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A Note on the Commutation Relations of Field Operators

by Walter Schneider
Department of Mathematics, Imperial College, London

(10. V. 68)

Abstract. Let <j>(.) and y>(.) be two fields transforming according to finite irreducible
representations of SL(2, C). Then the (anti-) commuting of two properly chosen components of <p(x)

and yi(y), (x,y) varying in a domain G C it4 X i?4, implies the vanishing of all (anti-) commutators

between any component of <f>(x) and ip(y) respectively.

We consider a Wightman theory [1, 2] containing the fields <f>(. and y>(. which are
assumed to transform according to the irreducible representations [p, q] and [r, s] of
SL(2, C) respectively. Accordingly we have

U(A) <f>(x) U(A)-1 SX(A'X) <f>(A(A) x)

U(A) f(x) U(A)-X S2(A-X) xp(A(A) x) (1)

where A -> U(A) is the unitary continuous representation of SL(2, C) in the Hilbert
space 11 on which the fields act as operator-valued distributions. (1) and the following
equations hold on a dense linear set D C H in the sense of distribution theory. The

field operators as well as U(A) map D into D. A -> SX(A) (A®p)sfm ® (A®")sym is the
irreducible representation of SL(2, C) characterized by [p, q], and similar for [r, s].
Finally, A ->A(A) is the canonical homomorphism from SL(2 ,C) onto L\, explicitly
A>;(A) 1/2 Troß A ov A*.

With the above-mentioned assumptions we shall prove the following

Theorem: If the (anti-) commutator

y>0,g(x), Vr,o(y)](+) <f>0,q(X) Vr,o(y)& VrAV) <f>0,ç(X) (2)

between the distinguished components <^0j q(x) and yr,0(y) vanishes, (x, y) varying in
the domain GC^x Ä4, then

[U*).^.W]w °. (x.y)eG (3)

for all components (/>/,,k(x) and tpm,„(y). (Instead of the usual dotted and undotted
spinor indices with values 1 or 2 we use the numbers h and k to characterize the
components of </>(.), k (h) being the number of (un-)dottcd indices of value 1.)

Proof: We insert the following one-parametric subgroups of SL(2, C)

Aj»-i.\ -\) A,mA\ -l) am-I1 I) ^M-{_t\ I) w
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into (1) and get, taking the derivative at X 0

[Mx, <f>h,k(x)]_ Dx(x) <phJx) + h (f>h_Xyk(x) + k </>k,k_x(x)

[M2, (f>h,k(x)]_ D2(x) (f>htk(x) + i h cj)h_Xtk(x) - i k 4h,k..i(x)

[M3, <f>k,k(x)]- D3(x) <j>hyk(x) + (p-h) <f>h + xJx) + (q-k) <phtk, x(x)

[Mi, <f>*,k(x)]- - Dt(x) <f>hJx) +i(p- h) <ph+Xtk(x) -i(q- k) <f>h<k+x(x) (5)

and similar Equations (5') for ymt n. i Mk, k 1, 2, 3, 4, are the self-adjoint generators
of the one-parametric unitary groups Uk(Â) U(Ak(k)); Mk maps D into D [1].
Dk(x) are linear differential operators of the form £ cck

" y dv, akv — cAh''.

For arbitrary operators X, Y, Z mapping D into D, the following identity holds
on D:

[X, [Y, Z]_\ + Q [Z, [Y, X]_]e [Y, [X, Z]e]_ (6)

where

[A, B]Q A B + qB A, o= ±

Applying (6) to ip„hn(y), Mit <j,h<k(x) we get

bPm.n(y). [Mit <t>h,k(x)Ue + Q [<t>h,k(x), [M„ Wm,n(V)Ue 0 (7)

if
[^».¥V„(y)]e 0, (x,y)eG (8)

holds. Together with (8), also the equations

lD{(*)tU*),Vm.n<y)la 0. (*.y)eG (9)

[<f>hJx), Dt(y) fm,n(y)]g 0 (x,y)eG (10)

are valid, G being a domain.
Inserting (5), (5') into (7) and taking into account (9), (10) we are left with the

equations

h[y>m,n(y), <f>k-i,k(x)]g ± k[fmJy), <f>h>k-x(x)]e

+ q ™>[<I>hAx), w,n-i„,(y)\ ± eMk,k(x), Wm,n-l(y)\ o (ii) (12)

(P - h) [y>,„,n(y), ^A+i,k(x)]e ±(q~k) [rpm,n(y), Kk+i(x)]s
+ Q(r-m) [<p„Jx), ipm ,xJy)]Q ± Q (s - n) [<f>lhk(x), y>m,n+1(y)]e 0 (13) (14)

Adding and subtracting (11) and (12), (13) and (14), leads to

KWm,n(y), <l>h-i,k(x)\ + Q m[cj>htk(x), vm_i,„(y)]e 0 (15)

kbp,njy), </>h,k-i(x)]e + e n[cj>hyk(x), vm,„_i(y)]e o (i6)

(P - k) Wm,n(y), <l>h+i,k(x)\ + e(r-m) [<j)htk(x), ipm+1,„(y)]e 0 (17)

- k) \APm,n(y), <f>t,,k nW]8 + Q(s-n) [<f>hJx), fm>n ,i(y)]e 0 (18)
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(15)-(18) are valid only if (8) holds. This is the case for h 0, k q and m r, n 0

according to the assumption in the theorem. Therefore, making use of (15), (8) holds
for h 0, k q and m r — 1, n 0. Again using (15), (8) holds for h 0, k q,

m r — 2, n 0 and so on. (8) being valid now for h 0, k q, n 0 and all m,
repeated use of (17) extends the validity of (8) to k q, n 0, all h, all m. (16) extends
this result to n 0, all h, all k, all m and finally, by (18) we end with the statement
of the theorem.

Remark: Usually one considers the domain G {(x, y)j(x — y)2 < 0}. In this case
the vanishing of either the commutator or the anticommutator between components
of field operators at space-like separated points is called locality. Our theorem shows
that locality need be assumed only between </>0,q(x) and tpTi 0(y).

In the cases xp(.) =^*(.) [1-3], f(.) =</>(.)' [1,2, 4] the choice q (- l)*+«+Ms
enforced by the positivity condition. In any other case g is arbitrary, but there
always exist sufficiently many symmetries with the help of which new fields can be
defined such that q min {(- l)#+?+i, (- l)'+*+i} [1, 2, 5].
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