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On the Scalar Field Model?)

by Marcel Guenin

Institut de Physique Théorique, Université de Genéve, Geneva, Switzerland

and Giorgio Velo?)
Department of Physics, New York University, New York, N.Y. USA

(10. V. 68)

Abstract. The scalar field model is studied on a mathematically rigorous basis. Using alge-
braic techniques, we get the explicit cut-off dependent operator solution, and discuss the exis-
tence of the limit whenever the cut-off is removed. It is shown that the Wightman functions

are tempered distributions in the limit of no cut-off and in a space with dimension less or equal
to three.

Introduction

Even if all models actually available in quantum field theory have little physical
content, the main interest in their study lies in the fact that ideas and methods can be
tested on them.

Rigorously founded solutions of many models are to be found in WIGHTMAN's
work [1] (see also VELO [2]). The method of WiGHTMAN is to take the set of all Wight-
man functions obtained by some mean, and to guess a combination of functions of
free fields which reproduces them. One then checks that the field equations are in
some sense verified. The only trouble with this method, is that the solution is not
expressed in terms of the unperturbed (free) fields. This makes it difficult to compare
the exact solution with solutions (or approximations) obtained by more conventional
methods. But one does know the analyticity properties of the solution as a function
of the coupling constant.

The method we shall test here has been proposed by one of us [3, 4] and already
applied to the very simple case of a quadratic interaction [5]. The basic idea is to
consider the time evolution as an algebraic (instead of spatial) automorphism of the
algebra generated by field operators. What we want to show here is that it is possible,
at least for simple enough models, to compute explicitly this automorphism, and, from
this, to get all Wightman functions. We give a rigorously defined operator solution,
in term of the unperturbed fields, and this should make rather easy to compare this
exact solution with, say, perturbative expansions. We shall give two derivations of the
basic result, not that the model is so interesting in itself, but in order to test methods
which we shall apply to other cases in coming publications.

1) Research supported in part by the National Science Foundation.
2) On leave of absence from the Istituto di Fisica dell’Universita di Bologna, Italy.
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The Scalar Field Model

The scalar field model is characterized by the hamiltonian

and the commutation rules

[w(P), w*(P')]; = 09 (p — P')

[w(P), 9(P")]: = [¥*(P), p*(P)]; = 0

[a(k), a*(k')] = 6© (k — k')

(a(k), a(k)] = [a*(k), a*(k')] = O

[¥(p), a(k)] = [y(p), a*(k)] = [y*(p), a(k)] = [y*(p), a*(k)] =0 . (2)

Thus this model describes spinless fermions interacting with a neutral scalar boson
field. The energy of the nucleon is taken to be independant of its momentum, and this
is usually refered to as ‘recoiles nucleon’. At the end of this paper we shall show how
it is possible for a particular choice of the cut-off function to give the exact solution
of the relativistic nucleon with recoil.

f (k) describes a cut-off function and s is the number of space dimensions. We shall
drop from now on the suffix s in all integrals and §-functions.

This scalar field model is known [6] to be exactly soluble in the sense that it is
possible to give the exact renormalized one-particle state. The exact S-matrix
elements for the scattering of a meson by a nucleon may also be computed and turns
out to be trivial. SCHWEBER [6] has also given the form for the U-matrix, and thus,
in principle, the S-matrix too, but his form is ill defined for two reasons: first it
contains a term proportional to the time 7" during which the interaction has been
switched on, secondly it is not clear whether the expression given remains meaningful
as the cut-off is removed.

We shall give the exact operator solution, and have it perfectly defined as an
operator valued generalized function on the Fock space of the free fields, with all
renormalization terms put in evidence. From this it will then be easy to give the
explicit expressions for the »-points functions.

1st Method

This first method is in fact the completion of a method already partly used by
Schweber, and explained in great detail by MaeNus [7]. It is based on a splitting of
the U-matrix into different parts.

We have:

Hl(f) = eiHot HI e—m’Hl,t U(If, t(}) - 6@'H.)t 3—iH(t—to) 8—:’Hotﬂ

10, U, dy) = Hy(t) U, 4); Ully, b)) = 1. (3)
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Let us make the ‘ansatz’

£
- f Hy(#') dt
Ult,ty) =e * V', ¢,)
it follows then that
b4 t
i [H)ar —i [Hp¥)at
10,V t,) =e" {Hi(—¢t) —i0,}e ™ V (2, ¢y

= 2:: %l mal 2, (tfHI(t') dt’, HIU)) V{2, ty)

where 2, (4, B) denotes the multiple commutator defined recursively by (4, B) =

0,...4, B)=1[4, 82,4, B)] and using the formula

4] = 3 0B, 4) P= — 2 3 U 0., 4)
nel n=1
and
8 o v (=1 0
*‘6"‘5?' BF( ) == 6F( )MZ:; (m—{« 1) ! QH(F(S)’ E F(S))
29 Qn v F F(S
#=10 ( ( ) ( ))

In our particular problem of the no-recoil scalar field, we have that

Qz( f H () dt, Hl(t)> — 0
/ .Ql( [ a, HAM) dt
91( f H(t) at, H,(t)).

We may therefore write the solution of the equation

and that

commutes with

0, V(L 1) — ( f Hy(¢) dt', Hyt )) V(t, t,)

as being

]

V{t, tg) = exp {; / 4, [ / ) H;(a)h
Vit t,) exp{ fdrfN o(%, .15, 7) dxdy}

or explicitly

B,
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with the notations
N (%) = p*(%) () (8)

gy, y b, 1) = ﬁs—/‘dt’fﬂy’ — 2') f(y —2)14 (¥ — 2, —7)dzdz (9
t

with

and all other notations being those of SCHWEBER [6]. As N (#) is permutable with the
free hamiltonian, it is convenient to introduce the notation

t

&%y, 1o, 1) = f o(%, v, 1y, 7) de (10)
B
from which it follows that

V1, 4) ﬁexp{ fN "% Y, 1, )dxdy}. (11)

In contradistinction to what one usually does, we are not interested in an expression
for the U-matrix, and this for reasons that have been explained at great lengthin [3, 4].
We shall, therefore, try to compute

G H (= t) e ,HH () _ iHop(t—t) ,~iHopt U_l(t, ) v*U(, ) iHopto ~itor(t—to)
The first step in the computation is given by

£ t
ifHI(z’)dt' —ifHI(t’)dt
p*(x) e

= (%) exp s,zfdt'ff xy,wdy} (12)

where

(%, ) 2:35’2_/'/2 (a(k) ¢ ik s—alk)) | gk (p) g~k s—wlk)))
and the second one by
VUt 1) p*(@) V(L ) = exp {5 €0, 5,4, 1) f N(®) /(% 3, to, 1) d¥| *(3

— p*(2) exp {- S5, D) — f N(®) g'(%, 5, t, 1) dx}. (13)
Thus the answer is

PH (t—t,) — i E ;)

1,
Yz, 1) = T yr(z) ¢ — y*(z, 1) exp |~ > £'(%, 5, fo, 1)

_fN g% 3,0, 8) di + i fdt’ff zuy,t’)dy}- (14)
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Case of the Boson
For the meson field, the answer is much simpler. Indeed, the perturbative ex-

pansion [3]

bz, ) = B, 1) + i [ dv [Hy (¢ — ), $(, 1)

2 f iz, f dry [Hy (¢ — ), [Hy (¢ — 75), $(z, 8)]]
0 0

—+ e (15)

breaks down after the first non-trivial term, so that
i

(%, 1) — Bz, 1) + .zén;’)tm/"dy dx N(y) f (y — x)ﬂfiA (®— 2,8 —8dt. (16)

2nd Method

The trouble with the first method, is that it does not seem to allow an application
to another class of models, as it is based in a very essentiel way on the fact that

[Hl(tl): [Hl(tz): Hl(t?,)]] =0,

Whenever this condition is fullfilled, the method will work, but it fails otherwise.
Only in the case

(Hy(ty), (Hy(t), [ (Hltys), Hyl6)]...] = 0

for # finite, is it possible to generalize it, using the work of MAGNUSs [7], but this does
not significantly widen the physical applications.

Our second method is based on making an ‘ansatz’ for the solution, and then
reducing the problem to the solution of elementary differential equations. One could
make the ansatz directly for the solution of the Heisenberg equation:

0, wy(z,t) =i [H, py(z,1)] .

It turns out, however, that it is much more convenient to use the form of the inter-
action picture given by one of us [3, 4]. One defines

VJG(Z’ If) = 6—'»'H.,t e"th;(z, 0) 6——th 6iHut (17)
from which follows
0, v6(2, 8) = i [Hy(— 1), ps(2, 8)] -

Let us now make the ansatz

— e

wE(z,0) = p*(z,0) exp {._ x(2,1) —fN(x) B(x, 2,1) dx +fdyy(y)f¢ (3—y,7) dr!.

—i
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We get, using formulas (5) and (6)

%

Gw@%ﬂﬂwﬂ%m(—mﬂmﬂ—me0MW&Jijﬂ®Mw¢@—yﬁ4)

+ % /dt f 14 (yy — ¥y, T+ 1) y(y) y(¥s) dy, dyz)
X expl—a—fNﬁJr/'Vfﬁﬁ}

i (B~ 1), 9E(3, 0] = s ¥ a@(f@fuﬁm¢w~4»1LWNW)

~

. f(y_-x)fm F—z—y, —i— 1)y dy’dxdr)

- {“ o[58+ [y f¢}

Identifying the various operator coefficients, we get the set of equations:
0
1 ;
0 a(a,b) = [14 (3= 32, T+ 1) dyy dyay(3) 7(92)
—

— Y9 =59 G

0
» 3 :
~%ﬂm[hfﬂx—wz4w+ou—at+ﬂywa@¢m

—t

zz 12

I [fx_ Yo 2) id (¥ — ¥, t — 1) Ay, dY,

0, B(%, 2,1) =

and thus, using the boundary conditions ys(z, 0) = p(z, 0) we get

a(z, ) = — _fdtzj dt1/ 1 A (yo — 1, ta — ty) y(¥1) Y(¥a) @y1 dYs

212 1 o .
;_-_(;:m)s 2 dt2fdt1 f(z—y)f(z—9) 14 (Yo — Y1, 8 — t) dyy 4y,

0

= % gz, 201 .
Similarily,
;2 2'2 f fa & s o~
Blx, 2,t) = — “(;&Vfdtzfdtlj Ay, Ay, | (8 — 1) F (2 —y2) ¢ A (1 — Y2, t — &)
6 0

=g'(%,% 0,7 .

That is, we get exactly the same answer as with the first method.



108 Marcel Guenin and Giorgio Velo H. P. A.

Study of the Boson Field
We have that

t

a3, 1) — (2, 1) + Eij—-,z—fdx dy N(y) f (¥ — %) fm (x— 3,8 — t) d

o

and it is clear that this expression is an operator valued tempered distribution.

The n-points boson function is exactly the free one, so that, as expected, there is
no boson-boson scattering.

It is elementary to see that the expression above for ¢ is a solution of the Heisen-
berg equation of motion independently of the #, chosen. We cannot use the normaliza-
tion of the 1-boson state to fix it, and the most reasonable choice is f; = —oo. It is
easy to see that this ensures that ¢, will satisfy an LSZ-type of asymptotic condition
for £ > 4 co between states with bounded number of (bare) fermions. This remains
true if we take the physical (i.e. interacting) fermion states.

Renormalization of the Fermion Field

We have to give a definite meaning to the different factors of our formal solution
(14). Note that the solution has nothing heuristical if the cut-off function f is kept
finite and is sufficiently smooth. The problem arrises whether the solution still does
make sense as f >0 in §’. We shall proceed in two steps. In the first one, we shall
write the different factors of the solution in term of Wick-ordered functions. This will
enable us to separate quantities which are divergent in some space dimensions and
renormalize the solution. In a second step, we shall study the z and ¢ dependence of
the fermion field and determine whether it is a distribution or only some kind of
generalized function (this last step only for s < 3).

Let us first consider the term

expi “2 fdt’fdyf z—wy,t’)}.

Using the well known formula

A+B A B ,~3[4,B] _ A(4,B]

e =¢e"¢"¢e* 66

valid whenever
[4, [4, B]]=[B, [4, B]] =
we get that

]

b=ty ( 1=ty
’ i A A
exp{ )5 12 fdt fdyf (z— y»t)}_ expi(z_;.);@"fdtzfdyzf(yz) ¢ (zmy2,t2)}

J

X €XP j (Zﬂ KTy f‘ifi/dh (y1) 6 ( z_y1:t1)l
| J

1 /1
X €Xp : fdtlfdtzfdy1 dyzf (yz) 1A% (Yo — Y1, 8 — tz)l
J
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t—t,

( |
::expi 5 )mfdt’/dyf z—y,t’)J}:

t—ty t—t, |
2/12
x exp{ ) 22 /dtlfdt fdyldJ’2f(y1) F(ys) i AF (J’zyl:tl—tz)}-

On the other hand,

t—t, t—
1 4232
exp{z i fdt fdt fdy1dy2 (31) (y2)2A+( y1»t1_t2)}

k2) !2

= exp { 0s (ko (£ — to)))}

2
fdk —"L,, ® cos (ky (£ — #,))
kO
is converging, and represents a continuous function in ¢, even in the limit f(k) > 1

(for ¢ =+ ¢,) f(B) |2
Jaw 10

converges for s <C 2, diverges logarithmically for s = 3, whenever f(k) - 1. This
quantity will appear in the field strength renormalization, but we may as well trace
its origin now. Remark that if one doesn’t take into account any boundary condition,
Ys(2, t) is only defined up to a multiplicative function, more exactly, up to a time-
independent term which is also commuting with H;(—¢#). This means that the quantity

exp ([~ L f [

may be dropped from pg(z, £) and that the remaining part y;(z, £) will still be a
solution of , . ,
0, v6(3, 1) = ¢ [H(— 1), pe(z,1)] . (17)

The constant factor being fixed by boundary conditions, we see that performing a
field strength renormalization exactly amounts to changing the boundary which
gives the right answer is the proper normalization of the 1-particle state, or alter-
natively, the LSZ-asymptotic condition.

To come back to the study of the first term of the formal solution, we remark that
Wick ordering implies that it will be well defined on the vacuum state. In order to
know its action on other vectors of the Fock space, we only need to know the com-
mutator:

LWPL;$mef@ﬂﬂ¢@%fJU¢WJ%
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The second term of the solution (14), of the form

exp {—fN(x) g (%, 2,1, 1) dx}

seems more difficult to handle than the first one. The way to proceed is as follows:
We make the ‘ansatz’

exp {a f w* (%) w(%) o(%) dx} — :exp { f W* (%) p(x) (%, £) dx}.-

differentiating by respect to ¢, leads to

[ v pis) o) ds exp le [*(5) p(s) ols) ds]
— |94 pi) (s, &) drexp | [y*(x) pls) O, e) ax]):

y
e / w*(¥): exp {[ W (%) w(x') I, &) dx’} () 2, o) da

e
- f w*(¥) exp {e f P p(x) o) s’} p(s) o (s, ¢) d
Multiplying from the right by
exp {— & [y*(+) (&) d’ o)
and using the easily derived relation

exp {e [ v*(x) w(¥) o) ds] y(@) exp [ & [y*(x) p() o) d¥’} = p(z) exp {~ e0(a)}

we get the differential equation

f W (%) p(¥) o(¥) dx — /'w*(x) p(s) e 0 9w, €) da

with the boundary condition 9(x, 0) = 0.
Theretfore

B(x,8) = W — 1
and thus

ele’."*(")V’(") elx)dx . exp {fw*(x) Qp(x) (ng(x) — 1) dx} .

Applying the result to our case, we get

e {—fN(x) g'(x, 2,4, ) dx} = . exp {/w*(x) qp(x) (6—g’(x, z,to, 1) __ 1) dx}:
and since
exp | [p*(o) plo) (e m 50 1) ds): pr(w)

— y*(w): exp { [9*() p(®) (775700 — 1) daf: exp {— g'(w, 5,40, 0}
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We may write:

ve(z, 1) = w*(z, t,) exp ; (2, 2, by, ) fN (%, 2,8, 1) dx

f fdyf d(z—y t — t)} = yp*(z, 1,) exp {— % g'(2, 2, t,, t)}

X exp { L 7%" /dk |7 — cos (ky (£ — to)))}

% exp{ S,at/;t’fdyf z—y,t’—t)}:
X @ exp { f W (%) (%) (BB _ 1) dx}:.

At this point it is good to remember that g'(2, 2, {,, ¢) in fact does not depend upon z
since

(5 5 o, ) = g | A 1) 2 {10 — 1) — - sim (ko (£ — ).

0

Before we determine the field strength renormalization, we first compute the physical
one particle state, and for this we need to know the renormalized mass:

1
m=my— g [ dk 1B e
we then get
yilz, t) = p*(z, 1) 707 “°)exp{2(2—~ /dku ) |2 £g® eitottm t«)}
<oxp (= g [ 118 exp { [ 4t el Py

!
X 1exp {(zlilrau/dt’v/dy f~(y) é(z—y, t’)] ?

Notice that in the limit f(k) -~ 1 the mass renormalization is finite only for s = 1.
Consider the (mass renormalized) two-points function (in the bare vacuum)

W® (2, — 25, 8 — £y) =<0 | py(2y, 1) wii(2e, b)) | 00
—im A2 - —iky
—erimtexp (= oo [k |10 PR (1 — o7 %) o)
with the notations
b=t — 4, 2= AlR) = -2 i) e
=l — 1, =2 — 2y, ()=(T:,;5?’2’| )
we get

We(z, E) = VZ ]dtW@)zt ”E—]/Znexp{ fA dk}
JT

a(E_m)JrZ-%/A(kl)...A( ( —m— Zk(,,) }6(2)
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and we can write

fA(kl) .. A(k) a(E —m —Zn'km.) ik, ... dk,

- s
_ 4an(k1) o A(R,_y) A (V(E - m“é‘k‘”) Hﬂz)

n—1 [/ n—1 \2 n—1
x(E—m—ZkO,.) ]/(Emm—ZkM) — G(E—m_ZkOj—y)
\ 7=1 i=1 7=1

x dk, ...dk,_,

which shows that the spectral weight function has the right structure, having an
isolated singularity at £ = m, and continuous parts starting at m + u, m + 2 u etc.
Therefore, in order to get a one-particle state, we shall smear out g}(2, f) |0> with a
test function %(¢) the support of which in the space E is contained in a neighborhood

of m: %
Supp M(E) ={E|m—¢e¢ <E <m+e ¢ <u}

M) — 1/217: f W(E) e~ dE

which is possible with the particular choice of Supp h. Putting

2w A fe)
CERNEY:

B(k, 2) =

2@ R =k

we get

wi(z, ) |05 = ¢™ exp {—fB(k, %) dk} exp {fB(k, z) ettt dk} ¥*(z, 0) |0>

from which follows
[ vita. 8 de |0 = [ HEL g
x dE {1 +§:_;Tf3(kl) ... B(k,) exp {z’jé’koi t} dk, ... dkn} dt
X €xp {—-fB(k, 2) dk} ¥*(z, 0) |05 = Vﬂde h(E)
x {a (E — m) +2’71!~f3(k1) ...B(k) 6 (E —m —é’kof) dk, ... dk,,}
X exp {—fB(k, z)dk} v*(z, 0) |0
=)2x {E(m) +§;fdk1 . dk T} (m +2k07) Blk,) ... B(k,,)}

X exp {—fB(k, 2) dk} p*(z, 0) |05

and, using the support properties of h, we get as 1-particle state

fh(t) iz, 1) |05 = Y27 h(m) exp {—fB(k, %) dk} w*(z, 0) |05 .
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If we now look at the 2-points function,

W (z, ) — e exp {ﬁ / Ik lfk-’* ? 1 zknt)} 8(2)

we remark that the first and the last factors are the only ones which we would have
for a free field. The second factor is equal to one for £ = 0. This is not astonishing as
we did impose to our fields to be free at time ¢ = 0, or {; this was indeed our boundary
condition. The presence of the term

exp {5 s [ k|18 55"}

makes that the one-particle state is not properly normalized. Remembering the
discussion above concerning the connection between field strength renormalization
and boundary condition, we see that we can renormalize the field operatos by dropping

a factor
1A .
exp {- = —(Z—n)—sfdk £ (k) |2 kf}.

The trouble with this factor is evidently that it is equal to zero in the limit (k) =
and in three dimensional space, and from this it follows that the two-points function
1s no longer defined for ¢ = 0 (still if s = 3), that is, the interacting field operator is
not defined at a sharp time, but has to be smeared out in time also.
It is easy to check that the properly smeared out renormalized two point function
converges asymptotically toward the free one and that the unrenormalized does not.
The unrenormalized 2 n-point function is given by:

Wen((x,,2,) ... (%1, 4), (¥1,51) - (¥, 50) =<0 MPH wo bn) <o g%y, 0)

PN 81) 50 e BV ) ]O>—exp{zm2 $; — t;) }
f

X exp {2 n (-_ (7}“;8/@]@ ,,|,,%‘%lz )} exp {];;Ffdk 1(’%{3:[2_ (eikosj n 6-z‘kotj)}

0

X exp{ E [g x_]fxz 0 t) I(yjfyiio’si)—i—c(yi!yjis )+C(lex1.’ j’tl)-l

i<j=2

- fc(xf,yj» ti’sj)} <O|’P(xn» 0) ... p(%s, 0) p*(31, 0) ... p*(y,, 0) | 0>

i,j=1

with

C®3,%,5) = 5o <0 fdrlfdwlfwl — w7 fdrzfdwszg

><¢(y—w2,-;2) |O>* 2(2 f’f k(x—y) {8@1603 i) __ zkos#8~1kﬂt+1}dk.

By computing
O] p(x,,0) ... px, 0) p*(y,, 0) ... p*(y,, 0) |0>



114 Marcel Guenin and Giorgio Velo H. P. A.

one obtains

W2n(( n’ 11) (x1’ tl) (yl’sl) (yn’ Sn))

= exp {@ mg(sj - f,-)} exp {—n o [ dke |10 |2 )
X exXp {(_;;)jfdk \f(k) ‘2 (2 kg)_lé’ (ez‘kosj X eikotj)}

X ZBXP{ Z [g'(%;, %;,0,2) — g'(¥,¥:,0,8) + C(¥:, 9, 8i, 85)

bPeS, 1<j=2

+ Clw;, ;, 4, 8)] — ZC(x“yJ, . J} 1)°®) H(S
1,7=1
where S, 1s the group of all permutations of # objects and ¢(P) is the parity of the

permutation P. After inserting the expressions for g’ and C, with some easy computa-
tions one gets

n

zm%’ (sj_—tj) a2 ~
Wen((x, 1) oo (s = 71 exp{—n E?Pj ik )
_ 1)etP) ” iR B B l
xpé;( 1) expl 2n)3 [dk 35— cos [k (x; — &,))] (4 sPl(i))J
l ’t’«ko( 'I:)_ti ] k)[® x _x)
xeXp{ /dk “3 i 5 2, )3fdk '_2k3

” [Biko(tift?-) + g‘iko (SP—!.(]-)—SP—l(’l:)) - e‘iko (SP(j)_'ti) - 31k0 (sP"l(i)_tj)]}

xné Y1 — Xpgy)

The renormalized 2 n-point function is obtained by considering # as the physical
mass of the fermion and by dropping the field renormalization factor

exp { N —e f dk %’%i}

Existence of the solutions as distributions for f(k) = 1, and s = 1,2, 3

The only factors which could give some troubles in the renormalized 2 z-point
function are of the form:

exp{z(z /dk k—3 i(R-x—FRyt )}

exp{ T );fdkko cos (k - %) }

If s =1, 2 the integral [ dk k,® ¢’ *=%? is absolutely convergent, defining a con-
tinuous bounded function of (x t) and therefore

A2 AR i(k.x—Pk,0)
eXP{ 207 ) ®°

defines a tempered distribution in (, #) space.

and
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If s = 3 we may write:

[e o]

AR i(k.x—ky1) f k? dk _smkx ikt

k3e

+00
' dk sink x dk sinkxy _;
_ oy S PR A ikt M SRReA ikt
=2 f“ f kB kx r ky k=x ¢ }
where x = |x|.
The first term is a continuous function of (¥, ¢), whereas the second one, continuous
for x & 0 and all ¢, is for x = O as singular as the two point function of the scalar field

in two (1 space, 1 time) dimensions. Therefore

[ A2 [dk i(k-x—kot)}
P\z2zap) w8 ¢

is defined as a distribution not only for test functions with compact support in the
energy-momentum, but also for test functions € §(R?%).
Let us study now:

exp{ fdkk cos (k - x)}

For s = 1 there is again no problem. For s = 2 we get:

fk‘: cos k- sz fcos (k x cos?) df ~ fy izyxz )

where Jo(y) is the Bessel function of order 0. Since Jy(y) ¥ = + oo 1/)/y the last
integral is a continuous function of x for x & 0. At x = 0, it has a logarithmic singu-
larity, as one easily checks. For s = 3 the integral under examination can be computed
explicitely by integration in the complex plane:

oQ
- k2 in % 1
fdkk02c05k°x~f s BT o g
; R4 %

kEx

As a consequence in both cases s = 2, 3

exp{ L fdkcos(k x)}

defines a tempered distribution in («, ). In fact if we take a ¢(¥, f) € §(R*) and we put
(%, E) = f (%, 1) e E dt

f(fexp{ L fi:: cos (k - %) }(p(x, t)) ax :zfdx (p(x 4 fik_ cos (k - x))

converges due to the strong decreasing of @ at oo and to the nature of the singu-
larities of [ dk|E] cos(k - %).

It is then proved that for s = 1, 2, 3, once the mass and field renormalization are
performed, the Wightman functions are tempered distributions.
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The Solution with Recoil

In the case the fermion field is chosen to have a momentum dependent energy,
that is if

Hy = [ e(p) y*(p) wip) dp + [ w(k) a*(k) a(k) dk

where the specific choice of ¢(p) doesn’t matter, we can still get the explicit operator
solution for yj(q, ¢), but only for the special choice of the cut-off f(k) = d(k). This
cut-off is, of course, totally unsound from a physical standpoint, since it corresponds
to an absolutely non-local interaction. Nevertheless it is interesting to see that the
solution is formally very similar to the solution without recoil. In fact, in our form of
the interaction picture:

wE(2,1) = p*(q) exp {al) a(0) + B®) a*(O) + 7(0) [ v*(p) w(p) dp + n(0)}

with
i I .
— 1
B(t) = QA a0 (et —1)
-1

YO = g 2 0O L+ e =2}

no = 5 70

This solution is, of course, purely formal, and we don’t think it worth of trying to give
it a precise mathematical meaning.
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