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Untersuchung der kondensierten Materie
mittels Neutronenstreuung

von W. Hilg
ETH Ziurich

(10. V. 68)

Die Beobachtung der Streuung langsamer Neutronen an Festkérpern und an
Flussigkeiten stellt heute eine bedeutende Methode dar, um die Struktur und die
Dynamik kondensierter Materie zu erforschen. Das Phinomen erweist sich in vielen
Fillen klassischen Streuexperimenten mit elektromagnetischer Strahlung iiberlegen,
weil bei letzterer die relativen Energiednderungen nur gering sind, was insbesondere
Untersuchungen von Bewegungsvorgidngen beschrinkt. Aber auch bei den rein
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elastischen Streuprozessen, die den Strukturbestimmungen zu Grunde liegen, kénnen
Neutronen Vorteile bieten oder Erkenntnisse liefern, welche mit anderen Sonden nicht
erhéltlich wiren. So lassen sich etwa in einem Kristall die Positionen leichter Kerne
in Gegenwart von schweren feststellen, was besonders bei der Bestimmung der
Struktur organischer Substanzen augenfillig wird, oder es kénnen die Lagen von
Atomen mit benachbarter Ladung ermittelt werden. Ferner bieten Neutronen wegen
der isotropen nuklearen Streuung und der Mittelung {iber grosse Probenvolumina
auch Vorteile zur Untersuchung von Fliissigkeiten, vor allem zur Messung von Struk-
turfaktoren. Diese Grosse steht in direktem Zusammenhang mit den elektronischen
Eigenschaften fliissiger Metalle.

Eine der wohl wichtigsten Klassen von elastischen Streuexperimenten liefert die
Beobachtung der Wechselwirkung des magnetischen Momentes des Neutrons mit
atomaren magnetischen Momenten, weil sich damit magnetische Strukturen ermitteln
lassen.

Die wesentlichsten Erfolge der unelastischen Neutronenstreuung stellen die
direkten Bestimmungen von Phononen- und Magnonen-Dispersionen im gesamten
Wellenvektorbereich der Brillouin-Zone dar.

Als weitere Anwendung sei schliesslich die paramagnetische Neutronenstreuung
erwdhnt. Damit lassen sich zum Beispiel bei seltenen Erdverbindungen Aussagen
machen iiber den Einfluss des Kristallfeldes sowie iiber die Austauschwechselwirkun-
gen auf die Energieniveaux der 4 f-Ionen.

Prof. Busch hat sich seit langem mit der Erforschung der magnetischen Eigen-
schaften der Festkérper beschiftigt, und es ist deshalb naheliegend, dass er grosses
Interesse an den durch die Neutronenstreuung eréffneten neuen Moglichkeiten be-
kundete und mit verschiedenen Instituten, welche sich dieser Forschungsrichtung
zugewandt hatten, eine enge Zusammenarbeit anstrebte.

Mit grosser Freude kénnen wir heute feststellen, wie auch die Neutronenstreuunter-
suchungen in der Schweiz immer wieder vom Institut fiir Festkorperphysik der ETH
inspiriert werden und wie wertvoll die gebotenen Gelegenheiten zur gemeinsamen
Bearbeitung von Problemen fiir uns sind. Neutronendiffraktionsexperimente diirfen,
schon des beachtlichen Aufwandes wegen, den sie erfordern, nicht zum Selbstzweck
unternommen werden und erweisen sich damit erst sinnvoll, wenn sie mit den
Forschungen eines grossen Festkorperinstitutes koordiniert werden kénnen.

Als ein Beispiel fiir derartige gemeinsame Anstrengungen wird in der Folge iiber
einige Untersuchungsergebnisse zur magnetischen Struktur von EuSe, eines magneti-
schen Halbleiters, welcher am Institut von G. Busch grundlegend bearbeitet worden
ist, berichtet. Ferner soll fiir das {liissige Zink der Zusammenhang zwischen Struktur-
faktor, Phonondispersion und elektrischem Widerstand kurz diskutiert werden.

Magnetischer Phaseniibergang bei EuSe

Im Gegensatz zu den Pulveruntersuchungen von PICKART und ALPERIN [1] be-
stitigen die vorliegenden Neutronendiffraktionsmessungen an einem im Institut fiir
Festkérperphysik der ETH hergestellten Europiumselenid-Einkristall den aus
Messungen der magnetischen Suszeptibilitdt durch Scawor und VocT [2] bekannten
magnetischen Phaseniibergang. Nach unseren Neutronenbeugungsmessungen ist
EuSe ohne dusseres Magnetfeld bei 4,2°K antiferromagnetisch, in Ubereinstimmung
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Figur 1
Neutronendiffraktogramme (Wellenlinge 1,39 A) von einem EuSe-Einkristall (1 x 1x 3 mm3) in
[111]-Richtungen bei verschiedenen Temperaturen und ohne dusseres Magnetfeld. Die Reflexe
(1/41/41/4) und (1/31/31/3) wurden mit einem Kollimator gemessen.

mit [1] und [2]. Allerdings traten magnetisch nur 1/4 7 {111}-Satellitenreflexe auf, so
dass hier die NEWS-Struktur [3] als Modell ausgeschlossen werden kann. Die
beobachteten Intensititen werden durch Kosinus- bzw. Rechteckwellen entlang den
{111>-Richtungen (NNSS, §,; = /28 cos(1/4 Tyyy 1, ; — m/4)) im Rahmen der Mess-
fehler besser als durch Spiralkonfigurationen (NWSE, NESW) erklidrt. Wie der deut-
liche ferromagnetische Intensititsbeitrag zum nuklearen (111)-Reflex (in Fig. 1) zeigt,
ist ohne dusseres Magnetfeld bei 1,9°K eine betrdchtliche spontane Magnetisierung
vorhanden. Ferner wurden antiferromagnetische Satellitenreflexe entsprechend
1/37 {111} und 1/27 {111} beobachtet. Wir nehmen an, dass die Reinheit und
Perfektion der Einkristallprobe den Grund fiir die Unterschiede zu den Ergebnissen
von Pickart und Alperin bilden.

Elektrischer Widerstand von fliissigem Zink

Der elektrische Widerstand eines fliissigen Metalls ldsst sich nach den Theorien
von Ziman und Bradley berechnen, sofern man Angaben iiber die Elektron-Ion-
Wechselwirkung machen kann und den statischen atomaren Strukturfaktor kennt.
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Beim fliissigen Zink wird die Temperaturabhingigkeit des Widerstandes, wie BuscH
und GUNTHERODT in [4] bemerken, durch die Temperaturabhidngigkeit des Struktur-
faktors bedingt. Da diese Grosse aus Rontgenbeugungsmessungen nur mangelhaft
bekannt ist, haben wir eine Neubestimmung mit Neutronen durchgefiihrt. Figur 2
zeigt das Beugungsdiagramm von fliissigem Zink bei 516 °C und zum Vergleich auch
dasjenige einer polykristallinen Probe. Kombiniert man diesen Strukturfaktor mit
einem von SCHNEIDER und StoLL [5] aus Phononendispersionen ermittelten Modell-
potential fiir die Elektron-Ion-Wechselwirkung, so ergibt sich fiir den spezifischen
elektrischen Widerstand 43,8 4 cm, was ermutigend gut mit dem experimentellen
Wert von 36,7 uf2 cm [6] iibereinstimmt.
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Vergleich der Neutronendiffraktogramme von flissigem (516°C) und polykristallinem (20 °C,
393°C) Zink. Q = Impulsiibertrag = (4 7/A) sin@; 2 § = Streuwinkel; Wellenlinge 4 = 0,90 A;
2 k¥ = Durchmesser der Fermi-Kugel.
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