la forme particulière de la conductivité thermique dans
les supraconducteurs [3].

En ce qui concerne ce dernier point, il est nécessaire de faire les remarques suivantes.
Le pouvoir thermoélectrique4) eT d'un métal normal est défini comme le rapport de la

L) Ce travail a été accompli grâce à l'appui financier du Fonds National Suisse de la Recherche
Scientifique.

2) Adresse actuelle: Institut de Physique Expérimentale de l'Université, Place du Château,
Lausanne (Suisse)

3) Nous employons dans ce qui suit la dénomination «théorie GL» aussi bien pour la théorie de
Ginzburg-Landau sous sa forme primitive [1] que pour les diverses extensions qui lui ont été
données par la suite.

4) Nous nous limitons à la discussion du pouvoir thermoélectrique, exemplaire en la matière.
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différence de potentiel Acp <p(b) — cp(a) qui naît aux extrémités aetb d'une pièce de
métal à la différence de température correspondante AT T(b) — T(a), ceci en
l'absence de courant. De la relation

VTj Cnn(E-V-flr)-C„
conséquence de la théorie des phénomènes irréversibles, on tire sans autre

b

Acp _
1 fj^/jp „ ft\ _ Cnqy»(*-*$"T AT AT] ~" \" ' e, CnnT-

a

Si l'on applique cette même théorie aux supraconducteurs, on a le choix entre les deux
équations M 2

E =v (t + -^r) <3-2b>

i» C„(£-^«|-£„y (3.2c)

décrivant respectivement le superfluide et le fluide normal caractérisés par les

potentiels chimiques respectifs pis et pin. On est alors conduit à définir deux pouvoirs
thermoélectriques ef et e? suivant les équations

4=-^fdx(E-V^+1'lM^) (Lia)
a

b

eT-~=-ÄfJdx(E~v'e;) (Llb)
a

les calculs devant être effectués à courant total nul. ej est évidemment nul, ce qui
n'est pas a priori le cas de e?.

L'expérience a montré depuis longtemps l'absence de pouvoir thermoélectrique
dans les supraconducteurs [4] ; Luttinger a utilisé l'équation (Lia) pour expliquer ce
fait [3]. Dans la seconde partie de ce travail nous montrons que les restrictions
qu'apporte la théorie GL aux équations tirées de l'application de la théorie des

phénomènes irréversibles a pour effet de rendre e? nul également, ce qui supprime
toute contradiction apparente entre les deux définitions de eT.

Dans la première partie de cet article, nous appliquons la théorie des phénomènes
irréversibles au supraconducteur ; nous suivons à cet effet la formulation de Stueckelberg

des équations de l'hydrodynamique [5] et pour ce qui est de leur application aux
supraconducteurs, nous nous servons de l'exposé que nous avons déjà fait dans un
précédent travail [6].

Dans la 2e partie, nous introduisons la notion de pseudofonction d'onde y> due
à GL et nous établissons les restrictions qu'impose ce modèle particulier aux équations
tout à fait générales établies plus haut. Le fait que les coefficients de l'équation de
diffusion pour ip ont déjà été calculés à partir de la théorie microscopique par Gorkov
[7] et certains des auteurs déjà cités [2] nous permet d'exprimer en fonction des

grandeurs microscopiques le coefficient phénoménologique caractéristique des

phénomènes de nucleation. Dans la dernière partie enfin nous montrons comment les
restrictions apportées par la théorie GL aux équations générales déduites de la théorie
des phénomènes irréversibles entraîne la disparition des effets thermoélectriques.
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1. Application de la théorie des phénomènes irréversibles
au modèle des 2 fluides

Lorsque l'on applique la théorie des phénomènes irréversibles à l'hydrodynamique
conventionnelle, le système considéré peut être décrit par un ensemble de champs
scalaires ou vectoriels, les «variables» thermodynamiques. A chaque variable
correspond une équation de continuité invariante relativement au groupe de Galilée.
L'une de ces variables est le champ de vitesse v(x,t) de l'élément de fluide auquel
correspond l'équation de continuité pour la quantité de mouvement correspondante
7l(x, t). v(x, t) est toujours unique, même si le système étudié est un mélange de

plusieurs substances. Les vitesses particulières des différentes substances ne
constituent pas alors des variables indépendantes mais permettent de définir les divers
courants de diffusion en présence.

Dans le modèle des 2 fluides, à côté de v0(x, t), champ de vitesse des excitations
normales analogue à tout point de vue à v(x, t), il existe un deuxième champ vs(x, t)

qui décrit le condensât ou superfluide et qui obéit à une équation du mouvement typique
d'un fluide parfait: c'est à ce modèle des 2 fluides que nous appliquons dans ce

paragraphe la théorie des phénomènes irréversibles dans toute sa généralité.
Le supraconducteur au voisinage de la température critique satisfait à des relations

locales entre courants et champs électromagnétiques; de ce fait - par construction
pourrait-on dire - il obéit au modèle des deux fluides tel qu'il est présenté ici. Mais il
satisfait également à la théorie de Ginzburg-Landau qui apporte à ce modèle quelques
restrictions: nous abordons ce problème au paragraphe 2.

Equations de continuité

Le système considéré ici est donc constitué de 2 fluides, le fluide normal et le

superfluide :

Le fluide normal, repéré à l'aide de l'indice 0, est composé de 2 substances chimiques,
les ions du réseau cristallin d'une part et les électrons normaux ou excitations normales
de l'autre, désignées respectivement à l'aide des indices c et n. Les variables
thermodynamiques de ce fluide sont nc(x, t), nn(x, t), JT0(x, t) et s(x, t) qui sont respectivement
la densité de ions, la densité d'électrons normaux, la quantité de mouvement de

l'élément de fluide et la densité d'entropie. Ces 6 variables obéissent aux 6 équations
de continuité correspondantes du fluide normal qui, dans un repère inertial, s'écrivent

dtnc + dk (v* y + /*) 0 (Lia)

<K + d„ (vk0 nn + J>)=Vnco=qn, (1.1b)

àfloi + àk (Vk0 7t0i) - [dkT*)0 foi + H0i (1.1c)

dts+dh(vkos + jk)=i^0. (l.ld)

Les indices i, j, k etc. repèrent les composantes cartésiennes des divers vecteurs ou
tenseurs utilisés. /* et /* sont les courants de conduction des 2 substances présentes
et /J le courant de conduction d'entropie. (dkrk)0 est la partie normale du terme dkxh

dont nous verrons qu'il se décompose en 2 termes relatifs à chacun des fluides:

àkrk (dkrk)0+(dkrk)s.



Vol. 42, 1969 Equations de Ginzburg-Landau 213

Les grandeurs (dkrk)0 et (dktk)s ne sont pas en général de la forme dka\ où ak est un
tenseur (voir par exemple (1.9)). qn décrit la source d'électrons normaux due àia
conversion chimique possible d'excitations normales en paires de Cooper, processus
symbolisé par l'équation * * m n\

qui exprime la transformation d'une paire de Cooper e* en 2 quasiparticules e* ou
vice-versa. En conséquence, les sources d'électrons normaux qn et de superélectrons qs

sont données par
in^Vn^ 1s Vs C0

où a) est la vitesse de réaction du processus et vn et vs sont respectivement proportionnels

à — 2 et + 1.

Dans l'équation (1.1c), foi + xoi désigne la force totale s'exerçant sur l'élément de

volume du fluide. /0l- représente la force de Lorentz6)

/o (ec nc Aen nn) E + [(ec nc + en n„) v0 + ec Jc + en J„] A B

g0 E +(q0v0 +jc+jn) AB (1.3)

alors que xoi est un terme supplémentaire encore inconnu et destiné à décrire une
interaction éventuelle entre les deux fluides. Notons que dans l'équation (1.3) nous
avons défini g0, jc et jn, respectivement la densité de charge du fluide normal, la
densité de courant électrique de conduction due au déplacement des ions et le terme
électronique correspondant. ev désigne la charge de la particule v (v c, n, s).

Finalement, i est la source d'entropie, définie positive en vertu du 2e principe.
Le superfluide, repéré par l'indice s, est caractérisé par les 4 variables

thermodynamiques ns(x, t) et7is(x, t) ; les 4 équations de continuité correspondantes s'écrivent

dfisi + dk (vks n,t) - (djtj), fti + xsi (1.4a)

dtns + dk(vhsns + fk)=vsœ=qs. (1.4b)

Il n'est pas nécessaire de préciser la signification des grandeurs introduites ici,
signification évidente si l'on se réfère aux équations (1.1). Notons cependant les points
suivants :

1) x*0 et x\ décrivant l'interaction des deux fluides, on a

4 + xi 0 (1.5)

2) La masse et la charge étant conservées au cours de la réaction (1.2), il vient

vnMn + vsMs 0, (1.6a)

v„ e„ + vs es 0 (1.6b)

Mc Jc + MnJn + Ms Js 0. (1.6c)

Mv désignant la masse de la particule v.
Notons que par souci de simplification nous négligeons les processus d'échanges

entre ions et électrons; en tenir compte ne présenterait pas de difficulté de principe

[6].

Toute polarisation tant magnétique qu'électrique est ici exclue.
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Mouvement du superfluide
Si l'on fait l'hypothèse de London que le superfluide est un fluide parfait sans

frottement, on est conduit à identifier l'équation (1.4a) à l'équation d'Euler6)

àtvsi + vkdkvsi + -L dp, A^{E+vsAB), (1.7)
s s

Compte tenu de l'identification
ns =nsMsvs

(1.4a) devient

Ms vsi (dtns + diws n,) + M$ n$ (dtvs + (v, V) vs){ - (d» t*)s xsi + fsi

ou encore, à l'aide de (1.4b) et de la définition defsi:

dv -+vkôv (a*rJls- H-±j~M*v'j{Vsm~divià i tu n«
La comparaison de (1.7) et (1.8) conduit aux identifications

(àkTk)s -(dtp)s=-nsdtpis, (1.9)

Ksi=Msvsivsa>. (1.10)

Dans l'équation (1.10) nous avons fait l'hypothèse supplémentaire que Js 0,

hypothèse qui se vérifiera par la suite. Nous évitons par là des complications sans
objet.

Equation pour l'énergie

L'équation de continuité pour l'énergie est une équation de continuité supplémentaire

à laquelle doivent satisfaire les différentes variables thermodynamiques; elle
doit donc pouvoir se déduire des autres équations de continuité par identification [5].
On pose alors

moL — Ma na (oc c, n, s) vs (a s)

% =Mcnc + Mn nn

i mn v
U

v0 (a c, n)

dh du
a "~ dna r a — Qn^

dhVTOa"5c Oh „ (1.11)

w =nshLs + ncH-cAnnpin+Ts
hAi=Sr(A^o,s)

h est la densité d'énergie totale, u la densité d'énergie interne, T la température et pa
les différents potentiels chimiques, w est la densité d'enthalpie; on remarque que la
forme de w permet de la décomposer en deux termes relatifs à chacun des deux fluides :

w w^ + w^
w(s) ns pis wm ncpic + nn fin + Ts. (1.12)

6) Il est bien connu, et nous l'indiquerons plus bas, que cet Ansatz est une conséquence de la
théorie de Ginzburg-Landau dépendant du temps. pis est le potentiel chimique des
superélectrons: voir équation (1.11).
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Dans ces conditions, il vient (voir Appendice)

dth =-dk {[a* + ^)] vi + [ä4 + »»)] ,*

+ ft /* + p. /* + T /* - voi rfik] + Ejtotal + i T

-Voarr+Jn{^A^-^-(E + v0AB))

+L{^ + ^k-(E + V^B))+LVT
+ [(ft + Af, (v^) vs + ptn vn] co (1.13)

Dans cette équation r$ik est défini comme la contribution au tenseur des tensions
qui est responsable du frottement :

drf" (d/"), + (dkp)0 (dfp)0 nc d% + nn d% + s d'T

(d*^>)0 est la contribution «normale» au gradient de la pression, gradient défini de la
façon usuelle

àkp ns dkpis + nc dkpic + n„ dkpin + s dkT (dkp)s + (dkp)0. (1.14)

Pour sa part, dir§,k est bien la divergence d'un tenseur; en effet, à cause de (1.9)

(àkrik)s + (dip)s 0.
Ainsi „dkrtk + d'p (dkT<% + (dkr'k)s + (d'p)0 + (d'p)s dkr^k.
Il convient de remarquer que nous n'avons nullement fait l'hypothèse que l'énergie
interne u, la pression p et le tenseur des tensions xik se décomposent en une somme de

termes relatifs à chacun des fluides ; cette hypothèse est parfaitement superflue. La
décomposition de w et Vp ne résulte que de la définition générale de ces grandeurs
et ne constitue pas une restriction à la généralité des expressions obtenues,

./total représente le courant électrique total:

/total Qs Vs + °0 V0 + Jc + Jn •

Il convient encore de remarquer que dans l'équation (1.13) la somme

M, dy0 M^ dv0
Jn

en di 'rjc ec dt

est nulle, comme conséquence de la conservation de la masse. Son introduction est
donc arbitraire mais obéit néanmoins à un souci de cohérence interne (voir équations
(3.3) et (3.4)).

L'équation (1.13) a la forme d'une équation de continuité pour l'énergie à condition
qUe7)

* y { »o« tT* + Jn (E + v0 A B + ^ rot v0)

- [(/*, A -2° (», -«„)*) v, + finvn]co} (1.15)

it se transforme suivant la formule

dv„ I vi \
Vo V) »o -d° + V \-j-J "«o A rot v0

L'accélération substantielle dv0jdt se transforme suivant la formule

dv,
dt dt
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Dans l'équation (1.15), nous avons omis le terme proportionnel kjc; l'équation (1.6c)
montre que \jc\j\jn\ MJMC < 10~5. Il faut noter qu'au point de vue expérimental
il n'est pas possible de différencier par exemple q0 v0 et q0 v0 + jc qui sont pratiquement
confondus.

L'irréversibilité i est dans l'approximation linéaire une forme positive définie dans
les courants ou les flux ; à cet effet on pose8) (le cas isotropique est seul considéré ici) :

rrk rfik + \gikrri\rfik riv0{k (1.16a)

<k =Vok+\ t"<i )4»j=3|4 (1.16b)

co - C { [ft + -^ (v, - Vo)2] v, + pi„ vn j (1.16c)

V T VT
Jn en Lnn En - ôn T Ln,-f Cnn E„ - Cnq y- (1.16d)

jq Tje - T* Lqq *f + enTLqnËn -Cqq^+Cqn Ën. (1.16e)

La décomposition de t{,"** et vl0k est la décomposition usuelle d'un tenseur du 2e ordre
en termes irréductibles. Les coefficients phénoménologiques r], Ç, £,, C„ „, Cn Cq n

et Cq

satisfont aux conditions habituelles propres à rendre la forme i définie positive.
Enfin En est défini par

Ê^E + VoA(B + ^rotVo)-v(^+ % 4) -^ 'Il (1.17)

Il faut rapprocher de cette expression le vecteur E, qui est l'analogue de En pour le

superfluide et qui s'annule en vertu de l'équation (1.7):

Ê^E + v^{B + ^rotV)-V^ + ^^-^:^=0. (1.18)

A l'équilibre, bien sûr, Es est nul. L'objet des 2 paragraphes suivants est de montrer
que pourvu que l'état soit stationnaire, c'est encore le cas en dehors de l'équilibre.
Celui-ci est caractérisé par les équations

»o« 0 4=0 (1.19a)

[ft + ^ (vs -1,0)2] vs + ft, v„ 0 (1.19b)

Èn =ËS 0 (1.19c)

VT=0. (1.19d)

Un point mérite encore d'être signalé à propos de l'équation de continuité pour
l'énergie. Compte tenu de (1.15), celle-ci s'écrit

òth+dk{[m^ + ^]vks+[m^ + ^]vl
- %i 4),k +T]k + ft 7» + ft 7*1 £-70tal.

8) Nous négligeons volontairement les termes d'interférence entre les effets dissipatifs de

compression Vqi et les processus chimiques.
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Il est donc possible de définir un courant de chaleur Tje et un courant d'énergie
chimique ft Jc + pinJ„; au contraire, pls) ni pm n'étant séparément définis, il n'est

pas possible de décomposer les autres termes comme somme de 2 courants de
convection (ms v\j2 + u{s)) vs + (m0 v\j2 + ui0)) v0 et d'un courant de travail, uis) et w(0)

résultant de la décomposition hypothétique de la densité d'énergie en 2 contributions
relatives à chacun des fluides. Ce fait n'a d'ailleurs rien qui puisse inquiéter; la
possibilité d'une décomposition ne constitue en aucune façon une nécessité pour la
théorie des phénomènes irréversibles.

2. La théorie de Ginzburg-Landau dépendant du temps

Depuis la formulation de la théorie de Ginzburg-Landau, un certain nombre d'auteurs

ont cherché à la généraliser aux processus non stationnaires [2]. Si l'on tient
compte des effets dissipatifs qui sont indispensables à notre propos, on peut
schématiser les résultats obtenus de la manière suivante :

L'état supraconducteur est caractérisé par l'existence d'une pseudofonction
d'onde à valeurs complexes, ip(x, t), qui à l'équilibre joue le rôle d'un paramètre
d'ordre pour la transition de phase état normal - état supraconducteur. Dans le cadre
d'un modèle des deux fluides tel que nous l'avons introduit ici, on peut formuler les

équations de GL dépendant du temps de la façon suivante :

j' tws k (7 r - 6*A) y + y (- t v -e'A) v*] (2-la)

*= 2\w k (~ ?dt - e° *)v+f **dt "e* +)w*} (2-lb)

y[-%Òt-i (e, </> + ft)] f=~- G[y>] (2.1c)

(f> est ici le potentiel scalaire du champ électrique; G[y>] représente le potentiel de
Gibbs du système, fonctionnelle de rp et tp* : oGjôxp* symbolise la dérivée fonctionnelle
de G relativement kxp*. Le coefficient y est réel et défini dans la littérature [2]. Le
second membre de l'équation (2.1c) est écrit sous forme générale, la forme exacte de

Gjip] important peu.
Le lexique qui permet d'interpréter le modèle des deux fluides à l'aide des équations

(2.1) est constitué par les équations suivantes:

ns \ip\2, (2-2a)

« -A- (2.2b)
esns

v0 0 (2.2c)

ft +™f =ft. (2.2d)

L'équation (2.2b) corresposd à l'hypothèse que nous avons déjà faite et selon laquelle
le supercourant total js ne comporte pas de terme de conduction de la forme es Js.
L'équation (2.2c) rend compte du fait que (2.1c) n'est valable que dans un référen-
tiel fixe relativement au fluide normal.

Il faut noter un certain arbitraire dans le choix des équations (2.1) qui ne peuvent
se déduire de la théorie microscopique de façon univoque. La présence au premier
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membre de l'équation (2.1c) de la somme (es <f> + ft) s'explique par des considérations
d'invariance de jauge et par la volonté de faire de l'équation de diffusion (2.1c) une
équation pour \y>\2 seulement, alors que (2.1b) est une relation pour y> où n'intervient
que la phase de celle-ci. Le choix même de ft plutôt que de ft dans les équations (2.1)
est également arbitraire dans la mesure où il n'est pas conditionné par la théorie
microscopique ; on peut le considérer comme une hypothèse supplémentaire qui trouve
sa justification dans les conséquences qu'entraîne cet Ansatz.

Notons encore que l'équation (2.2b) comporte parfois dans la littérature d'autres
termes encore, soit par exemple la densité de charge totale ç>t du supraconducteur.
Néanmoins nous préférons éviter d'introduire Qt dont la contribution numérique est
de toutes façons peu importante. Quant à l'équation (2.1c), elle est valable pour
T ~ Tc alors que pour T 0 y> satisfait à une équation de type ondulatoire. Dans la
région intermédiaire, il n'est pas possible d'écrire pour y> une équation du mouvement
qui soit simple (voir Abrahams et Tsuneto [2]).

Il est reconnu que ce sont les équations (2.1a et b) qui sont essentielles pour la
phénoménologie de la supraconductivité; on considère généralement que (2.1c) joue
avant tout un rôle dans les processus de relaxation (nucleation, résistance des
supraconducteurs de type II due au déplacement des filaments noi maux de la structure
d'ABRiKOSOV [8]). Nous voulons montrer au paragraphe 3 que la forme de l'équation
(2.1c) est compatible avec l'absence d'effets thermoélectriques dans un supraconducteur.

Détermination du coefficient de relaxation C

A l'équilibre, l'équation pour y> s'écrit simplement

C'est l'équation obtenue primitivement par GL qui posèrent explicitement dans ce cas

G[rp] G0 +JdV [«|v|» + | |vl* H" 2^7 (T F * e*A) V 'T • <2-3)

Or si l'on soumet G[yi] à une variation ôy>* quelconque, il faut tenir compte de la
condition «chimique»

Dans ces conditions
e, on, + e„ôn„ 0

M,vl\ „ „ \ f „r r / Msv\\ÔG[y>] ^J dV ((ft + iÏLÏi) ôy + ft ônn) =jdV [v, (ft

+ v» *] f =JdV [vs (ft + MÇJ + vn ft] £ V
Nous avons fait usage du fait que G [yj] comprend un terme cinétique qui dans

l'équation (2.3) prend la forme 1/2 Ms | (%ji) V — es A) y> |2; dès lors òjòns G[yj] est
égale à ft + 1/2 Ms v2s et non à ft. (2.1c) peut ainsi se récrire

H[yì]=-y(%dt + i(es4,+ ~pis))y,- [^ft + ^-j+r.ft] ^ °"

Si l'on évalue alors y>* H[y>] + yi H*[y>], il vient

Ò,n, - yj - [v, (pis + -sfi-) + vn ft] ft (2.4)
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Par identification avec l'équation de continuité (1.4b) on obtient, la condition (2.2c)
étant maintenant supprimée,

..---4£('.(*+i"pq+-.«.) M
alors que l'équation de continuité pour ns se décompose elle-même en deux équations
séparées 9)

dtns+(v0v)ns vsco (2.6a)

div (vs - v0) ft 0. (2.6b)

La comparaison avec (1.16c) permet de déterminer le coefficient de relaxation du
système „, „

D'autre part (2.4) assure que l'équilibre chimique

'¦[ftt'-T^ltwO (2.8)

«s£ conservé dans tout processus stationnaire, même en dehors de l'équilibre.
Il convient de remarquer que l'équation (2.8) est une conséquence particulière

de la forme de l'équation de mouvement (2.1c) pour ip. Si y était imaginaire pur ((2.1c)
serait alors une sorte d'équation de Schroedinger), l'équation de continuité pour
|y)|2 =ns ne se décomposerait pas en 2 termes (équation (2.6)) et (2.8) ne serait
valable qu'à l'équilibre.

En utilisant les résultats de la théorie microscopique, il est aisé d'exprimer f en
fonction de T près de la température critique. Si l'on se rappelle que dans un
supraconducteur de type I \y>\2 est pratiquement égal en tout point à

|v|2^|vo|2s-f (2-9)

il vient

Les 3 coefficients a, ß et y peuvent se calculer à partir de la théorie microscopique.
Si l'on prend par exemple les valeurs calculées par Schmid [2], il vient

r 56 £(3) N eF T-T
4o 3 n2 11 v% k T2 •

N est ici la densité à l'équilibre des électrons dans l'état normal, sF et Tc sont respectivement

l'énergie de Fermi et la température de transition du métal. Enfin k est la
constante de Boltzmann et Ç(3) 1,202.

Les équations (2.1c) et (2.4) permettent de définir un temps de relaxation xR qui
caractérise l'évolution de \y>\2 vers l'équilibre. On vérifie sans peine que10)

Hy _
1

Xr ~ ~-2 a - J'vfß •

9) Les équations (2.6) ne prennent cette forme simple que si div v0 0, ce qui n'est stricte¬
ment vrai qu'à l'équilibre.

10) rR peut être calculé directement à partir de la théorie microscopique sans faire un appel explicite
à la théorie de GL. C'est ce qu'ont fait par exemple Lucas et Stephen [9] ainsi que Woo et
Abrahams [10] en considérant les processus de relaxations dus à l'interaction électrons-
phonons. Lucas et Stephen donnent d'ailleurs une formule analogue à (2.4).
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3. Phénomènes stationnaires; conductivité thermique et effet thermoélectrique
Nous avons vu plus haut que l'équation de diffusion pour \tp\2 entraîne la

décomposition de l'équation de continuité pour ns en deux équations indépendantes
(2.6a) et (2.6b). Il est bien connu que les 2 équations (2.1a) et (2.1b) définissant7, et ft
décomposent l'équation

f. ¦ +.. A (B + Ä r„, - r S + 'M2f -i$ - 0 (1.18)

également en 2 nouvelles équations, les équations de London11). Si l'on pose en effet
V — Ivi e** e* 1ue lOXi élimine a. entre les 2 équations (2.1a) et (2.1b), il vient

M' -<-rotvs + B 0 (3.1a)

'(f + ^V1)-*-0 <3-lb>

./n *-'nn *"»« r
/*3-_ r VT

T + c9„ Ë„

", \/*s + ("',-"o)2^\ + "„ /'»

div ft 0 <Vo ,- + d,î"0* 0.

(3.1) est évidemment une solution particulière de (1.18).
Dans le cas stationnaire, les équations (3.1), (1.16), (1.17) et (2.8) entraînent

M
rot yL ft + B 0 (3.2a)

V(^+^1)-E 0 (3.2b)

VT' " - " (3.2c)

(3.2d)

(3.2e)

(3.2f)

Si l'on exprime E + v0 A B à l'aide de (3.2a), (3.2b), (3.2e) et (1.6), il vient successivement:

- F (¥ - "ft" (r' - ^o)2 + -"I - *•A rot f^ F -^7^-)
-v0A rot ^ (ft - ft) + V *- + M" (ft V) ft.en en en

Il en résulte que
M

En ; '- [V K (ft - ft)) - ft A rot (ft - ft)] (3.3)
"n

A l'équilibre, En est nul. Comme nous l'avons déjà noté dans T I, la classe suivante
de champs de vitesses annule En:

vs 0)sAr ft eft A r. (3.4)

u) Les équations (3.1) sont équivalentes aux équations de GL. Si nous nous leur donnons le nom
de London, c'est à cause de leur similitude formelle avec les véritables équations introduites
à l'origine par London [10].
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Ici eft et eft sont des vecteurs uniformes et parallèles. Néanmoins (3.4) ne constituerait
une solution de l'ensemble des équations caractérisant l'équilibre - parmi lesquelles
les équations de Maxwell - que si es en 0. De ce fait,

ft 0

est la seule solution à l'équilibre (il faut noter que nous nous sommes placés dans un
référentiel tel que la quantité de mouvement totale du système s'annule, comme le

prouve l'équation (1.11)).
Supposons maintenant que l'on soumette à un gradient thermique un

supraconducteur dans un état stationnaire tel que ft soit nul. L'équilibre chimique étant

conservé, l'expression (3.3) est encore valable et de ce fait En s'annule comme à

l'équilibre. Les équations (3.2c) et (3.2d) s'écrivent alors

Jn= ~Cnq-jT- (3.5a)

jg -Cqq^-. (3.5b)

Pour déterminer la conductivité thermique x, on mesure jq à courant total nul.
L'existence du gradient thermique donne naissance à un courant normal /'„ qui doit
être compensé par un supercourant esnsvs; mais l'absence d'échanges chimiques
empêche les deux courants de s'annihiler mutuellement à l'intérieur du
supraconducteur: ce sont les conditions aux limites qui assurent que le courant total
s'annule. La relation (3.5b) n'en est pas pour autant modifiée et l'on retrouve bien le

résultat de Luttinger r
Par ailleurs, il vient également

X -™ (3.6)

Ê„ E - grad A- 0
en

ce qui montre bien que les 2 pouvoirs thermoélectriques ef et e"- définis par l'équation
(1.1) sont nuls b

4 - ~ [dx Ë 0
AT

b

eï=--jTfdxËn 0. (3.7)

a

Il convient de noter que les relations (3.6) et (3.7) sont valables en présence de champs
électromagnétiques et que l'emploi des équations de GL suggère leur validité également

pour des dimensions très faibles. Enfin, comme les résultats de TI le suggèrent,
ces relations sont encore valables pour un système en rotation uniforme à condition
que le système reste stationnaire.

Avant de conclure, il vaut la peine de se demander quelle est la répartition des

courants dans un système stationnaire soumis seulement à un gradient de température.
A l'équation de London (3.2a) s'ajoute la relation d'Ampère12)

r0tT.- /total =nsesVs+Jn-

2) pi0 est la permittivité du vide.
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Dans l'approximation linéaire, jn est irrotationnel. Par conséquent la combinaison de

ces deux équations conduit à
Mrot rot * jtotal + ;total 0

Dans l'approximation de London

-J^- =ô2 cte4 ft 1*0

on retrouve ainsi les équations bien connues qui décrivent l'effet Meissner

4/tota, <5"2/total - (3-8a)

AB Ò~2B (3.8b)

L'équation (3.8a) doit être résolue avec la condition aux limites suivante : _/total J_

est nul sur toute la surface extérieure du système. Si celui-ci est simplement connexe,
la seule solution de (3.8a) est la solution triviale13)

/total 0- (3-9)

Dans cette approximation, il y a donc découplage complet entre phénomènes
thermiques et électriques, ce qui correspond bien à l'absence de pouvoir thermoélectrique.

En conclusion, l'auteur tient à remercier le Fonds National Suisse de la Recherche
Scientifique pour son aide financière.

Appendice: l'équation de continuité pour l'énergie
Si l'on s'en tient aux notations (1.11), il vient, compte tenu des équations (1.1)

et (1.4)

àth =}Jha dtna + hs dts + £hAi d, nA
a A

-ZK àk« nj -ZK dJi+ZK *«<»-*. àk(vk s)
a a a

- *. àkj) + hsi- £hAi dk (vkA nA)+ ZK, (dkrk')A
A A

+ZKd*A + à -àk \ZKi < vkA +zk «« < + k s vko

A VA a

+ZK /a + K Ù +Z< n« d*K +Zva À àkhAt
a Ja A

+ rtsdA +ZJÌ òkha + fe àkK +ZKi (àkrik)A +ZKvaco
77-2 V&

Z-éJr+Zr*.".*
A A o.

Ahsi+£hAi(fA + xA) -
A

+ vk0 Ts +Zfia Jl + T jk +Z< *« àkpia + vk0 s dkT
a J a

+ Z /« \d** + M« Tl + t dkT+ ZK V« «>

+ iT+Z"At Uà + "aÌ +ZvAt (àkrik)A ¦ (A.l)

13) Il va sans dire que le champ B doit également s'annuler à l'infini, ce qui correspond à une
condition aux limites supplémentaire.
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Nous avons fait usage de la définition suivante:

m0 ncMc + ft M„
ainsi que des égalités

K -on: {Tm-J+^-^+t*« a)

ZK Ja K JÌ + KJkn -^t M J'+ M» ft +Z^ 7* Pc 7/+ Pn JÌ b)
a a

2>« àj>a+z*A hK-i -2X «a d* 4
a a a

+ ZX M« »« dkvai +Zn« <Va =Zn* dkP« c)
a ^ a

(TVf
M M n \ 9

—I-51- + "g—) ^o + A*» »»

+ Pc nc -^r +Pnnn+ Pc nc d)

ZJÌdkP*=ZJl (àkP«AM^f). e)
oc a v '

Dans la première égalité,
», si « s

ft si a c, w

Dans les égalités b), d) et e), il a été fait usage des équations (1.6), conséquences
de la conservation de la masse.

on pose
w w(s) + w(o) et dj (^ + (d^

w étant la densité d'enthalpie et p la pression du système, avec

w(S) ns Ps w(0) ncPc + nnPn+ Ts

(àkp)s ns àkT (dkp)0 ft dkpic + ft dknn + s dkT

l'équation (A.l) se transforme suivant

dth -dk [fë* + »<•>) vks + (m^ + ufi») vk + ptjk + Fn Jkn

+ Tjk] + v\ (dkp)s + vk0 (dkp)0 + t 1^ + ^^]+ jk dkT

+ (Ps V, +PnVn- -M-Sf^- - -"a—) C0 + ÌT+VSÌMSVÌVSC0

- voi Ms v\vsco + vsi (es ft Ef + es ns (ft A B)*) + voi q0 E{

+ »„< [feo^o AJc +/J A BY - vsi (dlp)s + voi (dkrik)0.

On pose alors „P (dkr'\ + (d*p)0 dkr^k
où T$tk est la contribution de t'* responsable de la dissipation14) ; on obtient alors sans
autre l'équation (1.13).

14) Pour ce qui est de l'existence d'un tenseur t(/)»'*, voir page 215.
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