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Group Theory of Angular Correlations Related to Diatomic
Rotators in Liquids and Solids

by Fritz Kneubiihl
Laboratorium fiir Festkérperphysik, Eidgentssische Technische Hochschule Ziirich, Switzerland

(3. V. 68)

Abstract. Angular correlations of diatomic rotators (OH~, OD~) in crystals (KCl) have recently
been measured with the aid of vibration-rotation spectra. Here we examine by group theory the
relations between the different angular correlation functions of diatomic rotators in liquids and
solids as determined by electric dipole transitions and magnetic resonances.

Résumé. Nous avons récemment mesuré les corrélations angulaires de rotateurs diatomiques
(OH~, OD") dans les cristaux (KCI) en observant les spectres de vibration-rotation. C’est pourquoi
nous étudions maintenant & l'aide de la théorie des groupes les fonctions de corrélation de ces
rotateurs dans les liquides et les solides. Les résultats sont appliqués aux transitions dipolaires et
aux résonances magnétiques.

Zusammenfassung. Kirzlich haben wir Winkelkorrelationen von zweiatomigen Rotatoren
(OH-, OD-) in Kiristallen (KCl) mit Hilfe von Rotations-Vibrationsspektren studiert. Zum
besseren Verstindnis der experimentellen Resultate untersuchen wir in der vorliegenden Arbeit die
Winkelkorrelationsfunktionen solcher Rotatoren mit gruppentheoretischen Methoden. Dabei
werden besonders jene Korrelationsfunktionen beriicksichtigt, welche bei elektrischen Dipoluber-
giangen und magnetischen Resonanzen auftreten.

Introduction

Random rotation of molecules in liquids strongly influences the line shapes
observed in nmr, esr, vibrational and even Raman spectra. Considerable effort has
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therefore been focussed on the experimental and theoretical study of this statistical
phenomenon [1-4]. Since the gamut of rotational relaxation times reaches down to
10-13 sec for simple molecules at room temperature, a successful experimental investi-
gation must be based on a probe with much shorter response time. Short-time
rotational-relaxation processes cannot be observed by the relatively slow nmr and esr
with response times larger than 10-7 sec and 10-1°sec respectively. Explanations of
nmr and esr line shapes [4, 5] are therefore content with an exponential decay of
correlation, which has to be considered as the long-time approximation. On the
contrary, the vibration-rotation spectra of diatomic linear and symmetric-top
molecules with response times of the order 10-4 sec provide an almost ideal tool for
the study of rapid rotational motion. Experiments [6, 7] and theories [8-10] performed
during the last few years are very promising.

Recently the colour center community has been fascinated by the theoretical
aspects and the technical possibilities of diatomic rotators as OH~, OD~ and Oy in
alkali halides [1, 12, 13]. As a consequence detailed esr [21], uv, ir [12] and dielectric
[11] measurements have been started in order to determine the electronic structure of
the molecules and their interaction with the host crystal. Recently, KELLER and the
author attempted to contribute some additional information on this problem by
precise measurement of the vibration-rotation spectra of OH- and OD- and sub-
sequent evaluation with the theory of rotational correlations in liquids [14]. But we
were not too sure about the relations between the correlations in liquids and those in
solids.

The determination of angular correlations by observation of electric dipole
transitions such as dielectric relaxation, rotational spectra and vibration-rotation
spectra is based on the rotation of the permanent or oscillatory electric dipole p(f) =
p(t) u(t), where wu(t) = (sind(t) cosg(f), sind(f) sing(¢), cosd(t)) is the randomly
rotating unit vector. The quantity measured is essentially the correlation function

<u(0) - u(t)> = 3 <cos?#(0) - cos??)> . (1)

Relaxation effects in nmr and esr depend on entirely different correlation functions.
As an example we consider a paramagnetic diatomic rotator (O, ?) with an axial
g-tensor. According to PAKE [5] the spin Hamiltonian as function of the orientation
0 = (¥, @) can be written as

1
H=pH,eS,+ —; B H,Ag (coszﬁ - ?) S,
+ é— B HyAg cos®d sind (¢7°? S_+ 7% S,);
3g=g +2g,; dg=g —¢,

neglecting crystal field terms and hyperfine interactions. Therefore, the contribution
of the random rotation to the spin-lattice relaxation is given by the expression

(28 e = (20 05

X fdt ¢ " ((cosd, sindy e ™) (cosd, sind, 6 >
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with
(cos?y sindy e ™) (cosd, sind, e ' )> (2)

as the basic correlation function. From Equation (2) it can be easily derived that the
contribution to the spin-spin relaxation must be connected to still another correlation

function:
<(coszz9(, — ;—) (coszﬁt - é)) . (3)

This demonstrates that different experimental methods for studying angular correla-
tion of diatomic rotators provide us with at least three correlation functions (1), (2)
and (3). We are going to show that the relations among these functions differ for
rotators in liquids and rotators in solids.

Orientational Probability and Correlation Functions

Before introducing any group theoretical concepts we describe the general
properties of orientational probabilities and correlations in analogy to the considera-
tions of WANG and UHLENBECK [15]. We concentrate mainly on the representation of
the probability density, the joint probability density and the correlation matrix,
which can be determined partially by the experimental methods mentioned above.

The orientation £2 of a diatomic rotator is determined by the polar angles @ and g.
Consequently any function f of the orientation £2 can be expressed by linear combina-
tion of normalized spherical harmonics Y, (9, ¢) = Y,,.(2):

f(8)=a* Y (0Q). (4)

nm nm

For Y, ,,(£2) and related functions we use the definitions of EpMoNDs [20]. Summation
is performed over identical indices. A random rotation is characterized by an orienta-
tion £2 which does not depend in a completely definite way on the time . Only certain
probability distributions are directly observable. If the random rotation is a Markoff
process, the motion is completely described by the probability density w(f27) and the
jornt probability density W(£2,/Qr, ). Random rotational motion is not necessarily
restricted to Markhoff processes, but for experimental purposes we may confine our
theory to w(Q7) and W(Q27/Q; ). w(£2;) d2; is defined as the probability of finding
the rotator with the orientation in the range (Qr, 2; + df2;) at the time T.
W(Q2r/2r, ) df2p A8, , represents the probability of finding the rotator with the
orientation in the range (2, Q, + df2;) at the time 7 and with the orientation in the
range (27, ,, Q7. , + dQ; ) at the time (T + £). The two probability densities are
functions of the orientations £, and £, , which implies
w(Qp) =wk, (T)Y,,(L2;) and

nm

W(QT/QT+1§) == Y::m(‘QT) an/n’m’(T’ T + t) Yn’m (QT+t) . (5)

In general w({2;) has to be real and normalized over the unit sphere, whereas
W(£2;/827 . ,) must be a symmetric function in Q7 and Q7 ,: |

W(‘QT-I-t/"QT) = W*('QT/'QT—l—t)'
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This requires

@Woo(T) = woo = (4m)~ 1% and wj, (T) = (= 1)" w,,_(T);
and W, T, T+1t) = WL +8T). (6)

nmin’ m’ ( n’ mfnm(

In addition, w({2;) and W2,/ ,,) are related by
[ W)@, dQriy = 0(@) 0 Wyppool T, T +8) = 0,,(T) ()2
Because we are dealing with stationary random rotations the origin of the time is

arbitrary and w({2;) and W(£2;/£2;,,) do not depend on T. Some calculations based
on this fact and relations (3) show that

wnm(T) = w : W;;m,'n'm'(T i3 T t) - %m/n'm'(or t) = I/Vwm/n'm'(t)
and W, @) = W m(—1). (7)

Boundary values for W, ,,/,.,,-(f) at the correlation times # = 0 and ¢ = oo are derived
from the fact that
W (82, 2, o) = w(£2y) 6(2o — 2,_)

and the assumption that the correlations are lost after a sufficiently long time:

W('QOJ !Qtzoo) - w(QO) ' w(!")taoo) E

We obtain
I/V”'”/”’WV(O) = (4m)? 5%,,,/%:,,,, + higher order terms
= (4 n)—l (_ 1)M’ [(2 n+ 1) (2 n 4 ]) (2 n' 4 1)]112 w:”m‘
n n ’VL” ” n' ,nlf
X (0 00 ) (m —— m//) and W ——— (OO) = Wym w::,m’ . (8)

Information on w({2) and W(£,/2,) can be collected only by experimental determina-
tion of averages and correlations. The average of a function f(£2) is defined as

— [ 1) w(@) a2 = @}, w,, (%)
and the correlation function of f,(£2y) and f}(2,)) as
Q) (20> = (] K@) W(20/2,) 12(R2)d2, L2,
= al,nm an/n'm'(t) A, 0 me * (9b)

The matrix elements w,,,, and W, /..~ () are therefore uniquely determined by the set

Y,

nm

(Q)> = wnm and <Y::m(‘QO) Y:'m'(gt)> = VVnm/n’m’(t) * (10)

For this reason W, m/n w15 called the correlation matrix.
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The time reversal of the auto-correlation functions is governed by the last equa-
tion of (7):
<f(‘QO) f*(Q) ﬂ* Wmlu m() At e
= {f(8) FF(2_)>* = G@) + ¢« U

where G(f) = G(—1¢) and U(f) = — U(—¢) are real functions. Thus W,/ (f) can
be split according to '

an/n'm’(t) = Gnmfn’m'(t) B 1 U nmin’ m’ ( )
nmln m’ (t) - G*m !nm(t) = Gnm/n’m’(*— t) ’
nm/n’ (t) n mln.m(t) = Unm/n’m’(m t) :

The relations above are valid for a rotator in a neighbourhood of arbitrary sym-
metry. If this symmetry is known, a simplification of w,,, and W, ol m () by group
theoretical procedures is possible. We shall illustrate this for rotators in a liquid or a gas
corresponding to a vicinity of full rotation symmetry R® and in a crystal with cages
of symmetry 0,. The latter represents a simple model of OH~ in KCL

Angular Correlations in Liquids and Gases

In liquids and gases the probability densities @(2) and W (£2,/£2,) remain invariant
under all coordinate transformations of the full rotation group R3. The basis of the
irreducible representation D, of R® is Y, ,(£2). No transformation of w,, and

W, mjn me(t) has to be made. Schur’s lemma can immediately be applied.

@) = w(@, D) = (4707, Wy @) = @m0 (D5, 8) 8, 0,,,
or W(QO/Qt) = (4 n)_l kn(DfJ if) Y:m(gﬂ) Ynm(gt)
= (4n)"2(2n+ 1) k (D%, 1) P,(cosAR) (11)

where AL is the angle between the orientations £2, and £,. D% indicates the 2 n + 1-
dimensional representation of the full rotation group and k,(D%, ¢) the normalized
correlation function of the irreducible representation DE. Conditions (8) are fulfilled if

kO(DE)FJ t) =1,k (D:: 0) = 1’ kn>0(Di: OO) =0. (12)

? >0

The correlation functions of special experimental interest are determined by k,(D7, ?)
and ky(Dj, 1)

{cosd, cost,> = % (D5 1) (1a)
1 4
((cos20y — ) (cosd, — —;—)) — = kDY), (2a)
2

<<(cosﬁ*0 sind, ¢ *°) (cosd, sind, e_iq”)> =-——k, (D], 1). (3a)

15

Specific theories of angular correlations of rotators in liquids and gases should provide
us with information on all the different %,.
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This can be illustrated by the most simple theory, called the Debye limit of random
rotation. Here we assume that the rotator in the liquid acts as a rotating sphere in a
liquid of effective viscosity #. The random rotation of this sphere is determined by the
equation of diffusion

[& w1 (£2g) W (820/£21)] 1

St T 61, A(Q,) (w1 ()W (£2,/2))] (13)

with the Debye relaxation time 7, =5 V/[(k T).
V is the volume of the sphere, T the absolute temperature. The solution leads to
exponential normalized correlation functions (e.g. [4, 16])

koD, ) = exp(— "5 1)
The exponential decay classifies the Debye limit as a MARKOFF process [15].

The Figure shows examples of %,(D7,¢) determined from vibration-rotation
spectra. It clearly demonstrates the non-validity of the Debye limit for short correla-
tion times. For long correlation times this limit approaches reality and can therefore
be used for the explanation of esr and nmr line shapes. For extremely short times the
random rotation may be described by the inertial limit [9], in between both limits fail.

[
1,01
AN HCI in CCl,
\ \ —— — HCI rigid rotator
\ \ ~———— OHin KCl
0,5
\ 1 2 3 4 1[10™sec]
0 5 —— - -
] ! BT -
\ —
/
\\ P -
Moo
041

Auto-correlation functions of diatomic votators.
k,(Dj, t) of HClin an ideal gas (calculated) and in CCl; (measured by B. KELLER) at room tempera-
ture. &y, (I}, t) of OH~ in KCl (measured by B. KELLER) at room temperature.

Angular Correlations of a Diatomic Rotator in a Vicinity of Symmetry Oy

If the vicinity possesses the symmetry O, the probability densities remain invariant
under the transformations of O,. Linear combinations y?(I'%, ) of the spherical
harmonics Y,,,,(£2) form the basis of the five irreducible representations I'=.
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Further information may be obtained from the Tables of TrRamMMEL [17] and
ALTMANN et al. [18]. Because w(£2) is a representation of I'} it corresponds to the series

w(8) = wy (I'T) 7,(I'f, )

7 11/70
= )ty [ Yt 1 | o (s Yand] + 4 (15)

If an effective cubic field acts on the rotator [13], w, can be calculated with Boltz-
mann’s law. Taking a sixfold coordination [19, page 13] we obtain for w, =

— Va1 DydnkT. W,,inm(t) again is determined by Schur’s lemma:
4 4 W)ﬂjlm’(t) =4 7T W/E)ejzm'(t) =0 ’

4m m)o/oo(t) = kll(ITs t) =
4RW1m/1m @) =0, ku F4:t)
47 Wygpaoft) [1 + 6|/ )| ka0,

47 W al) = [1 - 4]/ 2 wz(f’r)] (5 1),

. S
4n VVZ,:I:Z/Z,:I:2(t) = {5 [1 + 6 l/%‘ wz(F;r)} ku(ly, £) +
g -
+ 5 [1 —4 ]/;T wz(FT)] ku(l's, 1),
. - .
47 W, s 5ald) =+ |14 6 )/ 2 wTD)| Al 0,
. R
) 5wt w0,
47 Wy pjo.m(®) =0 otherwise. (16)

k, ('t t) are the normalized correlation functions with the value 1 for the time
¢t = 0 and vanishing for ¢ approaching infinity. The Figure shows as an example 2y, (I, , #)
of OH- in KCl evaluated from the vibration-rotation spectrum. The correlation
functions already mentioned in the introduction and in the section on rotators in
liquids depend on three normalized correlation functions:

{costly - cosd,> = % kn(I'5, 1), (1b)

((costte = 3) (o008, — 1)) = 45 [1 r6)/ 2w P*)] ku(l5,),  (2b)
((cosdy sind, € *0) (cosd, sind, ¢ 74>
— Z 14/ 2 wrh] muirs 0. (3)

The remarkable feature of these correlations is that for the rotator in a cubic
neighbourhood k,(Dj, #) is split into the group-theoretically independent %y, (17, ¢)
and %,,(I'}, ?).
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Conclusions

Wi miim(8), R1(D7, t) and &,,(L7;, ¢) can be determined by the observation of electric
dipole transitions such as dielectric relaxation, rotational spectra and vibration-
rotation spectra '

u(0) u(t)y = k(D 8) = k(L) ). (1c)

No problem arises from this equation if the rotator is brought from a liquid or a gas
into a solid with cages of symmetry 0,. Orthorhombic or lower symmetries only split
the function &,(D7, ) into two or three group-theoretically independent components.

Relaxation effects of nmr and esr give information on W, /2, (f). Cubic symmetry
already separates the correlation functions (2) and (3) related to the spin-lattice
relaxation and the spin-spin relaxation into two group-theoretically independent
functions. Therefore care has to be taken in determining angular correlations of dia-
tomic rotators in solids using esr or nmr.

I wish to thank Prof. Dr. L. KyarL, MIT, Prof. Dr. W. BALTENSPERGER, Prof. Dr.
W. KANziG and Mr. B. KELLER, ETH, for stimulating discussions.
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