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Winkel- und Wirkungsvariable fiir allgemeine mechanische Systeme

von Res Jost
Seminar fiir theoretische Physik ETH

(18. 1. 68)

Abstract. The results of ARNOLD [1] are generalized to general (non-exact) canonical manifolds
and general (non-exact) hamiltonian vector-fields.

Nachdem in den letzten Jaliren die klassische Mechanik sich wieder erstaunlich
verjiingt hat, mag es gestattet sein, dem alten Problem der Winkel- und Wirkungs-
variablen eine kleine Note zu widmen. Es handelt sich dabei um die Adaptation einer
bekannten Fragestellung [2, 3] an einenallgemeinen Formalismus, der vom Phasenraum
zwar eine kanonische aber nicht notwendig eine exakt kanonische Struktur voraus-
setzt. Ausserdem ergeben sich Aussagen iiber Hamiltonsche, aber nicht notwendig
exakt Hamiltonsche Vektorfelder. Dabei heisst eine kanonische Struktur exakt, wenn
die sie definierende quadratische Differentialform £ nicht nur geschlossen, sondern
auch exakt ist; ebenso heisst ein hamiltonsches Vektorfeld L exakt, falls w(.) =
(L, .) nicht nur geschlossen, sondern exakt ist.

Nun gelten die klassischen Sétze auch in diesem Fall, und das wire zu erwarten
gewesen. Ein Beweis ist aber vielleicht doch nicht ganz iiberfliissig, da ein Satz von
MosEkRr ([5] Theorem 5) aus unserem Problemkreis, wie das einfachste Beispiel auf dem
2dimensionalen Torus zeigt, wesentlich von der exakt kamonischen Struktur des
Phasenraumes abhingt.

Aus der neuesten Literatur, die Winkel und Wirkungsvariablen betreffend, erwih-
nen wir den Appendix 26 des Buches von ARNOLD und AvEz [1], wo jedoch eine exakt
kanonische Struktur vorausgesetzt wird. Trotzdem ist unser Beitrag als eine Art
Kommentar zu diesem Appendix aufzufassen.

Ich verwende aus naheliegenden Griinden den Formalismus aus [4].

Sei nun also N mit der Poissonklammer [,] eine 2 n-dimensionalé, differenzierbare
(C*®), kanonische Mannigfaltigkeit. £ sei der Raum der C®-Funktionen {iber
M. Apr o Ps g4 -, ¢, P € E, ¢* € E heissen in x, € M kanonische Koordinaten,
falls durch x = (p;(%), ..., 9,(%); ¢'(x), ..., ¢*(»)) eine Umgehung von x, diffeomorph
auf eine offene Menge des R2%" abgebildet wird und ausserdem in dieser Umgebung
[Py Pl = [¢%, ¢*] = O und [p,, ¢*] = 6} gelten.

Ein klassischer Satz von Liouville, dessen einfachen Beweis wir reproduzieren, be-
sagt:

1. Satz (Liouville) [6]:

Falls € &, k=1, 2, ..., n in einer Umgebung U von x, fiir alle &, / [a, ot;] = 0O
erfiillen und falls dat, (%), ..., de, (%) in T (M) linear unabhéngig sind, dann existie-
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renffe &, k=1,2,..., nsodass{a,, ..., a,; B ..., f7} in %, kanonische Koordinaten
sind.

Beweis: Seien {p,, ..., p,; ¢, ..., ¢"} kanonische Koordinaten in x, und U CU
eine zu diesen Koordinaten gehérige, kubische Umgebung von x,. U’ kann offenbar
so gewihlt werden, dass do, (%), ..., da, () fiir jedes x € U’ in T3 (M) linear unabhin-
gig sind. 7;(p, q), ..., h,(p, ¢) sind die Darstellungen von «, ..., «, in den kanonischen
Koordinaten {p, ¢}. Da auch {—¢!, p,, ..., $,; 1, ¢2, ---, ¢"} in U’ kanonische Koordi-
naten sind, kénnen wir immer erreichen, dass die Matrix H, = (04;/0p,) nicht singulér
ist. Damit werden die Gleichungen «; = 4,(py, ..., $n, 4% - - ., ¢") nach p auflosbar und
wir schreiben $; = fi(ay, ..., %,; ¢4, ..., ¢").

Es sei F = (0f,/0¢*) und H, = (0h,/0¢®), dann gelten die Gleichungen

H,F+H,=0 (1)
und
HquT—Hqu:O. (2)

(2) entspringt den Gleichungen [«;, «,] = 0. Nun folgen aus (1) und (2)
T
H,FH,+HH,=H,FH,+ H, H; =0 (3)
oder, da H, nicht singulér ist, durch Transponieren
H,FT+H,=0 (4)
also F = FT. Die Form } f; dq’ ist also geschlossen und daher lokal exakt:
fi = OS/OQi' (5)

Weiter ist S, = (0% S/0¢ Oor,) = (0f;/0e,) nicht singuldr. S erzeugt daher lokal eine
kanonische Transformation

p; = 0S[0g'; B = 0S[0a; (6)
auf die kanonischen Koordinaten {u,, ..., ot,; % ..., . |}
Zusatz: Sind {o,, ..., &,; 31, . ﬁN"} in x, kanonische Koordinaten, dann gilt
Bt = fi + 0x/0a; | (7)

wobei y(ay, ..., «,) eine C®° Funktion der Argumente ist.
Ein Satz von Arnold besagt

2. Satz [7]: |
FaHS {als s an}: Oy € E dle n (Mt i 1)/2 Gleichungen [mk! a‘l] =0 erfﬁllen L‘lnd fa.].lS
T(c®) = {x | ax(x) = €], .-, &,(%) = cp}

zusammenhdngend und kompakt ist und falls schliesslich fiir jedes x € T(c%) die
Differentiale {d«y, ..., da,} in T (M) linear unabhingig sind, dann ist T(c% zu einem
Torus diffeomorph.



Vol. 41, 1968 Winkel- und Wirkungsvariable fiir allgemeine mechanische Systeme 967

Auch hier wiederholen wir den einfachen Bewets: Die Vektorfelder L,: Ly(f) =
[ot, f] sind zu T'(c®) tangential und kommutieren. Da T(c?) kompakt ist, bestimmen
sie auf T(c®) eine m-parametrige Abelsche Gruppe ¥.: T(c%) - T(c%, v€ R";
V.oV, =¥, die T(") transitiv transformiert. Sei x,€ T(c?), dann ist durch
T>Y¥_ x, der R* auf T(c°) differenzierbar abgebildet. Der Stabilisator G =
{r | ¥, %y = x,} ist eine diskontinuierliche Untergruppe des R" und, da T(c°) kompakt
ist, ein nicht ausgeartetes Gitter G. R%/G ist ein Torus und diffeomorph zu T/(c%). l

Zur weiteren Diskussion gehen wir von den Voraussetzungen des 2. Satzes aus. Es
gibt dann im R" ein offenes Intervall I um ¢, in dessen Punkten ¢ diese Vorausset-
zungen wieder erfiillt sind. Zu jedem ¢ € I gehort also ein Torus T'(c) und die Gruppe
¥, lasst sich auf dieses «Biindel von Tori» ausdehnen. Jetzt sei x, € T(c?), dann gelten
in einer Umgebung von U von x, die Voraussetzungen des ersten Satzes. U sei so ge-
wihlt, dass die durch («, ..., «,) definierte Abbildung 4: U > R* die Bedingung
A(U) C I erfiillt.

Nun seien {a,, ..., a,; f%, ..., f"} die kanonischen Koordinaten aus dem 1. Satz zu
einer Umgebung U; C U. Die Beschriankung von L, auf U lautet dann 0/0f, und
das bedeutet, dass ¥ : («, f) - («, f + 7) bewirkt. Jetzt wihlen wir in U;, einen
Querschnitt o = {x | f(¥) = 0} und zwar so, dass A(¢) = I' C I wieder ein offenes
Intervall um ¢® ist. Durch ¥, x > («(x), 7), ¥ €0 wird das «Biindel von Tori»
U T(c) = M, auf I' x R abgebildet und diese Abbildung ist lokal ein Diffeomor-

cel )
phismus. Daher ist 71, eine Untermannigfaltigkeit, und I’ x R ist ihre universelle

Uberlagerungsmannigfaltigkeit. Die Fundamentalgruppe von #, ist isomorph zum
Gitter G, das heisst zum Stabilisator von x,€ T(c?). Die Erzeugenden von G sind
kanonische Transformationen der Gestalt (7), also von der Form

Vi o—>a; B> p =p+ 0yl hesl B ous s W (8)

Da die Basisvektoren des Gitters G linear unabhingig sind, ist die Matrix (0y,/0e,)
nicht singuldr und wir kénnen, allenfalls unter weiterer Beschrinkung von [, als
neue kanonische Variablen

pi=yi BF= Zaxi/()a" q'

einfithren. Dabei sind die ¢’ jetzt modulo 1 zu nehmen.
Das liefert uns den

3. Satz:

Unter den Voraussetzungen des 2. Satzes gibt es eine Umgebung M’ von T(c%) zu
kanonischen Koordinaten {p, ..., p,; ¢%, ..., ¢"}, ¢° mod1l, wobei oy, ..., «, sich als
Funktionen von ¢, ..., p, allein darstellen. 71’ ist exakt kanonisch, 2 beschrankt auf
M’ ist das Differential von } p, dg*.

)

1. Zusatz: Sind {p’, ¢’} ein weiterer Satz von Koordinaten, welche die Aussagen
des 3. Satzes erfiillen, dann gilt

¢ =Mqg+0y/0p; p=p'M+a

mit konstanter, ganzzahliger, modularer Matrix M (det M = 4+ 1), konstantem a und
einer Funktion y, die nur von p abhingt.
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2. Zusatz: Eine einparametrige Gruppe von kanonischen Transformationen
M —> M’ die jedes «, invariant lisst, ist von der Gestalt

D p—>p'=p, ¢—q¢=q+1t0H[0p (mod]l)

wobei H nur eine Funktion von ¢, ..., p, ist. Die infinitesimale Erzeugende L von @,
ist durch L(f) = [H, f] gegeben. L ist also ein exakt kanonisches Vektorfeld.
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Electroreflectance in Ge — Si Alloys?')

by James S. Kline?), Fred H. Pollak and Manuel Cardona?)
Physics Department, Brown University, Providence, Rhode Island, USA

(10. V. 68)

Abstract. The electroreflectance spectra of a series of germanium-silicon alloys, ranging in
concentration from 6.5 atomic percent silicon to 92.4 percent silicon, have been measured in the
energy region 0.8 eV—4.5 eV. A linear concentration dependence has been observed for all of the
structures (E,, Eo+4,, E,, E;+4,, E,, E,+4, and E,) that were investigated. A value of
4.00 + 0.05 eV for the I'y;— I, gap in pure silicon has been obtained from an extrapolation of the
concentration dependence of the direct edge (E,). It has also been observed that the E; and E,;
doublets of germanium merge into the 3.4 eV (E,) structure of silicon. These results are compared
to conventional reflectivity measurements.

I. Introduction

Considerable insight concerning the energy band structure of pure germanium and
pure silicon has been gained by careful studies of the composition dependence of the
properties of the germanium-silicon alloy system. BRAUNSTEIN, MOORE and HERMAN
[1] were able to observe the transition between a [111] (germanium) and [100] (silicon)
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