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Simulation of the Total Heat Transfer of Spherical Hailstones

by R. List and D. F. Parsons
University of Toronto, Toronto 5, Canada

(27. 111 68)

Abstract. An effective Nusselt number is introduced which, in combination with the Reynolds
number, may be sufficient to explain how different icing conditions can lead to statistically equal
ice and air bubble structures within hailstone shells. Two cases were treated: one explains the
autosimulation of the total heat transfer and the icing conditions within a hail cloud model; and
the other allows a comparison of experiments in an icing tunnel with atmospheric conditions.

This approach can be of importance in any treatment of combined heat or mass transfer
processes.

1. Introduction

One of the problems in the search for an understanding of the growth of hailstones
— which is essential for the understanding and prevention of hailstorms — is the inter-
pretation of their structure, i.e. the size, shape, and orientation of the ice single-
crystals, and the arrangement and size distribution of the air bubbles. These features,
differing from shell to shell, are the result of the icing conditions under which they
grew. The heat exchange plays a decisive role in the creation of this structure,
controlling the type of ice deposits on the growing hailstones; it determines — once
factors such as air temperature, cloud liquid water content, and particle diameter and
shape are given — whether porous, solid or spongy ice (with liquid water pockets) is
going to be formed, what characteristics the air bubbles will assume, and what
temperature these deposits will have. These processes are more or less understood [1];
however, one problem arises. Is the relationship between icing conditions and resulting
ice deposits unique ? Can it be assumed that a particular ice deposit grows under only
one set of icing conditions, or are there more possibilities? On the basis of known
hailstone structures, ambiguous answers might be expected. This means that various
sets of icing conditions should be found which produce the same type of deposit.
An approach to solve this problem shall be made using similarity theory and the
hypothesis that a similarity of total heat exchange is closely related to sets of icing
conditions which can produce identical ice structures.

2. The Effective Nusselt Number

The heat exchange by conduction and convection of spherical hailstones with a
diameter > 0.5 cm can be described by the Nusselt number Nu = 0.54 Rel'/2, where
Re stands for the Reynolds number [2]. The contribution by evaporating, condensing
or sublimating water molecules is described by the Sherwood number S/ = 0.51 Re'/?,
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which contains the mass transfer coefficient; this quantity, when multiplied by the
latent heat of vaporization, condensation, or sublimation yields the heat transfer by
the contribution of gaseous H,0. Because accreted, supercooled water drops also
contribute to the heat transfer, another similarity number, E, can be formulated,
which is, in effect, a Nusselt number for heat transferred to the hailstone by the
collected cloud droplets. E is essentially identical with the collection efficiency. It is
mainly a function of the Reynolds number; however, its variations are limited
approximately to a range between 0.6 and 1.0. Radiation is always less than 59, of the
total heat exchange for growing hailstones and is, therefore, neglected.

In order to have similarity of heat exchange, there must be geometrical similarity
and similarity of flow; i.e., the Reynolds number must be the same. However, this
means that individual heat transfer contributions must be similar, since N, Sh and E
would remain constant also. '

List et al. [2] showed that the Reynolds number of a hailstone in typical hailclouds
[3] is a function of the particle diameter, D, only, namely Re ~ 7.3 x 103 D32 4- 109,;
at higher levels in the clouds, increases in terminal speeds of hailstones of given
diameter due to lower values of pressure and temperature are compensated by
increases of the kinematic viscosity.

This means that simulation of the individual transfers is achieved at any level in a
hailcloud as long as particles with equal diameters are compared. However, such
similarity is not very useful for correlating ice structures and sets of icing conditions
because any type of shell of given dimensions grows or grew under similar heat
transfer conditions. But how can the requirements be made more restrictive ?

If a Nusselt number is constructed like the regular one, containing not only the
heat transfer by conduction and convection, but also the other contributions due to
the effects of the gaseous and liquid water phase, then a new expression is obtained:

ENuAT+ Dy ShAc L+0.25v Re E wpty AT

Nu ., = - :
s EAT+ Dyy Ac L+0.25v)Re wr ¢y AT

This expression is called the effective Nusselt number, where % is the thermal
conductivity, AT and Ac are the temperature and concentration differences between
the particle surface and the ‘undisturbed’ air, respectively. D, , is the diffusivity
of water vapor in air, L the latent heat of the phase change from liquid or solid to
vapor, or vice versa, ¥ the kinematic viscosity, w, the liquid water content of the
cloud, and ¢, is the mean heat capacity of water averaged over the temperature
difference. The factor 0.25 is introduced to account for the distribution of the accreted
sensible heat over the whole (spherical) surface. It is essential for the proper weighting
of the different components.

By setting two pairs of the related transfer and diffusivity components equal to
zero, a ratio is obtained which is a ‘traditional’ number. In this way, the effective
Nusselt number separates and weights the different transfer and transport processes
and deals with their contribution to the overall ratio. The character of the basic
Nusselt number is conserved: we still compare transfer and transport quantities.
To obtain these quantities in compatible dimensions, new transfer terms (¢ Nu AT D1,
D,,ShAc L D, 025y Re E w,c,, AT D7) and diffusivity terms (¢ AT, D, Ac L,
0.25» Rew, ¢, AT) have to be formed.
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The new Nusselt number, Nu,, being more general and containing more para-
meters than the regular Nusselt number, has a series of special characteristics:
(1) Nu,.-increases with Re only when the relative contribution to the heat transfer by
the accreted drops is small, i.e. when wis small. If w, is big, then Nu, - approaches E
as w, approaches infinity or as Re approaches infinity; although the latter fact is not
entirely applicable since the equations for Nu and Sk are only valid for subcritical
Reynolds numbers of spheres, i.e. for Re << 2 — 4 x 105, This means that it is the
heat transfer by accreted particles which dominates at high Reynolds numbers.
(i1) If the total transfer rate of heat through the surface is equal to zero, but not the
transport, then Nu,,. = 0; this occurs if a particle is in heat transfer equilibrium with
its surroundings. This means that the magnitude of the effective Nusselt number is a
measure of the amount of heat released by the fraction of accreted water which is
freezing. Production of spongy ice generally means small imbalance and low effective
Nusselt numbers. (iii) If the temperature is decreasing, an increased contribution of
the accretion to the heat exchange causes a decrease in the effective Nusselt number.
The effect is enhanced if a pressure decrease accompanies the temperature decrease.

3. Auto Simulation of the Total Heat Transfer in Clouds

If the effective Nusselt numbers are calculated for 2 cm hailstones in a hail cloud
model according to BECKwWITH [3] and with £ = 1, conditions are obtained as function
of temperature according to Figure 1. The different curves are valid for different
values of the free water content of the cloud. The curve I = 1, where [ is the fraction
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Figure 1
Auto-simulation of icing conditions of hailstones in hailclouds on the basis of effective Nusselt
numbers, at different height levels indicated by air temperatures and for different liquid water

contents; the hailstone diameter is assumed to be 2 cm. Equal cffective Nusselt numbers are
assumed to essentially produce equal ice deposits.
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of accreted water which freezes, divides the icing conditions into two areas, one leading
to spongy ice, the other leading to solid or porous ice. It can be found, for example,
that a two centimeter hailstone at a height level in the cloud according to a tempera-
ture of — 38°C has the same effective Nusselt number of about 3.42 at a liquid water
content of 1 g m~2 as an equally sized hailstone at the — 20°C level but with a liquid
water content of twice the above amount, namely 2 g m=3.

If the effective Nusselt number is indeed strongly connected with the production
of similar ice structures — only experiments can provide a final proof — then Figure 1
would show the conditions under which shells of equal characteristics could be formed
on hailstones of given size but at different cloud water contents and temperatures.
One restriction should be made: simulation should only be expected for either spongy
ice or solid and porous ice.

4. Simulation of Icing Conditions in the Laboratory

- It was pointed out that Re in the atmosphere is principally determined by the
diameter only (for spherical or ellipsoidal shapes). In the case of a laboratory experi-
ment where the diameter can be varied independently of the velocity if the particles
are suspended then a new degree of freedom can be obtained; hailstones growing in
the atmosphere (chosen to have a diameter of 4 cm) can be compared with any size of
particle as long as Re remains constant.

Effective Nusselt numbers are shown versus temperature in Figure 2. In the case of
the solid lines, representing atmospheric conditions for 4 cm hailstones, the pressure
varies with temperature according to Beckwith’s model, whereas the broken lines
represent conditions with the temperature varying at constant pressure (p = 1015 mb)
in an icing tunnel. The parameter for the different curves is again the liquid water
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Figure 2

Effective Nusselt numbers versus air temperatures, at different liquid water contents: for labora-

tory (broken lines) and cloud conditions (solid lines); for a Reynolds number of Re = 58,200,

representing a 4 cm hailstone freely falling in a hailcloud or a laboratory model with D deter-
mined by the wind-speed, the kinematic viscosity and Re.
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content at which the real and the artificial hailstones grow. An interesting point is
that the separation condition, I = 1, can be represented by one single line for both
laboratory and atmospheric conditions. Sets of icing conditions, having equal effective
Nusselt numbers, can be obtained from Figure 2 and may be related to identical ice
structures.

A comparison of Figures 1 and 2 shows that equal effective Nusselt numbers can
be obtained in the laboratory with bigger variations of the liquid water content.

Summary

The expected ambiguity that different sets of icing conditions lead to identical ice
structures (in the statistical sense), led to the hypothesis that such sets may be
correlated by the requirement of equal Reynolds numbers and of equal, newly defined
effective Nusselt numbers. Such a Nusselt number considering all the heat transfer
processes was derived from a dimensional viewpoint and numerical examples show
under what conditions similarity can be obtained. Similar approaches could be tried
for other processes where combined transfers occur.

The authors believe that this approach, i.e. the simulation of the total heat
transfer, hopefully leading to the same ice structures, is to be preferred to a previous
attempt [2], where — as another possible approach — equivalent heat transfer ratios
were assumed to have the same effect.

In this treatment the solubility of air in water was assumed to be of minor impor-
tance. However, it is obvious that such a factor cannot be entirely neglected, and thus
would cause some deviations from the given results.
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