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InterEal Manifolds, a Description of Exact and Broken Symmetries,
Incorporating Rotational Excitations as Implied by the Hypothesis
of Regge-Recurrences?)

by P. Minkowski
Institute for Theoretical Physics, University of Leuven, Belgium 2)

(20. 11. 68)

Abstract. An attempt is made to introduce the concept of an internal manifold in elementary
particle physics, and to realize the simultaneous action of the Poincaré group and of an internal
SU 3 symmetry group on this manifold. A restricted class of manifolds is investigated, Riemannian
globally symmetric spaces of type II, on which the internal symmetry group acts through the
adjoint| representation.

The interplay of the two groups supplemented by several auxiliary assumptions determines the
manifold uniquely. The abstract manifold and the two Lie transformation groups acting on it are
reexamined considering a linear boundary value problem on the manifold, stripped partly of its
structure as homogeneous space, to allow the symmetry substitutions of the solutions determine
the actions of the two transformation groups. The boundary value problem gives rise to a spectrum
of masses depending on spin and internal quantum numbers. Meson and baryon masses are calcu-
lated defining special models, in which a continuation to complex angular momenta is carried out.

The situation for space like momenta is investigated and the restrictions imposed on the
potentials defining the aforementioned models, by demanding that no solutions exist for space
like mamenta, are studied. The differential equation on the manifold is separable and is reduced
to a second order linear differential equation in one dimension. The location of the bound solutions
is determined from an associated Jost function. The differential equation is studied by mapping
it on an analog potential scattering equation. The analog energy and potential strength appear as
algebraiic functions of mass, spin and internal quantum numbers.

The breaking of symmetry is treated as a perturbation. Mass splittings within meson and
baryon SU 3 multiplets are obtained in first approximation with respect to the strength of the
breaking.

1. Introduction

a) General Considerations Initiating the Present Investigations

An elementary particle or a state with specified quantum numbers is treated in an
analogous way to an atom, conceived as a first hypothesis to be elementary as a
consequence of assumed ignorance of the fact that the atom is composed of a nucleus
and a surrounding electron cloud.

All the information about a possible internal structure of the atom is therefore to
be obtained from scattering experiments. To outline the analogy further the resonance

ing of light by an atom is compared with the sz N-scattering near the energies
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of the observed resonances. If the resonance scattering is mainly elastic we have the
well known formula for the total elastic cross section

7t (27r+1) T% [1]
k* 2(2j6+1) (k—Eg)2+ (I'§/4)

oB(k) = (L.1)
where 75 is the angular momentum of the excited state of the atom, j; the angular
momentum of the ground state, Iy the width of the resonance, E its energy and &
the energy of the incident photon. ¢% is to be compared with the peaks in the 7+ p or
7~ p elastic cross sections, 0, , ,, near the 4 and H* resonances, allowing for increasing
inelasticities for the states with high masses [2].

The interpretation of the spectroscopic patterns in terms of a spectrum of energy
eigenvalues, the corresponding eigenstates displaying the detailed structure of the
electron shell, will serve us as a guiding model in looking for an internal manifold,
describing strongly interacting particles and resonances and their energy spectrum.

The remarkable validity of an approximate SU 3 symmetry scheme or the
‘Eightfold Way’, first conceived by GELL-MANN [3] and NE'EMAN [4], and the splitting
of masses within the SU 3 multiplets as antagonistic principles have led to two distinct
descriptions of broken symmetries, the group-theoretic approach and investigations
of current commutation relations. _

The first method, which is best called marriage of the POINCARE group to the
internal symmetry group proved to be inconsistent with general principles, except in
trivial cases [5, 6]. The strength of the objections relies on the fact, as stressed by
Jost [6], that a unitary representation of the comprising group implies the existence
of the Garding domain, which is dense in the Hilbert space carrying the representation,
and on which the enveloping algebra of the corresponding Lie algebra is generated by
essentially self-adjoint operators.

The basically identical situation is apparent from S. COLEMAN’s critic of the
relativistic SU 6 group [7]. In this work special representations are studied. COLEMAN
supposes the widths of the resonances, which are to be looked upon as stable particles
with respect to strong interactions, to vanish. This enables one to extract these
irreducible representations of the PoiNcarRg group from th ebackground of multi-

particle states in the continuous spectrum of the mass operator M = f |/ p2dE(P)
a procedure which in general proves to be impossible in axiomatic field theory.

Restricted to the one particle states, of which only a finite number is supposed
to lie within a finite mass interval, the representation represents faithfully a group of
the form G = K ® (A x A) COLEMAN conjectures. K is a compact group, /1 contains
the homogeneous Lorentz transformations, A is an abelian normal subgroup of 4 x A4,
containing the group of space and time translations. (® denotes the direct product,
X the semi-direct product.)

Once the algebraic ‘Uberbau’ of group theory is lost, broken symmetries seem to
become ununderstandable. We are therefore led to search for a mechanism giving rise

to the breaking of a given group which in our case we take to be P @ SU 3 (P =
PoINCARE group).

It is appropriate, we think, to recall here a much older but similar situation with
respect to the hydrogen atom. As is well known and first demonstrated by PauL1 [8],
the Kepler problem can be described in an entirely algebraic way, both in the classical
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and in the quantum mechanical framework. The method consists of introducing the

operators g £
L=5Ap; BZT(P/\L—L/\P)—'#JzT

P2 e?

—; B2=2u,H (L2 + B%1) + u, 21

HZZMe_ ¥

(§: position coordinate of the electron relative to the proton, p: electron momentum,
B: Lenz vector, u, = m, my/m, 4 m,: reduced mass of the electron, ¢: electron charge),
which obey the following commutation relations

(L, L] =&, B Ly; [B;, By] =1 ¢4, (— 2p, H) L,
[L;,B=1t¢;;,,hB,; LB=BL=0. (I.2)

For states with negative energy the relations 1.2 can be expressed by normalized

operators 1 1

1
M= _-L N= ]
B h —2u. H
[Mt!Ms] = '.’:8“,. Mr [Nt’ Ns] = 7/'8”,. Mr
[M,,N]=ie,, N, MN=NM=0 (L3)

—2u, B2 H) (M2 + N2+1) = (u, 221,
He Mg

The operators Ji = (M = N) 1/2 subjected to the condition J2 = J? generate the
group p 4, as is well known. From 1.3 all facts about the discrete spectrum of the
hydrogen atom considered as a Kepler problem can be obtained. Looking however at
the relativistic problem or at the real hydrogen spectra, displaying the fine structure
of the levels, the group O 4 is found to be broken, and this happens in a way which
cannot be described by any reasonable algebraic means.

His&orically the memorable foundations of wave mechanics by SCHRODINGER [9]
have revealed a new aspect of the internal structure of the hydrogen atom, on which
the rei}vant equation and energies appear as an eigenvalue problem, i.e. as the
Schrédinger equation.

2 2
Hy ) =i0,yE 4= (- Z—’L 4.—5)y (L.4)
with the boundary condition that (§, #) be square integrable over R;.

The same properties as in the algebraic treatment are found back again, but this
is not the end of the story in this theory, because now the boundary value problem
can be rFonsidered as the starting point towards a relativistic wave equation including
spin, the Dirac equation.

b) Characteristics of the Present Approach

The present work is an attempt to introduce the concept of an internal manifold
in elementary particle physics. The internal manifold is the carrier space of the
representations, as coordinate transformation groups, of two groups, the POINCARE
group and an internal SU 3 symmetry group (our results can be generalized without
difficulty to include any internal compact semisimple Lie group).
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These two representations are not a priori related to any conservation laws. The
action of the POINCARE group in our approach generates the corresponding exact con-
servation laws. However the transformations of the internal group generate exactly
conserved quantities if and only if they commute as coordinate transformations with
the action of the POINCARE group on the internal manifold. Thus a breaking mechanism
is easily realized.

The interplay of the above two groups on the internal manifold proves to impose
rather restrictive conditions on it. We investigate a class of manifolds, which is
mathematically well understood and completely classified, Riemannian globally
symmetric spaces of type II. We show that the above mentioned restrictions supple-
mented by the requirement of minimal dimension for the manifold M, determine M
uniquely.

On the Riemannian globally symmetric spaces of type 1I a given group (in our case
the internal symmetry group IE) acts through the adjoint representation adk. The
kernel of the homomorphism #, A: K ->adk is the center of K, Z - The group

represented on M is therefore K [Z% (in the case of SU 3: Zgy;, = Z3, Z5: cyclic group
of three elements). This implies that no state with fractional charge (e.g. quarks) will
appear. '

Once the manifold is determined, on given coordinates an arbitrary coordinate
transformation can be performed. This means that if a choice of coordinates displays
in a simple way the group transformations, the physical interpretation of these
coordinates can be quite obscure, whereas intuition indicates, that the internal mani-
fold is related to a space time structure of particles.

We therefore start anew retaining only the general informations on the internal
manifold gained from the purely mathematical construction of M. We consider a
linear boundary value problem on M. The coordinates which render this problem
most simple will in general not coincide with the special coordinates used before.

We investigate particularly the dependence of meson and baryon masses on
complex angular momenta (Regge trajectories) in various models. We show that the
a priori arbitrary potentials defining these models are restricted by the requirement
that no solutions exist with space like momenta or imaginary masses.

We do not expect that these models allow to compute the masses of physically
observed particles, but we wanted to show that it is possible to obtain Regge tra-
jectories with reasonable characteristics.

We show further, that the possible values of the mass are given by the zeros of the
Jost function associated with an analog potential scattering differential equation of
second order in one dimension, if the analog energy and potential strength are
expressed by appropriate rational functions of the mass, spin and internal quantum
numbers of the physical solution in question.

Composite particles as nuclei evidently show an internal manifold. The coordinates
of this internal manifold of nuclei can be given by the relative positions of the con-
stituent particles or as in the droplet model by the position of a volume element of the
droplet. The proposed structure does not a priori postulate compositeness but rather
constitutes a mathematical model which can display features related to a composite
particle.
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II. The Internal Manifold, Assumptions and Uniqueness
1. Definitions

Let y(x, z) be a wave function which shall be the solution of a partial linear

differential equation, and satisfies the boundary conditions which define the eigenvalue
probleJF

x = (x*); p = 0,1, 2, 3, is a four vector which is to be related to the center of mass
coordinates of the particles described by .

z —‘(zl, ..., Zy) represents a point of the internal manifold M of dimension N,
as magped 10cally on a Euclidean space Ey with coordinates 2y, ..., 2y.

The abstract POINCARE group will be denoted by P with elements 7= (a, A) its

covering group by Q P with elements o = (a, A), the homogeneous Lorentz group by/l
With eléments A, its covering group by S 4 = SL(2, C) with elements 4.

T denotes the action of the Lorentz transformation (a,.4) on the
mamfoIEd ). We assume the action T),: (%, 2) > (A x + a, 2’) to be a diffeomorphism
(e I ‘15 a dlfferentlable mapping 1 to 1 and T;;! is differentiable).

T he| set of transformations 7, considered as mappings of M onto M will be

denoteci by 7 -7 becomes a representation of P by the composition law

T(az, 4s) T(al. 4) T T(a2+A2a,,A,A1)- (IL.1)

The abstract SU 3 group will be denoted by K, its elements by . The symbol S,
denotes the action of K on (x, 2), S,: (x, 2) > (%, 2') shall be a diffeomorphism. The

set of transformations S, from M onto M will be called S. The S, satisfy the composi-

tion law
on & S, S, =S,, m.ek. (I1.2)

1 X

2. The Action of S

Assumption A 1: M is a globally symmetric analytic Riemannian manifold of
type II |(not necessarily irreducible).

Hence there exists a semisimple, compact, connected Lie group G such that
M=G® G/DG, where D, is the subgroup of G ® G formed by the diagonal elements
g ®g g€ G.G® G/DG can be mapped canonically on G:

g ®g—> g -
The action of G ® G on M is given by

81 ®8&: h—>gihg. . (IL3)
Restricted to D this gives
gRg: h—ghgt. (I1.4)
Introducing locally normal coordinates on M which are again denoted by 4 =
(By, ..., hy) the action of Dy is represented by
geD,,¢g: h~->ghg—1:adcE (&) (I1.5)

For the notions of differential geometry and symmetric spaces reference is made of [10].
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{ad®(g) | g € G} constitute the adjoint representation of G. We now assume K C G
as a topological Lie subgroup. This reduces S to the following transformation group:

S.eS S, hsuhxl=ad® (x)h. (IL.6)

®*

A 1 seems to be a rather restrictive assumption which together with II.4 and IL.5
reduce the action of S to the set of linear transformations {ad®(x) | » € K}. They form

a subgroup of ad® which itself is a subgroup of SO(N). In the case G =K the right
and left translations D,, L, induce separately isometric transformations on M.

Since G is sem151mple it is the direct product of a finite number of simple connected
Lie groups G =G, ® G2 & e B G The Lie algebra of G is the direct sum of the
ideals [, ..., I, the Lie algebras of Gy, ..., G, respectivelyI'=T, ® ... ® T,.
The generators of K, ¢1, --- » g decompose in a natural way in the ideals Fl, W

;=" 0P ®---0¢M¢Pel,,i=1,...,8.

The ¢,®, k=1, ..., n satisfy the commutation relations of SU 3

[qz ’ Q1' ] = 6kk fms qgk) (II7)

fijs structure constants of SU 3.

I, is of course left invariant, as an ideal, a fortiori under the action of S. This leads
to the second assumption.

A 2: In I there is no vector which is left invariant under the action of S.

A 2 implies ¢! = 0 % k. The ¢! are linearly independant % k. Therefore K,CG,.
K, is generated by the Lie algebra {¢¥},7=1, ..., 8andis (locally) isomorphic to K.
The dimension of d, of I', has to be > 8. We have therefore reduced the possible

manifolds I', to be simple compact Lie algebras which contain the Lie algebra of K P
the £ corresponding, as a Lie subalgebra.
A 3: The irreducible spaces I’ are of minimal dimension compatible with 4 1, 2.

Hence I', = Q, v k. Q: Lie algebra of K.
A1, 2, 3 determine M up to a coordinate transformation to be the direct sum of »
Lie algebtas Iy eens Li I B0 k= 1,000 im0

M=Iel,®--&rl,. : (I

-8)
We now consider the exponential mapping of the tangent space M locally onto G
to redefine G globally as the universal covering group of G

~

Gu = Glu ® G2u @ ® Gnu (119)

G, is isomorphic to the universal covering group I% of K (In our case Iz' K:)
The action of S on M is given by the group of inner automorphlsms of G induced
by the elements of D C G of the form 2 Rx ®. ®x—xD,xeK

#p(n): G R - Qg —>ugHx @ - Qrg,xt. (I1.10)
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We denote by Int, (I;’) the group of inner automorphisms of GNH = G associated eith
D;. The mapping ¢: # - Inty(n) is an isomorphism of IE/ZI} onto Inty, (IE) (Zx:
center of I%) We conclude that the action of S on M does not represent faithfully the
group {=SU 3, but

S > K?/Zg = SU 3/Z; <> means represents faithfully. (I1.11)

Z3 1s the center of SU 3 composed of the three matrices

1 0
& 1 ). y=0,1,2
0 1

Hence A 1, 2, 3 imply that Z% is not represented by S.
It is to be stressed at this point that A 1, 2, 3 can be considered as ad hoc assump-
tions which reduce M and S to the form given by I1.8, 9, 10. On the other hand if an

approath along similar lines leading to other choices of M and S (e.g. when quarks
are required to be present) is followed up, A 1, 2, 3 must be modified. This means
that the beautiful theory of symmetric spaces cannot be applied to its full content
to the problem.

3. The Action of T

Let F denote the abelian subgroup of SU 3 generated by I'® and I'® corresponding
to the third component of isotopic spin and hypercharge respectively.

A4 TT elements of S, S, with % € F commute as coordinate transformations with
al T er,me P.
A 4 is equivalent to the fcllowing commutative diagram

T

M—> M

VieF
i I P g (I1.12)
M?M w &

Figure 1

A 4 is motivated by the assumption that a theory of hadrons is thinkable which
does not take into account the weak interactions, as a good approximation to the real
World.Tfn this approximation I, and Y are exactly conserved. I, and Y are related

to the unitary representation of F in Hilbert space.

f=eqﬂaF3+bIﬂ—>wp(ﬁiaQ—Jb%?Y)=lﬂﬂ.
A 4 cannot be exploited immediately because the eigenspaces of the matrices Ad s
AdI8 |I®= —141I,, I'®=—4}/3/2Y) have complex components relative to the
normal coordinates we have chosen on M. Hence we are lead to consider the com-

plexification M of the Lie algebra of <. G~1 ®... ® 6n. The complex structure [,
on M is induced by the mapping

M=MoM J,XeY)=(-Y®X) X YeM.
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The restriction of M to real coordinates will be denoted by M . We will also consider
the complexification of the PoINCARE group P, or better of its covering group Q P,

Q]SC, obtained by complexifying the Lie algebra /75 of 15R and introducing the
complex structure Jp on [/:

o=y @ Iy;  Jplor @0 = (— 02 @ 01) 91,2EHR‘

We cannot conclude that the action of 7 as a Lie transformation group acting on Mg
can be analytically continued to the action of 7, on M, especially since 7*will in
general not act transitively on M (7, denotes the complexification of the POINCARE

group as a Lie transformation group, see e.g. (11)). The complexified groups to which
our investigations are extended are:

Gr=Gip®...®G, —Gc=61c®...® G,

~

G, = Ko; K;=SL(3,0)

P, =A x Try (4) > P, = A, x Trg (4) (I1.13)

Q P, =SL(2, C) x Try (4) - {SL(2, C) ® SL(2, )} x Trs (4) = oAg x Trg (4)

A denotes the universal covering group of the group of complex Lorentz trans-
formations A; € A, which preserve the scalar product

v

(x,9) =x"g,v x,yeCy: (Acx)g,, (Acy) =g,y

~

A, =SL(2, C) ® SL(2, C)/Z,

Trc (4) is the group of complex translations in C,. X denotes the semi-direct product.
In order to ascertain the analytical structure of the action of 7 on M ; we make the
following assumptlon

A 5: JalLiegroup Q & Which contains P z @asa Lie subgroup and which acts transitively
on Mg. The analytic structure induced on My by the identification mapping

Mg QR /H where H (Q z) is the isotropy group of an arbitrary point x, € M5
with respect to Q r» is compatible with the analytic structure of My as the Lie
algebra of éR.

In other words, if we represent the coordinate transformation induced by 7, g€ é R
using locally normal coordinates ¢,, ..., g, for the elements of @R, by the functions

To0 Xy = %, = P {xf:)i Qir v s Qo)

@}y are analytic functions of all its arguments for x and ¢ in a complex neighbourhood
of the origins in the respective spaces.
A 5 could probably be replaced by a weaker assumption.

It permits to consider the action of 7, on M, which is the restriction to f’c of the
action of Q¢ as an analytic Lie transformation group on M. A 4 can now be extended



Vol. 41, 1968 Internal Manifolds 1311

to the complexified abelian group F; generated by I'3, i I3, I'8, ¢ I'8, and 7. acting
on M.

T

M,— > M,
fe v fe Vel T etc. (I1.14)
Mg —> M,

C
Figure 2

We consider the consequences of I1.14 in the root spaces of the Cartan subalgebra of
SL(3,(); ® ... ® SL(3, C), generated by {I(y, (s}, #=1,...,n as a basis over
the complex numbers Let the vectors € I';belonging to the roots (1. 0 (112, ]/3/2
—1/2,13/2), (—1,0), (— 1/2, — }/3/2), U2~mﬂtmdeEW)E®JMM
E_l(k), E_,(k), Eﬁs(k), k =1, ..., n respectively. We look at the following subspaces
of M C‘E
Mg={zeM;|2=2E() ®2E(>2) @ @z, E,(n)}

l=4+1,4+4,4+46; zeC.

I1.14 implies 7o ML C M%. 7. induces on M analytic coordinate transformations:

T.etc: (23, 00, 28) = (277, cen, 207)

== (Pf (2'1, cees R, ﬁlt Rl plﬂ) T = (Pl: ter plO) * (1115)

Let f4 be exp[+ 2iAT%)], A=1, + 42y and I = 4. f; induces on M¢ the mapping
exp (21 ) 29 = exp[2 ¢ Ad I'®] 2¥) = expA 2. I1.14 implies

e,

2

2¢A1%
2, 2 icp—:——» exp A (#%, ..., 2%
| Vv Ta

! 11.16
Tﬂl wy [6XPA 2% 8] wve « s ( )

exp2i AT

991(2’(4), n): s @p /> expl (991[2 75] T (pn) 2
Figure 3
Let z = z® and p = expl. I1.16 is equivalent to

@i(p 2, 7) = p @iz @) - (I1.17)

We have been careless in defining the topology on M and 7 as can be seen from
I1.17, which implies for z; # 0

ZZkaZﬂ —212 XkZ” = 2 y'(2, 7)
rp(yz,az)=w(z,n), 1=1,2,...,n. (I1.18)

(Pi(z» 7'5)

z, 9 is interpreted to induce locally an analytic transformation of Pr (zy, ..., 2,)
onto ifself. Pr (z, ..., 2,) = Pr (n) denotes the complex projective space of # complex
variables z;, ..., 2z, = pu 2, ..., u z,, peC.

A 6: 7 acts locally transitively on the spaces Pr (n, ML), I = 4+ 1, 4+ 4, 4 6.
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Pr (n, M{) denoting the projective space Pr(n) associated with the # dimensional
complex vector space M.

As a consequence of A5 and A 6 the spaces Pr(n, ML) can be locally mapped
on the spaces

~

Ve=F,/Hy(z,1) Helzg, 1) CLp (I1.19)

H~C(ZO, I) denotes the isotropy group of a point z, € ML, contained in I;C. We use
normal coordinates for the elements I7¢ P,:

(1y e bro) €Ll =1, @ Ly
Jpt (Brseee s Pr0) = (G h1s oo s T P10) -

The operation of complex conjugation * extends to an involutory automorphism of P

onto itself:
¥ (D1, -er s Pro) —> (?f:?;‘: :Ib::ko) .

A 7: Hg(z,y, 1) is stable under the * operation, / = + 1, + 4, 4+ 6.
A 7 implies that Hy(z,, £), the coordinates of which are real with respect to a basis
in I, the Lie algebra of I;R, is a Lie subgroup of ISR. Therefore A 5, 6, 7 imply the

existence of ~ )
Ve = PylHp(z,]) dimVi=n—1. (I1.20)

To determine # by a minimality requirement use is made of a further assumption.
A 8: The action of 7xz(A4) of the homogeneous Lorentz transformations on My

commutes as coordinate transformation group with the action of S.
Let my, mg denote the following linear subspaces of M :

my={zlz=21 @2 ® @I}, t=338

m, can be considered as m, vector space over C or as mf, vector space over R. Since

the failure of 7 and Sy to commute comes about through the representation of
translations on the spaces m/® which can as a consequence of A 8 be identified with

MY, we conclude that the representation of /L on M% and therefore also on V% must

be extendable to a representation of P, which does not represent trivially the trans-
lation group. This does not mean however, that the actual representation on a given
MY% or V% represents in a nontrivial way the translation group.

3. Determination of the Dimension of the Spaces mR, M%;t=3,8,1=+1,+4, -6
(1) » =1, 2 is excluded.
Proof: n = 1. The dimensions of M% and mf being all 1, Py is trivially represented

in M ;. Therefore 7 commutes with S, which is in disagreement with our assumptions.
n = 2. dim V} = 1. This implies that the homogeneous Lorentz transformations

are represented trivially in M ;. Looking at the representation of Prin mE the above
implies the existence of a Lie subgroup of Py of dimension >> 8, in which the trans-
lation group is not entirely contained. Since there is no such subgroup #» = 2 can be

excluded q.e.d.
(2) » = 3 can be excluded.
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Pr(lof: dim V} = 2. From this we conclude, that the translations are trivially
represented in MY

- In mf the transformation group representing 13R which does not represent all
translations trivially is uniquely determined up to a coordinate transformation (see
appendix): Let 4 be a light like vector (A2 = 0), o a scalar. Consider the real projective
space Pr (3):

(A,0) 2 (ah,ao) a€eR;.
The dimension of Pr (3) is three. The action of Tz on Pr (3) is given by
@A): (ho)—>(Ad o+ (a,A0). (@2
IT.21 can be represented on the light cone by the following substitution:

A . A AL _ Ak 3
00 b= @A) Lo e =gy B=0. (I1.22)

A5, 6,7 limit My to the following form for » = 3:
={tfz= IF @Al @A), e Ry

The actions of A and S are given by

(2)* + () + ()* = Izklz
Aeds 24— A+ A |z, T,eS: 2 —adx)id (&2 2) =2 (I1.23)

A 8 implies |ad(x)} ;| = ad (%)} |#|; ¥ %, ¥ %,,. This is clearly impossible q.e.d.
(3) The case n = 4.
We are led to consider T on mF with dimension 4. The isotropy group H(x,, ¢) of a

point 4§ € m¥ has the dimension 6. Let L H denote the Lie algebra of H. We choose
the following basis in Il: Ty, ..., T; generate the translations in the 0,...,3
direction respectively.

0 N, N, N,

— N 0 | A are the generators of
’ 1 3 2 > e 8
M* = infinitesimal Lorentz
— Ny, — L, 0 L, transformations.

— Ny Ly,—L, O
The generators in L H have the following components in //g:
WeLH hi=Eds L 4 ydsN 4 p0tT,
= (8O, 4@ p@) §=1,...,6.

Anoth r basis for the Lie algebra L of A is sometimes used byos=DLiss Duse—
Ny 3.[(&, n) is abbreviated by c.

The homogeneous part of His a Lie subgroup of A. The following two cases have
to be distinguished:

(o) ti i=1,..., 6 are linearly independent.
( ﬁ) 7 =1,..., 6 are linearly dependent.

83
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() : The general element of H is of the form ge H: g = (a(A), A), A arbitrary. As a
consequence of the group properties of H it follows

a(Ay Ay) = Ay a(Ay) + a(Ay) . (II.24)
Further information about H will be gained considering the representatlon of Py by
5 X 5 matrices
A# | a®
: (a, 4 - I1.25
pi (e, A) — ( P ) (I1.25)
ITy is mapped by u on the matrices
A | p*
i 1L — . I1.25a
w: (G, p) — ( 5 1o ( )
The commutation law in [/ is given by
[, 2), (n, 9)] = (L, nl, A(C) ¢ — 4(n) §) - (IL.26)
The elements of LH are of the form % = ({, #()), { € L, arbitrary. II.24 implies
A(L) p(n) — A(n) p(C) = (IS, 7)) (I1.27)

A and $ are linear functions of their arguments (e.g. A* =A% &, a=1,...,6).
Proposition: Any p(&) satisfying I1.27 is of the form

g independant of {. pl) =4C) g, L2
Proof: (i) I1.28 implies I1.27. If $({) = A({) ¢ then
ME) p(n) — Am) p(8) = [A(D), A(n)] ¢ = A[E, 7)) ¢ = p([&, 7]) -

(ii) I1.27 implies I1.28. Let us denote by « the basis elements M#? of L: & = &,
o« ,u=1,...,6,and let 4, = A(a), p, = p(«). Then I1.27 takes the form

Z“Pﬂ—lﬁfba=0§ﬁgﬁy; Za'Aﬂ /’Lﬂl *Caﬂl‘y (II.27a)

¢k - structure constants of the Lorentz group:
(Ada) B=[a, Bl =chpy = (Ad )iy (Ada)s=cly.

Since the connected part of A is semisimple the Killing form is non-singular. For
semisimple groups ¢, g, = gy, Chp, up = — S p(Ad o, Ad f) is totally antisymmetric
with respect to the indices o, §, y. From II.27a it follows

8P Aubp— Ao hg Do) =8 CLpho Dy -

Since the matrices 1, constitute an irreducible representation of L, the Casimir
operator g*° 4, 4, is a multiple of the unit matrix. Therefore

dpﬂ - gaalalﬁ’ pcx = Cﬁy A 1?7

dpp =45 (€7 Ay p) + &7 Cip Ay Pa
+ ng Ao py = /1,3 15 G1=28 A0, I al= gaﬁza Zﬁ . (I1.29)
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It remains to be shown that d + 0. This can be seen directly since
g P A dpoc 23+ A3+ 25— (A3 4+ 25 + 2 = 31
which implies 4 + 0 and finally
1 o c
bp=2p0; 9= ;8 Aty q.e.d (I1.30)

Using the representation I1.25 and exponentiating the infinitesimal matrices we have

(0 =40) ¢ ! 0|
(L exp (4 (exp A(Q) ) q
exp ( 5 ‘ ) ( 5 I - ) (I1.31)

From II.31 we deduce the form of a (A):
a(A)=Aqg—q. (I1.32)

From I1.32 one easily verifies I1.24. We conclude: to the isotropy group I—LD of a point
%o € my* is associated a four vector ¢(x,) such that

~

Hx“,q(xo) = {aq(A)t A} '

Since no pure translation is in f}xo and since dim m = 4, the translations act, at least
locally, transitively on mE. Let us identify a point x € m, with a if T(a, 1) sends x,
into x. The isotropy group of x will be

H={@1)(Ag—qA) (~a)}={AGg—a —@g—a A} (L33

Performing a translation T (a = ¢, 1) and calling z, the point T (g, 1) %, the isotropy
group of z, becomes H, = {0, A} i.e. the homogeneous Lorentz group. Identifying mf
with Py/H, we have

m,~ Ry xeRy: (@, A):x—>Ax+17,0 (I1.34)

7; scale factor.

The above result can be stated equivalently: a six-dimensional Lie subgroup of Py
which does not contain any pure translation is equivalent to the homogeneous
Lorentz group.

The scale factors 7, can not be chosen arbitrarily because the relative scale of the
spaces m, is given by the requirement that x, € mf} can be incorporated into the direct
sum of four Lie algebras isomorphic to the Lie algebra of SU 3, in which the structure
constants fix the scale. The above reasoning holds only for the four-dimensional
subspace of m3 @ mg in which the translations are actually represented (7 & 0). This
will turn out to be mg.

(B) The generators of the homogeneous part of LH &, ¢=1,...,6 are linearly
dependent.

Let (&, %) be a basis in LH. 3 4, such that A, & = 0. Since (&, p¥) are taken
linearly independent

2 Api=1p* % 0.
%
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We conclude that in H there is at least one pure translation (p*, 1). We call H » the

group of homogeneous Lorentz transformation /A such that (a, A) € H for some a.
The pure translations in L H span a linear vector space denoted by Ey C R,. Let

(¢, A) € H, p € Ey. Then
(@, 4) ,1) (a, )t = (A p,1)eH

This implies that E is invariant under H »- We now add another assumption to the

previous ones which extends A 6 in a natural way to the spaces m¥X.

A 9: 75 acts transitively on the four dimensional subspace m of #mg @ mg on which the
translation group is nontrivially represented.
A 9 implies E(x,) which depends on x, € m with respect to which the isotropy group

H (x,) is considered, is a proper subspace of R, for all x, € .

Proof: Assume that at some point y € m Ey(y) = R,. This means that 77 (4) C I—:T
As a consequence of A 9 we can locally 1dent1fy a point x of m with (0, A) modulo H
if T(0, A) sends y into x. But H (0, A) H,(0, A7%). Hence (0, A) T7(4) (0, A7) =

Tr4), Tr(4) C Hx for all x in a neighbourhood of y. This contradicts our assumptions
on the breaking of symmetry through the representation of at least a part of the
translation group on .

Let (a,, A) and (a,, A) be in I;T . Then (a;, A) (— At ay, A7) = (ay —ay, 1) € H, .
This implies a; — ay, € Ey. Therefore H is a semi-direct product of a group con51st1ng
of elements (a(A)/Ey, A) withAe H,and (E;,1). Hence dimH = dlmEH+ dlmHh = 6.
From the above propositions it follows that dim E, <3, dim H, < 4. The possible
choices of dimensions are: dim E, = 3, dim I;Th =3 and dim E, = 2, dim }EI,1 =4,
The second combination can immediately be discarded, because the only four
dimensional Lie subgroup of A, G3(1) (up to equivalence) does not leave invariant
any two dimensional subspace of Ry. G¥(1) is determined by a light like vector 4:

Gi(,4) ={A|AA=c44, c, arbitrary}.

We are led to consider the three dimensional Lie subgroups of A and to determine

the three dimensional subspaces which are left invariant by these groups.

The analysis is conducted through the use of the covering group of P Q P called
the quantum mechanical POINCARE group in (12), with elements (a, A), A € SL(2, C),
and the composition law

(ag, Ay) (ay, A7) = (ag + A(Ay) a1, 45 4,) .

A(A) is the Lorentz transformation associated with A. There are three classes of
three dimensional Lie subgroups of SL(2, C) and A (see appendix):
(1) GF(4): {A | A p = p, p? = 1} p, time like vector;
(2) G5(3): {A | A = u, u* = — 1} u, space like vector;
(3) G5 (2, + 7), G4(2,9), G5(2, 7, — 1), G4(2,0), G5 (2,0, — 1), groups associated with
a light vector A.

The third class is more differentiated than the classes (1) and (2) and will be
considered last.
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(1) G5 (4) is the little group of a time like vector p and is equivalent to the rotation
group in three dimensional space.

Ey is determined by p: Ey = {& | p & = 0}. On m the following coordinates can be
introduced m: (p, o), > =1, o scalar

(a, A): (p,0)—= (AP, 0+ (a,APp). (I1.35)

I1.35 can be compared to II.21. (p, o) can be mapped on V, + V_ (V, + V_: the
interior of the future and past light cones including the points at infinity).

A
&1 = %} (@, A): 01— 1—+(a’—9/11'91—)“ (I1.36)

2
(2) G¥(3) is the little group of a space like vector u. It is equivalent to the three
dimensional Lorentz group. E is determined by u: EH = {£ | u & = 0}. The following
coordinates can be chosen on

m: (u,0), W»=—1,0 scalar (a,4): (u,0)— (Au, 0+ (a, Ap) (11.37)
(4, 0) can be mapped on the complement of V. + V_, C (V, + V_), the light cone
excluded, points at infinity included

B : Lo
=55 @A) o>

If we take the union of V.4 V_, C (V_+ V_), LC (LC: light cone), with the repre-
sentations given by I1.36, 38, 22 respectively, we obtain a space m* on which 75 does

(I1.38)

not act transitively, but which will prove to bear an important representation of P R

Ao
TR (11.39)

(3) a) G*(2, + n) is the little group of a light like vector 2. Ej is determined by 4:
Ey = {&] A &= 0}. The following coordinates can be chosen

m: (4 o); (@A) :(Ao)— (A4 o+ (aAR). (I1.40)

The mapping (4, ) > A/o is not 1 to 1 (compare with I1.21, 22).
b) We will now consider a set of three dimensional Lie subgroups which if they are

simultaneously Lie subgroups of A and S, are denoted by a symbol *. The groups
G3(2,y) depend on a real parameter y, — 27 <y < 2 and on a light like vector A.
The group considered in (a) will turn out to be a special case of (b) when y = + =,
which has to be distinguished from the rest of the groups G4(2, y). (For a detailed
analysis of the Lorentz group see e.g. (12).)

The three dimensional groups associated with a light like vector 4 considered in the
following as subgroups of SL(2, C) are all subgroups of GF(1) C SL(2, C) associated
with the same vector 4. Let (1) denote the 2 X 2 matrix ¥ ¢,

oEm*, (a,A): o—

1
{0‘0 == (0 (1)), o;: Pauli matrices, { =1, 2, 3}

G¥(1, A) is given by {4 | A(4) A+ = c4(4)}. A+ denotes the hermitian conjugate matrix
to A. If a coordinate system is chosen such that A has coordinates (1/2, 0, 0, 1/2) then

= (o0)
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and G*(1, 4) is given by the triangular matrices

B = (g f_l) with B(l) B+ = |c|* (3)

The composition law within GF(1) is given by

¢y a4y tgda )\ _J[4bls & as + a, Cgl
0 ¢!/ \0 & 0 feg 69 2]

The following sets of matrices depending on the parameter y constltute the three
dirhensional Lie subgroups of G¥(1):

b veal exp [b eVl ol a
a complex Gs(2,7,4) = {B I B == ( 0 exp [— b giw’Z:l } (IT.41)

A distinction has to be made between the groups containing the matrix — 1€ SL(2, C),
and those which do not. Since the translation a accompanying B € SL(2, C) depends

only on A(B) = A(— B), I?[xo as a subgroup of Q P, contains the element (a = 0, — 1)
if and only if (— 1) is an element of H,.

In the representations considered so far (I1.22, 34, 36, 38, 39, 40), I;Tx“ contains in
each case the element (a = 0, — 1). Therefore these representations are one-valued

representations of P %
For y = 4 7, G4(2, 9, ) does not contain the element (— 1), the corresponding

representation 7, of f’R is therefore two-valued.

f}xa(y) is characterized by a vector { € C, ({ = ({;, ;). £ can be mapped on the
future light cone

E=AE): Q) o)=Ltk (I1.42)
The group G4(2, y, {) is given by
Gs3(2,7,0) ={B| B =exp[be??]L}. b real arbitrary (11.43)

On the following coordinates a representation of QISR is realized. o: scalar

€ 0); (@ d): (L 0)— (AL 0+ (a A(4) () - (IL.44)

A(A4) is the Lorentz transformation associated with 4 € SL(2, C). Identifying ({, o)
with {exp b e "2, 6 (b, 6)} where o¥*(b, 0) is a function to be determined, by an
identification mapping #(b, y) we have

(@, A4)
(¢, o) » AL, 0+ (a, A(4) A(C))

(b, )
(b, ) l
{BXP [b ez’?ﬂ] AL, 0-:‘ (b’_ o+ (d,A(A) A(C)} (1145)
e.\'p [b 61‘7/2] C’ O";k(b, O') — eXP [b g'i?/ZJ A C, O';k(b, a)
Ay (a, A(A) A {exp [b €% £}).
Figure 4
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Equating the two expressions on the lower right of the above commutative
diagram one obtains

¥ (b, o + [a, A(A) AQ)]) = 6 (b, o) + exp [2 b cos y[2] (a, A(A) A(Z)) . (IL.46)

If we demand ¢ (b, 0 = 0) = 0, I1.46 reduces to
oX(b, q) = exp [2bcosp/2] ¢; ¢ = (8, A(4) A(Q)) . (I.47)

Since ¢ in I1.47 is arbitrary o¥(b, ¢) is thereby determined. The mapping (b, y)
identifies the following coordinates

m(y): (&, 0) = (exp[be?] ¢, exp[2bcos /2] o) (11.48)

b real arbitrary.

(@, 4): (£, 06),— (AL, 0+ (a, A(4) A(0)), -

i(B, )

The index y reminds one, that the identification mapping #(, y) depends on y as a
parameter.

The groups G¥(2, v, — 1) are obtained from G4(2, y) by adjoining the matrix — 1,
they are not Lie subgroups of SL(2, C) but can be mapped by 4: (4, — 4) > A(4) =
A(— A) on corresponding Lie subgroups of A.

Let us resume the four dimensional spaces m and the corresponding representations
of Py or Q1~3 R

(o) m> Ry, xe€R,, (a,A): x—>Ax+7Ta T scalefactor
B mx(V,+VIUC(V,+V)ULC xem, (a A): x+ﬂ«%,"/1—ﬂ_
) meV.+V.,zeV,+ V., (a,A): x_>ﬁ}%’iﬁ_x)_
0 mCWV,+V), xeCV,+V)  (aA): x_>_1_+_£57)
(ey) m={{ o)y = (explb ¢7/%] ¢, exp [2 b cos /2] 6)}
(@, 4): (L, 0) = (A, 0+ t(a, A(4) AL)) . (I1.49)

Proposition: Only the manifolds («) and () satisfy A 8, i.e. the commutability of
the actions of 7(A) and S.

Sketch of a proof: We proove that certain collections of charts on the manifolds
(%), (9), (¢ y) do not satisfy A 8.

Ph@): M={z; i=1,...,84=0..3} () £)2>0 (8): () <0.

1

The above conditions cannot be maintained through the action of S.

() M = {(C, Gk)i(b; o [b; €7%] £, exp [2 by cos p/2] 6, -

k?
by real arbitrary £ =1, ..., 8.
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The mapping #(by,y) ® ... ® i(bg, y) = i(b, y) does not commute with S: ye S

g
(Ck’ Gk) ¥ gke Cke ’ gke Ge

. /
(b, ») /| )

4
exp (b, 6@'?1’2] Cy» €Xp [2 by, cos y/2] 05, —> g, exp [b, 3iV121 Ga 1
gke exp [2 be cos 7’/2] Ge .
Figure 5

The above reasoning does not provide a complete proof of the above stated
proposition. The possibility that other than the above charts are better suited to
satisfy A 8 1s not excluded. Nevertheless we will not pursue this question further but

rather concentrate on the cases () and (f). In both cases Ais represented by the same
transformations and the respective manifolds are identical:

M((«), () = {z;u; i=1,...,8,u=0,...,3} zeR,
():  (a,A): {2} — {42z + 7, a}
geK: {5} > (g 2.}
B @A > ()
geK: {z} > {g, 2} - (I1.50)

It follows from II.50 that in both cases A 8 is satisfied.

The goal to determine the internal manifold M is hereby reached under the assump-
tions A1...8 and the auxiliary assumption A 9, which in case (f) does not hold.
Contrasting with the assumptions A 1-3, A 4-8 should be regarded as the conse-
quences of general principles which underlie these investigations.

We now change the viewpoint that the action of S and 7 constitute primary
notions, and reconsider the internal manifold M in the light of a boundary value
problem on the space (¥, 2), z € M. The solutions of this problem will admit appropriate

substitutions which generate the representations of K and Py.

ITI. Partial Differential Equation, Boundary Conditions, Breaking of Symmetry
as a Perturbation

1. Mesons

Let y(x, z), 2€ M be a scalar or pseudoscalar wave function. The discussion of a
wave function of this type bears a close ressemblance to a theory of nonlocal fields as
described by Yukawa [13]. It has been shown by F1erz [14] that the nonlocal field
discussed in [13] can be decomposed into irreducible fields, transforming under the
POINCARE group as free fields of a common mass g and spin s (s =0, 1, ...), which obey
the well known local commutation relations of free fields. Wave functions of the above
type were also discussed by WIGNER [15] displaying the unusual representations of the
PoINCARE group in the case of mass 0. In [13] and [15] the internal manifold was given
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by one four vector z restricted by the conditions p z = 0, $2 = 0 ($: energy-momentum
four vector, $2 = 0).
The following operators are available to construct a differential equation

Ib# - dx,u’ w':;k —1 €4von ° 2001 4 0;”" Dik — i § OI;M ’ D'k — dﬁu Pl V(z”/f) .
V arbitrary function of z#/i alone.

Asin [13] and [15] an equation for g only has a particle interpretation, if the following
subsidiary conditions are satisfied

0, p=0; §=1,...,8. (I11.1)

Therefore only such operators are admitted which commute with (2#/ 0, il |
=1, ..., 8, or when commuted with (z#/7 0 «u) give rise to an operator which vamshes
if apphed to v as a consequence of ITI.1. We will only use the following combinations
of the above operators

—O.=2"=t w _Zw , 0= =w, D,"—ZDW}
= Fia D" fie DY ey, 2 =2 i (ITL.2)
fijx structure constants of SU 3.

A partial differential equation of the following type will be considered
FQVE+tVE+VE+VEC+y 0
+ DR
Pl ()xﬂ p=0

p=0 (I11.3)

Og is an operator which transforms like the eighth component of a member of an SU 3
octet, built from the operators in III.2

- . ' . -k
(e.g. dajp @i} w*, fo;, wif w¥, dy;, 2, 2% U(22), fy,, D', ...)

dijx are the totally symmetric Clebsch-Gordan coefficients generating the mapping
(8 ® 8), > 8. (8: octet representation of SU 3, s denotes the symmetrical product
space.)

y reflects the strength of the breaking and should not be confused with the y
labeling the groups G;4(2, ¢), which do not enter the discussion of ITI.3.

Remarks: (i) the symmetry breaking operators associated with w%/? violate the

postulate that the homogeneous Lorentz transformations commute with S.

(1) the symmetry breaking will be treated in the following as a perturbation.
Hence mass formulas have to be looked at as first approximations and not as in other
approaches as the exact result of algebraic identities [16].

(iii) D'* = D'7* for § + k is a selfadjoint differential operator. For j = & special
care has to be taken because of the subsidiary conditions ITI.1.

We perform the following Fourier transformation on :

W, ) = N -fexp (— i p 2) Bp, 2) d4;
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N : normalization constant. Equation II.3 becomes

(FOV* +EVELV* L VEC + 90y
0V, 2 3 4 8 ]¢ —0 (1114)
+ (D" V§)* ]
(#4)$=0.
Let AP(p) be defined by
“Tl [ Ve s
2] P
-T/;—z“epk O em%k—i_l/_;é'g“e?’k 2> 0,pe>0
pog = A=) P>0p<0 (L3
/1] _ P,
V-# V= "

p 1P
V_l;z €pr O — €5;€pp + ‘V' _;{%i Cri p2 <0

AP(p) is not defined on the light cone, 2 = 0. Let A(p) be defined by
A(p) = R(e,) A”(p); R-(e,) = R,(p,,) R,(9,,) R(—@,,) (I11.6)

R(e,) is the rotation through the axis perpendicular to e, and e, (e, along the positive
z-axis) which turns e, into e,. For 2 > 0, A-1(p) is the generalized boost operator
used in the construction of helicity amplitudes [17]. For p% &= 0 A(p) has the following
properties

P2 >0, po > 0: A(p) p= (/42 0,0,0)
p*> 0,9 < 0: Alp) p= (— /2% 0,0,0)
P2 <0 Alp)p=(0,0,0)— 2. (I11.7)

Consider the coordinate transformation regular everywhere except on the light cone

(p, 2) — (p, 2'" = A(p) &) (ILL.8)

The case p2 = 0 will not be discussed here. Even if the unusual representations for
zero rest mass or massless particles with definite spin constitute solutions of III.3
they are incorporated without difficulty, the problem in this connection is to exclude
solutions for p? < 0, which if they would appear shatter our hopes to describe a mass
spectrum of physical states.

Using the coordinate (p, z'¥) I11.4 becomes

Flo()] VE@E?D) + V') + Vi)
+ VEE?) C(2) + (D'(2) VE(2))2 + 9 Og(7)
(2% Ap) p) ¢ =0.

$=0 (IT1.9)
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1.1. The Case p2 =1t > 0

The subsidiary conditions are zj¢ = 0. We take the following form for ¢:
¢ = 11 6(z)f) p(p, ¥7). The 6 functions imply a redefinition of the operators
k

wk(p, 21,1 0%), D', i 0%, ...
whp, 2,1 0%) = A7 p) w] (A@p) p, 27,4 0F)
wk(A(p) p, 27, % 0) = e(po) ¢ (0, "

+1x>0 ) . i
&(x) = , =T A\ p'"
|- 1g<0 '
D% (1,105 =D (2,5 0F) =1 V' F 27 (111.10)

In order to display the self adjoint character of the operators in question,
especially of D" V¥, let us consider a scalar product for the wave functions ¢, @,, £
being fixed

iy = [ Prr o PG, 71 25) ol 17 (I11.11)
The adjoint of D'** is

(D'*)+ = P* &)+ = D" =D'** _ {31 (I11.12)
and
D' VE+r=VED=D'V¥=D'VEF¥—il[r(0,V5)+24VF¥].

Demanding (D' V¥)* = D' V¥ one obtains
r[0,VEN] +24VE=0;, VF=A4r2.
We will put the normalization constant 4 = 1. II1.10 becomes
u=f—tLVE+tVy+VF+ViCHy O
e [f 02 1 0 3
Substituting #, = 7% u we have
0\2 1 0
(G) =2+ 3) — ] =0
and replacing @ by #” y gives for b = 23/2
0 \2 e
(G- w)r0 mmmr s
c=6-24—1/4
Uy =i f(~ 1 L%) + ¢ Vo + Vot Vo C +y Oy
Viealr) =18 VT, 4(r), Vi) =78 VE(r) + —;2— , 0~8 =0 . (I11.14)

Before analyzing I11.14 further we look into the situation for £ < 0.
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1.2. The Case p =1t <0

The subsidiary conditions are z;* @ = 0. We choose the following form for ¢:
¢ = [T 9(z")g.
The ;mportant modification compared to 1.1 concerns the operators
w(p, 7, 0f) = A= (p) W (A(p) £, 77, 0,
w (A(p) p, 71, 0% = — t(Li¥, N3, — NiF, 0) (II1.15)
0 Ni* NP N}
— NP* 0 LiF — Lif
_NPF—I* o Lif
— N} L LiF — IF 0

Mk — ol ozlk — iy ()?/k s

The operators Ly = ) L, Ny, =)’ Ni/, generate a three dimensional Lorentz
7 1

group .
o=1w?=(—1t)92 2= L2 — N*_ NZ, (I11.16)
Since the argument 2’2 = 2 ()2 of V¥(z'? in 1.1 is negative we are as yet free to

]
continue these functions for positive values of their argument in an arbitrary fashion.
For (2')? positive let V¥{(z')?} = oo, thereby excluding the possibility that the wave
function ¢ penetrates to these values of 2’7,

i l/—z;‘(z"")2

is again defined. The rest of the analysis can be taken over from 1.1 which leads to the
potential

Uy = F(— 15) V() + L Vo) + Vilr) + Va() C+ 7 Oy £ <0

V.(r) have the same form as in 111.14.
The following two equations arise in the cases { > 0 and ¢ < 0 respectively:

{(50;“)2~—[f(~—t52) M+t + Vs + V4C+y68]}qo=0 t<0. (II1.17)

We now neglect y O~8 which allows to separate variables in both cases

P =F0 L Y. (. 0g),  p-=Elv Y. (35, vg)

[(I+1), v+ 1), ¢% denote the eigenvalues of the operators L2, »2, C respectively.
Since C is a positive operator, its eigenvalues are non-negative. C as defined in III.2
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is one of the two Casimir operators of SU 3, namely F? in the notation of DE SWART
[18]. Denoting by G2 the other Casimir operator, C can be generalized

C'=y@F2+BG. (IT1.18)

% is an arbitrary function. In order to maintain the positivity of C’ the simplest
choice for y is
x(x) o< x2% .
If the possibility of unequal masses for conjugate representations of SU 3 (e.g. the

10 and 10 representations) is to be included in the equations corresponding to II1.17
for baryons, § must be chosen different from 0.

Y, are generalized spherical functions depending on polar coordinates @, ...
s55 5 P B = dim (215 s 5 %) =24,

#,,; are coordinates on a compact manifold, #_; on a non-compact manifold. The
detailed structure of the functions Y is of no relevance to the further analysis and will
not be considered here.

The radial functions F satisfy the equations

() = (1= 110+ I Va+ ¢ Vit Vot Vigtl] o) =0

[(%)2 — {fl—tv @+ DIV, + t Vot Vot Vag?}] F() = 0. (IIL19)

The spectrum of L2is a discrete spectrum with non-negative eigenvalues/ (! + 1),/ =
0,1,2,.... The spectrum of 72 contains a continuous and a discrete part. This
spectrum has been studied on special manifolds in the context of general non-compact
rotation groups of arbitrary dimension by Raczka, Limic and NIEDERLE [19]. To
determine the spectrum of 2 let us consider the following coordinates in the space
(21, .-- , 2g) in analogy with a similar construction in the case of the rotation group.

Let (2, z5) be linearly independent and let E,, denote the plane spanned by the
two vectors. E,, contains
(a) space like and time like vectors and two linearly independent light like vectors,
(b) only space like vectors,

(c) space like vectors and one light like vector.

Excluding the singular case (c) is no loss of generality, since we excluded already the
situation where (z,, 2,) are linearly dependent. (a) Let us first exclude further the
situation where both z; and z, are light like, e.g. 22 = 0. Let us denote by z, a vector
in E,,, orthogonal to 2. If 22> 0, 22 < 0 and vice versa. We normalize z,, 2, to
hyperbolic length 1 and — 1 corresponding to 22 Z 0, 2’2 < 0.

Let z¥ denote the vector out of the pair (z;, 2,) with 22 > 0, and z¥ the other one.
We call ¢; the unit vector along z¥, ¢, the unit vector along z¥ with lengths + 1
respectively. From z,, 2, one can construct z; , = ¢ uvo 21 % - %y lies along e, defined by
€s, = €,,, €3¢ With e = — 1. We have thus constructed a hyperbolic vector triplet
e1(2y, 2a), €321, 2a), €5(2, 29), € uvo: totally antisymmetric tensor. It can be reached
from the standard vector triplet (e,, ¢,, ¢,) along the x, v, z axes respectively, through
a Lorentz transformation which is thereby uniquely determined

Ay € Ay, Aslg, 1, 9) = Rule) S, () Ruly)
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R,(p) denotes a rotation around the z-axis through the angle ¢, S, () a pure Lorentz
transformation in the y-direction through the hyperbolic angle y. The coordinates
(@, %, w) are, when interpreted with the proper caution, analogs of the Euler angles
defining the general position of a Cartesian vector triplet. (b) 27 <0, 23 <0, 7} =
€4y %1 73 - We can again find an orthogonal vector to z, %, 1in E,,, and orient a hyper-

bolic vector triplet (e, e, ¢5) along the vectors 2z, %,, 2;, which is mapped on the
coordinates (g, , ). The manifold described by the coordinates (g, ,9) can be

identified with the group manifold of A Locally the following coordinates can be
introduced on (2, ..., 2g):

()2, 20, &2, 220,25, 2,( D)), t = 3,4,..., 8) .

2/(2,1, 2,) denotes the hyperbolic triplet as defined above by (2, 25). 2,(2) denote the
coordmates of z, with respect to X(z,, 2,). Let us call I the set of invariant coordinates
23, 25, 2, %, 2,(X), t = 3,4, ..., 8. Locally a mapping u exists which maps (z, ... , z)
on the space (X, I). The action of Az on (z, ..., z) or (X, I) can be represented by the
following diagram

(B pne s ) = (o #y, wun 5l o Bg)
u l l 7 (IT1.20)
(&) — — (453, 1)
Ay
Figure 6

2 > /A3 X are the left translations induced by the mapping

An infinitesimal Lorentz transformation A(x;, oy, ag) =1 — 2 [0 Ny + 05 Ny + 013 L]
induces the following coordinate transformation on 2"

Op(@, 1, y) = ag — cothy (cosg oy + sing o)
Ox(p, %, 9) = — sing a; + cosp ay
1 ;
oplp, 1. v) = w (cosg oy + sing ay) . (I11.22)

The generators of /Ia are mapped on the following differential operators on 2"

L3—>‘f0

2 @

N, — i [— cothy cosg 0, — sing 0, + —— e 0 ]

1
Ny—> — [—— cothy sing 0, + cosg 0, + — sm(p 0 ] (IT1.23)
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A = L5 — N? — N2 is the Laplace-Beltrami operator on X the metric tensor given by

1 0 0
) Be=1
N o L _chy X»—>1,
g = sh? y’ sh? y p—>1,k=2
0 chy 1 w—1,k=3.

" sh? X gh?jz 7

The invariant volume element on /1~3 or the Haar measure is therefore given by
au =Ygl dsvdxdw= dp |shy| dy dy

4=

— 9, Vgl g’ 0, = 02 + cothy 0, 2 1 9% —2chy0,0,]. (II1.24)

Vi
The eigenvalues of A* = L — N2 — N2 on (2, ..., z,) are therefore reduced on (X, I)

to the eigenvalues of A on X because A* has the formA* =4 ® 1on (X' ® I). We are
led to consider the following eigenvalue equation on X"

A* (@, 1, w) = o) (@, X, ), o) =2 (¥+1). (I11.25)

The periodicity requirements in the compact variables g, 9 which are global require-
ments will be determined from the general analysis of the unitary irreducible repre-

sentations of the groups /I and S N (S 5. covering group of A, 5). We take over the results
of the complete analysis of the above groups by BARGMANX [20]. Following the ideas
of this work, ¢”(p, x, ¥) can be realized as a matrix element (uy, U (Alp, x,v]) u#,)
where U®(A[g, ¥, w]) is the unitary transformation which represents Alg, ¥, y].
u, o are elements of a suitably chosen Hilbert space H®. ¢” can be decomposed using
the basis of eigenstates of Ly, u,, in W with Ly u, = m u,,

O = (1, 6@, 7, 0) ) = e E D, (y) e (IT1.26)

It we demand that the functions g,,,. (/d v f (¥) 0;,,) are square integrable with
respect to the left and right invariant measure

dplp x y) = [shy | dy dp dy
the following is the complete list of unitary irreducible representations labelled by the
parameter »:
1) C: {m=0,4+1,4L2,...; v=—1/2+ i« «real arbitrary}
A0y = 0W) Qs — 00 < 0¥ ) =14
(2) CY*: {m=41/2, 4+ 3/2,...,v = — 1/2 + i a, a real arbitrary
—oo <o(v) < —1/4
BYDf: m=v+1Lv+2,..;v=01/2,1,3/2,...} or =0
4 D :{m=—@w+1),—®+2),...;v=0,1/2,1,3/2...} o) =0 (I11.28)
(1) C* gives rise to functions g,,.(1), m, m' integers with N, = N; 4+ 1 N,,
(Ve gl (1) =k Ofor@=10,1,2; s
(2) Ci? gives rise to functions g,,..(2), m, m’' half-integers, with (N1)* o, (2) + 0
e, dedys s s
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(3) D" gives rise to functions g;,,,.(3), with N_g}, ; ,,» = 0.
(4) D; gives rise to functions g, ,,/(4), with N, ¢* (, , 1), = 0.
Integer m, m" correspond to one-valued, half integer m, m' to two-valued repre-

sentations of /1“3. On our manifold (2, ..., zg) we can exclude the two-valued repre-
sentations. Collecting all possible values for » and ¢(») occurring in the four cases
above, we obtain

mv

A

|

| ®

!

l

|

|

LO-SO0-6> == O—C——O>

[0 h™1 " 3hpev 0 T 2 el

i

i

I

i

Figure 7
discrete values of », o(v) from one-valued representations of A; ;

— continuous values of v, o(»)
~ discrete values of », ¢(») from two-valued representations of /f:,.
. continuous values of , o(v)

We now return to II1.19. Let p/¢ be the eigenvalue of L2 for ¢ > 0 and of »2 for ¢ < 0
I(l+1)t 1=0,1,...,t>0
=—1247a, —o0 <a <+ 00 (I11.28)

é:
t<0.
v=R, =012 ..

We rewrite I11.19 in a different form, redefining the potentials V;

d = e i -~
{(5-)2—[(9+a)2V1+tV2+ Vot o Vi}F.=0

a>0 (I11.29)

The difference between ¢ > 0 and ¢ < 0 lies in the different ranges for g as given by
I11.28 and in the change of sign of the term ¢ V,. Let us assume V; = W2, W, > 0
for 0 << < oo and let w denote (p + @)% Then the following substitutions simplify
I11.29

a d 1
f Var = W), r=Wr), 5= Wi  E=v= g x

d 2 / 4 e
{(5,72) — o+t + 13 +9V4]}x=0

V ’ V. 1 a \2
Vi=g Vi=+ e (ge) (™. (IL30)

+
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In order to gain further insight let us consider a solvable example taking

’ j7 ’ b ) ’ c
Vo=—% Vo=—4+— T/:;"—‘p"-

v2 ¥

w,v,L,e>0, ry>r.

With this choice of potentials II1.30 describes the quantum mechanical Kepler
problem (the index 2 of #, has been dropped)

{(%)2_ [w— ut—v n b+66]}%=0_ (IT1.31)

' y2

For ¢ < v/u the Coulomb potential is repulsive so for ¢ < »/u the solutions correspond
to the continuous spectrum with positive energy. In III.31 the energy is given by
E = — w and is always negative. Therefore there are no solutions of ITI.31 for ¢ < »/u.
The Hamilton function for the above problem in two dimensional phase space is
given by .

H(p,7) = p* — uit—v 1 b+pc

¥ r2

The substitutions w = %2, 2= 2%7, A (A4 1) = b+ p ¢, y = e *2 2441 f,(2) lead to the
equation for f,(2):

2 (‘5;)2 [i(2) + (24 + 2 — 2) f3(2) — (/1 +1-— ”2‘;”) f,() =0. (IIL.32)

The regular solution of II1.32 is given by the confluent hypergeometric function

hA =Ct(A+1- 220, 24+2,2). (I11.33)

The condition establishing the normalizability of y reads

—m,=A+1-£"2 0 —0,1,2,... (ITL.34)

n, is the number of zeros of y(n,, 4, 2), f(— n,, 2 A + 2, 2) being a polynomial of degree
n, with only real zeros. II1.34 implies

(M tz—v)zz (é | a)2 [nr + 1/2 -+ (b ad 1/4 f é 6)1;2]2 )
> (IT1.35)

For ¢ > 1 and ¢ # 0 the right hand side of II1.35 behaves like ¢ ® and II1.35 can be
asymptotically for p = oo replaced by

(JM——”)2 ~ ¢ ® or (%t_)z ceBBE+1)3

2
0,1 —>00.
This implies
jo (B)EL 11
= (?) ¢ B (I+1)3°

84
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Therefore if ¢ + 0 / goes to zero for { - oo, which is not a reasonable spectrum.
Hence we demand ¢ = 0.

(:‘”2—1*)24 o+ a)?n,+14+d)?;, d+1/2=(b+ 1/4)12

ut>vw d>0
and substituting «(#n,) = #n, + 1 -+ d we obtain

fom @ + v/2 a(n,)

o a+ (]2 afny))
= Wz -1+ D= -

2 a(ny) t

t >y . (I11.36)

Remark: If we assume /() to be an analytic function of ¢ except for poles and cuts,
then III.36 is unsatisfactory, for / ({ = — 0) necessarily is divergent, which from
other considerations is impossible. Since however 111.36 defines /(¢) only for ¢ > v/u,
nothing can be said in this framework about the continuation of /() to other valuesof .

Discussion of I11.36

Let £y(n,) denote the value of ¢, for which / (/ + 1) [#,] =0, ,(n,) = v/u + 2 a(n,) alu;
to(n,) is always bigger than »/u and increases linearly with increasing »,./ (4 1) [#,]
approaches asymptotically for £ - oo the value u/2 a(#,).

The pole of /() at ¢ = 0 can be avoided, looking at another example:

c ’ C

’ b
p=—fagg WH=Vaggi+a BRLEFE V=gl

{(%)2_ [w (=) + %]}x —0. (II1.37)

The substitution z = f(f) » leads to

(&) = [ — =+ = lle0-

Figure 8
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Choosing f = (u t — »)'/* we obtain

d \2 o c b
{(E) - [W_,,)m sl = & ;]}7 =0. (IT1.38)
The ansatz w(f) = D? (u ¢ — »)?/* gives an equation independant of ¢:
d \2 c b
{(Eé') - [D2 — g T ?]}Z =0. (IT1.39)

If D,c, b > 0 are chosen appropriately, I11.39 has a bound solution. The spectrum
1s determined b ”
rmine y p=a= D (M f— 1’)1101; > ”/H (11140)

If 1/a = 2 N, N integer, II1.40 leads to
i+ 1) = (=)™ = . (IIL41)

The pole for Z (I + 1) at ¢ = 0 is avoided choosing D »*V = a. This restricts the values
of /(0) since

(0) +1/2)* =1/4 — —="—, 0)=—1/2 & [/—} —~

2ZNua
" ’

Remarks: (i) Because & in 111.37 is independent of / the solution F(r) Y, (, g, 2,/7)
will be irregular at » = 0 for [ > /*, [* (I* + 1) = b.

(ii) The fact that in the two examples considered one does not find a wide class of
mass spectra is related to the interpolation of /(¢) for noninteger /, which is real in both
cases.

The General Problem
Given a first function R(g, ) modulo a second function T (/ = (ot + 1/4)2 —1/2),
01> 0 such that T@=0 for 1=0,1,2, ...
Determine the class of equivalent potentials V' (#) together with constants 4, B, C, D
such that the regular, square integrable solution of the equation

(I11.42)

A+ Bo+Ct+D
/2 i

d \2 "
0={(&) -~ [+ @ +1ve) +

gives rise to a mass spectrum in the form of the relation
R(p,t) + T(p,t) = 0. (ITT.43)

IfA=B=C=0,D=4(A+1), R+ T is the Jost function f,(%, t)%), where % is
taken on the physical sheet, & =4 (¢ + a). f, depends on ¢ which plays the role of
coupling strength and is as a consequence of a general theorem by POINCARE [21] an
analytic function of ¢ for fixed % for a wide class of potentials and certainly if:

Imk>0 and /mkuj’kﬁ
0

4) The general analysis of the S-matrix in terms of appropriate solutions of the Schrédinger
equation is due to Jost [22].



1332 P. Minkowski H. P. A,

exists. In addition it is required that (4 ¢*> + B + c) [/] increases for / > oco at
least as fast as / (/ + 1) and that for ¢ < O the operator

d \2 Ao*+Bo+Ct+D
{(W)JFW(TH_ *+ B+ Cit+ }

»2

in Ly(R,;) has no eigenstates belonging to the discrete or continuous spectrum, for
negative energy.

2. Baryons

Let 'ff(x, z), z € M be a spinor wave function. The construction of a wave equation

for ¥ proceeds close to the path followed in the scalar or pseudoscalar case.
The following operators can be used

By)=1p.v"; w,vsv =ys(wy) =k. (I1L.44)

vs is defined as y5 = "7 with y2 = 1, 9T = y5 = y,. The equation for ¥ shall
have the form

[ A(@?) VI (@)?) + fa(w?) V f5()

k
1+Vs+ @) Vi+gF2 GV +y04
+ (D' V§)?

fl
o

(2 p) ¥ =0 (I11.45)

As in 1 the Fourier transform of ¥ is considered
P(x, ) =N f & exp (— i p %) P(p, ) .

2.1. The Case p* =1t > 0

Let A(p) be defined as in I11.5,6 and let S(A) be the spinor representation of the

1 —1 component of A such that S-}(A) p# S(A) = A#y". As in 1 the following
coordinate transformation is performed

(p, 2%) — (P, 2k = A(p) z*) . (IIL.8)

The transformation of III.45 to the rest frame is completed by the substitutions

Pi(p, 2%) = STHA(p)) P(p, 2¥)

Fw@?) Vi +gVe + Vs + 90, + (D'VE)2R=U
to give

{Uyo+elp)) [Vt + falw?) VE o)/t L)} ¥ =0 (I11.46)
(z,"j)0 Y, =0 provided that f3 is an odd function of its argument.

2 is the matrix

o, 0
; k=1,2.8.
Substituting 0 oy

le :H 6(z’k0) ((p)

Y4
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where ¢ and y are two component spinors, in a representation of the J™-matrices in
which y, is diagonal one obtains

{U+elpo) VTVt + (=t L) VE /(L X)) 9 =0
{(U—elpo) Vi Yt +(—t LY VELYELY)} g =0.  (II147)

If (¢, x.) is a solution of IT1.47 for p, > 0, then (¢_, ¥_) = (%, ¢,) is a solution for
po < 0. The corresponding equations to II1.47 for a free Dirac wave function are

(—m" +elpo) ) p=0  (—m* —elpy) ) x=0.
Thus )/t is determined from the first equation for $, > 0 and the solutions are of the
form (¢, x, = 0). It is to be noted, that the equations for ¢ and y are decoupled, all
the odd operators vanishing in the rest frame.
@ and y can be decomposed further, specifying the eigenvalues of (J2, [, =
angular momentum and parity

I+1)2+m yo 2
T 2i+1 Lm-=1/2 \ "y

P = o R, (r)
+ - W 1 £ .
l/ 21+1 Y?m+1/2 (‘,,’L) 1=141)2
I+1/2—m . z
] 21+1 Y -2 (Tk)
Pim = R? (r)

I+1/24+m 1 2y )
l/z—m— Yl e (%)) j=1-12.

Similarly the functions TZ(r) can be associated with y.
Since there are several vectors zk, k=1, ..., 8 available for the construction of
irreducible harmonic polynomials, the parity of Y? _is not necessarily (— 1) (e.g.

28 A\ z¥ has I=1 and @ = + 1). Let »4(j) = 4 (J + 1/2). Substituting the above
expressions for ¢ and y we obtain :

{(U+epo) V3t + fa (— 1 L2) VE o)/t (e — D)} RE =0
(U —elpe) V2Vt + fol— t LE) VE 1o (Vt_(xi ~ D))} T5=0
2 =1, (I, +1). (II1.48)

In II1.48 the (+) signs in the upper and lower equation are independent. The same
substitutions as in II1.13-15 lead to

] [fl(_tL2)V1+ V3'+“gV6+VO~S_(_j?)Z] RE_0
e(po) (Va Vi + fol— t L2) Vo fs[ Yt (2, — 1)]]
(A=t Vit Vet g Vot v Oy — (5]
elp) [Val/t + fol— t I%) Valy [Vt (v — 11| T3 =0 (I1149)

~

Vioae =7 Veer Ve=r®V + c7 0, = 7% 0,, c asin (II1.14)
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2.2. The Case p* =t < 0
Asin II1.15 w? = — ¢ 92

w(A(p) p, 7, 0)) = — ¢ (Ly, Ny, — N3, 0) .

The spinor representation of SL(2, C) being a non-unitary representation §3 is
represented in a non-unitary way. The following operators can be diagonalized
simultaneously

P (rs ) S (k) (e )
Ji=Li+ 55, A=Ii-Ni—N.

Special care will have to be taken when the continuous spectrum of A is con-
sidered, because the corresponding functions g,, .- (@, ¥, ¥) are not normalizable within
the scalar product given by

(01, 0) fdwfdwfdchx 01 02)

Jo=L;+ 223» "’1—N+ - %1, szNz‘!’%%

The generators of S~ are

The equation [, 9 = m y reduces g to the following form

o 'va—1/2,s+®97gn+
Cv—m‘Q:nH/z,s—@gpgn—
Ay Q;—1/2,z+®wgn+
a’ m'Q:n+1/2,t—® (7

The index ¢ represents all other quantum numbers, not fixed by the behaviour of y
under Lorentz transformations.
The equation §2 9277 = # (8 + 1) £¥7 can be brought to the form

(N EL—FN _) Bra — (m 3y — 1) 4

Yq

Ni=N;4+tN,, or=0,+ta, =8(F+1) —»r+1)—1/4. (II1.50)
The phases of g, can be defined such that
Ny =Chulizry Cha>0 C =0, =[a(@+1) —» @+ 1" (LIL5])

a(a+ 1) —v (v + 1) > 0 for both the discrete and continuous spectrum. ITI.50 takes
the form

(& — ) &, Om — 172, s+ Pr = — 1 Cv—m+1/2 a, Om — 12,1 Ve

(T + ) € 0 rn s~ P = — 0 O 12 Bty O = 1y, 0+ Vi
(t—m) &, Q:nA1/2,t* Yio=—1 C*,m+1/2 ¢ Q:n—ll2,s—qogn—
(T+m) d” O 1o, Vm-=— 0 C 12 o Oy 12,5+ P -
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Therefore we obtain s+ = ¢—, s~ = ¢+, ¢¢, . = ¢! . and substituting

Crom-118=C_pmyrp=[0m—1/2) (m+1/2) —v (v + D] = D}:
(v—m)c,, = (-9 D, d,
t+mc, =(—4D,d,
(r—M)d” = (=19 Dy,
t+md ,=(—1) D, (IT1.52)
II1.52 determines 7
2 —m?=— (D))= (v+ 1/2)? — m?
o=+ (v + 1/2)
fr=9v +1/2. (IT1.53)

The discrete spectrum of A: » =0, 1, ... gives rise to discrete eigenvalues of §%:
v = 1/2+, 3/2%, 5/2%, ... in analogy with the situation for ¢ > 0. The continuous values
of v: v = — 1/2 4 7 «, « real arbitrary, give rise to two bands of values for

B.=ta, f_=—1+4+7a.

Let us consider the operator &, = y,y; w , v" which commutes with (], vy, vs).
%, is a symmetric operator if the scalar product of two spinors ¥, Py(e, %, %) is given

by
Vo, V) = [d plg, x.v) (PS5, dulp, x.y) = dpdy x |shy|dy.

Multiplying ITI.50 by X' ¢, we obtain

= N122+ N221) 'Pﬁ,,iyqﬁ: (L + %23ﬁri23) y5wﬁzivq'

Since 1/ l/—‘t kBi=—vsLs+ Ny, X, — N, 2, the above equation is equivalent to
—}:t Ry gt = (12 — 12) 3y ys yi"7. (IT1.54)

In the case of discrete values of », IT1.54 is a proper equation. In the continuous case

7+ = 4+ 7« and the operator on the right hand side of ITI.54 is not symmetric. This

apparent contradiction is a consequence of the fact that the spinors ¥8+:%9, y =

— 1/2 + 7« are not normalizable within the scalar product as defined above. Thus

only wave packets of the form [ da ¢ W8+ (®):"7 are normalizable (x = Im . = Imw).
IT1.54 implies that ¢} has to be chosen such that

fdoc o o= WhL @ma _
v 4 m

k, can then be redefined on yf+ (%)% without changing the corresponding operator in
Hilbert space, to be

_ L IRT, _
L R yfeni — (12 —7a) Yayswz™, v=0,1,2, ...
o 12 Ysys9?s*?, v=—12+ia.  (IIL55)
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Let t* (v) be defined by
+ v+ 1/2), »=0,1,2,...

7 () — .
0, »=—124+7ia.
ITI.55 now reads
S ket = (12— 1¥) D VsthE"T. (IT1.56)

V-t
I11.45 has the form

{s170— o5 []/:T/; — (12 — Ti) V:1 fol— £ 9?) VAl ’szﬁ:F 12,9 _

»B8 v q
C+ m Qm—1/2,s+ (av—|-m

w8 v q
L (I11.57)
diﬁ Q:n —1/2,s~ ¢q_ m
% =v53="Yo¥® NP0 110+ P m
Substituting
Wi =)=t Vi— fl(112 = 75) | = 1 fo(— £9) V4
we obtain
da’ .
sT=st w gl =ul 9l il =" ¢,
+m
d’ ar
w @, = —uf ¢ - tm - ==, (I11.58)
+ m —m

The same substitutions as in I11.13-15 are used to reduce further II1.58 and I11.49

o ~ d \2
b= fh(—t L) Vi+ g Ve+Va+7 Os— ()

t>0 - B
w* = Vot + fol— t LY (£, — 12)] V3, 5, = £ (0 + 1/2)

~ A ~ d\2
iy =~ Vit g Vot Vaty Oy — (4)

<o ) 2
W= V=t — (=t (12— ) Y= A T (I11.59)
Substituting the operators #, #*, u,, " as defined in IT1.59 we obtain
5 R — _ 5% Riba
£>0,py >0 fﬁ"’ o
u :nl q u* THha
;‘1 q)&vmq = ”:‘T 9’1‘3—3’”3
t <01 v s
Uy @100 = — Ui

or dropping the indices (:"9), (5*9) and replacing (Ri:h9, Ti:h9) by (x,y), gt
— i @™, by x;, @50 + i gf2d, by vy |
t>0,p,>0 (@+u*)x=0; (w—u*)y=20
t <0 (g +iuf) %, =0; (u,—iul)y,=0. (I11.60)
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The potentials in III.59 have to be chosen such that the only equation in III.60

possessing non-trivial solutions is (@; — q;*) x = 0.
Example: We takey =0, fi(x) =22 — 2ax, V, =1, V,=0

A(A+1) V4:—£

vS

gVot Va=a? + 5 +

72
@zt{Lz t>0 2 <0 1<s<?2, w, v, a, A >0 A integer.

II1.60 becomes

w= (0 + a)?
{(%)t [0 — 22 “’1;1)]} f=0 m=1,234
m=1: g =plt, >0, py>0,
L=
m=2: gg=—ult, >0, py>0,
=y
m = 3: q3=1,',u,]/:7, t <0,
fs =%
m=4: q——ip)—t, t<0,
fa=1- (I11.61)

It follows immediately that the equation # = 2 has no non-trivial solutions and that
for m=1 }/t > »[u. To discuss IT1.61 further we substitute z = x 7, x = J/e:

(&) - [-75+ 250

Bl s Py, (111.62)

Since the boundary conditions for fin I111.62 do not depend on the parameter y we
know by POINCAREs theorem [21] that f,(z, 9) is an analytic function of y. Let us
consider II1.62 to be a special case of the equation

{(i)2+ 1245 L - Ag+0) ]}j ~0 (I11.63)

dz &2
for f =1, .
Following the general discussion of potential scattering and the construction of
the S-matrix from the Jost functions [22] let us introduce the special solutions of
I11.63 f, 1(z, &, y) with

~

lim 6:?‘”32 fﬁ.:l: (27 kr ?’) =1

Z—>00

and the Jost functions

~

far (kyy)=lim 2 f,- (2, k) (I11.64)

Z2—>00



1338 P. Minkowski H.P.A.
fax(2, &, ), f+(%, ) satisfy the identities
Bole, — k) =f,@hky) (= p)=f_(khy . (IIL65)

The regular solution of II1.63 defined by

Him Az, Ry) =1
has the representatior.
. 1 % a " %
Pz, k,y) = 21k Un- (B p) e (2 Ry ) — e (R ) - (2, By )] (I11.66)

The location of the bound solution of I11.63 is determined by
fu (R, p) = fi (— k%, %) =0 (I11.67)

for £ = 4 «. Since (— 7 @)* = ¢ « we conclude that if the pair («, 9) is a root of I11.67,
sois («, *). Equations of the type II1.63 with complex couplings y have been discussed
by NATAF and CorNILLE [23]. From their results it follows that if the potential
(in our case V(z) = — 1/2°) does not change sign, for a bound solution

y = P (IT1.68)

necessarily holds. IT1.68 implies that there are no non-trivial solutions of II1.61 for
m =3, 4. ‘

Let us now consider I11.67 for £ =4.y,, n =1, 2, ... denote the roots of f;, , (7, V)
such that f, (4, y,) = 0. Thereby the trajectories for w as a function of }/t are deter-

mined
~ ult—v ‘ =
=t g, Yt 0 <a< 14 (I11.69)

In order to avoid trajectories for which /(§) - 0 for { - oo it is necessary that o < 1/4.
The discussion of II1.69 is then the same as in the case of integer spin.

IV. Mass Formulas as Approximate Relations
1. Integer Spin
We consider the equation for ¢ as defined in ITI.11-14
P =g, 15, ¥; D Z1, -, Zg) (IV.1)

g labels the representation of SU 3, (i3, ¥) denote the values of the third component
of isotopic spin and hypercharge respectively.

(D VER+f [~ LU+ 1)) VE+1tVE+y Oy + VE+Clg) Vidg=0. (IV2)

The perturbation ¢ Og causes a splitting of masses within a multiplet. We develop
t=1(l,y,y) in powers ofy and determine ¢ in first approximation ¢~ £,(l, ¢) + v £,(/, ¢,%)
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keeping / fixed. The wave function ¢ = ¢(q, 5, v, ¥, $, ;) is determined by the usual
perturbation methods. ¢,(q, 73, v, p, ;) denotes the solution of IV.2 for y = 0, the
equation considered in the preceding section. IV.2 is of the general type

Q)4 +y B+ C)gly) =0 (IV.3)

C, A, B denote self adjoint operators. IV.3 is a generalized eigenvalue problem
(as considered also in (9)). The usual perturbation methods imply

— (@o(4. i3, ¥)[ — Og/®o(q, 15, ¥))
W b Y) = G TR D) Fimty1 4T D) Vil Sl

The scalar product (g, , @,) is defined as in III.11. For small values of / such that

LE+1) (@0 [F Vw0 | K | (g | V3| o) |

t,(/, g, y) is approximatively given by

1N~ (@0(d, i3, ¥) — Oglpo(q, 13, ¥)) IV.5
t1(‘], l: y) = {(PO/V;/(pO) ) ( z )

In this approximation #,(/, ¢, y) is independent of #,, which distinguishes the case
where ¢ is developed in powers of y from choosing other functions of £ for a perturbation
expansion.

2. Half-integer Spin

Let us go back to Equation II1.47 for ¢ and y. As follows from the discussion of
II1.61 ¥ = O for p, > 0.

0={(D'VER+f[—tLE+ 1)V +VE+gVEty O +)tViiolg i v.7) (IV.6)

In IV.6 the term f,(— ¢ L?) V¥ fa(l/t_L 2. ) has been neglected. The scalar product for
spinors ¢, @, is given by -

(%4w=fﬁ%md% @1 (g, 15, ¥, P, %) a(, 45, ¥, 3) (IV.7)

The term ]/?Vf: indicates to develop |/t_= m(q, L, v, v) in powers of y, m =~ my(q, [) +
y my(q, I, y). One readily obtains

(®o(g 23, y)/—rogltpo(q, 1y, ¥))

m(q, 1 y) = —
As in 1, for values of / such that

|2f’m0(q,l)l(l+1) (%[VTI‘PO)!<<|(%|VH¢O)|

m4(q, I, v) is given by

~ (9ol %5, 9)/(~ O8) o4, 75, ¥)) (IV.9)

my(q, 1, y) (@ol Vo)
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A reason for the above mass splittings within multiplets to be comparable to the mass

difference of distinct multiplets can be sought in the smallness of the denominators
in IV.5 and IV.9

(9o IV;‘ ‘ ®o), (@0 ’V;k I ®o) -

In ordinary perturbation calculations this term is replaced by (¢,, @o) = 1.

Unless more evidence is gained for the discussed manifold to come close to reality
the approximate formulas IV.4,5,8,9 can not be taken as indications that the Gell-
Mann-Okubo mass formula applies to the square of the mass in the case of mesons
and to the mass in the case of baryons.
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Appendix

A complete classification of the Lie subgroups of SL(2, C) and /fup to equivalence
will be given and some properties thereof established. Proofs will be omitted in order
not to lengthen unduly this outline.

A Lie subgroup of SL(2, C) will be denoted by G,(n#) (d: dimension of G,(n),
n: label of G,(n)). If the matrix — 1 € SL(2, C) is contained in G,(#) this property will
be indicated by G}¥(xn). If — 1 ¢ G (n) the adjunction of — 1 to G4(n) leads to an en-
larged group, denoted by G¥(n, — 1) which is no longer a Lie subgroup of SL(2, C).

GX(n) as well as G¥(n, — 1) can be identified by a two to one homomorphism % from

SL(2, C) onto A, with a Lie subgroup of A.
h: A, — A—>A(A) = A(— A) (1)
In the Lie algebra L of SL(2, C) or A the following basis is chosen

X;,1=1, 2,3 generators of SU 2, or generators of the rotation group,

Y,, =1, 2,3 generators of pure Lorentz transformations in the s-direction.

In the self-representation of SL(2, C) to (X, Y,) correspond
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respectively. The commutation relations are
[Xs’Xt] =8st7X [Xs’ Y;:I z‘gstr Yr [Y:s’ "Ytjz _sstrX E (2)

¥ r

An element { of L is given by its components
£ = (%4, V) =Z(xk Xy +9. Y.
%
There are two invariant bilinear, indefinite forms on L

(C182)1 = %, %, — Y1 Vs (Clr Co)o = (%132 + %, 3) (3)

L can also be realized as the complexification of the algebra generated by X, £ =
1, 2, 3 identifying Y, with ¢ X,. { then has three complex components

C=(z=21+19) ZZZka: (% X5 + ¥ Ya) -
%
The bilinear form in L is given by

(i Tols Ezmzzk (&, Gy = Re {(C1, &)s)s (Gin Go)a=Im {(C1, )5} (4)

In the following 4 € SL(2, C), A € A. The Lie subgroups of SL(2, C) and A can be
arranged as follows:

: l a b
L GI (1) =14 = @, b, complex arbitrary
l 0 at
GZ(I) emeclfs R l/lj‘ —c, A} . A light like vector

¢4 real arbitrary

»
4 = (6 b )l v real arbitrary

2.0. Gs(2, 7 = 0)

i b complex arbitrar
0 e l P Yy

G* (2?’ 0, '"1 —> {AIA_eXP[aY +b a, b, ¢ real arbitrary

(=X + Yy)l}
J 6{' et7/?] b r real arbitrary
2.2, G4(2, =14 = _ b complex arbitrary
v o ?’) l 0 e [r e #7i2] y real fixed
y#0,y# £m,

Gs(2,y, 1) _k> {A|A=expla(cosy/2Y; —
siny/2 Xy) + b (Y — X) + ¢ (X; — Y))I}.

e&?? p
0 e 92

G2 y=ta)— s {A|Ah=222=0}. i Ilight like vector

=

, b, ¢ real arbitrary

real arbitrary
complex arbitrary

2y=4m. G;(Q,V:j:ﬂ):

St
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G3(3) —{4|A=4},
Gr3) x4,
Gx(4) ={4|At4=1},
G (4) = gLt 2 MLR (rotation
group) .
i [ o« 0 l
Gz (5) =14 = ’
l 0 a? l

GE(5) > {A | A = exp (a Xy + b Yy},

()

Ga(6, — 1) -_i» {A|A=exp(a¥;+b
| (Y; — X))}

o el

GH(T, — 1) 5 {A | A = exp (a (Y, — X))
+ b (X, — Yo))}

l er Av/2 0
Gy 4 (0 ,)}
g-re

y#0, y#t+ .

Go(6) =

h
G¥S8,y, —1) —> {A | A =exp [a (cosy[2 Y,

— siny/2 Xg)]}.

o)

GHO,— 1) s {A| A= expla (Y, — X,)]}.

o {A ()}

Gy (10, — 1) _f.> {A|Ad=explaY,}.

H.P. A,

A4 complex conjugate
matrix to 4

o complex arbitrary
(abelian)

a, b real arbitrary

o, # real arbitrary

a,b real arbitrary

b complex arbitrary
(abelian)

a, b real arbitrary

real arbitrary
real fixed

=

=

a real arbitrary

real arbitrary

o

a real arbitrary

S

real arbitrary

|

real arbitrary
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11.

Gy (n'), GX(n’,

e’z 0 l
G,(11) =14 = @ real arbitrary
' 0 ¢ 192 I’
Gf(ll) W {A | A= exp [@ Xs]} . @ real arbitrary
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The block diagram in Figure 9 illustrates the interdependence of the groups G,(#),

in the higher one).

(1]
(2]

(3]
(4]

(5]
(6]

(7]
(8]
(9]
[10]

[11]

st (20)

2 (4) 65(3) 6%(2,£m) 163 2y-) 6:120-1)
3 : 3 G2 /” e
4@5(7’—1)/ / 63 (5) / /G’{(ﬁ,-ﬂ
ST/
/ //\
| N
67 (11) / /ﬁ"(&‘l) By-1) 6:(10-1)
‘ e Li 6y(0)
Figure O
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