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Equations de Ginzburg-Landau et équations phénoménologiques
de transport dans les supraconducteurs?)

par F. Rothen
Institut fiir Theoretische Physik V der Philipps-Universitit, Marburg (Allemagne)?)

(26 VI 68)

Summary. It will be shown that in the neighbourhood of the critical temperature the application
of the theory of irreversible processes to the supraconductors necessitates no other specific hypothe-
sis but that of the validity of the time-dependent Ginzburg-Landau equations. Especially the
vanishing of the thermoeclectric effects and the particularly simple form of the thermal con-
ductivity in supraconductors are connected with the fact that the pseudo-wave function p in-
troduced by Ginzburg-Landau satisfies a diffusion equation in the mentioned temperature region.

Introduction

Dans un supraconducteur au voisinage de la température critique les relations
entre courants et champs électromagnétiques sont locales, ce qui permet ’application
de la théorie des phénomeénes irréversibles sous forme également locale; or ce méme
domaine de température est domaine de validité de la théorie de Ginzburg-Landau?),
qui doit donc pouvoir trouver place dans un cadre plus large, compte tenu des dif-
férents développements que divers auteurs lui ont donnés pour décrire également
les phénomeénes non stationnaires [2]. Le fait que 1’équation du mouvement pour la
pseudofonction d’onde (%, ) introduite primitivement par GL est une équation de
diffusion appelle nécessairement la référence aux phénomenes irréversibles, comme
Schmid I'a déja fait [2]; il est par ailleurs souhaitable de procéder systématiquement
en la matiere.

Le présent travail a deux buts distincts: d'une part il tente de montrer que la
théorie GL s’inscrit naturellement dans le cadre de la théorie des phénomeénes irréver-
sibles appliquée aux supraconducteurs, a laquelle elle a pour effet principal d’apporter
un certain nombre de restrictions quant a la forme de certaines équations; d’autre
part il montre que cette généralisation permet d’interpréter simplement ’absence
d’effets thermoélectriques et la forme particuliére de la conductivité thermique dans
les supraconducteurs [3].

En ce qui concerne ce dernier point, il est nécessaire de faire les remarques suivantes.
Le pouvoir thermoélectrique*) er d’un métal normal est défini comme le rapport de la

1) Ce travail a été accompli grice a I’appui financier du Fonds National Suisse de la Recherche
Scientifique.

%) Adresse actuelle: Institut de Physique Expérimentale de 1'Université, Place du Chéteau,
Lausanne (Suisse)

3) Nous employons dans ce qui suit la dénomination «théorie GL» aussi bien pour la théorie de
Ginzburg-Landau sous sa forme primitive [1] que pour les diverses extensions qui lui ont été
données par la suite.

%) Nous nous limitons a la discussion du pouvoir thermoélectrique, exemplaire en la matiére.
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différence de potentiel Ap = @(b) — ¢(a) qui nait aux extrémités a et b d’une piéce de
métal a la différence de température correspondante AT = 7'(b) — T'(a), ceci en
I'absence de courant. De la relation

j=£nn (E—V'ii) _Enq

conséquence de la théorie des phénomeénes irréversibles, on tire sans autre

b
_ de L #\ _  Lng
ET—Z'T‘——Adex(E”—VB)HE"RT.

Sil’on applique cette méme théorie aux supraconducteurs, on a le choix entre les deux
équations

VT
T

E-v (& + 52 (3.2b)
jo=LCon (E—V #) —g,, T2 (3.2¢)

n
décrivant respectivement le superfluide et le fluide normal caractérisés par les

potentiels chimiques respectifs u, et u,. On est alors conduit a définir deux pouvoirs
thermoélectriques &7 et ¢7 suivant les équations

(I.1a)

b X

s 1 +1/2 M_v?

(";‘T:“—ﬂ/‘dx(.E—Vﬂ /8 fﬁsf)
ab

s

& == 7 [ 45 (E— 7 &) (L1b)

les calculs devant étre effectués a courant total nul. 7 est évidemment nul, ce qui
n’est pas a priori le cas de &7.

L’expérience a montré depuis longtemps 1'absence de pouvoir thermoélectrique
dans les supraconducteurs [4]; Luttinger a utilisé I’équation (I.1a) pour expliquer ce
fait [3]. Dans la seconde partie de ce travail nous montrons que les restrictions
qu’apporte la théorie GL aux équations tirées de l'application de la théorie des
phénomeénes irréversibles a pour effet de rendre &7 nul également, ce qui supprime
toute contradiction apparente entre les deux définitions de ;.

Dans la premiére partie de cet article, nous appliquons la théorie des phénoménes
irréversibles au supraconducteur; nous suivons a cet effet la formulation de Stueckel-
berg des équations de ’hydrodynamique [5] et pour ce qui est de leur application aux
supraconducteurs, nous nous servons de 'exposé que nous avons déja fait dans un
précédent travail [6].

Dans la Ze partie, nous introduisons la notion de pseudofonction d’onde  due
a GL et nous établissons les restrictions qu'impose ce modéle particulier aux équations
tout a fait générales établies plus haut. Le fait que les coefficients de 1’équation de
diffusion pour g ont déja été calculés a partir de la théorie microscopique par GORKOV
[7] et certains des auteurs déja cités [2] nous permet d’exprimer en fonction des
grandeurs microscopiques le coefficient phénoménologique caractéristique des
phénomenes de nucléation. Dans la derniére partie enfin nous montrons comment les
restrictions apportées par la théorie GL aux équations générales déduites de la théorie
des phénomeénes irréversibles entraine la disparition des effets thermoélectriques.
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1. Application de la théorie des phénomenes irréversibles
au modele des 2 fluides

Lorsque 'on applique la théorie des phénomenes irréversibles 4 ’hydrodynamique
conventionnelle, le systéme considéré peut étre décrit par un ensemble de champs
scalaires ou vectoriels, les «variables» thermodynamiques. A chaque variable cor-
respond une équation de continuité invariante relativement au groupe de Galilée.
L’une de ces variables est le champ de vitesse v(x,?) de 1'élément de fluide auquel
correspond I'équation de continuité pour la quantité de mouvement correspondante
JE(x, £). v(x, ) est toujours unique, méme si le systéme étudié est un mélange de
plusieurs substances. Les vitesses particulieres des différentes substances ne con-
stituent pas alors des variables indépendantes mais permettent de définir les divers
courants de diffusion en présence.

Dans le modele des 2 fluides, a c6té de vy(x, £), champ de vitesse des excitations
normales analogue a tout point de vue a v(«, ¢), il existe un deuxiéme champ v («, )
qui décrit le condensat ou superfluide et qui obéit a une équationdumouvement typique
d’un fluide parfait: c’est a ce modéle des 2 fluides que nous appliquons dans ce
paragraphe la théorie des phénomeénes irréversibles dans toute sa généralité.

Le supraconducteur au voisinage de la température critique satisfait a des relations
locales entre courants et champs électromagnétiques; de ce fait — par construction
pourrait-on dire — il obéit au modele des deux fluides tel qu'il est présenté ici. Mais il
satisfait également a la théorie de Ginzburg-Landau qui apporte a ce modele quelques
restrictions: nous abordons ce probléme au paragraphe 2.

Equations de continuité

Le systeme considéré ici est donc constitué de 2 fluides, le fluide normal et le
superfluide:

Le fluide normal, repéré al’aide de I'indice 0, est composé de 2 substances chimiques,
les ions du réseau cristallin d'une part et les électrons normaux ou excitations normales
de l'autre, désignées respectivement a l’aide des indices ¢ et ». Les variables thermo-
dynamiques de ce fluide sont n,(x, ¢), n,(, ¢), 7Ty(%, ) et s(¥, ) qui sont respectivement
la densité de ions, la densité d’électrons normaux, la quantité de mouvement de
I’élément de fluide et la densité d’entropie. Ces 6 variables obéissent aux 6 équations
de continuité correspondantes du fluide normal qui, dans un repére inertial, s’écrivent

O, + 0y (g, + J5) =0, (1.1a)

om, + 0, Wen, + JH =v, 0 =gq,, (1.1b)
0,75y, + 0, (vF7,,) — (0,25 = Foi + %0: (1.1c)
0s+0,wis+H=i=0. (1.1d)

Les indices 17, 7, k etc. reperent les composantes cartésiennes des divers vecteurs ou
tenseurs utilisés. /% et J% sont les courants de conduction des 2 substances présentes
et 7% le courant de conduction d’entropie. (0,7%), est la partie normale du terme 0,7’
dont nous verrons qu’il se décompose en 2 termes relatifs a chacun des fluides:

0,7F = (Ok'ff)u + (Oka)s .
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’ ’ . k
Les grandeurs (0,7%), et (0;7%), ne sont pas en général de la forme 0y a} ol 4} est un
tenseur (voir par exemple (1.9)). g, décrit la source d’électrons normaux due a la
conversion chimique possible d’excitations normales en paires de Cooper, processus
symbolisé par 1'équation
par e & s 26 (1.2)
qui exprime la transformation d’une paire de Cooper e¥ en 2 quasiparticules ¢ ou

vice-versa. En conséquence, les sources d’électrons normaux g, et de superélectrons g,
sont données par

qnzvna) Q‘S:IVSO)
ol w est la vitesse de réaction du processus et v, et », sont respectivement proportion-

nelsa — 2 et + 1.
Dans I'équation (1.1c), fy; + %,; désigne la force totale s’exercant sur I'élément de

2

volume du fluide. f;; représente la force de Lorentz5)
f0 = (ec ", +6n W’n) E + [(gc #, + n nn) Py + € Jt: -+ Cn ‘I?J /\B
=00 E+ (0gvo+j. +7,) NB (1.3)

alors que x,; est un terme supplémentaire encore inconnu et destiné a décrire une
interaction éventuelle entre les deux fluides. Notons que dans ’équation (1.3) nous
avons défini g, j, et j,, respectivement la densité de charge du fluide normal, la
densité de courant électrique de conduction due au déplacement des ions et le terme
électronique correspondant. ¢, désigne la charge de la particule v (v = ¢, #, s).
Finalement, 7 est la source d’entropie, définie positive en vertu du 2e principe.
Le superfluide, repéré par I'indice s, est caractérisé par les 4 variables thermo-
dynamiques n(x, ¢) et 77 (%, ) ; les 4 équations de continuité correspondantes s’écrivent

0, + 0f (Vh7wy) — (04705 = foi + %4 (1.4a)
O, + 0, (W¥n, + JH =v, 0 =q,. (1.4Db)

Il n’est pas nécessaire de préciser la signification des grandeurs introduites ici,
signification évidente sil’on se référe aux équations (1.1). Notons cependant les points
suivants:

1) #x} et ». décrivant I'interaction des deux fluides, on a

#y + %t =0 (1.5)
2) La masse et la charge étant conservées au cours de la réaction (1.2), il vient
v,M,+v.M =0, (1.6a)
v,e,+v.e,=0, (1.6b)
M, J+MJ +MJ=0. (1.6c)

M, désignant la masse de la particule .

Notons que par souci de simplification nous négligeons les processus d’échanges
entre ions et électrons; en tenir compte ne présenterait pas de difficulté de prin-
cipe [6].

%) Toute polarisation tant magnétique qu’électrique est ici exclue.
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Mouvement du superfluide

Si l'on fait 'hypothése de London que le superfluide est un fluide parfait sans
frottement, on est conduit a identifier 'équation (1.4a) 4 1'équation d’Euler®)

(E+v, AB), (1.7)

k 1 €
otvsz’ 2 vs Okvsi T M Ozfu’s = M
s

S

Compte tenu de l'identification
jIS = nS MS‘ vS
(1.4a) devient

M Vsi (otns £ divvs ns) o ‘zu:s n, (Otvs > (vs V) vs)i - (Ok T?)s = X . fsi
ou encore, a 'aide de (1.4b) et de la définition de f,;:

0k7B)s 2.y — M v, (v 0—div J) s
dtvsi + Uﬁ okvsz - Ms n, - M n, ~t Ms n, - (18)
La comparaison de (1.7) et (1.8) conduit aux identifications
(Okr )s = — ( )s = 1’L 0121”’5 ] (19)
s =Mvg v, 0. (1.10)

Dans l'équation (1.10) nous avons fait I'hypotheése supplémentaire que J, =0,
hypothése qui se vérifiera par la suite. Nous évitons par 14 des complications sans
objet.
Equation pour I'énergie

L’équation de continuité pour ’énergie est une équation de continuité supplémen-
taire a laquelle doivent satisfaire les différentes variables thermodynamiques; elle
doit donc pouvoir se déduire des autres équations de continuité par identification [5].
On pose alors

=M, n, (a=c,n,s) v, (&= 75)
v i
> (¢ = ¢, n)
mOZM%C+Mnn72 _ ()h . ()M
N (1.11)
M+Zmava hE-OEET -
s 0s
0h
- = =0
wo =N U, + W e +,”’mun+ Ts hAt onf‘l ( ' S)

h est la densité d’énergie totale, « la densité d’énergie interne, 7T la température et u,
les différents potentiels chimiques. w est la densité d’enthalpie; on remarque que la
forme de w permet de la décomposer en deux termes relatifs a chacun des deux fluides:

w — @ L O

23 .

wh=nu W =nu +n,u,+ Ts. (1.12)

6) Il est bien connu, et nous 'indiquerons plus bas, que cet Ansatz est une conséquence de la
théorie de Ginzburg-Landau dépendant du temps. u, est le potentiel chimique des super-
électrons: voir équation (1.11).
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Dans ces conditions, il vient (voir Appendice)
0= — 0, {[m"TUE - w‘s)] of + [m"Tv‘z’ + ww)] vk
g Tty T4 T = 0™ + B + 0 T
~ Vi T +Jn (Vef:” + ﬂ::" d;:,o — (E 4+ v, A B))
+J, (B4 Tle S0 — (B4 0, AB) +5,V T
+ [(M3+M.c -

('_'_-’s‘__ v,) 2

> ) v+ K, vﬂ] . (1.13)
Dans cette équation 7{/)** est défini comme la contribution au tenseur des tensions
qui est responsable du frottement:
O = 0%+ (0)y (0P =, B, + 1, Oy + 5 OT

(0°p)o est la contribution «normale» au gradient de la pression, gradient défini de la
fagon usuelle

Oxp = n, O, + 1, O, + 1, Oty + 5 0, T = (0xp)s + (O4P)o - (1.14)
Pour sa part, 0,;7{°* est bien la divergence d’un tenseur; en effet, & cause de (1.9)

(0,7%)s + (0'), = 0.
0,7 + 0'p = (0,7")o + (07™), + (0'p)g + (0'), = 047 **.

Il convient de remarquer que nous n’avons nullement fait 'hypothése que I'énergie
interne #, la pression p et le tenseur des tensions 7;; se décomposent en une somme de
termes relatifs & chacun des fluides; cette hypothése est parfaitement superflue. La
décomposition de w et V4 ne résulte que de la définition générale de ces grandeurs
et ne constitue pas une restriction a la généralité des expressions obtenues.

Jrota1 T€PIésente le courant électrique total:

jtotal =0; Y + Qo Vo +jc +jn *
Il convient encore de remarquer que dans I’équation (1.13) la somme
M, dv, M, dv,
e, dt I e Tat

n

Ainsi

I +7
est nulle, comme conséquence de la conservation de la masse. Son introduction est
donc arbitraire mais obéit néanmoins a un souci de cohérence interne (voir équations
(3.3) et (3.4)).

L’équation (1.13) a la forme d’une équation de continuité pour ’énergie a condition
que’) . 1 {

1= —

o M
71 Yoic Nk § (E YA (B+ ,é.:. rotvo)
M, v§ M, 0v, .

) T e 0t ) —Je vT

n

~7 (L= +

— (e + 5 @ =20 v+ ]} (1.15)

) L’accélération substantielle dw,/df se transforme suivant la formule

26n

dv, _ Oy, Ov, v]
= e + vy V) vy = 5 +V (T) —vy A TOt v,
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Dans I’'équation (1.15), nous avons omis le terme proportionnel a j,; I’équation (1.6¢)
montre que |j.|/|j,| = M,/M, < 1075, 1l faut noter qu'au point de vue expérimental
il n’est pas possible de différencier par exemple g, v, et 0, v, + j, qui sont pratiquement
confondus

g e, s .

les courants ou les flux; a cet effet on pose?®) (le cas isotropique est seul considéré ici):

A O i (1164
,Usk o + 3 gik v‘(!)l J ng = 3 5 7)0[ (116b)

M
“ é‘{ My + 7"3 (vs - vO) ] Ly Mn Vi } (116C)
jo=tu Ly, B, —e, TL, "0 =C,,E —cwfi (1.164)
jy=Tj, =1L, v, TL B =—C, " +C, E,. (L16e)

La décomposition de 7{/** et v}* est la décomposition usuelle d’un tenseur du 2e ordre
en termes irréductibles. Les coefficients phénoménologiques, &, ¢, £, £,,, £, , et L

nn» ~ng>

satisfont aux conditions habituelles propres a rendre la forme ¢ définie posmve
Enfin E, est défini par

M v} M, 0
B R IR S

n n n

EHEE+v0/\(

Il faut rapprocher de cette expression le vecteur IE, qui est I'analogue de I!E" pour le
superfluide et qui s’annule en vertu de I'équation (1.7):

E,=E+v, A (B + iji rot vs) . v4 (g-i + s

A s s

M. v M, ov,

s ) ‘——"es' W '—O- (1.18)
A T'équilibre, bien siir, Fjs est nul. L’objet des 2 paragraphes suivants est de montrer
que pourvu que l'état soit stationnaire, c’est encore le cas en dehors de 1'équilibre.

Celui-ci est caractérisé par les équations

Uoin =0 v =0 (1.19a)
M

[HS b= {2 —00)2] v+ u, v, =0 (1.19Db)

E, = E -0 (1.19¢)

VI =0 (1.194)

Un point mérite encore d’étre signalé a propos de l'équation de continuité pour
I'énergie. Compte tenu de (1.15), celle-ci s’écrit

0k + 0, {[ g S—l—w ]v’§+[’”0213_+ww)]vk
()i

_Z”()zr()]c k+ T]e+fuc]k+xun]k}ﬁE'jtotal‘

8) Nous négligeons volontairement les termes d’interférence entre les effets dissipatifs de com-
pression v); et les processus chimiques.
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I1 est donc possible de définir un courant de chaleur 7'j, et un courant d’énergie
chimique u, J, + u, J,; au contraire, p ni p© n’étant séparément définis, il n’est
pas possible de décomposer les autres termes comme somme de 2 courants de con-
vection (m, vi[2 + u®) v, + (my v3/2 + u®) v, et d’un courant de travail, u©® et #©
résultant de la décomposition hypothétique de la densité d’énergie en 2 contributions
relatives a4 chacun des fluides. Ce fait n’a d’ailleurs rien qui puisse inquiéter; la
possibilité d'une décomposition ne constitue en aucune fagon une nécessité pour la
théorie des phénomenes irréversibles.

2. La théorie de Ginzburg-Landau dépendant du temps

Depuis la formulation de la théorie de Ginzburg-Landau, un certain nombre d’au-
teurs ont cherché a la généraliser aux processus non stationnaires [Z]. Si I'on tient
compte des effets dissipatifs qui sont indispensables & notre propos, on peut sché-
matiser les résultats obtenus de la maniére suivante:

L’état supraconducteur est caractérisé par l'existence d’une pseudofonction
d’onde a valeurs complexes, p(«, ), qui a 1’équilibre joue le role d'un parametre
d’ordre pour la transition de phase état normal — état supraconducteur. Dans le cadre
d’un modéle des deux fluides tel que nous I’avons introduit ici, on peut formuler les
équations de GL dépendant du temps de la facon suivante:

Js = 2'}4; [w* (75 V—e A) Y+ (~ % V—e A) w*] (2.1a)
= gren [P (=0 e d)yry(Foa—ad)v] @)
yI=H0,~i (e, d+ i) p= 5 Cly] (2.1

Y
¢ est ici le potentiel scalaire du champ électrique; G[yp] représente le potentiel de
Gibbs du systéme, fonctionnelle de y et p*: 6G/dyp* symbolise la dérivée fonctionnelle
de G relativement a yp*. Le coefficient y est réel et défini dans la littérature [2]. Le
second membre de I'équation (2.1c) est écrit sous forme générale, la forme exacte de
G[y] important peu.

Le lexique qui permet d’interpréter le modéle des deux fluides a I'aide des équations
(2.1) est constitué par les équations suivantes:

n, = |1p‘2 , (2.2a)

v, = ej; : (2.2b)

vy =0 (2.2¢)
2 ~

PR LY (2.2d)

L’équation (2.2b) correspord a '’hypothése que nous avons déja faite et selon laquelle
le supercourant total j. ne comporte pas de terme de conduction de la forme e J,.
L’équation (2.2c) rend compte du fait que (2.1c) n’est valable que dans un référen-
tiel fixe relativement au fluide normal.

Il faut noter un certain arbitraire dans le choix des équations (2.1) qui ne peuvent
se déduire de la théorie microscopique de facon univoque. La présence au premier
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membre de I'équation (2.1c) de la somme (e, ¢ + ) s’explique par des considérations
d’invariance de jauge et par la volonté de faire de I'équation de diffusion (2.1c) une
équation pour |y |? seulement, alors que (2.1b) est une relation pour p ou n’intervient
que la phase de celle-ci. Le choix méme de g, plutdt que de u, dans les équations (2.1)
est également arbitraire dans la mesure ou il n’est pas conditionné par la théorie
microscopique; on peut le considérer comme une hypothése supplémentaire qui trouve
sa justification dans les conséquences qu’entraine cet Ansatz.

Notons encore que 1’équation (2.2b) comporte parfois dans la littérature d’autres
termes encore, soit par exemple la densité de charge totale g, du supraconducteur.
Néanmoins nous préférons éviter d’introduire p, dont la contribution numérique est
de toutes fagons peu importante. Quant a 1'équation (2.1c), elle est valable pour
T ~ T, alors que pour T = 0 p satisfait 4 une équation de type ondulatoire. Dans la
région intermédiaire, il n’est pas possible d’écrire pour ¢ une équation du mouvement
qui soit simple (voir ABRAHAMS et TsuNETO [2]).

Il est reconnu que ce sont les équations (2.1a et b) qui sont essentielles pour la
phénoménologie de la supraconductivité; on considére généralement que (2.1c) joue
avant tout un roéle dans les processus de relaxation (nucléation, résistance des supra-
conducteurs de type II due au déplacement des filaments normaux de la structure
d’ABRIKOSOV [8]). Nous voulons montrer au paragraphe 3 que la forme de I’équation
(2.7¢) est compatible avec I'absence d’effets thermoélectriques dans un supraconducteur.

Détermination du coefficient de relaxation

A 1’équilibre, I'équation pour y s’écrit simplement
0 .
C’est I’équation obtenue primitivement par GL qui posérent explicitement dans ce cas

1 (k& 2
Gl = G, +dev [alw[z + £ jplo+ — y(_ v-ed)y]. @3
Or si 'on soumet G[y] A une variation dy* quelconque, il faut tenir compte de la

condition «chimique»
e, 0n, + e, om, = 0.

Dans ces conditions

7 M v . M, 02
0G[y] :/ av ((M; +— ) on, —l—[unénn) —de [vs (;“s + = )
on, M, v? Y
+ 7, }un] ’ 1? _J[dV [vs (Ius i~ 2'_") + ¥, !un] ;,s— 5‘/)* *
Nous avons fait usage du fait que G[y] comprend un terme cinétique qui dans
I'équation (2.3) prend la forme 1/2 M, |(%/i) V — e, A) p|?; des lors 6/dn, G[y] est
égale a yu, + 1/2 M, v® et non 4 y,. (2.1c) peut ainsi se récrire

Sil'on évalue alors ¢* H[y] + v H*[y], il vient

on, = — ﬁ_ﬂf”; [v‘,, (,LLS + E‘Zv—?) + v, ,u,,] ' (2.4)
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Par identification avec 1’équation de continuité (1.4b) on obtient, la condition (2.2c)
¢étant maintenant supprimée,

Vo= — Zhlywvf~ (vs (,us + il‘—(—v%_——%i) +, ,u,,) (2.5)

alors que 1’équation de continuité pour #, se décompose elle-méme en deux équations
séparées?)
0tns C ¥ (vO V) Ny =¥, 0 (2'63')

div (v, — vg) n, = 0. (2.6Db)

La comparaison avec (1.16c) permet de déterminer le coefficient de relaxation du
systeme

_ 2y
¢ = T (2.7)
D’autre part (2.4) assure que 'équilibre chimique
5.7
Vs [Ms -+ —“S(vé—vo)] -+ Vu Mn = 0 (2‘8)

est conservé dans tout processus stationnaire, méme en dehors de I'équilibre.

Il convient de remarquer que l'équation (2.8) est une conséquence particuliére
de la forme de I’équation de mouvement (2.1c) pour . Siy était imaginaire pur ((2.1c)
serait alors une sorte d’équation de Schroedinger), 1'équation de continuité pour
|p|* = n, ne se décomposerait pas en 2 termes (équation (2.6)) et (2.8) ne serait
valable qu’a 'équilibre.

En utilisant les résultats de la théorie microscopique, il est aisé d’exprimer { en
fonction de T prés de la température critique. Si 'on se rappelle que dans un supra-
conducteur de type I | |? est pratiquement égal en tout point a

e (2.9)
il vient
= 2a

C = CO == 77?-/"?—1%6_'
Les 3 coefficients o, # et y peuvent se calculer & partir de la théorie microscopique.
Sil'on prend par exemple les valeurs calculées par ScHMID [2], il vient

_ 56((3)Nep T,—T

=3 nhv? R I%

(2.10)

N esticila densité al’équilibre des électrons dans1’état normal, ex et 7, sont respective-
ment 1’énergie de Fermi et la température de transition du métal. Enfin % est la
constante de Boltzmann et {(3) = 1,202.

Les équations (2.1¢) et (2.4) permettent de définir un temps de relaxation 7z qui
caractérise 1'évolution de |y|? vers I’équilibre. On vérifie sans peine que!?)

%) Les équations (2.6) ne prennent cette forme simple que si div v, = 0, ce qui n’est stricte-
ment vrai qu’a I’équilibre.

10) 7g peut étre calculé directement & partir de la théorie microscopique sans faire un appel explicite
a la théorie de GL. C’est ce qu’ont fait par exemple Lucas et STEPHEN [9] ainsi que Woo et
ABranaMs [10] en considérant les processus de relaxations dus a l'interaction électrons-
phonons. Lucas et STEPHEN donnent d’ailleurs une formule analogue a (2.4).
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3. Phénoménes stationnaires; conductivité thermique et effet thermoélectrique

Nous avons vu plus haut que I'équation de diffusion pour |w|? entraine la dé-
composition de I'équation de continuité pour #, en deux équations indépendantes
(2.6a) et (2.6b). Il est bien connu que les 2 équations (2.1a) et (2.1b) définissant j, et p,
décomposent 1'équation

~ M o2 ]
B, =E+v,A (B+ s rotv) v (gs + GE) - e T =0 (118)
5 65 L B
également en 2 nouvelles équations, les équations de London'). Si 'on pose en effet
p = |p| e'* et que I'on élimine « entre les 2 équations (2.1a) et (2.1b), il vient

ML rotv, + B =0 (3.1a)
M, 01,7 M, v% B
=l -H7(S +2*83)-—E—O (3.1b)

(3.1) est évidemment une solution particuliere de (1.18).
Dans le cas stationnaire, les équations (3.1), (1.16), (1.17) et (2.8) entrainent

rot ZS v,+B =0 (3.2a)
v (’: + "‘2;’2) —E=0 (3.2b)

=L, E-L,, = Lk (3.2c)
Ty =— Ly, ET— + L, E, (3.2d)
v (i + ELZ'%W ) 71 = 0 (3.2¢)
diveg =0 Okvﬂ‘i + 000, = 0. (3.2f)

Sil'on exprime E + v, A B al'aide de (3.2a), (3.2b), (3.2e) et (1.6), il vient successive-
ment:

U U M
E+ v, A B= V(x ----- s+-§‘)—vo/\rot o,
€y s s
M, v§ i, M M (v.—vy)v
== (f,z."e_s., = g : (vs — 90)2 =X ,“;I?__) — vy A rot _e_n, B = v ( ,1?,( ; 0 0)
n = n n n 5

M M
— v, A\ rot — (v, —vy) + V ‘:1+ - (0o V) vy .

n n n

Il en résulte que
~ M
E — 2 [V (vy (¥, —vy)) — vy Aot (U, — )] . (3.3)

n
A I'équilibre, En est nul. Comme nous I'avons déja noté dans 7" I, la classe suivante
de champs de vitesses annule E:

=, \r Vg =Wy A\ T. (3.4)

1) Les équations (3.1) sont équivalentes aux équations de GL. Si nous nous leur donnons le nom
de LLoNDON, c’est a cause de leur similitude formelle avec les véritables équations introduites
a l'origine par Lonpon [10].
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Ici w, et w, sont des vecteurs uniformes et paralleles. Néanmoins (3.4) ne constituerait
une solution de I’ensemble des équations caractérisant 1’équilibre — parmi lesquelles
les équations de Maxwell — que si ¢, = ¢, = 0. De ce fait,

vy =0

est la seule solution a 1'équilibre (il faut noter que nous nous sommes placés dans un
référentiel tel que la quantité de mouvement totale du systéme s’annule, comme le
prouve 'équation (1.11)).

Supposons maintenant que I'on soumette & un gradient thermique un supra-
conducteur dans un état stationnaire tel que v, soit nul. L’équilibre chimique étant

conservé, l'expression (3.3) est encore valable et de ce fait E, s’annule comme a
I'équilibre. Les équations (3.2c) et (3.2d) s’écrivent alors

. vr
i vr
jo=—t,, 7L (3.5b)

Pour déterminer la conductivité thermique %, on mesure j, a courant total nul.
L’existence du gradient thermique donne naissance & un courant normal j, qui doit
étre compensé par un supercourant e, #, v_; mais ’absence d’échanges chimiques
empéche les deux courants de s’annihiler mutuellement a lintérieur du supra-
conducteur: ce sont les conditions aux limites qui assurent que le courant total
s’annule. La relation (3.5b) n’en est pas pour autant modifiée et I’on retrouve bien le
résultat de Luttinger C

i — Lu (3.6)

Par ailleurs, il vient également g

En EE—grad‘fZ”f:O

n

ce qui montre bien que les 2 pouvoirs thermoélectriques &7 et e définis par I'équation
(I.1) sont nuls

b
s 1 / o
ST"*_'A_T“’ dx ES—O,
‘ b
n o i T i
8,1\¥—AT/den_0. (3.7)

Il convient de noter que les relations (3.6) et (3.7) sont valables en présence de champs
¢lectromagnétiques et que I'emploi des équations de GL suggére leur validité égale-
ment pour des dimensions trés faibles. Enfin, comme les résultats de 7'/ le suggerent,
ces relations sont encore valables pour un systéme en rotation uniforme a condition
que le systéme reste stationnaire.

Avant de conclure, il vaut la peine de se demander quelle est la répartition des
courants dans un systéme stationnaire soumis seulement a un gradient de température.

A T'équation de London (3.2a) s’ajoute la relation d’Ampeére!?)

B . . ; *
rot ';007 = Jtotal = N5 €,V T ], -

12) u, est la permittivité du vide.
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Dans I'approximation linéaire, j, est irrotationnel. Par conséquent la combinaison de
ces deux équations conduit a

M
rot rot — 2 ]total + ]totai 0.

Dans I'approximation de London

-fgj—ws— =8=cte
€s g Mo
on retrouve ainsi les équations bien connues qui décrivent 'effet Meissner
Aforar = 072 fiotar » (3.8a)
AB = 6—2%B. (3.8b)

L’équation (3.8a) doit étre résolue avec la condition aux limites suivante: f,,.,, L
est nul sur toute la surface extérieure du systéme. Si celui-ci est simplement connexe,
la seule solution de (3.8a) est la solution triviale!3)

Fiotai = 0. (3.9)
Dans cette approximation, il y a donc découplage complet entre phénomeénes ther-
miques et €lectriques, ce qui correspond bien a I'absence de pouvoir thermoélectrique.

En conclusion, I'auteur tient 4 remercier le Fonds National Suisse de la Recherche
Scientifique pour son aide financiére.

Appendice: 1’équation de continuité pour 1’énergie

Sil'on s’en tient aux notations (1.11), il vient, compte tenu des équations (1.1)
t (1.4)

0,h = Zh 0m, + h ()s-{—ZhAl d, ',
=—Zh 0,(v% n, Zhac)k]aJrZhavaw—hs 0,(vE 5)
— &, 0k73+hsz_;h’,ﬁok (vini)'i‘;hm (047") 4
+;hAi[%ji+ﬁl]:_'Ok[;hAiﬂf{vﬁ+§hanavz+'hssvg
+Zo;k°‘ JE+ b, yﬁ] —i—gv’; n, 0k, +;v§ 0,0, ;
+”§30khs +2]§ akha‘|’§"l: 04, -II_AZ‘hAi(Oktik)A +Zha”aw

g Dy (fa + %) = — Ok[
A A
b TS+ T T T |+ Tk, O+ ks 4T

- [ 0, 4 0T 1 S
+:T —I—;'v,“ [}y + 4] +§7’Ai (0,7) 4 - (A.1)

13) 11 va sans dire que le champ B doit également s’annuler A l'infini, ce qui correspond & une
condition aux limites supplémentaire.
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Nous avons fait usage de la définition suivante:

me=nM,+n, M,
ainsi que des égalités

— d Ty, o Mavgt
b= g () = = 75 1 | el
2
Db Ji=h JE b, Ji= = 2 (M T+ M, ) + 3w Jh = e T T D)
2 Mo Oy + Dy Ohy; = — 3 M, m, Ok‘vf}‘

+2Ma na viﬁ Okvoci_l_znoc Oklu’oczznoc Okluoc C)
o 4
i : M, n, M, n,
hOinO -+ hc nc—{—hnnn_—:vwng—- (T + - ,fo) 7)(2)+Mn%
2
+ = T, o+, d)
k k d gy
Zfaok:uoczzja( kMa+M _“—)' e)
o o

Dans la premiére égalité, :
{ v, Sl oa=S§
v, =

v, Sl a=c, %

Dans les égalités b), d) et e), il a été fait usage des équations (1.6), conséquences
de la conservation de la masse.
PPy w0 w0 et 0y = (08, + (e
w étant la densité d’enthalpie et p la pression du systeme, avec
w® = n, p, WO =, po, + ny g, + 1's
(0xp) =, 0,T (0p)o = 1, Ogpte + 1y Opty, + 5 0, T

I’équation (A.1) se transforme suivant

0 == 0, [(Z5 +0) of + (752 + wO) of -, Sit T

y ; M _d ;
F T 0 (0), + 7 (0up)o+ 75 [0 + 22 S| 4420,
] 2
+(/"svs+tun n“‘w'g Mvo ) +2T~|—7)MM7)’V(A)

Msvsvsw+v (6%E1+67¢(s ))+v0tQOE1
+v0; [(90v0+]c +]n)/\B]z_v ( ) +U0’L( )

On pose alors

(dkt ) (OEP) k"fg e

olt T** est la contribution de 7** responsable de la dissipation?); on obtient alors sans
autre 1'équation (1.13).

) Pour ce qui est de I'existence d’un tenseur z{)¢%, voir page 215.
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