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Localizability for Particles of Mass Zero

by W. O. Amrein
Institut de Physique Théorique de l'Université de Genève

(I.V. 68)

Abstract. We investigate the consequences of the concept of weak localizability which was
recently introduced by Jauch and Piron. It is found to be the appropriate mathematical tool for
describing the localization of particles of given helicity in relativistic quantum mechanics. It treats
particles of mass zero and those of positive mass on an equal footing. Particles of one fixed value of
the helicity and spin / ^ 0 can never be described by states which are localized in a finite region of
space. The neutrinos fall into this category. Particles which may exist in superpositions of states of
different helicities (such as photons) can be localized in arbitrarily small volumes. We showthatthe
localization of any particle is closely related to its energy density, but that this relation is always
non-local. At large distances d from the region of localization of a particle of mass zero, its energy
density does not vanish but falls off as d~7. We give explicit expressions for the operators representing

the number of particles localized in an arbitrary volume of space in relativistic quantum field
theory. They will be compared with a similar expression given by Mandel for the photon field.

I. Introduction
One of the basic concepts concerning elementary particles is that of localizability.

It refers to the fact that particles can be located in physical space. In classical
mechanics this property is built into the description of particles at a level so elementary
that it has rarely been given a detailed analysis. In quantum mechanics the situation
is quite different. If the position of an individual particle is an observable, then,
according to the generally adopted rules of quantum mechanics, it should be the
physical correlate of a linear operator in Hilbert space, the position operator.

The construction of the position operator has been one of the main problems in
non-relativistic quantum mechanics. There it emerges as canonically conjugate to the
momentum operator. The extension of this concept to the relativistic situation is not
at all obvious, as is witnessed by an ever growing literature about this subject over
the last twenty years. The study of these papers reveals that the origin of the
difficulties can be traced to two different problems. One is that the relativistic invariance
of particle positions has not yet found a generally accepted formulation. The second

one is associated with particles of mass zero and spin s + 0 : In these cases all the
attempts to formulate the concept of localizability have either failed or are deficient
in some respects. The following comments should clarify the reasons for this situation.
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On confronting the definitions of position operators that have been proposed for
particles of positive mass, one remarks that their disparity lies in different requirements

of relativistic invariance (References [1-5] represent a small selection from
among the numerous publications). Newton and Wigner [2] prescribe the conditions
that must be met by states localized at a point * at a certain time tin a given
distinguished Lorentz frame. If the underlying Hilbert space is that of a unitary representation

of the group of relativistic transformations, such a structure complies with
Einstein's principle of special relativity which declares that all Lorentz frames are
physically equivalent.

Other formulations insist in addition on manifest invariance [1, 3, 4]. This is

expressed in several manners. For instance:

(a) The expectation values of x should transform like the first three components
of a four-vector [1].

(b) The operator x should fulfil certain commutation rules not only with the
infinitesimal generators of space-translations and space-rotations, but also with those
of pure Lorentz transformations [4].

(c) States that are localized at a point x at time t in one frame should also appear
localized at a point when viewed from any other Lorentz frame [3]. (We may mention
that the localized states of Newton and Wigner do not obey this last rule.)

In all these formulations of manifest invariance, the resulting position operators
on the positive energy states are either non-Hermitian or have non-commuting
components. They are therefore hardly interprétable as position observables in the
usual sense. Only the solution of Newton and Wigner embodies both Hermiticity and
commutativity.

The second difficulty, that of finding the position operator for particles of mass

zero, has received much less attention. Newton and Wigner [2] mention that in all
cases of mass m 0 and spin s 4= 0 there exist no localized states meeting all of their
prescribed conditions. Most of the other authors restrict themselves to situations with
positive mass. Nevertheless, this difficulty has been tackled in three different manners
at least. We shall briefly expose these three proposals.

The first one was indicated by Pryce [1] and later elaborated by Acharya and
Sudarshan [5] and by Fleming [6]. These authors submit an operator which can be
defined for particles of both positive and zero mass. Its components do not commute,
and it fulfils no requirement of manifest invariance. Its longitudinal part is the same
as that of the Newton-Wigner operator. This entails the existence of states which are
localized on a plane of infinite extension (a 'front') orthogonal to the direction of
propagation. Acharya-Sudarshan and Fleming suggest that such an operator seems
more 'natural' than any other one, since it comprehends particles of zero mass on the
same footing as those of positive mass.

The second proposal is due to Fronsdal [7]. He constructs an operator with
commuting components which is analogous to the Newton-Wigner operator but
defined for particles of mass zero. However, this operator does not seem to be suitable
since it does not transform as a vector under space-rotations.

Finally, we must cite a recent paper of Jauch and Piron [8]. It discusses a
generalization on physical grounds of the ideas of Wightman [9], who reformulated the
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postulates of Newton and Wigner in a more convenient mathematical language.
The fundamental concept in Wightman's work is that of a transitive system of
imprimitivities (Mackey [10]). Localization of a particle in a region A of Euclidean three-
space Rs is described by a projection operator EA acting in the Hilbert space of the
states of the particle. The operators EA obey certain transformation laws under
translations and rotations of R3. Moreover, all position measurements are compatible.
Accordingly all of the EA commute with one another. Wightman proved that particles
of positive mass are localizable in this sense, but that no such system of imprimitivities
exists for the cases of mass m 0 and spin s 4= 0 (this result coincides strictly with
that of Newton and Wigner). In order to be able to define localizability also for
m 0, Jauch and Piron argue that there exists good physical justification for
assuming commutativity for the projection operators EA and EA as long as the regions
Ax and A2 are either disjoint, or one of them is a subdomain of the other. No such

physical reason exists if Ax and A2 overlap. On that account they recommend to
weaken Wigthman's conditions for localizability by admitting that EAi and EAi may
not commute if Ax and A2 are two overlapping regions. They refer in this context to
weak localizability and verify that the photon is indeed weakly localizable.

After this sifting of the relevant literature we must take up the question of the
appropriate position observable in relativistic quantum mechanics. Firstly, there
seems to be no physical reason for imposing manifest invariance. It is a requirement of
mathematical convenience which goes beyond that of the principle of special relativity.
On the other hand there are ample motives for demanding a position observable for
m 0. Indeed, photons (even individual ones [11]) are well known to be localizable
experimentally. (The localization of neutrinos in the laboratory is connected with
much greater difficulties.) Of the three solutions proposed for photons, only the one
by Jauch and Piron [8] yields a satisfactory description of localization in a finite
volume of space. Furthermore it is essentially the same as the one for positive mass
found by Newton and Wigner [2] and Wightman [9], which represents the only
possible position observable for m > 0 (within the framework of localizability in a

region A at a point of time t).
We conclude that the Newton-Wigner operator and its generalization by Jauch-

Piron define the appropriate mathematical objects for describing localizability of
relativistic elementary particles. The characteristics of weak localizability have been

investigated to a modest extent only. In the following sections we shall therefore
explain some notable consequences of these weakened postulates applied to simple
relativistic systems.

Relativistic invariance will always involve a unitary representation of the
Poincaré group p (Wigner [12, 13]). One distinguishes four types of irreducible
representations [14]. Those of imaginary mass and those of energy-momentum^ 0

are easily discarded because of these unphysical attributes. Those of positive mass
were treated in great detail by Wightman [9]. Nevertheless, weak localizability
introduces a new feature for them : a (non-invariant) position observable for particles
of given helicity. This novel aspect is intimately connected with the definition of
localizability for the fourth type of irreducible representations of p, those of mass zero.
These fall into two classes: representations of discrete spin and of continuous spin
respectively.
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Particles of continuous (or infinite) spin are not known in experimental physics.
Their peculiarity resides in an infinite degree of internal freedom. One might presume
that these representations could be excluded from physical reality through the
circumstance that they would not be localizable. Within the framework of weak
localizability, it turns out that this expectation is not fully justified. Indeed, these
representations admit an infinite number of inequivalent position observables in the
weak sense. This fact, however, runs counter to the idea that a concept like localizability

of a physical system should be described mathematically in a unique manner
(up to unitary equivalence).

Particles of mass zero and discrete spin are known to occur in nature : the photon
(s Ail), the neutrinos (s —1/2), the antineutrinos (s +1/2), and maybe the
graviton (s +2). We shall prove that such particles are weakly localizable if they
can exist in states which are superpositions of states of both helicities + s (s + 0).
The projection operators which describe their position observables will be determined
explicitly. We have likewise investigated the properties of particles of mass zero and
helicity s 4= 0 which do not superpose with states of the opposite helicity — s. Such

particles are not weakly localizable (in the sense that there exist no states which are
localized in a finite region of space).

Our last statement of the non-localizability of particles of mass m 0 and helicity
s 4= 0 may appear surprising at first sight. Actually, it is nothing else than an expression

of the fact that weak localizability combines the representations of mass zero
and those of positive mass into a fully unified theory. Even for particles of m > 0

there exist no states belonging to one value s 4= 0 of the helicity which are in addition
localized (in the sense of Wightman) in a finite volume (i.e. the projection operator
onto the subspace of states of helicity s 4= 0 and the operator EA for a finite volume
A have no non-trivial common eigenstate). More generally, we shall demonstrate
that weak localizability applies to particles of mass zero and spin s in precisely the
same way as to particles of positive mass, spin J s | and helicity s.

As a consequence of the quantum-mechanical description of non-interacting
particles, one remarks that the relation between their localization (the 'particle
density') and the corresponding energy density (at equal time) must be non-local.
For particles of mass m > 0, the energy density falls off as ljr2(Xr)~bl2t exp(— 2 rjX)
at large distances r from the volume of localization. (%= (Hjmc) is the Compton
wavelength.) For m 0, this decrease will turn out to behave as r~7'.

Our discussion of localizability will be confined to considerations about free
elementary systems. On the other hand, the experimental determination of the
position of such a physical system involves of necessity its interactions with the
measuring apparatus. Such interactions are always given in terms of the field operators
and their derivatives. The absorptive (positive frequency) part of the field operator
transforms a one-particle state \cpj> into the vacuum state multiplied by the usual
coordinate-space wave-function corresponding to \tp}. Newton and Wigner [2]
proved that the coordinate-space wave-function belonging to a localized state of mass
m > 0 extends over all space (at equal time). We shall derive a similar result for
systems of mass zero and see that it is identical with that of Newton and Wigner taken
in the limit m -> 0.
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The preceding remarks explain that the description of the absorption or creation
of an elementary particle relies on the coordinate-space wave-function, which is
related to the «-representation of the corresponding state vector in a non-local
manner. We also mentioned that there exist no neutrino states which are localized
in a bounded region of space. We see now that this latter fact is by no means
unfortunate, since the coordinate-space wave-function of a neutrino state may well have
the property of vanishing everywhere outside some finite three-dimensional volume
at a certain instant of time. (One could also argue that this fact speaks in favour of a

four-component theory of the neutrinos in place of the presently accepted two-
component formulation. In the four-component theory localized states exist also for
finite volumes.) For photons, one obtains localized states for arbitrary volumes. We
shall find that the counting rates of a macroscopic photon-counter are approximately
proportional to the number of photons localized in the volume that this apparatus
occupies. The non-locality between the particle position and the corresponding
coordinate-space wave-function also leads to a more intuitive understanding of the
fact that (localized) particles can interact with physical systems which are situated
anywhere in space and hence may transmit forces between such systems (e.g. the
London-Van der Waals force between polarizable molecules [30]).

To conclude this introduction, we briefly mention the contents of the following
sections. In Section II, we shall define the notion of localizability in quantum
mechanics by means of six postulates of a mathematical nature, indicating as well the
physical significance and some simple consequences of them. Section III presents a

collection of results concerning the realizations of these postulates for elementary
particles. The subsequent sections contain the mathematical elaboration of these
results. Section IV introduces the unitary representations of the Poincaré group. In
Section V we shall expound its irreducible representations corresponding to particles
of discrete spin and construct the position observables for such particles of mass zero.
Their properties will be enunciated in two theorems. These will then be proved in
Section VI. The representations of continuous spin constitute the topic of Section VII.
Part VIII is devoted to some remarks bearing upon relativistic invariance within our
scheme. In Section IX we shall derive the mathematical form of the relation between
the localization of particles of mass zero on the one hand and their energy density as

well as their coordinate-space wave-function on the other hand, discuss the magnitude
of the resulting discrepancy and explain its physical meaning. The final section offers
some explicit expressions for the particle number operators for any three-dimensional
volume in relativistic quantum field theory. For the case of the photon field, we shall
compare these operators with a similar expression given by Mandel [39] and briefly
mention the scope of their applicability for describing photon-counting experiments.

In Sections III-VII we shall make extensive use of the results obtained by
Wightman [9]. Apart from Section IXwe shall use units such that % 1 and c 1 ; we set
g00 + l,gu= -1 (*' 1,2,3). Four-vectors will be denoted by^==^"= (pü,px,pi,p%)
(p\p).

II. Postulates for Localizability and Their Physical Significance
In this section we define the notion of localizability in quantum mechanics. It shall

be applied in the later sections to the case of relativistic quantum mechanics only.
We shall also impart some significant consequences of it.
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The starting point is a distinguished reference frame (Galilean or Lorentzian), the
rest-frame of the 'observer'. A quantum-mechanical system is described from this
frame by assigning to it, for every value t of the time-coordinate in the chosen frame,
a vector of a Hilbert space "Ut, the space of all possible states that the system under
consideration may assume at time t. Furthermore, let (a, R) denote the elements of
the group of motions in Euclidean three-space R3. It is assumed that there exists in ~Ut

a unitary representation Ut(a, R) of this group, such that Ut(a, R) cpt describes the
state obtained by way of rotating cpt e ?/, according to 7? and then translating the
resulting state by a. The postulates for localizing this system are then the following
[8,9]:

(A) For every given time t there is associated with each Borei set A C R3 a
projection operator FAt in "Ut corresponding to the proposition 'The system is located
within A at time t' (i.e. the expectation values of FA t give the probability of finding
the system localized in A at time t).

(B) FR3J I (1)

(C) If Ax C R3 and A2 C R3 are disjoint (denoted by Ax + A2), then

FAut±pAt.t (2)

i.e. FA t and FAi t project onto two orthogonal subspaces of "tlt.
Let Px and P2 denote two projection operators. Their intersection Px O P2 is

defined to be the projection operator onto the largest subspace which is contained in
the ranges of both Px and P2. This leads us to the next postulate :

(D) ^n4< fMnf4,r (3)

(E) Let R A + a denote the set obtained from A by carrying out the rotation R
followed by the translation a. Then

FRA + att=Ut(a,R)FA>tUt(a,R)-x. (4)

(F) Time reversal invariance: Let Ut(T) be the (unitary or anti-unitary) operator
representing time reversal in "Ut. Then, for all A C R3

FAtUt(T) Ut(T)FAt.

The physical ideas behind these postulates consist in the following. (A) is a

consequence of the basic assumption of quantum mechanics that elementary propositions are
represented by projection operators in Hilbert space (describing yes-no experiments).
(B) states that the system has probability one of being somewhere. (C) means that
the projection operators corresponding to disjoint Borei sets commute. (D) asserts
that the set of all states which are localized at time t in the intersection of any
two given Borei sets is identical with the set of all states which are localized in
both of these Borei sets at time t. Finally (E) expresses homogeneity and isotropy

of the physical space R3.

In the remainder of this section we are not interested in the time dependence of
the notions that were introduced above. We shall therefore restrict our attention to a
fixed value of t and omit this index.
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A set of operators {U(a, R), FA} satisfying postulates (A)-(E) is called a generalized
system of imprimitivities based on R3. In particular instances it may occur that all
of the FA commute with each other. If this happens, one gets an ordinary system of

imprimitivities. Such systems were defined by Mackey [10] and applied to localizability

by Wightman [9]. To fix the use of language, we state that by localizability
we mean the existence of a generalized (or ordinary) system of imprimitivities which
is also invariant under time reversal. If we wish to insist that a given system
{U(a, R), FA} is ordinary or not, we shall talk about ordinary or weak localizability
resp. For the projection operators of ordinary systems of imprimitivities, we shall
sometimes write EA instead of FA.

An essential difference between ordinary and weak localizability was elucidated
by Jauch and Piron [8]. An ordinarily localizable physical system can be described

by a probability density in »-space. For weakly localizable physical systems this is

not true. The mathematical expression of these statements is as follows. Let Ax andzl2
be two disjoint Borei sets. For ordinarily localizable systems one can infer that
FAi + FA FAiUAi for any such pair. In the case of weak localizability there exist
pairs Ax + A2 for which FA + FA < FA UA For photons the inexistence of such a

probability density was announced a considerable length of time ago [15].
We shall often refer to the ensueing definition. A (generalized or ordinary) system

of imprimitivities is said to be irreducible if there exists no non-trivial projection
operator P in the Hilbert space under consideration satisfying

[P, U(a, R)] 0 for all (a, R)
and

[P, FA] 0 tor all A C R3 (5)

A reducible system of imprimitivities can always be split up into a direct sum of such
irreducible ones.

To complete this section, we add two quite general comments about possible
solutions FA for localizability.

Let there be given a generalized (or ordinary) system of imprimitivities { U(a, R), FA}
in a Hilbert space ?/. Assume in addition that the representation U(a, R) is not
irreducible, and let P be a projection operator that reduces U(a, R). If P commutes
with all FA as well, the system {U(a, R), FA} is reducible by P. On the other hand,
if P does not commute with at least some of the FA, one may define a different
solution {U(a, R), F'A) of (A)-(E) (for the same representation U) by putting

FA PnFA@(I-P)nFA. (6)

Of course this new solution is reduced by P. We call { U(a, R) P, P O FA) the reduction
of the original solution to the subspace P "U.

It is easy to understand the physical content of such a reduction. Let the FA

describe localizability in the space of the states of some physical system. We say that
the vectors q>l-p'> lying in the subspace P li axe distinguished by the attribute that
they 'have the property P'. Of course in particular instances P will describe a well-
determined physical characteristic (e.g. certain values of the helicity). A state FA cp1-1"1

lies in general outside P 11, i.e. the property P is destroyed when one localizes cp^.
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However, all the vectors (P O FA) cp[P) remain in P "U. The eigenstates cp[A '

(POFA) cp(p of P O FA are such that they have the characteristic P and are likewise
localized in A (i.e. they admit the simultaneous measurement of the two observables

corresponding to P and to FA). Therefore P O FA is the operator describing localizability

of the subsystem of "U having the property P (as long as [P, U(T)] 0).
From these observations we conclude that, if one wishes to localize a certain

physical system without specifying it any further, one should look for an irreducible
system of imprimitivities in the Hilbert space of all its possible states.

We now turn to the second remark. The postulates (A)-(F) can always be satisfied
in a trivial way by defining

FAt 0 for A +R\ FRV=/. (7)

It may occur that this trivial system of imprimitivities is the only solution of (A)-(F)
for certain quantum-mechanical systems. It seems reasonable to call such an object
unrealizable. We shall use the specification 'not localizable' even in less trivial cases.
Since position measurements are usually confined to finite regions of space, we shall
call a quantum-mechanical system unrealizable if there exist no states of it which are
localized in a finite region, i.e. if FA 0 for all bounded Borei sets A. In this definition
we do not particularize whether FA is zero or not for domains A that extend to
infinity in some directions of space. Examples for unrealizable systems are elementary
particles with a given value (+ 0) of the helicity, as we shall show later.

A physical system which is unrealizable in the above sense may nevertheless be

localizable as part of a more complex physical system. Let us assume that
superpositions of its states with vectors of the other parts of the compound system are
physically admissible (for example, photons of a given helicity are known to exist in
superpositions with photons of the opposite helicity). Then it is conceivable that the
complex system admits of localizability with FA 4= 0 for bounded A. The corresponding
system of imprimitivities of the complex system would have the property that its
reduction to the subspace of the part-system becomes trivial. The process of localization
will not preserve one or several of the characteristics of the part-system. As an
example for this, we shall find that superpositions of photons of both helicities are
localizable. The measurement of the 'position' of photons of helicity + 1 will convert
them partly into photons of helicity — 1.

III. Relativistic Elementary Systems (Results)

This part gives a survey of the realizations of postulates (A)-(F) for simple
relativistic systems. All the definitions and mathematical details will be assembled in
the subsequent sections.

We shall work from now on in the Heisenberg picture, so that the Hilbert spaces
1lt may all be identified with some space 11. Relativistic quantum-mechanical
systems necessitate the introduction of the representations of the group of relativistic
transformations (the Poincaré group p). Since scalar products should not depend on
the Lorentz frame, its only representations of interest for physics are the unitary ones.
This gives a restriction on the choice of ?f In the sequel "U will always be the space
corresponding to a unitary representation of p. The irreducible such representations
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are said to describe relativistic elementary systems ('elementary' because every vector
of ~U can be generated from an arbitrary fixed one by acting on it with the unitary
operator belonging to some group element).

We denote the elements of the Poincaré group by (b, A) (b is a four-vector, A a

Lorentz transformation). A unitary representation U(b, A) of it in "U includes the
representation U(a, R) of its subgroup of Euclidean motions in R3. U(a, R) satisfies
the conditions of postulate (E) if one interprètes U(b, A) in the active way. It is for
this subrepresentation U(a, R) and for time t 0 that we impose postulates (A)-(F).
The time-evolution is described by the time-translations U(t, I). Hence the solution
FAi t for t 4= 0 is connected with FA 0 by

FAt=U(t,I)FAt0U(t,I)-\ (8)

(The relations between different Lorentz frames will be considered in Section VIII.)
The irreducible unitary representations of the Poincaré group fall into four types

[14] : those of positive mass, of zero mass, of imaginary mass and those with energy-
momentum p 0. We shall disregard the two last ones. Those of positive mass were
treated extensively by Wightman [9]. His Theorem 6 asserts that such representations
are always localizable in the ordinary sense. Beginning with his solution, one may
construct generalized systems of imprimitivities by using Equation (6). Reducing
subspaces can be obtained with the help of the helicity operator h, since [h, U(a, R)] 0

and [h, U(T)] 0.

The irreducible representations of J) for mass zero comprise two kinds : those of
discrete spin denoted by [0, s] (s 0, Az 1/2, ± 1, and those of continuous spin.
Theorem 6 of Reference [9] affirms that an ordinary system of imprimitivities exists
only for [0,0].

Our main issue is that the generalized system of imprimitivities for particles of
mass zero and (discrete) spin s is isomorphic to the reduction onto the subspace of
helicity s of the ordinary system of imprimitivities belonging to a representation of
mass m > 0 and spin \s\. In this sense localizability involves no distinction between
particles of positive mass and those of mass zero.

We shall also prove that particles of one value (different from zero) of the helicity
are unrealizable (i.e. a strict position measurement of such a particle in a finite
region of space will necessarily involve a partial change of its helicity). The two-
component neutrinos are therefore not localizable. Photons are observed in
superposition states of both helicities. It will be established that all particles having this
same property are localizable (in the weak sense for s =f= 1/2). We collect these
statements in two theorems :

Theorem 1 : The irreducible representations [0, s],s4= 0, of the Poincaré group are
not localizable.

Theorem 2: The direct sum [0, s] © [0, — s] of two irreducible representations of
opposite helicity is localizable for all values of s 1/2, 1, 3/2, For s 4= 1/2, the
system of imprimitivities is not ordinary.

The representations of continuous spin have acquired no physical interest. They
are weakly localizable, and this in an infinite number of ways. All such generalized
systems of imprimitivities are reducible.
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IV. The Unitary Representations of the Poincaré Group

This part is a purely mathematical one. We discuss here the structure that will be
essential for the subsequent sections, namely the continuous unitary irreducible
representations of the Poincaré group. These were found by Wigner [14]. We shall
outline very briefly the relevant points relating to their construction and classification.
The reader who is already familiar with these ideas may skip this section.

The elements of the Poincaré group are formed of a four-vector b and a
homogeneous Lorentz transformation A and have the multiplication law [16]

(bx, Ax) (b2 ,A2) (bx + Ax b2, Ax A2)

We shall write P°, P for the infinitesimal generators of the translations, J for those
of the space-rotations and K for those of the pure Lorentz transformations.

The set of all complex 2x2 matrices A of determinant 1 is denoted by SL(2, C).
Furthermore, the restricted Lorentz group Z.Î is defined as the set of all Lorentz
transformations which can be continuously connected to the unit transformation I
(i.e. which contain no reflections). Using the Pauli matrices a (pi 0, 1, 2, 3), the
formula

[A(A)]% Ì Tr(ae A ar A<) [f adjoint] (9)

defines a 2-1 homomorphism of SL(2, C) onto L Î It is often easier to calculate with
SL(2, C), so that one usually considers the two-sheeted covering group /v of the
restricted Poincaré group pî rather than the latter one. The elements of 7J are pairs
consisting of a four-vector b and a matrix A e SL(2, C). It has been proved that
every continuous unitary representation up to a factor of p Î. can be obtained from a

continuous unitary representation of R. We shall therefore restrict our attention to
these latter ones. They are constructed in the following manner.

One first considers the abelian subgroup of all translations (b, I), where / is the
2x2 identity matrix. Every continuous unitary representation of it is unitarily
equivalent to one of the form

[U(b,I)(f>](p)=ei^b(/)(p) (p-b fbv) (10)

in a Hilbert space which is a direct integral of spaces 14p (for all possible values of the
energy-momentum four-vector p) :

V =Jdfi(p) %
e

If one takes into account that this must be the restriction of a representation of R,

one arrives at the conclusion that the spaces "Up for different p are all isomorphic,
and that dpi(p) dpi(A p) for all A e L\. The structure of such a (quasi-invariant)
measure pt is the following

oo oo oo

pt c d(p) ®JdQ+(m) dQjp) ®JdQ_(m) düjp) © /dg(i m) dQim(f) c > 0 (11)

0 0 0

dQJp) (p2 + w2)-1 '2 d3p is the invariant measure on the hyperboloid pz m2

(with p0 > 0 in the second and p0 < 0 in the third term), and dQUn(p) the invariant
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measure on the hyperboloid p2 — m2. dq+(m) and dg_(m) are positive measures on
the positive real semi-axis, dq(i m) is such a measure on the positive imaginary
semi-axis.

One next represents U(0, A) in such a Hilbert space (11). This is possible in the form

[U(0, A) cf>] (p) Q(p, A) <f>(A(A)-i p) (12)

where Q(p, A) is a unitary operator acting in the space ?/p which may depend on^>
and on A. The multiplication law (7(0, A) [7(0, B) £7(0, A B) implies for these

operators
Q(p,A)Q(A(A)-xp,B) Q(p,AB). (13)

This is the only property that the Q(p, A) must satisfy. One looks, however, for the
most convenient form of them. For this purpose we must introduce a few more
concepts.

If A is such that A(A)~1 p=p, Equation (13) reads

Q(p, A) Q(p, B) Q(p, A B) (14)

Hence Q(p, A) must be (for every fixed p) a representation of the group of all matrices
A e SL(2, C) for which /1(^4) p p. The set of all such matrices is called the little
group Gp of p. We write for its representations

Q(A) Q(p, A) (15)

For any Lorentz-transformation A e L^, the little group of a vector p and that of
A p are isomorphic. The set of all four-vectors {p' \ p' Ap,Ae L |} is called an
orbit. It is characterized by the length of the vectors p' : p'2 p2 const. There are
four types of orbits :

0° ={p\po 0, p2 0} - {0} 0+, {p | p° > 0, p2 m2, m y 0}

°J {P I P° < °- P2 m2> m > 0} 0_m, {p I p2 - m2, m > 0} (16)

They are related to the four contributions in Equation (11) : the support of the
measure pi is a (set-theoretic) union of such orbits. A representation of 7? can be

irreducible only if the measure pi is concentrated on one of these orbits.
We return now to the question of choosing a suitable form for Q(p, A). As we are

interested in irreducible representations of "R, we assume that all vectors p appearing
in (12) lie on some given orbit. On such an orbit, one then fixes an arbitrary vector k.

Every other vector p on it can be obtained by applying to k any Lorentz-transformation

Ap^k satisfying Ap<_k k p. Rather, one selects for every vector^» on this orbit
a matrix Ap^_k e SL(2, C) such that A(Ap^_k) k p. Obviously A~}Jk B AB-lp+_k e Gk

for all B e SL(2, C). Furthermore, it is possible to make a unitary transformation in
"Up with the result that Q(p, B) is, for any p, given solely by a representation Q of the
little group Gk of k. This leads then to the following expression for Q(p, B)

Q(p,B) Q(A-lkBAB.lp^k). (17)

With this we come to the conclusion that every continuous unitary irreducible
representation of 7? is unitarily equivalent to one of the form

[U(b, B) (/>] (p) e^-b Q(A-lk B AB.lp<__k) j(A(B)-x p) (18)
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where Q is a continuous unitary irreducible representation of the little group Gk of k,
and the functions <fi(p) are defined on the orbit containing k. The norm in the Hilbert
space is deduced from the invariant measure on this orbit.

Different choices of the stabilized vector k on the orbit under consideration or of
the matrices Ap<r_k lead to unitarily equivalent representations of U [18]. The functions
(j>(p) may be multi-component functions, depending on the representation Q of Gk.

In such cases the scalar product includes a summation over the index labelling the
different components.

As we mentioned before, the representations connected with the orbits 0° and 0_mn

have no physical interest. Those based on 0~, correspond to particles of mass m and

negative energy. They differ only by the sign of the energy from those defined on 0%*.
The sections that follow shall deal only with the representations based on the orbits 0J.

A unitary representation of jR based on an orbit O4^ can be extended to a
representation of the entire group which includes the reflections. Here we are interested
only in adding the operator U(T) corresponding to the time reversal T (leaving aside
the parity operator and the total inversion). From the fact that the energy of an
elementary system is always positive, it follows that U(T) must be anti-unitary.
The addition of U(T) to a unitary representation of ft either leaves the spaces 1lp

unchanged, or else the dimension of each "Up must be doubled. We shall treat only
representations of the former type here, since those which require the doubling of "Up

do not seem to be realized in nature. For the first type of representations one finds [17]

[(7(77) </>] (p°,p) Q(A-lkrAr.lp^k) (/>*(p°,-p) (19)

where
^0 - 1^

and belongs to SU(2, C).

r 'A 0

V. Localizability for Particles of Discrete Spin

The physically interesting irreducible unitary representations of the covering
group of the Poincaré group are those of positive or zero mass. We shall therefore
discuss them in greater detail here. In order to define localizability, we must consider
their subrepresentations of e3, the two-sheeted covering group of the group of
Euclidean motions in R3. In this way, we shall arrive at the construction of the
operators FA for positive mass, a construction which is due to Wightman. Next, we
shall study the representations of e3 arising for mass zero. They will result to be

unitarily equivalent to those of positive mass restricted to the subspace of states of a

fixed helicity. Hence particles of mass zero and spin s are localized in the same way as

particles of positive mass, spin | s j and helicity s : The operators FA for the former are

unitarily equivalent to the reduction of Wightman's operators for the latter to the
subspace corresponding to helicity s.

We treat first the case m > 0. It is simplest to stabilize the point k (m, 0, 0, 0)

on the orbit O^a. This k remains unchanged under all space rotations. The little group
Gk is therefore the covering group of the group of rotations in R3. It corresponds to all
unitary matrices of SL(2, C) and is named SU(2, C). Its continuous unitary irreducible
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representations are denoted DJ, labelled by an index J 0, 1/2, 1, 3/2, They are
all finite-dimensional. It is usual to write them as (2 J + 1) X (2 / + 1) matrices

D{ß(B), tx.,ß= -7,-7+ 1,-7 + 2, ...,+7 and B e SU(2, C). In this form they
are defined recursively by means of Clebsch-Gordan coefficients [19] :

D°(B) 1, D$(B) Baß. (20)

Djß(B) EC{j--\> \ • J I V. ò, «) C(j - |, |, 7 I e.*.ß) Dy{-1I2(B) Bàx

where the notation of the Clebsch-Gordan coefficients is that of Rose [19].
The irreducible unitary representation [m, J] is therefore obtained by setting

Q DJ in Equation (18). The measure in the Hilbert space ^m<^ is

dQm(p) -/JLT. (21)

The functions <f>(p) have 27+1 components <f>g(p), ß —J, +J. The four
variables p°, p1, p2, p3 are not independent. They are related by

p° )/(px)2 + (p2)2 + (p3)2 + m2 (22)

The integral in (21) extends only over the three independent ones p1, p2 and pz, with
the specification that p° be replaced everywhere by (22). In order to remind ourselves
of this rule, we shall henceforth write <f>(p) for these functions.

It remains to select the matrices Ap+_k. Two of the possible choices will prove vital
for defining localizability. We deal with them separately.

(a) Ap+_k represents the pure Lorentz transformation mapping k into p (p°, p)
[16, 18] :

AC
1 tm + p« + p3 p1 -ip2 \

p^k yZm(p« + m) \ px + ip2 m + p°-ps) {

The superscript c indicates that this choice leads to the canonical formalism: The
subscript ß on the state vectors <f>ß(p) labels the values of the 3-component of angular
momentum :

73^(p) /?^(p).
For pure space rotations, B e SU (2, C), one may verify that [16]

and hence
A;z\BAB_lp^b B

Q(p, B) D'(B)

The representation of e3 induced by [m, J] is therefore the following

[U(a, B) <pYß(p) e'P-aZ;D/y(B) (j><Y(R(B)-x p) (24)
Y--J

For the time reversal one finds from (19)

[(7(77) <f>]ß(p) =ED/y(r) #V P) ¦ (25)
Y--J
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We shall now construct the ordinary system of imprimitivities for the representation

(24) of £3. The functions

<Pß(P) y= <f>ß(P) (P' + W2)"1M MP) (»J

are square-integrable :

E [d*p 1 <pß(P) \2 e f\i=H I ^(p) i2 < °° •

ß—JJ ß—J J VP2A-m2

Consequently, their three-dimensional Fourier transforms

~cpß(x) cp)p (x) (2 ti)-*2 fd3p e>f*(pß(p) (27)

lie in the space L2(x) of square-integrable (2 J + l)-component functions over R3.

(24) induces, together with the isomorphisms (26) and (27), a unitary representation
of £3 in L2j(x) of a well-known form:

[U(a, B) y]fi (x) EDßJy(B) Vy W*)"1 (* - «)] • (28)
Y—I

For any Borei set A of R3, let %A denote its characteristic function :

j 1 tor xeA
x^x>~ (0 for tx$A'

The imprimitive projection operators EA for (28) in the space L2Ax) are given by

[EA~cp]ß (x) Xa(x) £,(*) (29)

Wightman [9] proved that every irreducible ordinary system of imprimitivities for e3

satisfying also postulate (F) is unitarily equivalent to one of the form (28), (29). The
argument x in these equations is the position of Newton and Wigner [2].

We take the inverse of the isomorphisms (26) and (27) in order to write explicitly
the corresponding operators EA in y£m>Jl:

\Eca fl'ß (P) (P° 3-1 EA ?(P»)-1/2 <f>ß(p) (30)

(b) Our second choice for Ap<_k consists of the product of a pure Lorentz
transformation Ap ^_k mapping k into pz (p°, 0, 0, \p\) and a space-rotation Xp+_p in the

plane {p/0 z} turning pz into p [18] :

A^k Xp^PzA;z^k. (31)

The rotation Xp^p is described by the unitary matrix

x x— (\P\ + PS -P' + tp2) (32)p~p> ]/2 \p\(\p\+p») {f + ip2 \p\ + py' y '

Here we are in the helicity formalism. The subscript ß on the state-vectors corresponds
to the helicity of the component (f>ß of (f> :

[J^</>]hß(P) ß^ß(P)-

The helicity operator h J ¦ Pj\P\ commutes with space rotations. As a consequence
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we observe that the matrix D/^B^m) is diagonal for B e SU(2, C).
One may parametrize SU(2, C) by two complex numbers:

B=[ A \v\2+ \w\2 t. (33)
\ — w* v*J

' ' '

Using (20) for DJ and (31) for Ai^_k, the diagonal elements just mentioned are
ascertained to be

ußß\Ap^k D *B-ip^k) - [\(\p\ + f) v- (pi-ip*) w*\\ ¦ [ '

From (19) and (31) one deduces that U(T) becomes also diagonal in the helicity
formalism :

[U(T) (f>]ß(p) (£zi£)V,*(-p). (35)

The prominent feature of Equations (34) and (35) is that their right-hand sides are
independent of J.

The canonical and the helicity formalisms are unitarily equivalent. Since the
components of fr diagonalize the angular momentum in 3-direction and those of <ph

the angular momentum along p, it is almost evident that the unitary transformation
between the two formalisms is defined through Xp^p Indeed

K(P) E DUXp~p) $(P) • (36)
ß=-j

Combining (36) and its inverse with (30), one can formulate the result of EA acting on
helicity states :

VEhAK(P) E DMXplp) ]/p°^Ea v,y DJv(X^p)fi(p) (37)

where EA is given by (29), and P° (/P2 + m2.

We now turn our attention to the representations of mass m 0. The orbit 0^
is the forward light-conep"pv 0,p°> 0. Let us stabilize the point k (1/2, 0, 0,1/2).
Rotations around the 3-axis and pure Lorentz transformations along the 1- and 2-axis
leave k fixed. These determine the little group Gk. It is isomorphic to the two-sheeted
covering group e2 of the Euclidean group of the plane R2 (Wigner [14]). The infinitesimal

generators of e2 are called 5 for the rotations and Tx, T2 for the translations. The
structure of e2 is similar to that of Tt. Its irreducible representations are based on orbits
Tx + T2 r2 const, (in the same way as P2, — P2 m2 for Tl). Again they differ for
r > 0 and r 0. One arrives at

(a) Infinite-dimensional representations, labelled by two indices (e, r) with £ + 1

and r > 0. They give rise to the representations [0, e, r] of H, which are known as

representations of infinite (or continuous) spin. They are single-valued for £ +1
and double-valued for £ — 1.

(b) One-dimensional representations for r 0, labelled by an index s whose
possible values are s 0, +1/2, — 1/2, +1, — 1, These lead to the representations
[0, s] of Tl, called representations of discrete spin s.
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We shall treat the representations [0, e, r] of continuous spin in Section VII and

proceed to discuss [0, s]. Any one-dimensional unitary representation is just multiplication

by a complex number of modulus 1. One can show that Q(p, B) of Equation (17)

springing from the one-dimensional unitary representations of Gk takes the form [20]

Q(p, B) Q(A;lk B AB.lp^k) [x(p, B)]2° (38)

where x(p, B) is a unimodular complex number depending on p and on B e SL(2, C).
Let 7/[0's] denote the representation space of [0, s]. The state vectors </>(p) e ^[0's]

are one-component functions defined on the forward lightcone (p2 0, p° > 0). The
invariant measure is

dü0(p)=Ä^r (39)

Again there are several possibilities open for selecting Ap+_k in (38) (they lead, however,
n [20] :

n\
(40)

to the same x(p, B)) We adopt the choice of Bargmann [20] :

^><-*
1 l\p\+p3 0\

\/\p\ + p*
'

\pi + ip2 I/"
If one parametrizes SL(2, C) by four comph;x numbers as

B
tv w\

~\t uj V u — t w 1

one obtains [20]
v(<h n\ (\P\+P3) «* — (p1— i p2) w*

(41)

»\r,"i- \(\p\ + jfl)u*-(fi>--ipv) w*\ '

In order to define localizability in ?/[0, sj one has to consider the subrepresentation of
(42) for B e SU(2, C). The unitarity of B implies in (41)

u v*, t — w* (43)

and one is led back to the parametrization (33) of SU(2, C). Inserting (43) and (42)

into (38) one finds for B e SU (2, C)

W, B) «fc BIT - [Äg^ig^y. ,44)

For the time reversal

[U(T) ft (p) (£^y </>*(-p). (45)

It is very important to notice that (44) is identical with D/s(Ap~1k B AB~ip+_k) of
Equation (34) for arbitrary values of 7 |s|. !sl + 1» lsl + 2, ...:

[x(p, B)f* DsJs(Ahp-Jk B AhB.^k) (46)

This means that the representation of £3 in If0-s] is the same as the one in the subspace
tym,/1 0f states of helicity s of [m, J] for any m and all J \s\, \s\ + 1, \s\ + 2,

(At the same time (45) coincides with (35) if we set ß s in (35).) Actually, the
measures dQ0(p) and düm(p) in these two Hilbert spaces respectively differ from one
another. Indeed

tâo(P) A% and dÛJp)
)Jp* m^> fp*
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However, both spaces may be mapped isomorphically onto L2(p) :

i: </>(p) e W's] -* (p2)"1'4 <f>(p) g L2(p) -
x

(47a)

j: (j>ks(p) e «[-¦ » -+ (p2 + m2)-^ cf>hs(p) G L2(p) (47b)

The isomorphisms i and j may also be interpreted as acting on the respective state
vectors by (P°)_1/2. Since P° commutes with all space rotations (and with all
translations), these isomorphisms do not change the form of U(a, B) for B e SU (2, C) in
either case. In L2(p), x(p, B) is still given by (42), a.adD/^Ap'1,, B AB-lp^k) maintains
its form (34). Hence the equality (46) holds true in L2(p), and the two representations
of £3 induced in this space by i and j are identical (irrespective of m and 7)- The same
conclusion may be inferred for U(T).

One may now specify an infinite number of generalized systems of imprimitivities
{U(a, B), FAJ]} in 7^°'s] for the representation of £3 obtained from (44) (and (7(77)

given by Equation (45)). One chooses arbitrarily m > 0 and a J \s\, \s\ + 1,

Let Ffyfl denote the reduction of the operators EA of this representation [m, J] onto
the subspace "M\™,J] of the states of helicity s (in the helicity formalism!) The product
of the two isomorphisms

K)Ji —- l2(p) —» #0,s]

maps FAm('sp into FA^:

fUi j-l j pim, J] yi { (p2)l,4 (P2 + w2)-l/4 p[m,J] (p2 + ^2)1,4 (p2)-l/4 _ (4g)

These generalized systems of imprimitivities are not identical, i.e. in general F^ #= F^'i
for J + J'. However, a representation [0, s] corresponds to particles of spin \s\. Its
position observables FA are therefore obtained by taking J \s\, i.e. FA F[AS^.

We must therefore set J | s | in (48). The operators F%"As '] occurring in that equation
may be calculated from (37). If <f>y(p) describes a state in K-m-lA] 0f helicity s, then
^y(P) 0 for y 4= s. This permits to omit the summation over y in (37) by merely
putting y s. An eigenstate <f>)(p) of F^-jAil (with eigenvalue 1) then satisfies the
equation

#(p) EDW (Xplp) (P2 + m2yi*J-xEA3-(P2+m2)-xi*D^(Xp </>hs(p). (49)
ß--s

Combining this with (48), we see that cf> e l(-0'sl is localized in A, FA (f> <f>, if and only if

t(P) EDsßl(Xplp (P2Y>* 3"1 EA ?(P2)~i'4. Dß^(X </>(p) (50)
ß-->

where EA is given in (29).
Let us introduce the functions

rpP(P)=^D^(Xp^p)<t>(P)- (51)

One remembers that F&As '] was the intersection of two projection operators. These
manifest themselves also in Equation (50). J--1 EA U acting on the %pß corresponds to
the projection onto the states localized in A. The index s in D}ß\XfA_P expresses
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the one onto the subspace of helicity s. However, the representation [0, s] involves
states of helicity s only. As a consequence of this, the second projection becomes

trivial in (50). To be explicit : if y>e(p) is an eigenstate of J^1 EA "J, i.e. if J"1 EA $y>p(p)
y>ß(p), then <^(p) satisfies (50), since

ED^(Xplp) (P2)1'4 (P2)-^Dß^(Xp^p) 1

ß--s

From these remarks and Equation (29) we conclude :

<f>(p) is localized in A if and only if the three-dimensional Fourier transforms

y>fi(x) tpß) (x)

of the functions (51) have support in A for all values of ß — s, — s + 1, +s.

Theorem 1 states that for s 4= 0 and any bounded region A of R3, there exists no vector
(f> 4= 0 satisfying these requirements.

The operators FA for the reducible representations j 0, s] © [0, — s] in "W's] © W"'~s]
can be derived in a manner completely analogous to the one that we just elucidated
for [0, s]. The only difference is that <f> (cß+, <f>A has tnen two components (which
correspond to positive and negative helicity resp.), and that the projection in "$m'\s\1

onto the states of helicity s is replaced by that onto the vectors of helicity + s.

(51) is replaced by

Zß(P) =y=T^jfl|(X^) UP) + ]-/JpiDßi-UXP^p) +-iP) (52)

since (f>+(p) and <A_(p) are superposed. (50) now splits up into two equations:

<f>+(P) EDlsUXp-Ap) (P2YH 3-1 EA 3Ils(p) (53a)
ß--s

<t>-(P) EDlAlsIß(XpAP) (P2)114 3-1 EA -J 2ß(p) (53b)
ß-- s

The state tf> (fi+, <f>_) is localized in A if and only if the three-dimensional Fourier
transforms ofZJp) have their support contained inside A for all values of ß= —s,... ,+s.
We shall prove that such states exist for arbitrary volumes A with non-void interior.

This completes the construction of the operators FA for systems of discrete spin.
Our next task is to prove that these operators satisfy Theorems 1 and 2.

VI. Proofs of Theorems 1 and 2

In the preceding section we were able to construct the operators FA for particles
of mass zero and discrete spin. Two theorems about these operators were set forth
already in Section III. They exhibit the properties of FA for bounded domains A
of R3, namely that FA 0 for the irreducible representations [0, s] and FA + 0 for the
reducible representations [0, s] © [0, — s] (s 4= 0). We shall now prove these statements.
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The proofs are based on the application of an important theorem from the theory
of analytic functions of several complex variables. It states that the Laplace transform
of a square-integrable function of compact support in R" is an entire analytic function
of exponential growth. Furthermore, the converse is also true. The precise wording
is the following [21] :

Theorem (Plancherel-Pólya) :

Let the function F(p1, ,pn) be square-integrable over the entire space of the
real variables p1, pn. In order that its Fourier transform

n

F(x\ ,x") (2tt)-"'2 / dp1 dp" e '"* F(px, ,p")

vanish almost everywhere (in the L2-norm) outside some bounded region A of R",

it is necessary and sufficient that F(px,... ,p") be equivalent to a function/^1,... ,p")
which can be extended to an entire function f(nL, ,nn) of the complex variables
ni pi -f i qj such that

\j(n\ ...,n")\ <Aed^A-- + \-n\) (54)

for some positive constants A and d.

The availability of the necessary as well as the sufficient conditions for a function
to have compact support will turn out to be indispensable in our proofs. Before going
over to these, we write down the explicit form of Z)ls \(Xp^p which will be needed at a

later stage. This is obtained by simple algebraic manipulations, using the expression
(32) for Xt<_p and the definition (20) of Z)1SL The result is

Dßfs](Xp^pz) =(2|pp- Ui(\p\+Pa)ß(P1Aip2)isi-ßcß (55a)

z^J1s|(a;^; (2|p|)- \*\(\p\ + ps)-ß(-pi + ipz)l°\ + (>cß (55b)

with the constants c.= j \
ail

Proof of Theorem 7 :

Since [0, — s] is simply the complex-conjugate representation of [0, + s], it
suffices to do the proof for s > 0.

Let Zi be any bounded set of R3, and let^(p) be localized in A, i.e. (FAcf>) (p) (f>(p).
We shall conclude from these assumptions that cf>(p) is the zero-vector in the Hilbert
space #[°'SJ of the representation [0, s].

The considerations following Equation (51) show that (f>(p) is localized in/1 if and
only if the three-dimensional Fourier transforms y)a(x) oi the functions

fß(P)=y=D^(Xp^Pz)<f>(p)

have their support contained in A for all values of ß (/

since

E fd3x\yß(x)\2= X [d3pWß(p)\2-

— s, ...,+ s). Furthermore,

d*p

\p\ I9W; < oo
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all of the y>ß(x) are square-integrable. The theorem of Plancherel-Pólya therefore
implies that every ipß(p) is equivalent (in the L2-norm) to a function cp Jp) which has

an entire extension cpJii) (n-> pj + i qj).
In Equation (51) all of the tpJp) are obtained from one single function <f>(p). For

this reason the tpJp) are linearly dependent and can all be expressed in terms of one
of them. This relation between the y>g(p) is easily calculated from (55a) and (51).
One finds

vjp)-c,($fêy-'*u>) (56)

(56) also holds almost everywhere between the cpJp). Setting ß — s — 1 in this
equation and multiplying both sides by \p\ + p3, one gets

Ip I <p,-i(p) c.-i (p1 + *' P2) <Ps(p) - P3 <Ps-i(p) • (57)

The right-hand side of (57) has the entire extension

cs_x (n1 + i n2) cp5(n) - Tt3 <ps-x(n) ¦

Therefore \p\ <ps-X(p) — ^(p1)2 + (p2)2 + (p3)2 <ps-X(p) must be extendable to an entire
function. An analytic extension of it is given by

)i(7Ï)2+(7l2)2+(7l3)2<ps_x(7l). (58)

One knows that a function which is defined on an open domain D C R" has at most
one analytic continuation into C" [22]. Hence (58) is the only analytic extension of
\p\ <ps-X(p). Because of the square-root, it is not entire unless tps-x(p) 0. This then
implies that </>(p) is the zero-vector of ff-°-sA </> 0 is the only solution of FA $ §
for bounded A. QED

Theorem 1 has been proved independently by A. Galindo [23].

Proof of Theorem 2:

In the case of a reducible representation [0, s] © [0, — s], s > 0, the functions
<fi(P) — (^+(P)i <A-(P)) have two components instead of only one for [0, s]. This
additional liberty will permit us to dispose of the square-root which was responsible
for the negative result of Theorem 1.

The remarks after Equation (53) state that such a function <f>(p) is localized within
A if the Fourier transforms ÈJx) of

£>(p) J=mxP~p) Up) + y^ Dß- ^*-p) *-{p) (52)
V \P\ KIP

have support in A for all values of ß. The theorem of Plancherel-Pólya indicates that
A is bounded if and only of every EJp) is equivalent (in the L2-norm) to a function
o~ß(p) which is extendable to an entire function aJji) of exponential growth (ß

- s, + s).
The Eß(p) are derived from the two independent functions <j>+(p) and cf>_(p). They

are therefore again linearly dependent (for s 5= 1) and may all be expressed in terms
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of Es(p) and E_s(p). This is achieved by using the explicit form (55a,b) of Ds(Xp^p
and (52). Simple algebra yields first (f>±(p) in terms of E± s(p) :

Up) [2 Ip[ (|p 1 + p3)y^{(|p| + p3)2se±s(p) -(tp' + ip2)2se^s(p)} (59)

with
D(P) (\P\+ P3YS - (- l)2s [(^1)2 + (P2)2]2s ¦ (60)

Inserting (59) into (52) and using

(pi)2 + (p2)2 =\p\2- (p3)2 =(\p\ + P3) (\p\ - P3) (61)

we are led to
V '^ ' "

~D(pJ W [xJ> ^AF' ^ UPzßiP) -cßyL- «(P) ZiP) + H (P) Z-ÀP)} (62)

where

4(P) (iPl + P3)2s(± P1 a ip2)sTß{(\p\ + P3Y±ß - (- i)s±Mp| - P3Y±ß} ¦

Our next step is to show that the coefficients [D(p)]-1 a^(p) of 27±,(p) in (62) do

not contain the inconvenient square-root. They are rational functions of p1, p2, p3.
To see this, we define

Rfi(P) (\P\ + P3Y + ß- (- xY + ß(\p\ - P3Y + ß (63)

and apply it to rewrite D(p) and af(p). First, using also (61), one finds

Dip) (|p| + P3)2s {(\p\ + P3)2* - (- l)2s (\p\ - P3?*} (\P\+ P3)2s RAP) • (64)

Also

°t(P) (\p\+ P3)2s (± P1 + ip2YTßR±ß(P) ¦ (65)

The combination of (64) and (65) leads to

4(P) i±P1 + ^P2)^ßR^- (66)
D(p) Pw> ^ r r >

Rs(p)

Since s + ß is always a non-negative integer, we may expand (jp j + p3)s+ß in (63)
and write Rß(p) as a sum of terms of the form \p\m(p3)s+ß~m. The same terms will
occur in the expansion of (Jp | + p3)s+ß and in that of (\p\ — p3)s+ß, but in the latter
with alternating signs. The additional sign-factor (— l)s+^+1 appearing in (63) is such
that the two terms (p3)s+ß cancel (for all values of s and ß Hence all terms containing
even powers of | p | disappear (because of the alternating signs). Of the remaining ones,
a factor \p\ may be put in evidence, such that (for ß 4= s)

^(p) iP|p;(iPi2^3)

where Pß is a polynomial of degree s + ß — 1 in the variables \p\2 and p3. Replacing
in it | p j2 by (p1)2 + (p2)2 + (p3)2, it is transformed into a polynomial Pp[(pl)2, (p2)2, p3]
of the variables (p1)2, (p2)2 and^>3:

Rß(p) \p\PßV(P1)2,(P2)2,P3i- (67)
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In (67) the square-root is present only in the factor ] p j. When one inserts (67) into
(66), these factors \p\ cancel in the quotients on the right-hand side of (66), so that
[D(p)]-1 ap(p) are rational functions of p1, p2 and p3.

Combining (66) and (62) we get (ß 4= s)

3»(p)= pt7*A.-*i {(p' + ip^-'mp^Apr.p*]^)
+ (-pi + i p2Y + ' P_ß[(p>)2, (p2)2, p3] E_s(p)} ¦ (68)

Equation (68) serves to construct states which are localized in a bounded region A.
We remind ourselves that this is the case if and only if every Eß(p) is equivalent to a
function Oß(p) which has an entire extension of exponential growth (54). One sees

from (68) that this condition is fulfilled if both E,(p) and E_s(p) are entire, of exponential

type (54), square-integrable over R3, and vanish at the zeros of P^ip1)2, (p2)2,p3]-
Such functions exist in abundance. An example is

prm« m2 m sin"W sin"W s™m(PA)
^slVP I > VP I >V J

(pr)n \piy (pi)n

with n > 2 s and m ^ n. Introducing such functions for 27±I(p) into (59) gives states
<f>(p) which are localized in a finite region of space. QED

The foregoing proof supplies no information about the size of the bounded domain
A in which the constructed states are localized. We shall also mention the answer to
this question.

The extension of the bounded support A of the function F(xL, ,xn) in the
theorem of Plancherel-Pólya is connected with the property of growth of f(nx ,...,nn):
The constant d in the exponent of (54) corresponds to the maximal distance between
the origin 0 of R" and the points of A [24]. Hence, if one chooses d arbitrarily small,
one can obtain states which are localized in an arbitrarily small region around the
origin. The transformation property (4) under translations and rotations then implies
that FA + 0 for any region A of R3 with non-void interior.

The following statement represents a generalization of Theorem 1 for particles of
positive mass:

Theorem 3: The reduction according to Equation (6) of the ordinary system of
imprimitivities (28), (29) of a representation [m, J], m > 0 and J > 0, to the subspace
T4[™,Ji of the states of helicity s is such that FfyP 0 for all bounded volumes A
(i.e. eigenstates of the helicity operator of particles of spin 7+0 are never localized
in a finite volume of space).

The proof of this statement is essentially the same as that of Theorem 1 and is
therefore omitted.

VII. The Representations of Continuous Spin

We remind ourselves that the irreducible unitary representations [0, e, r], e — Az 1»

r > 0 of Tl arise from infinite-dimensional representations of the little group e2. They
were discussed in some detail by Wigner [12]. The state vectors <f>(p) obtain an infinite
number of components. A convenient way of specifying them is to label <f>(p) by an
index n which takes all integer values (n 0, + 1, + 2, for single-valued represen-
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tations (fi 4-1) and all half-integer values (n ±1/2, ±3/2, for the double-
valued ones (e — 1) [25]. As in the case of discrete spin and m 0, we again stabilize
k (1/2, 0, 0, 1/2) and use the choice (40) for Ap^k. The invariant measure on the
lightcone was introduced in (39).

The expression for Q(p, B) in this case is not found in the literature. However, it
suffices to know Q(p, B) for space rotations, i.e. for B e SU(2, C). For such B, Q(p, B)
splits up into an infinite direct sum in such a way that the components (/>„ for different
values of n are not mixed. In each subspace 7/["] corresponding to a fixed value of n,
the infinitesimal generators J of the space rotations are represented in the same way
as in the case of a representation [0, n] [26]. Therefore, for B e SU(2, C)

Q(p, B) ® [x(p, B)f (69)

with x(p, B) given by Equation (44). (A choice for Ap^_k different from (40) would not
entail the property (69). With the selection (40) the subspaces "U[n] are mapped into
each other by the pure Lorentz transformations.)

One concludes from (69) that U(a, B) for B e SU(2, C) coincides in every subspace
7/M with the representation of £3 that we encountered for [0, n]. This fact permits the
definition of arbitrarily many generalized systems of imprimitivities for [0, e, r] : One
first adds several of the "tfn^ to form a more extensive subspace. This corresponds to
superpositions of particles of mass zero and various helicities. The construction of the
operators FA in such cases was discussed in Section V. After having found the FA in
this first subspace, one combines another set of ?/w into a subspace (which is, of
course, orthogonal to the first one), and again determines the FA. Continuing in this
way, one ends up with a generalized system of imprimitivities for [0, e, r]. Yet all such

systems of imprimitivities are reducible. That there exist non-trivial ones may be
deduced from Theorem 2: One simply chooses 7l[n] © ?/[_B] for an arbitrary value of
n + 0 as one of the larger subspaces. (All of these systems of imprimitivities are also
time reversal invariant.)

It remains to examine the question whether it is possible to find an irreducible
generalized system of imprimitivities for [0, £, r]. One may answer in the negative if
one admits the validity of a conjecture of Jauch and Piron [8]. This conjecture states
that every generalized system of imprimitivities {U(a, B), FA} defined in some
Hilbert space ?/ can be obtained in the following way : There exists a (minimal) extension

?/+ of Ti in such a way that an ordinary system of imprimitivities {U+(a, B), EA}
is given in "U+, and the original one in "U P 7l+ is the reduction of it according to (6),
i.e.

[U+(a, B), P] 0

U(a, B) U+(a, B) P

FA POEA. (70)

(So far neither a proof nor a counter-example for this conjecture have been offered.)
Let now "U be the representation space of [0, e, r] and ?/+ an extension satisfying

the conditions of this conjecture. An ordinary system of imprimitivities {U+(a, B),EA}
for £3 is therefore defined in "U+. All irreducible such systems are unitarily equivalent
to one of the form (28), (29) [9]. The representations DJ of SU(2, C) appearing therein
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are all finite-dimensional. Since the helicity index n of the vectors cf>n e ?/ may assume

arbitrarily large values, the system {U+(a, B), EA} must be infinitely reducible.
Next, let us assume that the representation U(a, B) of £3 in "U has been completely

reduced, and denote the irreducible subspaces by ?/(i). Every one of these ?/(i) must
lie in one of the irreducible parts of the system {U+(a, B), EA}. Because of the finite-
dimensionality of DJ, it is not possible to assemble all of the ?/(i) into one irreducible
part (remember that n may be infinitely large). The reduction of {(7+(a, B), EA} to the
subspace ?/ of ?/+ is therefore of necessity reducible. (One notices that these remarks
are independent of postulate (F) about time-reversal invariance.)

The peculiarity of a 'physical' system corresponding to a representation of
continuous spin is its infinite degree of internal freedom (infinite spini) We showed
that this fact entails the existence of an infinite number of inequivalent 'position
observables'. None of them is distinguished by some property that could induce us to
designate it as the position observable for systems of continuous spin. The conjecture
(70) implies that there exists no position observable which would not distinguish
certain parts of such a 'physical' system.

VIII. Relativistic Invariance

Relativistic invariance of particle positions in classical and quantum mechanics
was discussed in great detail by Currie, Jordan and Sudarshan [27]. They explain
that two different assumptions must be distinguished: Relativistic symmetry and
manifest invariance. We shall first stress the principal points of their arguments
without entering into mathematical particulars, and then indicate how the concept of
relativistic symmetry applies to our scheme of localizability.

Relativistic symmetry refers to the principle of special relativity which states that
the laws of physics must be invariant under relativistic changes of reference frames.
In quantum mechanics this requirement can always be satisfied if the Hilbert space of
the states of a physical system is that of a unitary representation of the group of
relativistic transformations. Let us assume that one knows the description of such a

system from a certain reference frame. This description can then be transformed to any
other Lorentz frame by means of the unitary operator U(b, A) that corresponds to the
inhomogeneous Lorentz transformation (b, A) relating the two frames. The unitarity
of this transformation guarantees that any expectation value taken in the second
frame is identical with the one taken between the corresponding quantities in the
original frame. The group property (i.e. the multiplication law) insures that this rule
for transforming a description from one frame to another one is itself invariant under
changes of reference frames : If one transforms a description from one frame to another
one and next from this second frame to a third one, the result coincides with that
obtained by passing directly from the original description to that in the third frame.

Similarly one can deduce from the group property that formal relations between
observables (e.g. the law of motion) are independent of the reference frame. All these
ideas will be elaborated in a moment for localizability.

The second aspect of invariance is manifest covariance. It consists in the requirement

that certain quantities transform under changes of reference frames in a particular

manner, e.g. as tensors or spinors. There is no general agreement about its formula-
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tion in quantum mechanics. In the introduction we collected three proposals for
manifest invariance in connection with the concept of position. They are apparently
not equivalent because they lead to different position operators. The notion of
localizability as introduced in Section II does not fulfil any such mathematical
requirement but complies with the principle of special relativity. We shall now turn
our attention to this question.

First, let us give a specification of the different Lorentz frames. We define [a, A]
to denote the frame in which x' A x + a describes the same point in space-time as
does x in the arbitrarily chosen fixed frame [0, /].

One remembers that in Sections III, V and VII the postulates (A)-(F) for localizability

were applied in the following manner : One distinguishes some Lorentz frame
(which we shall assume to be [0, I] in the sequel). The states of a physical system as

seen by an 'observer' in this frame [0, I] form a Hilbert space 14, which one requires
in addition to be that of a continuous unitary representation of pî plus time reversal
(for the sake of simplicity of notation we shall work with p| in this section rather
than with Tl; all considerations would be the same for Tl). When one considers a
Lorentz frame different from [0, I], two problems arise:

(a) How would an observer in the second frame localize the physical system under
consideration

(b) How does the observer in the second frame describe the measurements
performed by the one in the first frame [0, I]
Let us discuss these two questions separately.

(a) We decided earlier to interprete U(b, A) in the active way: U(b, A) (/> denotes
the state obtained from (/> by transforming it according to A and translating the
resulting state by b. Here both ^ and U(b, A) (f> are states described from the
distinguished frame [0, I] ; b is a four-vector and A a Lorentz transformation in this frame
[0, I]. The subrepresentation U(a, R) is used to define localizability in [0, /].

Let [a, A] designate the second frame under consideration. Then <p" U(a,A) <f>

will be the description by an observer in [a, A] of the same physical state that is
called (f> by an observer in [0, 77J. The states cj>' form the Hilbert space "H^a] 0i the
observer in [a, A] for the physical system in question. Of course lifaA] and "U are

isomorphic. Therefore a unitary representation U[aA]oi p| is given in ?/[<,, y
Û[a,A](t>, M) U(a, A) U(b, M) U(a, A)-1 (71)

In (71), (b, M) is still measured from the frame [0, I], and the sign stands for the
fact that the operators to the left and to the right of it act in different Hilbert spaces
but have the same mathematical form in their respective space.

The observer in [a, A] would of course describe the argument (b, M) of U^iAr(b, M)
from his own frame. The descriptions (b, M) and (&', M') of an objective inhomogeneous
Lorentz transformation from the two frames [0, I] and [a, A] respectively are related
by the transformation law of four-vectors. Let x, y be two points in [0, I] related by

y M x + b
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Let x' and y' be the description of these two points from [a, A] :

x' A x + a

y' A y + a

The transformation (b', M') in [a, A] is then defined by

y' M' x' + b'

These four equations determine completely the relation between (b, M) and (V, M') :

(b', M') (a + Ab - A M A-1 a, A M A-1) (72a)

(b, M) (A-1 M' a + A"1 V - A-1 a, A-1 M' A) (72b)

Let us define a representation (7[a A] in "U[a,A\ as follows: (7[a ^ is identical with
U[a: a] but the arguments in it are described from the frame [a, A] :

UM(b',M')^Û[atA](b,M) (73)

where (b', M') and (b, M) are related by (72a,b). Equation (71) then reads:

Ula,A] (b'. M') U(a, A) U(b, M) U(a, /I)-1 (74)

Let us decide here that, for any [a, A], the arguments of (7[a/1] must always denote
transformations as viewed from the frame [a, A]. (Equation (74) complies with this
requirement.)

One may insert the expression (72b) for (b, M) into (74). Using the multiplication
law of P|, one obtains

V^Ai (V, M') U(b', M') (75)

We remember the interpretation of these two operators: U[a^(b', M') in 14[a,A]

corresponds to the transformation (b', M') in the frame [a, A], (7(6', M') in "U to the
transformation (¥, M') in [0, /]. These two Lorentz transformations are therefore not
identical from the physical point of view. Equation (75) states, however, that the
two unitary operators belonging to them have the same mathematical form in their
respective Hilbert space. This fact is very important. It signifies that the infinitesimal
generators of the Poincaré group are the same in all Lorentz frames, an absolute necessity
if these frames are to be physically equivalent.

We now proceed to define localizability in [a, A]. The unitary representation
U[a,A](b', M') in H[a,A\ induces a representation (7[a>/1](c, R) of the Euclidean group
of R3 (one notes that c and R denote translations and space-rotations respectively in
the frame [a, A] One imposes postulates (A)-(F) for this (7[a/1](c, R) in 7/[aj/1],
where the arguments A and toiFAt signify a Borei set A and a time coordinate t in the
frame [a, A]. We shall henceforth write FA ([a A-, for these operators: FAit^A^
corresponds to the proposition 'The system is localized in A at time t in the frame [a, A].'
Since t7[a/1] in 7/[a>/rj has the same mathematical form as (7 in "ii, the operators
FA,t[a,A] als° have this property with respect to FAJVl^ =FAJ.

One concludes then that localizability is given by operators of the same form in all
Lorentz frames. It does not distinguish any particular frame.



Vol. 42, 1969 Localizability for Particles of Mass Zero 175

(b) It remains to reply to the second question : 'How does an observer in the frame
[c, N] describe the position measurements performed in a different frame [a, A] ?' The
answer will express how the description in the frame [a, A] of the physical system in
question is transformed to the frame [c, N]. It derives from the unitary operator
which corresponds to the relativistic transformation relating these two frames. In the
frame [0, I], this transformation is just

(b0,M0) (c,N)(a,A)-x. (76)

Its description (b'0, M'0) from [a, A] is obtained by inserting (76) into (72a). The
measurement FAt^aA^, when described from [c, N], corresponds to

fMl(^.)^<[M^Ml(^o)4-
We shall introduce for it the projection operator Fjf^ A, in "U^rN]. This operator
is the correlate of the proposition 'The system is localized in A at time t in the frame
[a, A], but one describes this measurement from [c, N]'. Therefore

Fa^J.aì U^ (K, M0) FAMaiA] U[a:A] (b0, M0)-i. (77)

We stress that in general F^^J bears no relation to the operators FAt[CiN-j

which define localizability in the frame [c, N] (such a relation would correspond to
manifest invariance). In certain cases there exist of course such connections. To
indicate some pertinent examples, we simplify by selecting for [a, A] in (77) the frame
[0, I]. The imprimitivity relation (4) immediately implies together with (77)

FA%]n U(a, R) Ff*it] U(a, Ä)-i FRA + aJ[0J] (78)

Another example is
yo,/i] ci pio.i] no)

(79) is an expression of the fact that the transformation of descriptions of a physical
system between Lorentz frames depends only on the relative position of the two
frames and not on the particular choice of one of them. The two projection operators
in (79) have the same mathematical form in their respective Hilbert space, but
physically they correspond to two entirely different measurements

One may interpret the operators FAC^J of Equation (77) also in connection
with moving frames : Fjf-^J „ is the correlate of a position observation from the frame
[c, N] in a moving volume A at a point of time t, with the specification that A and t
are determined in the rest-frame [a, A] of this volume.

Finally, we direct our attention to the formal relations between the position
observables. By definition, these relations are expressed by Equations (1)—(4), (F) and
(8). Let us assume that these equations hold true between the operators FA^0I-i,
U(c, R), U(t, I) and (7(77) describing localizability in the frame [0, I]. The
transformation of 7y ([0 7] to a frame [a, A] was defined in (77). The operator corresponding
in [a, A] to U(c, R) was constructed in (74) :

U[a,A] (c\ R') U(a,A) U(c, R) U(a,A)~1

where (c', R') and (c, R) are connected by (72a, b).
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Using the multiplication law of [7(6, A), one verifies that these formal relations are
maintained by the transformation of the description of localizability from [0, I] to
[a, Tl]: Equations (l)-(4), (F) and (8) hold also between

Fttiln. U[a,Ai (c', R') U[aiA] (V, I) and Û[a>A] (T)

Here (c', R') is calculated from (c, R) by means of (72a) : It is the description from
[a, A] oi the objective Euclidean transformation (c, R) in [0, I] (i.e. in general c' is a
four-vector and R' a Lorentz transformation).

A last remark in this section must be devoted to the time translations : A state
which is localized in a finite volume at time t t0 in the frame [a, A] spreads out over
all space at any later instant t > t0 in [a, A]. This behaviour was found already in
investigations of localizability for particles of positive mass (Weidlich-Mitra [2]).
Our discussion following Equation (46) shows that the same must be true for particles
of mass zero. Nevertheless, the expectation values of the velocity operator associated
with the position operator of Newton and Wigner never exceed the velocity of light
(Berg [2]).

IX. Localizability and Energy Density
The appearance of particles of mass zero in physics dates back to 1905, when

Einstein proposed that light rays could be viewed as 'consisting of a finite number of

energy quanta which are localized at points in space, which move without dividing,
and which can only be produced and absorbed as complete units' [28]. Thus, Einstein's
heuristic formulation combined already the two notions of localization and energy
density. In the subsequent development of quantum mechanics, his idea was moulded
into the concept of photons as particles. The difference between this modern
interpretation of photons as corpuscles and the original view of energy quanta becomes

apparent as soon as one considers their local properties. This difference is by no means
a peculiarity of photons but a basic characteristic of the quantum-mechanical description

of any free particle. In fact, the localization of a particle in a region A at time t is
characterized by a projection operator FAt, its total energy by the Hamiltonian H.
For non-interacting particles, H describes in addition their time evolution. Therefore
H and FAt cannot commute in such cases (otherwise a free particle which is localized
in a volume A at time t — t0 would never spread beyond the boundaries of A at any
later instant t > t0). The energy density corresponding to an eigenstate cp FA t q? of
FA t will therefore not be zero outside the volume A at time t : The energy density of an
elementary particle is related to the position of this particle in a non-local manner.

It should be pointed out here that similar features are encountered already in
classical physics, namely in connection with the concept of a field. We mention two
pertinent examples. In Newtonian mechanics, a particle of mass M which is localized
at a point x of space is surrounded by its gravitational field which extends over all
space. It is through this field that M interacts with other massive bodies, and it is this
field which contains the gravitational energy of M. In the same way, a point charge Q
represents the source of an electrostatic field which again pervades all space. This field
bears the electrostatic energy of Q, and it is responsible for the interactions between Q
and other charges. The essential properties of these classical fields are therefore the
following :

(a) The field of a localized 'source' extends over all space.
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(b) An energy is associated with the field. The energy density can be written as a

quadratic expression in the field or its derivatives. The field energy of a localized
source spreads therefore through all space.

(c) Different sources interact with each other through their respective fields.

Quantum field theory is a combination of the theory of classical fields with quantum

mechanics. One expects therefore quite naturally that it should also exhibit these
features (a)-(c). This is indeed the case. In a relativistic quantum field theory, the
sources of the field are the individual particles: Every particle is accompanied by a
field which we shall call its particle field. This field contains the energy of the particle
and causes its interactions with other particles. We shall also show that the particle
field (and hence also the energy density) of a localized particle reach out through all
space. As an example, we mention here that one may view the quantized
electromagnetic field as the (classically measurable) particle field of its photons (this point
will be discussed in more detail in Section X).

What we have denoted by 'particle field' is the same quantity which Newton and
Wigner [2] call the 'coordinate-space wave-function'. As we shall show later for the
special case of the photons (cf. Section X), the particle field is related to the expectation

values of the field operator in the quantum field theory of such particles: The
absorptive (positive frequency) part of the field operator &(x, t) transforms a one-
particle state |cp) into the vacuum state |0> multiplied by the particle field
corresponding to \(p}. This particle field is therefore given by <0 \0(x, t) | 99).

Local considerations play an important role also in axiomatic field theory. The
notion of locality which is used there always refers to a property of the particle field
and not of the particles themselves. The motive for this is that particles are observed
through their particle field (since it is through this field that they interact with the
measuring apparatus). Consequently, local observables should refer to the position
of the particle field.

The particle field of a particle with positive mass is qualitatively different from
that of a particle with restmass zero: A particle of positive mass m can be characterized

by a fundamental length, its Compton wave-length %= %j(m c). One expects
therefore an exponential decrease of the particle field and the energy density
proportional to exp(— rjX) at large distances r from the region of localization of the
corresponding wave-function. Such a behaviour was indeed found by Newton and
Wigner for the particle field, which decreases asljr(Xr) ~3/4 exp — rjX) for r -> 00 [29].
For particles of mass zero, on the other hand, one cannot derive such a fundamental
length. In this case, the decrease of the particle field must be characterized by a
dimensionless number. It will be seen that this law assumes the form r~5/2 for r -^ 00.
The energy density of a particle of mass zero is a quadratic expression in the first
derivatives of its particle field. Hence it falls off as r~7 at large distances r from the
region of localization of such a particle.

The fact that their particle fields extend over all space may be helpful in visualizing
how localized particles may interact simultaneously with two widely separated
physical systems Sx and S2 and hence may transmit forces between these two systems.
If such a force is carried by particles of mass zero, one may infer from the considerations

of the preceding paragraph that it will decrease as some negative power r~n of the
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distance r between Sj and S2. (The exponent — n will depend on the way in which
these particles interact with Sj and S2.) Such long-range forces have indeed been
calculated in relativistic quantum field theory as arising from the exchange of virtual
photons or neutrinos between Sx and S2 [30, 31]. We mention especially the attractive
London-Van der Waals force between two neutral but polarizable molecules which
results from the exchange of two virtual photons and decreases asymptotically as
r~s [30], and which was measured by Spaarnay [32] on a macroscopic scale (i.e. as the
attractive force between flat plates).

We shall now derive the relation between localization and energy density at a
fixed instant of time t for particles of mass zero and helicity s. The result will be used
to discuss the energy density of states which are localized in a finite region of space.
We shall specifically stress two points: the behaviour of the energy density in the
region of localization, and the manner of its decrease at large distances from this
region. Since physical dimensions play an important role in these considerations, we
shall introduce the constants % and c wherever they are required. For the sake of
simplifying the notation we set t 0.

As we explained in connection with Equation (39), the Hilbert space fl^0, ^ consists
of all functions </>(k) defined on the forward lightcone (k2 0, k0 > 0) such that

y>,4)=J?±-\<p(k)\2<oo. (80)

The dimension of kl (i 1, 2, 3) is that of a reciprocal length, so that p' — ft k'
describes the corresponding component of the momentum. The (2 s + l)-component
position-space wave-function %Pß(x) corresponding to the state <f>(k) e 1f0-^ is

yß(x) (2ti)~3'2 fd3k eikx tpß(k) (81)

where y>a(k) is given by (51)

Wß(k)-r~Dß^(Xk^k)m (51)

and the norm (80) is equal to

(</>,(/>) e !d3kWßik)I2 E \d%x W*)I2¦ (82>
/S - s - ß—SJ

Let us define

p,(*) 0,0-1 E\vßW- (83)
ß-s

We explained in Sections II and III that PJx) may be interpreted as the particle
density if s 0. In all other cases (s 4= 0) there exists no particle density, i.e. the
integral

(dHP^x)
â

is not in general identical with the probability of finding the state <f> localized in the
volume A at time t 0. One may understand this immediately by remembering that
the operator FA is not simply multiplication by the characteristic function iA of the
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Borei set A in «-space (because %A(x) fß(x) is not in general a state of helicity s).

Actually, the definition of FA in Section V involved a second projection operator,
that onto the subspace of the states of helicity s. As a consequence of this, the fact
that FAi + 7y < FAiL)A for certain couples of Borei sets Ax + A2 (cf. Section II)
assumes now the following expression in «-space :

fftP#(*)>(^)-'(fF^). (84)

A

If FA <f> (f>, then the equality sign holds in (84). Thus the denomination 'position-
space wave-function' for tpß(x) is justified, since y>g(x) 0 for all vectors * in some
volume A implies that this state has probability zero of being localized in A.

The total energy E, of a state ^ e If0, s] with j| <f> || 1 is defined as

/y (çWH/^j <p-*(k)%c\k\ <p(k) Kcf^ ||/W(*)T- (85)

Using (82) and the fact that H commutes with D\s\(Xk<_k this may be written as

Ex=%c È [d3k\(\k\fß(k)\2. (86)
P--S"

If ZT j < oo, then the Fourier transform y>ß(x) of \/\ k | y>ß(k) can be used to express the

energy density in «-space :

Eo =n c È fd3x I fß(*) I2 fdH U4X) (8?)
/3--S J •>

with

ipß(x) (2ji)-3>2[d3k e'k-x f\k\ fß(k) (88)

(87) gives the following expression for the energy density

Ut(x) Hc(cf>,tf>)-1 E\Vß(*)\2- (89)
ß-s

(For s ± 1, lidx) corresponds to the conventional expression for the energy density
of the electromagnetic field. We shall introduce this conventional formalism in
Section X.)

One would now like to express y>ß(x) in the form of a convolution integral containing
the position-space wave-function %pß(x) as one factor. This can be achieved by
introducing in the integrand (88) a factor exp(— e jfej), £ > 0, and interchanging the
integral over d3k with the limit £ -> + 0. This is legitimate for a dense set V of
functions fß(k) e L2S

| (k) for which

fd3k |/|fe| \fß(k) | <oo for all ß= - s, ,+ s (90)

(90) insures at the same time that all functions of X) give rise to a finite total energy.
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Therefore, using also (81), we obtain for tpJk) e D:

fß(x)= (27t)-3'2 [d3k lim eife'*/|*| e~E^^Vß(k)

(2ti)-3'2 lim [d3keik-x]l\k\e-e^wJk)
e-» + 0 J r i i H

Jjm j d3y Ge (x - y) yß(y) (91)

with [33]

Ge(r) (2n)-3 I d3ketk-r\/\k\ e-e\k\

1 1 1

i/jjS r (r^ + e2)'"
(¦J- arctg -) r=\r\. (92)

These functions Ge(r) relate the amplitude y>ß(x) of the energy density to the
position-space wave-function xpJx) according to Equation (91). If y>ß(x) corresponds
to the superposition cf> (<f>+, cf>A of two states of opposite helicity, the relations
(87)-(92) are still valid (with Wfe) replaced by the functions Eß(k) of Equation (52)).
This is so because H commutes with the helicity operator, so that the energy densities

corresponding to (f>+ and to <f>_ may simply be added to give "Uj, :

fy(*) fyt(*) + fy» • (93)

"HAx) may be interpreted as a real density even in those cases where the same is

not true for PAx). The reason for this is that the projection operator onto the subspace
of the states of some given value of the helicity of a particle of spin 7*0 commutes
with the Hamiltonian H but not with the projection operators EA:, describing the
localization of such a particle. Furthermore, liAx) transforms under Euclidean
motions of R3 in the same way as the wave-function <f>, i.e.

H/ (a, R) i % [R-x (x - a)]

This follows immediately from the fact that the kernels Ge(r) of Equation (92) depend
only on the length r of r.

The first thing to notice about these functions Ge(r) is their asymptotic behaviour.
For r > £, they can be approximated by

Ge(r) x G(r) =-!¦ ,-l=f-7'2. (94)

Since £ is arbitrarily small, (94) may be assumed to be correct for all r 4= 0. For r 0,
the function (94) has a pole of order r-7'2. The exact kernels (92) are simply the regu-
larization (in the sense of the theory of distributions [34]) of (94). A plot of GE(r) can
be found in Figure 1. (The kernel G(r) of Equation (94) is the limit m -> 0 of the
corresponding expression for particles of positive mass, which, apart from a numerical
factor, takes the form (m cj(%r))l!i K1n((m cjK) r). Its asymptotic form becomes

ljr(m cj(% r))sli exp(— (m cjK) r). K7!l(z) is a Kelvin function.)
If the support of y>ß(x) lies in a finite region A of space for all values of ß, the

corresponding energy density ll(x) will not be zero outside A but decrease as r~7 at large
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distances r from A (i.e. for r > d(A), where d(A) stands for the linear extension of A).
This is immediately verified by inserting (94) into (91) and using the expression (89)
for the energy density.

~ 3

O 2

1 2 3

Figure la
The function Ge(r) of Equation (92).

3

o 2

2.1

20

Figure lb
The function r2 Ge(r).

In the region of localization one must use the exact kernels (92) for the passage
from y>ß(x) to y>ß(x). They fall off as r-7'2 for r =t= 0, so that the main contribution to
y>ß(x) arises from integrating over some neighbourhood of *. The function 11Ax) will
therefore resemble PAx) : Energy density and 'particle density' are essentially proportional

to one another. Deviations from this proportionality appear in regions where the
position-space wave-function y>ß(x) increases locally so fast as to compensate the
decrease of the kernel (92). Since the convolution integral (91) is three-dimensional,
this happens if locally \rpß(r) | > \r\312.

In order to obtain an idea about the magnitude of these deviations, we have
evaluated explicitly the convolution integral (91) with the exact kernels Ge(r), e > 0,
for the following one-component position-space wave-function

y>(x)
for 1*1 < R

(95)

for I * I > R

À is a normalization constant. The Fourier transform of y>(x) belongs to the dense set "D

defined by Equation (90). y>(x) is spherically symmetric and has as its support the
sphere of radius R centered at the origin. Near this point it behaves locally as r2, i.e.
\y>(r) — f(0) \ x r2 for | rj <4 R. (Wave-functions of similar local behaviour may be

produced in diffraction experiments.) In this case, the convolution integral

ip'(e) >) I d3e Ge(\g\) ip (\r - q\

is reducible to elementary integrals by introducing spherical coordinates centered at r
and integrating first over the angles. The particle density P(r) and the energy density
1l(r) corresponding to this state (95) are shown together in Figure 2. The scales are
linear, and the units were chosen arbitrary but such that the two curves coincide on
the plot for r 2/5 R. The two curves are seen to be similar in shape but not exactly
proportional to each other. The deviations from proportionality amount to a few

per cent.
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Figure 2

Energy density (— — — —) and particle density (— of the state (95)

Finally, we give a brief analysis of the particle field (the configuration-space wave-
function) belonging to a particle of mass zero and helicity s. It may be defined in the
one-component or in the (2 s + l)-component formalism. We restrict our attention
to the latter case. The definition of the particle field (f>ß(x, t) belonging to a state
<£(ft)e?/[0-s]isthen

^')=|/w/weit',"iI,'|,^l(I-^(k)' (96)

In the same way as we obtained the amplitude rpJx) of the energy density as a
convolution integral between the kernels Ge(r) and the position-space wave-function
fß(x), one may derive a similar representation for <f>ß(x, 0) :

(f>ß(x, 0) lim d3yLe(\x-y\) xpß(y) (97)

with [33]

LJr) - ^,\Jd3keik-r^e-
2(2 7i)" J j/|fe|

«1*1
r (r2 + e2)3

The asymptotic behaviour (r p e) of Le(r) is the following

LE(r) *I(r)= lyhJr-V2.

\]IÌtj H2T^sin(-2 arcte 9(98)

(99)

One notices that <^»(#, 0) decreases differently from the amplitude y>ß(x) of the

energy density. This is so because the expression for the energy density involves
derivatives of the particle field. We also wish to stress once more that the argument *
of (f>ß(x, i) stands for the position of the particle field and not for that of the particles.
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X. Applications in Quantum Field Theory

The results of the preceding sections have some bearing on certain topics of
relativistic quantum field theory. In this part we first submit an explicit expression
for the operator A±, corresponding to the number of particles localized in a volume A

at time t. This operator will then be compared with similar expressions that have
appeared in the literature. Finally, we shall comment briefly upon its use for the
description of photon-counting experiments.

In a second-quantized theory of a non-interacting relativistic field, the underlying
Hilbert space may be represented as

oo

n= e uM (loo)
M-0

where H{n) denotes the space of all «-particle states. Hm corresponds to the Hilbert
space of a relativistic elementary system, and HM is the symmetrized or anti-
symmetrized «-fold tensorial product of Hm :

#<»> S Um ® " for a boson field

HM _4 #u>®» for a fermion field

where S is the symmetrizing and A the anti-symmetrizing operator.
The operator NA>t may be specified by indicating how it acts on a basis of vectors

of H. Let {cp,), i Ì, 2, be a basis of It™. A basis {<y 4 } of #<»> for n > 1 is

then given by

9Vy, "4) n ® fi, ® ¦•• ® <Pin (** L 2, • (101)

We suppose that the operators FAt in Hm are already known. For the physically
interesting cases they were constructed explicitly in Section V. The operator NAi,
then acts on a vector cph... t as follows [35] :

NA,trPil:-in j) {(FA,t<Pi) ® <Ph® ¦¦¦ ® <Pin

+ <Pit ® (FA, t <Pi) ®<Pi,®---® <Pin

+

+ <Pil®<Pi,®---®(FA,t<Pi)}- (102)

Thus NAt transforms each subspace H{n) into itself. In H{0\ NAtt is defined to be the
zero operator.

One concludes from (102) that

(ftr.^vn-^i^^.y,)' (103)
k -1

This equation makes plain that the expectation values of the operator NA:t (for
normalized states) coincide with the number of particles which are present in the
volume A at time t. In particular, if m (m < n) of the states <y, cpi occurring in

(102) are localized in A at time t (i.e. they satisfy FAtcp cp), and the remaining
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n — m vectors are orthogonal to the subspace of 7^(1) determined by FAt, then it
follows from (102) or (103) that

NA,t<Pi1...in w'9V--.„-
Furthermore, if A R3, then FR,t I, and hence ATR,, acting on any »-particle
state is just multiplication by n, i.e. NR,j is the usual operator corresponding to the
total number of particles.

The restriction of the operator NA t to the subspace ?/(m) can also be written
formally as a sum of n operators :

Na"1 Ea, t ® I ® ¦ ¦ ¦ ® I + I ® FAi t ® I ® ¦ ¦ ¦ ® I
+ ¦¦¦ + L ® I ® ¦¦• ® I ® Fj,t

N® 0 (104)

Consequently
00

NAt ® A<"». (105)
»=o

For the sake of completeness, we indicate the relation between the space H^ of
one-particle states and the Hilbert space 1f°-si of the corresponding relativistic
elementary system of mass m 0 and helicity s. (Similar formulae hold for m > 0.)
Let a'(k, s) stand for the creation operator, a(k, s) for the annihilation operator of a

particle of mass m 0, helicity s and momentum k, normalized in such a way that

[«(fe, s), «f (fe', s)]T | fe j Ô3 (fe - fe') (106)

(where the two signs distinguish between bosons and fermions). The space Hm is

spanned by the vectors

\cp}=j^cp(k)a\k,s)\0y (107)

where cp(k) e Hl°'sh The scalar product in ?/(1) corresponds to that in 1f°-s\ This
follows immediately from (107) and (106) :

(AP | <p> ={j^Jji[ V*(9) VW <° I «(<?> s) "H*, s) | 0>

=Iwfw r{q) v{k) lq iô3{q~ k)

l^ry*(k)cP(k) (v,(p). (108)

We next express A± in terms of the creation and annihilation operators. For this
purpose, we denote by {ipAt}, i 1,2, a basis of vectors in the range of the
projection operator /y t in H[0-si. This leads to the following formula for the action of

f,(ona state cp e H10, s]
:

[Fa, t 9>] M E (Vj, *. <P) Va, t (k) ¦ (109)
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In order to arrive at a similar expression for NAt, we define for every y>Aj two
operators in the Fock space H by

<Va,Ò =f~VA*t{k)a(k,s) (110a)

^(ViA,t)=J^ViA,t(k)<A(k,s). (110b)

Using (109), it is a matter of simple algebra to verify that

NA,t =Ea^VA,òa(v\t)- (111)
i

Equation (111) is our final expression for NA>t. We wish now to relate it to similar
proposals for a 'number of particles' operator and also to point out some confusion in
the literature on relativistic quantum field theory as regards the particle density.

We begin with a scalar field, s 0. The field operator 0(x, t) is defined as

0(x, t) 0M(X, t) + #<->(*, t) (112)

with

&+\x,t)= -J-1 [!-+eik-x-^k[ta(k,0) (113a)V ' \Ì2(2tì?J ìfe!

&-\x,t)= .- =-[+r-e-ik-x + i^^a'(k,0). (113b)
l/2(2w)37 lfel

Henley and Thirring [36] use the following expression for the operator N(x, t)

corresponding to the particle density of this field:

N(x, t) i {<£<->(*, t) 0M(x, t) - 0H(Ä) t) 0M(x, t)} (114)

The expectation values of this operator are not positive definite [37]. It is therefore
not legitimate to interpret

N(A,t) j d3xN(x,t)
A

as the operator describing the number of particles which are present in the volume A

at time t. This is now well understandable, since we explained in Section IX that the
argument * in the field operator corresponds to the position of the field and not to
that of the individual particles. The correct particle density for s 0 is given by
Schweber [38] as follows

N(A, t) [d3q &(q, t) S(q, i) (115)

A

with
S(q,t) (2n)-3*2 fÂfL eik-q- ^1 a(k, 0) (116)

(116) differs from (113a) by a factor ]/| fe [ in the integrand. (115) is identical with our
expression (111) for NAil: One takes tor rpAt(k) the states (2n)~312 j/| fe] e-»'*-9 + »'l*l«

(i.e. the localized states at the point (q, t) of Newton and Wigner [2]) and replaces £
by the integral over the volume A. t
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For the electromagnetic field, s ± 1, Mandel [39, 40] applied a definition
similar to (115), (116). He introduced a 'detection operator' [41]

À(x,t) (2 7c)-3i2Ef-^-l e^x-^leKaaKa (117)

and defined

N(A,t) / dH A\x, t) ¦ A(x, t) (118)

Here eka (a 1, 2) are the polarization unit vectors [42], and aka the annihilation
operators for photons of momentum fe and polarization a. (The projection operators/^
in this conventional formalism for photons were given by Jauch and Piron [8]. Their
procedure is of course equivalent with the group theoretical approach which constitutes
the basis of the present investigation. One should keep in mind, though, that the
polarization a of this conventional formalism differs from the helicity.)

The one-particle states assume the form

W>-Effk\ V(k,a) aljoy (119)

The action of the detection operator A(x, t) on such a state becomes

À(x,t) W>=(2n)-3'2Ef^ ç,(fe,<r)efc>0/*-*-l*l< |0> (120)

Here the function

<p(x,t) (2n)-3>2Efv~ rtk'°) ekiaAk—^
a J V\k\

represents the correct position-space wave-function belonging to cp(k, a) as defined
also by Jauch and Piron [8] (it corresponds to our Equation (81)). However, the-
quantity

/ dH \ip(x, t) j2 c[cp \N(A, t) | ?>>

A

differs in general from the probability of finding the photon \cp~) localized in the
volume A at time t. The reason for this lies in the fact that FA: t is not simply multiplication

by the characteristic function %A(x) of the Borei set A.
We infer from these remarks that the operator N(A, t) of Equation (118) should

not be regarded as the true correlate of the number of photons in the volume A at
time t. Indeed, it is impossible to write the correct operator NAtt for photons as a

simple integral over the volume A, since that would imply that FA t and FA t

commute for all pairs Ax, A2 of Borei sets of R3, which contradicts Theorem 2. We
made mention of the implications of the non-commutativity of FA and FA for
certain couples Ax, A2 already in Section IX. There it was responsible for the inequality
(84). (A representation of NA as a double integral over A would allow for this
inequality. Such an expression will be given below.) This relation (84) entails immediately
that Mandel's N(A, t) of Equation (118) represents an upper bound for the exact
particle number operator A^,: For all states \<f>y ell one has

<t\N(à,t)\t>Xt\NAAf>. (121)
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It is possible to write NA t in terms of the detection operator A(x, i). To this end

we rewrite the expression (111) for NA t in the conventional formalism for photons.
The basis vectors ipAt in the range of FAt have then two components ipA°t (a 1, 2)

corresponding to the two directions of the polarization. Equations (110a,b) are
replaced by

°tó..)a27/^V&*(*)fl*.a (122)

and its adjoint. The position-space representation ip'A(x) of these functions tpAt is
defined such that (cf. Equation (120))

w%(k) (2 n)-3'2 )/ | fe |j dH e'ik-x + *Ik I

*eki „ ¦ tpA(*) (123)

Let r, s label the three space-components of the detection operator and the states

ipA(x). Inserting (122) and its adjoint into (111) and using (123) and (117) then leads to

3

with

NA,t E /dH/d*yka(*>y) A>>0 A(y,0 (12+)
r, s -1 ¦' •>

Ky(*,y)=Ev)iÀr(x)vV*(y)- (125)
i

This kernel is such that
Ka'(x,y) 0 ii x£A or y$A. (126)

Furthermore, it is non-local (i.e. in general KrA(x,y) 4= 0 for all pairs x,yeA) and
difficult to handle mathematically, since it requires the knowledge of a complete basis
of eigenvectors of FAt. Putting K"A (x, y) ôr s

<53 (* — y) %A (x) in (124) leads to the
operator N(A, t) of Equation (118) which is distinguished by its much simpler
mathematical form. We have verified that for monochromatic radiation the difference
<[(f> |N(A, t)\ (p") — <[(/> \NA t\ <^> becomes négligeable if the linear dimensions of the
volume A are much larger than the wave-length. For many practical purposes one

may therefore employ the approximate but simple operator N(A, t) of Equation (118)
to characterize the number of photons localized in the volume A at time t.

To conclude this part, we wish to point out the extent to which these photon
number operators are the appropriate means for the description of photon-counting
experiments. The physical basis of the usual photon-counters is the photoelectric
effect. Such apparatus measure therefore the electric field strength s(x, t) (averaged
over the volume that the counter occupies). In quantum field theory, the electric field
is represented by an operator E(x, t) acting in H. In the radiation gauge, E(x, t) is

simply the time-derivative of the vector-potential operator A(x, t) :

with
A(x, t) - A<+>(*, t) + A<-)(*, t) (127)

^^-7i^27/w^-"''|fc,'e*.--M (128a)

A^x'^^?fw^k-x+lìkìt^^ (128b)
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and

E(x, t) - -y*—- E^(x, t) + £<->(«, t) (129)

Photon-counting experiments are characterized by the expectation values of
products of operators E{A\x, t) (i labels the three components) of the following form
[43]

(cp \E}-\xx, tx) ...£/->(*„, tn) £,<+> (yx, rx) ...£•/ + (ym, rj | cf>}

They are usually evaluated for states \<f>y of the7^c electromagnetic field. One may
therefore relate these expressions to the localization of the photons of the quantum
state \(f>y. For this purpose, we calculate the action of £(+)(*, t) on a one-photon state
J9?> of the form (119):

Ei'){X't] l9>> J^2Äf Ç]d*k(p{k' a) e*-° etk-x-lWt\0> (130)

The position-space state belonging to [ç?> was found in (120). The two expressions are
again connected by the kernels (92) :

£<+>(*, t)\(p}= j/^hmj d3y Ge (x - y) Â(y, t) \q>y (131)

(One may see this upon comparing (130), (120) with the corresponding expressions
(88), (81) and (51) of the preceding section.) Therefore the electric field of a localized

photon decreases as r~l12 at large distances from the volume of localization.
Photons interact with a counter through their electric field. The number of photons

which can be absorbed by a counter occupying the volume A is therefore proportional
to the expectation values of the operator / dH £<->(*, t) ¦ E <+>(*, t) [44]. Since the

A

electric field of a photon is related to its position-space wave-function by means of a
non-local expression, these absorption rates are not directly proportional to the
expectation values of the operator NA t which indicate the number of photons that
are present in the volume A at time t. However, for most states (in particular for
approximations of plane waves) and for sufficiently large linear dimensions of A, the
quotients of these two expectation values for different volumes A differ at most by a
few per cent. Consequently, under the above-mentioned restriction on the size of A,
one may use NA t or N(A, t) as operators representing approximately the number of
photons which can be absorbed by a counter occupying the volume A. (A counter
consisting of a single atom does not satisfy this condition on A, since its diameter is
much smaller than the wave-lengths of visible light.) (Mandel [40] claims that the
expectation values of the operator (118) coincide with Glauber's first-order correlation
functions [43] :

(<f)\ [dHÂ\x,t) ¦ Ä(x, t)\ cf>y 2 fdH (</> \A^(x,t) -AM(x,t)\ f>.
A A

This equation is not correct. In Mandel's derivation [40], the detection operator
A(x, t) appearing on the left-hand side was used erroneously for the field operator
A{+)(x, t) of the right-hand side.)
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Finally, we should mention that the difference between localization and energy
density is present also for the quantum states that belong to a classical electromagnetic
field. Such a state \</>cly has the properties that

(cpcl\A(x,t) |fa,> Aci(*J)

<,<pcl\U(x,t)\<f>cly Ecl(x,t)

where Aci(x, t) is a solution of the classical Maxwell equations, Ecl(x, t) the
corresponding classical energy density, and 1l(x, t) the operator representing the energy
density of the quantized electromagnetic field. Such a classical (or coherent) state
assumes the following form [43] :

(pciy X exp \E/"-£*- <p(k, a) 4>0 | 0> (132)

where X is a normalization constant.
\(j)cly is determined by a single one-photon wave-function cp(k, a). The «-photon

component of \<f>cly consists of « photons all of which are in the state cp(k, a), and has

the weight 1/|/«!. The energy density of the state |^c;> is simply proportional to the
energy density corresponding to the one-photon state q> (fe, a) and shows therefore the
same non-local behaviour as we discussed in Section IX.
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