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The Pauli-Kusaka Mixture in Modernized Form?)

by Gregor Wentzel

The Enrico Fermi Institute and Department of Physics, The University of Chicago,
Chicago, Illinois, USA

(23.1V. 68)

Summary. Recent studies, in the static strong-coupling theory, of models with SU(3) symmetry,
can be extended so as to include vector with pseudoscalar mesons and thereby make the model
more realistic,

In the strong-coupling version of Yukawa’s theory of meson-baryon interactions,
for mnstance in the study of meson binding by baryons (isobar formation), the following
approximations are typical: 1) The coupling parameter g is so large that expansions
in powers of 1/g converge rapidly. 2) The baryons are very heavy; i.e., their recoil
velocities are negligible; they act as static source functions extending over a range a
(the equivalent meson momentum cut-off is ~ 1/a). In this framework, specific model
theories are defined through the assumed transformation properties of the fields.

While, in the past, most special models were chosen for study to learn more about
the mathematical technique, there has always been a natural desire to work with
models ‘close to reality’, as best ‘reality’ was known at the time. Twenty-five years
ago, before we had any direct experimental knowledge about the Ywkawa meson,
the electric quadrupole moment of the deuteron appeared to favor a mixture of
pseudoscalar and vector mesons (M oller-Rosenfeld, Schwinger), so it was natural to
apply the strong-coupling method to this model (PAULI and KusakaA [1], WENTZEL
[2]). Today, ‘reality’ is much better defined through the tremendous advances of
high-energy physics, in particular the discovery of SU(3) symmetry patterns in the
meson and baryon spectra. So, the favored ‘realistic’ model has recently been a (bare)
baryon octet (spin 1/2%) strongly interacting with a pseudoscalar (0O-) octet; this
difficult problem has been successfully studied by DULLEMOND and VON DER LINDEN
[3] (see also BEDNAR and ToLAR [4]). If the f/d ratio occurring in the interaction is
chosen within a certain interval, the result is encouraging in that the groundstate of
the bound system is an 8, 1/2*, and the first excited state is a 70, 3/2*. For these
and higher (still hypothetical) states, a general mass formula has been derived by
GOEBEL [5] (he used his own S-matrix method which we shall not discuss here).

We want to point out that it is easy to make the model even more realistic by
admitting both pseudoscalar and vector mesons suitably coupled to the bare baryon
octet. Indeed, in the now well known meson mass spectrum, the 9 vector mesons
(0, K*, @ and ¢) follow the 8 pseudoscalar ones (z, K, %) without a great gap in
energy. Admittedly, the vector mass average is higher, but not so much higher as to
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make the neglect of baryon recoils so much more dubious. (Anyway, the maximum
recoils are determined by the momentum cut-off rather than the meson rest masses.)
So, for reasons other than in 1943, pseudoscalar-vector mixtures again become an
object of considerable interest.

In their 1943 paper [1], PAuLl and Kusaka described in detail how to proceed in
the case of pseudoscalar (¢,) and vector (¥,) fields, each of isospin 1 (the subscript,
e =1, 2, 3, indicates the charge-space component), coupled to the (static) bare
nucleon (spin and isospin matrices g;, 7,; source density d,) through the interaction
Hamiltonian

v, 0 [ %8, (gps Ve, + g VX ) . (1)
s e

The essential step is then to introduce two orthogonal linear mixtures of ¢, and
Y, field components, as well as their canonically conjugate quantities, such that only
one of the two mixtures enters into the bound field problem. The resulting energy
spectrum of the bound states depends on only one effective coupling constant

g = l/gfvs +2gps, (2)

and this g must be large enough for the strong-coupling approximation to be appli-
cable. (If the source radius a is small compared with the Compton wavelengths of
both mesons, the condition is g > a.) We note that this treatment disregards the
other possible vectormeson-nucleon (static) interaction

e X, f &5 d, V-, (3)
e

(7T, = canonical conjugate to ®,); one knows, however [6], that this coupling does
not contribute to meson binding as long as

Mgy \2 2
( g )<3

where y = vectormeson restmass. (We set & = ¢ = 1.)

If we now want to go over to a higher internal symmetry [e.g., isospin group
SU(2) - SU(3)], the main point is to realize that the construction of the appropriate
mixtures is quite independent of how the matrices 7, in (1) are defined, provided
they are the same in the pseudoscalar and vector coupling terms. In particular, in
the place of the nucleon, we may now have an SU(3)-octet baryon (spin 1/2), and
instead of the isospin 1 mesons, we will have SU(3)-octets of O— and 1- mesons
[SU(3)-singlets may be added later]. The interaction (1), withp = 1...8, can formally
be taken over, with the 7, re-interpreted as the appropriate eight 8 X 8 matrices

r,=aF,+ (1 —a) D,

involving the arbitrary parameter « (¢/1 — o = ‘f/d ratio’). We then expect the
Pauri-Kusaka analysis again to be applicable provided o has the same value in
the pseudoscalar and vector coupling terms in (1). This we assume.

Two reasons may be cited to support this assumption. 1) The higher symmetry
SU(6) (static) may be invoked as it has proved successful in several respects. Then,
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the pseudoscalar and vector mesons are members of the same SU(6) multiplet (a 35),
and « is constant within this multiplet. 2) GoEBEL [5], whose S-matrix method
involves renormalized quantities, including «, finds a unique value for this «,,,, in
conjunction with his simple (and correct) mass spectrum. This uniqueness must
again obtain in the mixture case and, as to the unrenormalized «’s, no generality can
be lost by choosing them equal for the O— and 1~ mesons.

If this is accepted, the introduction of the PAULI-KUSAKA mixtures (see Ref. [1],
Equations (23)-(26), with the octet index now replacing the isospin index) does indeed
reduce the bound-field Hamiltonian to one equivalent to the pure pseudoscalar case:
the coupling constants g,s and gy, enter in the combination (2) only. For a proof,
one may simply follow PAULI's and KUSAKA’s argument, just discarding or replacing
equations of insufficient generality. See the Appendix for indications how to do
this [7].

After having thus established the mathematical equivalence of the Hamiltonians
of the mixture and pure pseudoscalar bound fields, one may go on and isolate the
‘rotational part’ of the bound-field Hamiltonian which determines the lowest bound
states of the system; i.e., the isobar spectrum. With the help of symmetry arguments
it is easy to see that this ‘rotational’ Hamiltonian is, except for a constant factor,
the same as the one studied by DurLLEMOND and voN DER LINDEN [3] (for the pseudo-
scalar model) with the simplifying assumption of a large source radius (2 g > 1).
Hence, we know the isobar spectrum, also for the generalized model.

So far, we have ignored an interaction of type (3) (o = 1...8). It is believed that,
in reality, such coupling exists, and that it is ‘pure f’ (z, = F,, « = 1) [8]. As in the
isospin 1 case, the interactions (1), (3) involve different (orthogonal), field components
(transverse and longitudinal polarizations, respectively), and an analysis similar to
Ref. [6] (§11) is indicated. Unfortunately, instead of a 4 x4 matrix (see Equation
(11.3) in Ref. 6), we would then have to examine a 16 X 16 matrix and find its lowest
eigen-value, as it depends on the coupling ratio (u g,/g). No attempt to solve this
problem was made. So much is clear, however, that as long as this ratio remains
below a certain critical value (which depends on «), the interaction (3) cannot contri-
bute to vector-meson binding, and the isobar spectrum remains unaffected. On the
other hand, if the coupling ratio exceeds the critical value, the mass spectrum must
(as in Ref. [6], §§ 12, 13) change radically [9], and the experimental knowledge would
presumably rule out this possibility.

Finally, to enlarge octets into nonets, one may want to add SU(3)-singlets (o = 1
only, 7, = 1; w — ¢ mixing is irrelevant). The complication so introduced is similar
in type to the one discussed in the preceding paragraph. The closest analogon in old-
style work is the study by RaMACHANDRAN [10] of the coupling of both = and #
mesons (0-, isospin 1 and O, respectively) with a nucleon. Again, one encounters
a critical value for the pertinent coupling ratio below which the singlet does not
contribute to the bound field, whereas at higher values the mass spectrum is drasti-
cally altered.

In conclusion, we would like to emphasize again that, when we chose for re-study
pseudoscalar-vector mixtures, this special choice was motivated by what we empiri-
cally know about the meson spectrum. Other coherent mixtures, as allowed by the
transformation character of the fields, may be appropriate topics for further explora-
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tion. Under the aspect of ‘realism’, axial vector [11] admixtures (8, 1¥) may merit

attention, perhaps with an appeal to broader universality assumptions to provide
the needed f/d value (remark by P. G. O. Freund).

Appendix

Here we adopt the notation of Ref. [1]. No generalization is needed in the defi-
nitions and equations leading up to the Hamiltonian (18) except the re-interpretation
of the superscript « (= our g) as an octet index, with the understanding that the
matrices ¥ (= our 7,) are newly defined. At this point one conveniently introduces
the mixtures by the substitutions (24) and (26) of Ref. [1]. The ‘potential energy’ (19)
becomes:

1 o Ooc a

B0 = [ (@) + P+ (12 4 20 0y,
and realizing that the ¥?* field is uncoupled and may be dropped from the bound-
field Hamiltonian, the equivalence with the pseudoscalar E° part is obvious. The
then following steps in the strong-coupling approximation (diagonalizing and
minimizing E°) are well described in the literature [12]. As to the ‘kinetic energy part’,
equations like (32) are not general enough but their use can be avoided by going
back to (18) and substituting (26) (with 29— 0); the resulting Hamiltonian is given
by (35) provided one writes

IT%* instead of (2 D)~ 3 L% ¢f
B

Making the same substitution in the transformation formulas (36)2), the equivalence
with the pseudoscalar model is easily verified: (f2 + 2 g2)1/2 assumes the role of f.
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