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Newtons Auffassung der Mathematik
und die mathematische Form der «Principia»

von Markus Fierz
(ETH Zürich)

(29. II. 68)

Wer theoretische Mechanik unterrichtet, der beruft sich auf Newton, und er nennt
die Bewegungsgleichungen «die Newtonschen Gleichungen». Aber in dem berühmten
Werke Newtons über Mechanik, den «Philosophiae Naturalis Principia Mathematica»
von 1687 wird er vergeblich nach Bewegungsgleichungen suchen. Und doch behandelt
Newton in seinem Werk einen grossen Teil all der Probleme, die wir auch heute in
unseren Vorlesungen behandeln. Aber dies geschieht in einer uns fremd gewordenen
mathematischen Form: diese ist geometrisch. Anstatt Formeln erscheinen Figuren,
in denen Endpunkte von Strecken mit Buchstaben bezeichnet sind. Die mathematischen

Aussagen sind nun solche über Proportionen zwischen Strecken oder zwischen
Flächen, die umständlich mit Worten formuliert werden.
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Newton eröffnet sein Buch mit acht Definitionen, nämlich von Masse, Bewegungs-
grösse, Trägheit, Kraft und Kraftmass. Hierauf folgen die Axiome oder Bewegungsgesetze,

deren zweites lautet: «Mutationem motus proportionalem esse vi motrici
impressae et fieri secundum lineam rectam qua vis illa imprimitur. »

Nun ist es unmöglich, die Mechanik ohne infinitesimale Begriffsbildung
aufzubauen. Darum folgt jetzt ein Abschnitt, der den Titel trägt: «Über die Methode der
ersten und letzten Verhältnisse, mit deren Hilfe alles folgende bewiesen wird.» Hier
werden elf Lemmata ausgesprochen und bewiesen, welche die Existenz gewisser
Grenzwerte sicherstellen. Das erste Lemma ist ein Konvergenzkriterium und lautet :

«Grössen, wie auch Verhältnisse von Grössen, die während irgendeiner endlichen Zeit
dauernd zur Gleichheit streben und die vor dem Ende dieser Zeit sich näherkommen
als jede vorgegebene Differenz, sind schliesslich gleich.»

Die Definitionen, Axiome und die Lemmata, vor allem Lemma IX und X, sind in
den Händen Newtons dem gleichwertig, was wir «Newtonsche Gleichungen» nennen.

Newton schliesst diesen Abschnitt mit einem Scholium, in dem es heisst : «Ich habe
diese Lemmata vorausgeschickt, um die bis zum Überdruss langen indirekten Beweise
im Stil der antiken Geometer zu vermeiden. Gedrängtere Beweise sind auch möglich,
wenn man die Methode der Indivisiblen1) verwendet. Weil aber die Hypothese, es gäbe
Indivisible, etwas Stossendes hat und darum diese Methode als weniger geometrisch
gilt, so zog ich es vor, die Beweise dessen, was folgt, mit Hilfe letzter Summen und
Verhältnisse verschwindender Grössen zu führen, d.h. mit Hilfe der Grenzwerte solcher
Summen und Verhältnisse. »

Die Grössen, von denen hier die Rede ist, sind geometrische Grössen, also Strecken,
Flächen und Winkel. Darum erscheinen in den Lemmata das Riemannsche Integral
und die Ableitung in geometrischer Gestalt.

Newton erreicht durch seine Darstellung einen hohen Grad mathematischer Strenge.
Es ist eindrucksvoll, wie elegant und geistreich er seinen Gegenstand bewältigt. Aber
uns, die wir an das analytische Verfahren gewöhnt sind, scheint seine Darstellung
künstlich und zudem unnötig schwierig. Auch die Zeitgenossen hatten grösste Mühe,
die Newtonsche Mathematik zu verstehen. Erst nachdem die Mechanik, vor allem
durch die Bemühungen Eulers, ihre moderne analytische Gestalt gewonnen hatte,
wurde sie einem grösseren Kreise verständlich. Das geschah allerdings zuerst unter
Verzicht auf mathematische Strenge. So ist für Euler der Differentialquotient das
Verhältnis wirklich unendlich kleiner Grössen.

Das Streben Newtons, seinen «Principia» eine an die Werke des Archimedes
erinnernde, synthetische Form zu geben, kann man als reaktionär bezeichnen : sie steht
im Gegensatz zu den damals modernen Tendenzen, die von Descartes inspiriert waren.
Dieser hatte 1637 in seiner «Géométrie» die Äquivalenz algebraischer und geometrischer

Probleme nachgewiesen und mit zahlreichen Beispielen belegt. Seither neigten
die jüngeren Mathematiker mehr und mehr dazu, ihre Wissenschaft zu algebraisieren.
Das war auch das Ziel, das Leibniz verfolgte, der eine Differentialrechnung, d. h. einen

analytischen Kalkül entwickelte, und damit ungeheuren Erfolg hatte.

Die Methode der Indivisiblen ist ein vor allem durch die italienischen Mathematiker entwickeltes

Integrationsverfahren, das von aktuell unendlich kleinen Grössen Gebrauch macht. Vergi,
hiezu Carl B. Boyer, The History of the Calculus (Dover Publications 1959).
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Auch Newton war, als Mathematiker und als Physiker, von Descartes ausgegangen.

Dessen mathematische Methode hat er in der reich kommentierten und ergänzten
Ausgabe von Schooten (Amsterdam 1659/1661) fleissig studiert2). In den Jahren 1664
bis 1666 hat er, lange vor Leibniz, seine Analysis entwickelt, die er in den folgenden
Jahren zu grosser Vollkommenheit brachte. Dabei haben ihn häufig kinematische
Vorstellungen geleitet.

Es ist darum merkwürdig, dass er die Mechanik nicht analytisch behandelt hat.
In den Principia sind algebraische Methoden, wo irgend möglich, vermieden.

Es scheint, dass Newton, mindestens im Alter, seine Begeisterung für die Cartesi-
schen Methoden als eine Art Jugendsünde ansah. So berichtet Pemberton :

«Sir Isaac Newton has several times particularly recommended to me Huygen's
stile and manner. He thought him the most elegant of any mathematical writers of
modern times, and the most just imitator of the ancients. Of their taste, and form of
demonstration Sir Isaac always professed himself a great admirer : I have heard him
even censure himself for not following them yet more closely than he did ; and speak
with regret of his mistake at the beginning of his mathematical studies, in applying
himself to the work of Des Cartes and other algebraic writers, before he had considered
the elements of Euclid with that attention which so excellent a writer deserves. »

Nun weiss man, dass Newton als Student seinen Euklid mit grosser Sorgfalt
studierte. In welcher Hinsicht liess er es also seiner Ansicht nach an Aufmerksamkeit
fehlen

Darauf gibt uns eine Anekdote Antwort. Conduitt erzählt: «Soon after (he had
studied Des Cartes) he stood to be a Scholar of the House and Dr. Barrow examined
him in Euclid which he knew so little of that Dr. Barrow conceived a very indifferent
opinion of him. The Dr. never asked him about Descartes' Geometry not imagining
that any one could be master of that book without first reading Euklid Upon this
Sir Isaac read Euclid over again and began to change his opinion of him when he read
that Paralellograms upon the same base and between the same parallels are equal and
that other proposition that in a right angled triangle the square of the Hypothonuse
is equal to the squares of the two other sides. »

Ich möchte hier nicht erörtern, ob, oder in welchem Sinne, diese Geschichte im
einzelnen wahr sein kann. Als Ganzes ist sie plausibel. Es kommt durchaus vor, dass
ein junger, genialer Student Sätze, wie die erwähnten, trivial3) findet und dass ihm
ein Professor darum einen Dämpfer aufsetzt. Dies geschieht besonders dann, wenn der
Professor ahnt, dass ihm der junge Mann überlegen ist.

Conduitt kann die Geschichte nicht erfunden haben. Sie muss auf einen bedeutenden

Mathematiker zurückgehen, der den tieferen Sinn der beiden angeführten Lehrsätze

erkennen konnte, und dem sie darum nicht trivial vorkamen. Warum sollte also
nicht Newton selber etwas Derartiges erzählt haben

Isaac Newton, The Mathematical Papers, Bd. I. 1664-1666, ed. by D.T.Whiteside
(Cambridge 1967).
Durch diese Ausgabe und durch seine lichtvollen und inhaltsreichen Einleitungen hat der
gelehrte Herausgeber uns die Entwicklung des Mathematikers Newton nahegebracht. Meine
Studie stützt sich wesentlich auf dieses Werk.
Der Biograph Newtons, L. T.Morre, hält die Geschichte für unhistorisch, ja für sinnlos, weil
ihm die erwähnten Lehrsätze trivial erscheinen.



824 Markus Fierz H. P. A.

Der Satz über Parallelogramme ist Propositio 35 im 1. Buch Euklid. Hier wird,
ohne dass dies gesagt wird, in einem neuen Sinne von der Gleichheit von Figuren
gehandelt, nämlich im Sinn der Flächengleichheit, im Gegensatz zur Kongruenz. Wer
den axiomatischen Aufbau des Buches nicht sorgfältig beachtet, dem entgeht das
leicht. Der Herausgeber der klassischen englischen Euklidausgabe, Sir Thomas Heath,
widmet darum diesem Lehrsatz einen Kommentar von über drei enggedruckten
Seiten. Diesem Satz folgt eine Reihe von zwölf weiteren Sätzen, die im Pythagoräischen
Lehrsatz gipfelt: einem Hauptsatz der Euklidschen Geometrie. So stehen also die
beiden Lehrsätze unserer Anekdote für diese ganze Reihe.

Euklid beweist die Sätze ohne infinitesimale Hilfsmittel. Er verwendet vielmehr
neben schon bewiesenen Kongruenzsätzen die allgemeinen Axiome über «gleiche
Grössen», d.h. dass Dinge die demselben Ding gleich sind, auch untereinander gleich
sind und dass dann, wenn man zu gleichen Dingen gleiche addiert, die Summen ebenfalls

gleich sind.
Man kann die Gleichheit der Parallelogramme auch leicht mit Hilfe von Indivisiblen

beweisen, und etwas Derartiges hat Newton vielleicht in der erwähnten Prüfung
vorgeschlagen4). Später aber schien ihm die Hypothese der Indivisiblen stossend.
Man kann den Pythagoräischen Lehrsatz durch Betrachten ähnlicher Dreiecke und
Proportionen beweisen. Das hat dem jungen Newton vielleicht mehr eingeleuchtet, als
die scheinbar künstliche Beweisart bei Euklid5). Aber ein Beweis mit Proportionen
setzt die Proportionenlehre des Eudoxos voraus, die erst im V. Buch des Euklid
dargestellt ist. Diese benötigt eine Reihe weiterer Axiome, denn sie ist eine Theorie des
geometrischen Kontinuums und entspricht der Dedekindschen Theorie der reellen Zahlen.

Unsere Anekdote gibt uns also einen Hinweis darauf, woran es Newton bei seinem
Euklidstudium vorerst fehlen liess : er beachtete den axiomatischen Aufbau des Werkes

nicht genügend, und so erkannte er nicht, wie eine folgerichtige und strenge
mathematische Deduktion zu geschehen hat. Nun lernte er, dass es zu einem strengen
Aufbau einer mathematischen Theorie gehört, dass ein elementarer Satz auch mit
elementaren Mitteln bewiesen werden soll. Was aber elementar sei, dafür liefert der axio-
matische Aufbau das Kriterium: neue Axiome dürfen nur dann angerufen werden,
wenn dies zum Beweis notwendig ist. Daraus ergibt sich, dass die erwähnten Sätze
ohne infinitesimale Begriffe, also ohne die Theorie des geometrischen Kontinuums,
bewiesen werden müssen.

Es scheint mir, dass der ältere Newton sich darüber im klaren war, dass ihm ein
rein arithmetisch-algebraischer Aufbau der Analysis in diesem strengen Sinn nicht
möglich sei. Dies kann ja nur gelingen, wenn man einen wohldefinierten Begriff der
reellen Zahl besitzt. Dieser ist aber erst im 19. Jh. durch Bolzano, Weierstrass und
Dedekind entwickelt worden6). Im 17. Jh. gab es aber nur die Theorie des geometrischen

Kontinuums, die im V. Buch des Euklid dargestellt ist. Hier tritt anstelle der
reellen Zahl die Proportion. Ganz in diesem Sinn erklärt darum Newton in seiner
Vorlesung über höhere Mathematik, der «Arithmetica Universalis»:

Vgl. hiezu I.Newton, «The Mathematical Papers», p. 91 ff.
Vgl. «The Mathematical Papers» p. 6, Fussnote 12).

Ob die Dedekindsche Konstruktion des Kontinuums der reellen Zahlen ohne die geometrische
Vorstellung des linearen Kontinuums einleuchtend wäre, ist fraglich. Der «Schnitt», welcher die
rationalen Zahlen in zwei Klassen teilt, entspricht jedenfalls einer geometrischen Vorstellung.
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«Unter einer Zahl verstehen wir nicht eine Vielheit von Einheiten, sondern
vielmehr das Verhältnis einer abstrakten Grösse zu einer anderen der gleichen Art, die als

Einheit gilt. »

Dadurch wird, wenn wir so sagen dürfen, die «Arithmetica» in der Geometrie
verankert. Denn hier allein ist ein strenger Aufbau möglich. Darum führt auch nur die

geometrische, und nicht die algebraische Betrachtungsweise, zu einem wirklichen
Verständnis mathematischer Strukturen.

Diese Ansicht wird in einem Anhang zur «Arithmetica», der die graphische Lösung
von Gleichungen behandelt, auseinandergesetzt. Newton sagt:

« Studiert man Kurven und sucht ihre Eigenschaften zu ergründen, dann lobe ich
es, wenn man sie nach dem Grad ihrer Gleichungen einteilt. Aber es ist nicht die
Gleichung, es ist die Konstruktion (descriptio), welche die Kurve erzeugt.»

Später aber heisst es :

«Der einfachste Kegelschnitt ist die Ellipse. Sie ist wohlbekannt und dem Kreise
sehr verwandt. Auch kann sie leicht von Hand in der Ebene konstruiert werden.

Einige ziehen ihr die Parabel vor, weil diese durch eine einfachere Gleichung dargestellt

wird. Aber von diesem Standpunkt aus wäre die Parabel sogar dem Kreise
vorzuziehen, was nie geschieht. Also ist die Einfachheit der Gleichungen ein falscher
Gesichtspunkt. Das Denken der heutigen Geometer beschäftigt sich überhaupt viel zu
sehr mit den Gleichungen. Ihre Einfachheit entspricht einer analytischen
Betrachtungsweise. Wir bemühen uns aber um die Synthese, und deren Gesetze folgen nicht
aus der Analyse. Diese führt zwar zur Synthese : aber die Synthese ist erst dann ganz
abgeschlossen, wenn sie von aller Analyse befreit ist. Verbleibt in einer Synthese nur
ein kleiner analytischer Rest, so ist die wahre Synthese nicht gelungen. Die Synthese
ist in sich vollendet und schreckt vor jeder analytischen Beimischung zurück. Die
Einfachheit einer Figur hängt von der Einfachheit ihrer Entstehungsweise, ihrer
erzeugenden Idee ab. Nicht die Gleichung, die Konstruktion, sei sie geometrisch oder
mechanisch, erzeugt die Figur und liefert den verständlichen Begriff7).»

Es ist klar, dass diese Betrachtung eine Polemik gegen Descartes und seine Nachfolger

enthält. Sie zeigt aber vor allem, was für Newton das mathematische Ideal war.
Für ihn gibt es eine Rangordnung der mathematischen Methoden, in der die Synthese -
er sagt «compositio» - am höchsten steht; denn in ihr wird das gesuchte Gebilde
geometrisch konstruiert8). Der Rang der Konstruktionsmittel ist durch die in den Axiomen

niedergelegten Existenzsätze gegeben. Denn Newton sagt:
«Allein der Axiome halber hat der Kreis denselben Rang wie die Gerade. Das gilt

noch mehr für die Ellipse, die weniger vom Kreise abweicht als der Kreis von der
Geraden, die den gleichen Rang wie der Kreis erhält, wenn man ihre Konstruktion in
der Ebene gleichfalls axiomatisch fordert.»

Ich kann mir hier nicht versagen, auf die allgemeine Relativitätstheorie hinzuweisen. Ihre
Feldgleichungen sind vom geometrischen Standpunkt aus und von der mathematisch-physikalischen

Idee her gesehen, höchst einfach. Analytisch, d.h. als partielle Differentialgleichungen 2.

Ordnung betrachtet, sind sie aber erschreckend kompliziert. Vielleicht kann dieses Beispiel deutlich

machen, dass auch heute Newtons Standpunkt seine Berechtigung hat.
Das erinnert an die Meinung der Intuitionisten, für die ein Existenzsatz ohne nachfolgende
Konstruktion «einem Papiere gleicht, welches das Vorhandensein eines Schatzes anzeigt, ohne
jedoch zu verraten, an welchem Ort» (H.Weyl, «Selecta» [Basel 1956] p. 224).
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Es erhebt sich jetzt noch die Frage, was nach Newton die Bedeutung der geometrischen

Axiome denn ist. Darauf findet man die Antwort im Vorwort der Principia:
«Das Konstruieren (descriptio) sowohl der Geraden wie der Kreise, auf dem die

Geometrie beruht, gehört in die Mechanik. Aber die Geometrie lehrt nicht, wie man
diese Kurven konstruiert, das postuliert sie. Darauf lehrt sie, wie man mit Hilfe dieser

Operationen Probleme löst. Gerade und Kreise konstruieren, das sind ebenfalls
Probleme, aber keine der Geometrie. Man fordert, dass sie die Mechanik lösen könne. In
der Geometrie lehrt man ihren Gebrauch. Nun rühmt sich die Geometrie, dass sie mit
so wenigen Grundsätzen, die anderswoher entlehnt sind, so vieles leisten könne. Die
Geometrie ist daher in der praktischen Mechanik begründet und ist nichts anderes als

derjenige Teil der allgemeinen Mechanik, welcher die Messkunst streng darstellt und
beweist.»

Diese Aussagen lassen an Deutlichkeit nichts zu wünschen übrig. Die Geometrie
ist für Newton die mathematisch-physikalische Theorie des wirklichen, physikalischen

Raumes. Dieser ist ein metrisches Kontinuum, dessen Eigenschaften durch
physikalische Messung erforscht werden müssen. Die Axiome der Geometrie sind darum

physikalische Aussagen über den Raum, genau so, wie die Axiome der Mechanik,
die Leges motûs, physikalische Aussagen über die Bewegung der Körper sind. Das
Zahlenkontinuum, das der Analysis zugrunde gelegt wird, ist Abbild des geometrischen

Kontinuums. Darum kann auch die Analysis streng genommen nur geometrisch
begründet und dargestellt werden. Als Axiome soll man daher die Existenz derjenigen
geometrischen Gebilde postulieren, die in der «mechanischen Praxis» am genauesten
konstruiert werden können.

Ich glaube, dass die hier gesammelten Zitate aus Newtons Werken sowie die
Berichte seiner Zeitgenossen über sein Denken und seine Erlebnisse, deutlich genug
zeigen, was Newtons Auffassung der Mathematik war.

Gewiss hat er nicht immer so gedacht. Als junger Mann war er Cartesianer, wenn
er auch schon früh Vorbehalte gegenüber der cartesischen Philosophie anbrachte:
dass Ausdehnung und Materie dasselbe sein sollten, hat ihm gar nicht eingeleuchtet9).

Mit der Zeit schien ihm auch der mathematische Standpunkt Descartes' immer
anfechtbarer. Mehr und mehr wuchs seine Achtung vor den klassischen Geometern der
älteren Generation, und besonders Huygens ward ihm zum Vorbild. Das entspricht
einer natürlichen geistigen Entwicklung. So ist er schliesslich zu einer grossartigen,
folgerichtigen und strengen Auffassung der Mathematik gelangt, was allerdings zur
Folge hatte, dass er seinem Werk eine altertümliche und schwierige Form gegeben hat.

Vgl. die Kritik an der cartesischen Raum- und Bewegungslehre in «de gravitatione et aequipon-
dio fluidorum», herausgegeben in A.R.Hall und M.Boas Hall, «Unpublished Scientific
Papers of LN. » (Cambridge 1962). Die Herausgeber datieren diese Schrift in die Jahre 1664 bis
1668. Sie enthält u. a. schon Formulierungen, wie dass nichts existieren könne, das nicht irgendwie

mit dem Raum zu tun habe. Darum sei der Raum die Folge der höchsten Existenz. Diese
Gedanken sind also keineswegs erst dem alten Newton eigen.
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