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Newtons Auffassung der Mathematik
und die mathematische Form der «Principia»

von Markus Fierz
(ETH Ziirich)

(29. T1. 68)

Wer theoretische Mechanik unterrichtet, der beruft sich auf Newton, und er nennt
Bewegungsgleichungen «die Newtonschen Gleichungen». Aber in dem beriihmten

Werke Newtons iiber Mechanik, den «Philosophiae Naturalis Principia Mathematica»
von 1687 wird er vergeblich nach Bewegungsgleichungen suchen. Und doch behandelt
Newton in seinem Werk einen grossen Teil all der Probleme, die wir auch heute in
unseren Vorlesungen behandeln. Aber dies geschieht in einer uns fremd gewordenen
mathematischen Form: diese ist geometrisch. Anstatt Formeln erscheinen Figuren,
in denen Endpunkte von Strecken mit Buchstaben bezeichnet sind. Die mathemati-
schen Aussagen sind nun solche tiber Proportionen zwischen Strecken oder zwischen
Flidchen, die umstindlich mit Worten formuliert werden.



822 Markus Fierz H. P. A.

Newton eréffnet sein Buch mit acht Definitionen, ndmlich von Masse, Bewegungs-
grosse, Tragheit, Kraft und Kraftmass. Hierauf folgen die Axiome oder Bewegungs-
gesetze, deren zweites lautet: «Mutationem motus proportionalem esse vi motrici
impressae et fieri secundum lineam rectam qua vis illa imprimitur.»

Nun ist es unmoglich, die Mechanik ohne infinitesimale Begriffsbildung aufzu-
bauen. Darum folgt jetzt ein Abschnitt, der den Titel trigt: « Uber die Methode der
ersten und letzten Verhidltnisse, mit deren Hilfe alles folgende bewiesen wird.» Hier
werden elf Lemmata ausgesprochen und bewiesen, welche die Existenz gewisser
Grenzwerte sicherstellen. Das erste Lemma ist ein Konvergenzkriterium und lautet:
«Grossen, wie auch Verhiltnisse von Grossen, die wahrend irgendeiner endlichen Zeit
dauernd zur Gleichheit streben und die vor dem Ende dieser Zeit sich niherkommen
als jede vorgegebene Differenz, sind schliesslich gleich.»

Die Definitionen, Axiome und die Lemmata, vor allem Lemma IX und X, sind in
den Hinden Newtons dem gleichwertig, was wir «Newtonsche Gleichungen» nennen.

Newton schliesst diesen Abschnitt mit einem Scholium, in dem es heisst: «Ich habe
diese Lemmata vorausgeschickt, um die bis zum Uberdruss langen indirekten Beweise
im Stil der antiken Geometer zu vermeiden. Gedrangtere Beweise sind auch mdglich,
wenn man die Methode der Indivisiblen!) verwendet. Weil aber die Hypothese, es gdbe
Indivisible, etwas Stossendes hat und darum diese Methode als weniger geometrisch
gilt, so zog ich es vor, die Beweise dessen, was folgt, mit Hilfe letzter Summen und Ver-
hiltnisse verschwindender Gréssen zu fiihren, d.h. mit Hilfe der Grenzwerte solcher
Summen und Verhiltnisse.»

Die Gréssen, von denen hier die Rede ist, sind geometrische Grossen, also Strecken,
Flachen und Winkel. Darum erscheinen in den Lemmata das Riemannsche Integral
und die Ableitung in geometrischer Gestalt.

Newton erreicht durch seine Darstellung einen hohen Grad mathematischer Strenge.
Es ist eindrucksvoll, wie elegant und geistreich er seinen Gegenstand bewiltigt. Aber
uns, die wir an das analytische Verfahren gew6hnt sind, scheint seine Darstellung
kiinstlich und zudem unnétig schwierig. Auch die Zeitgenossen hatten grosste Miihe,
die Newtonsche Mathematik zu verstehen. Erst nachdem die Mechanik, vor allem
durch die Bemiihungen Eulers, ihre moderne analytische Gestalt gewonnen hatte,
wurde sie einem grosseren Kreise verstiandlich. Das geschah allerdings zuerst unter

Verzicht auf mathematische Strenge. So ist fiir Euler der Differentialquotient das
Verhiltnis wirklich unendlich kleiner Grossen.

Das Streben Newtons, seinen «Principia» eine an die Werke des Archimedes er-
innernde, synthetische Form zu geben, kann man als reaktionér bezeichnen: sie steht
im Gegensatz zu den damals modernen Tendenzen, die von Descartes inspiriert waren.
Dieser hatte 1637 in seiner «Géométrie» die Aquivalenz algebraischer und geometri-
scher Probleme nachgewiesen und mit zahlreichen Beispielen belegt. Seither neigten
die jiingeren Mathematiker mehr und mehr dazu, ihre Wissenschaft zu algebraisieren.
Das war auch das Ziel, das Leibniz verfolgte, der eine Differentialrechnung, d.h. einen
analytischen Kalkiil entwickelte, und damit ungeheuren Erfolg hatte.

1) Die Methode der Indivisiblen ist ein vor allem durch die italienischen Mathematiker entwickel-
tes Integrationsverfahren, das von aktuell unendlich kleinen Gréssen Gebrauch macht. Vergl.
hiezu Carl B. Bovyer, The History of the Calculus (Dover Publications 1959).
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Auch Newton war, als Mathematiker und als Physiker, von Descartes ausgegan-
gen. Dessen mathematische Methode hat er in der reich kommentierten und ergdnzten
Ausgabe von Schooten (Amsterdam 1659/1661) fleissig studiert?). In den Jahren 1664
bis 1666 hat er, lange vor Leibniz, seine Analysis entwickelt, die er in den folgenden
Jahren zu grosser Vollkommenheit brachte. Dabei haben ihn hidufig kinematische Vor-
stellungen geleitet.

Es ist darum merkwiirdig, dass er die Mechanik nicht analytisch behandelt hat.
In den Principia sind algebraische Methoden, wo irgend méglich, vermieden.

Es scheint, dass Newton, mindestens im Alter, seine Begeisterung fiir die Cartesi-
schen Methoden als eine Art Jugendsiinde ansah. So berichtet Pemberton:

«Sir Isaac Newton has several times particularly recommended to me Huygen’s
stile and manner. He thought him the most elegant of any mathematical writers of
modern times, and the most just imitator of the ancients. Of their taste, and form of
demonstration Sir Isaac always professed himself a great admirer: I have heard him
even censure himself for not following them yet more closely than he did; and speak
with regret of his mistake at the beginning of his mathematical studies, in applying
himself to the work of Des Cartes and other algebraic writers, before he had considered
the elements of Euclid with that attention which so excellent a writer deserves.»

Nun weiss man, dass Newton als Student seinen Euklid mit grosser Sorgfalt stu-
dierte. In welcher Hinsicht liess er es also seiner Ansicht nach an Aufmerksamkeit
fehlen? '

Darauf gibt uns eine Anekdote Antwort. Conduitt erzdhlt: «Soon after (he had
studied Des Cartes) he stood to be a Scholar of the House and Dr. Barrow examined
him in Euclid which he knew so little of that Dr. Barrow conceived a very indifferent
opinion of him. The Dr. never asked him about Descartes’ Geometry not imagining
that any one could be master of that book without first reading Euklid ... Upon this
Sir Isaac read Euclid over again and began to change his opinion of him when he read
that Paralellograms upon the same base and between the same parallels are equal and
that other proposition that in a right angled triangle the square of the Hypothonuse
is equal to the squares of the two other sides.»

Ich mochte hier nicht erértern, ob, oder in welchem Sinne, diese Geschichte im
einzelnen wahr sein kann. Als Ganzes ist sie plausibel. Es kommt durchaus vor, dass
ein junger, genialer Student Sitze, wie die erwihnten, trivial3) findet und dass ihm
ein Professor darum einen Dampfer aufsetzt. Dies geschieht besonders dann, wenn der
Professor ahnt, dass ihm der junge Mann iiberlegen ist.

Conduitt kann die Geschichte nicht erfunden haben. Sie muss auf einen bedeuten-
den Mathematiker zuriickgehen, der den tieferen Sinn der beiden angefithrten Lehr-
sitze erkennen konnte, und dem sie darum nicht trivial vorkamen. Warum sollte also
nicht Newton selber etwas Derartiges erzdhlt haben ?

%) Isaac NEwTON, The Mathematical Papers, Bd. 1. 1664-1666, ed. by D.T. Wnitesipe (Cam-
bridge 1967).
Durch diese Ausgabe und durch seine lichtvollen und inhaltsreichen Einleitungen hat der
gelehrte Herausgeber uns die Entwicklung des Mathematikers Newton nahegebracht. Meine
Studie stiitzt sich wesentlich auf dieses Werk.

3) Der Biograph Newtons, L. T.MoRrgE, hilt die Geschichte fiir unhistorisch, ja fiir sinnlos, weil
ihm die erwdhnten Lehrsitze trivial erscheinen.
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Der Satz iiber Parallelogramme ist Propositio 35 im 1. Buch Euklid. Hier wird,
ohne dass dies gesagt wird, in einem neuen Sinne von der Gleichheit von Figuren ge-
handelt, ndmlich im Sinn der Flachengleichheit, im Gegensatz zur Kongruenz. Wer
den axiomatischen Aufbau des Buches nicht sorgfiltig beachtet, dem entgeht das
leicht. Der Herausgeber der klassischen englischen Euklidausgabe, Sir Thomas Heath,
widmet darum diesem Lehrsatz einen Kommentar von iiber drei enggedruckten Sei-
ten. Diesem Satz folgt eine Reihe von zw6lf weiteren Sétzen, die im Pythagordischen
Lehrsatz gipfelt: einem Hauptsatz der Euklidschen Geometrie. So stehen also die
beiden Lehrsitze unserer Anekdote fiir diese ganze Reihe.

Euklid beweist die Sitze ohne infinitesimale Hilfsmittel. Er verwendet vielmehr
neben schon bewiesenen Kongruenzsitzen die allgemeinen Axiome iiber «gleiche
Grossen», d.h. dass Dinge die demselben Ding gleich sind, auch untereinander gleich
sind und dass dann, wenn man zu gleichen Dingen gleiche addiert, die Summen eben-
falls gleich sind.

Man kann die Gleichheit der Parallelogramme auch leicht mit Hilfe von Indivisib-
len beweisen, und etwas Derartiges hat Newton vielleicht in der erwdhnten Priifung
vorgeschlagen?). Spdter aber schien ihm die Hypothese der Indivisiblen stossend.
Man kann den Pythagordischen Lehrsatz durch Betrachten dhnlicher Dreiecke und
Proportionen beweisen. Das hat dem jungen Newton vielleicht mehr eingeleuchtet, als
die scheinbar kiinstliche Beweisart bei Euklid?®). Aber ein Beweis mit Proportionen
setzt die Proportionenlehre des Eudoxos voraus, die erst im V. Buch des Euklid dar-
gestellt ist. Diese benétigt eine Reihe weiterer Axiome, denn sie ist eine Theorie des geo-
metrischen Kontinuums und entspricht der Dedekindschen Theorie der reellen Zahlen.

Unsere Anekdote gibt uns also einen Hinweis darauf, woran es Newton bei seinem
Euklidstudium vorerst fehlen liess: er beachtete den axiomatischen Aufbau des Wer-
kes nicht geniigend, und so erkannte er nicht, wie eine folgerichtige und strenge
mathematische Deduktion zu geschehen hat. Nun lernte er, dass es zu einem strengen
Aufbau einer mathematischen Theorie gehért, dass ein elementarer Satz auch mit ele-
mentaren Mitteln bewiesen werden soll. Was aber elementar sei, dafiir liefert der axio-
matische Aufbau das Kriterium: neue Axiome diirfen nur dann angerufen werden,
wenn dies zum Beweis notwendig ist. Daraus ergibt sich, dass die erwdhnten Sitze
ohne infinitesimale Begriffe, also ohne die Theorie des geometrischen Kontinuums,
bewiesen werden miissen.

Es scheint mir, dass der dltere Newton sich dariiber im klaren war, dass ihm ein
rein arithmetisch-algebraischer Aufbau der Analysis in diesem strengen Sinn nicht
moglich sei. Dies kann ja nur gelingen, wenn man einen wohldefinierten Begriff der
reellen Zahl besitzt. Dieser ist aber erst im 19. Jh. durch Bolzano, Weierstrass und
Dedekind entwickelt worden®). Im 17. Jh. gab es aber nur die Theorie des geometri-
schen Kontinuums, die im V. Buch des Euklid dargestellt ist. Hier tritt anstelle der
reellen Zahl die Proportion. Ganz in diesem Sinn erkldrt darum Newton in seiner Vor-
lesung iiber hohere Mathematik, der «Arithmetica Universalis»:

4) Vgl. hiezu I. NEwTON, «The Mathematical Papers», p. 911f.

5) Vgl. «The Mathematical Papers» p. 6, Fussnote 12).

6) Ob die Dedekindsche Konstruktion des Kontinuums der reellen Zahlen ohne die geometrische
Vorstellung des linearen Kontinuums einleuchtend wire, ist fraglich. Der «Schnitt», welcher die
rationalen Zahlen in zwei Klassen teilt, entspricht jedenfalls einer geometrischen Vorstellung.
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«Unter einer Zahl verstehen wir nicht eine Vielheit von Einheiten, sondern viel-
mehr das Verhiltnis einer abstrakten Grosse zu einer anderen der gleichen Art, die als
Einheit gilt.»

Dadurch wird, wenn wir so sagen diirfen, die «Arithmetica» in der Geometrie ver-
ankert. Denn hier allein ist ein strenger Aufbau méglich. Darum fiihrt auch nur die
geometrische, und nicht die algebraische Betrachtungsweise, zu einem wirklichen Ver-
stindnis mathematischer Strukturen. ‘

Diese Ansicht wird in einem Anhang zur «Arithmetica», der die graphische Losung
von Gleichungen behandelt, auseinandergesetzt. Newton sagt:

«Studiert man Kurven und sucht ihre Eigenschaften zu ergriinden, dann lobe ich
es, wenn man sie nach dem Grad ihrer Gleichungen einteilt. Aber es ist nicht die Glei-
chung, es ist die Konstruktion (descriptio), welche die Kurve erzeugt.»

Spater aber heisst es:

«Der einfachste Kegelschnitt ist die Ellipse. Sie ist wohlbekannt und dem Kreise
sehr verwandt. Auch kann sie leicht von Hand in der Ebene konstruiert werden.
Einige ziehen ihr die Parabel vor, weil diese durch eine einfachere Gleichung darge-
stellt wird. Aber von diesem Standpunkt aus wire die Parabel sogar dem Kreise vor-
zuziehen, was nie geschieht. Also ist die Einfachheit der Gleichungen ein falscher Ge-
sichtspunkt. Das Denken der heutigen Geometer beschédftigt sich tiberhaupt viel zu
sehr mit den Gleichungen. Thre Einfachheit entspricht einer analytischen Betrach-
tungsweise. Wir bemiihen uns aber um die Synthese, und deren Gesetze folgen nicht
aus der Analyse. Diese fiihrt zwar zur Synthese: aber die Synthese ist erst dann ganz
abgeschlossen, wenn sie von aller Analyse befreit ist. Verbleibt in einer Synthese nur
ein kleiner analytischer Rest, so ist die wahre Synthese nicht gelungen. Die Synthese
ist in sich vollendet und schreckt vor jeder analytischen Beimischung zuriick. Die
Einfachheit einer Figur hingt von der Einfachheit ihrer Entstehungsweise, ihrer er-
zeugenden Idee ab. Nicht die Gleichung, die Konstruktion, sei sie geometrisch oder
mechanisch, erzeugt die Figur und liefert den verstindlichen Begriff?).»

Es ist klar, dass diese Betrachtung eine Polemik gegen Descartes und seine Nach-
folger enthilt. Sie zeigt aber vor allem, was fiir Newton das mathematische Ideal war.
Fiir ihn gibt es eine Rangordnung der mathematischen Methoden, in der die Synthese —
er sagt «compositio» — am hochsten steht; denn in ihr wird das gesuchte Gebilde geo-
metrisch konstruiert®). Der Rang der Konstruktionsmittel ist durch die in den Axio-
men niedergelegten Existenzsidtze gegeben. Denn Newton sagt:

«Allein der Axiome halber hat der Kreis denselben Rang wie die Gerade. Das gilt
noch mehr fiir die Ellipse, die weniger vom Kreise abweicht als der Kreis von der
Geraden, die den gleichen Rang wie der Kreis erhilt, wenn man ihre Konstruktion in
der Ebene gleichfalls axiomatisch fordert.»

7) Ich kann mir hier nicht versagen, auf die allgemeine Relativitdtstheorie hinzuweisen. Thre Feld-
gleichungen sind vom geometrischen Standpunkt aus und von der mathematisch-physikali-
schen Idee her gesehen, héchst einfach. Analytisch, d.h. als partielle Differentialgleichungen 2.
Ordnung betrachtet, sind sie aber erschreckend kompliziert. Vielleicht kann dieses Beispiel deut-
lich machen, dass auch heute Newtons Standpunkt seine Berechtigung hat.

8) Das erinnert an die Meinung der Intuitionisten, fiir die ein Existenzsatz ohne nachfolgende Kon-
struktion «einem Papiere gleicht, welches das Vorhandensein eines Schatzes anzeigt, ohne je-
doch zu verraten, an welchem Ort» (H.WEYL, «Selecta» [Basel 1956] p. 224).
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Es erhebt sich jetzt noch die Frage, was nach Newton die Bedeutung der geometri-
schen Axiome denn ist. Darauf findet man die Antwort im Vorwort der Principia:

«Das Konstruieren (descriptio) sowohl der Geraden wie der Kreise, auf dem die
Geometrie beruht, gehort in die Mechanik. Aber die Geometrie lehrt nicht, wie man
diese Kurven konstruiert, das postuliert sie. Darauf lehrt sie, wie man mit Hilfe dieser
Operationen Probleme 16st. Gerade und Kreise konstruieren, das sind ebenfalls Pro-
bleme, aber keine der Geometrie. Man fordert, dass sie die Mechanik 16sen kénne. In
der Geometrie lehrt man ihren Gebrauch. Nun rithmt sich die Geometrie, dass sie mit
so wenigen Grundsitzen, die anderswoher entlehnt sind, so vieles leisten kénne. Die
Geometrie ist daher in der praktischen Mechanik begriindet und ist nichts anderes als
derjenige Teil der allgemeinen Mechanik, welcher die Messkunst streng darstellt und
beweist. »

Diese Aussagen lassen an Deutlichkeit nichts zu wiinschen iibrig. Die Geometrie
ist fiir Newton die mathematisch-physikalische Theorie des wirklichen, physikali-
schen Raumes. Dieser ist ein metrisches Kontinuum, dessen Eigenschaften durch
physikalische Messung erforscht werden miissen. Die Axiome der Geometrie sind dar-
um physikalische Aussagen iiber den Raum, genau so, wie die Axiome der Mechanik,
die Leges motis, physikalische Aussagen iiber die Bewegung der Korper sind. Das
Zahlenkontinuum, das der Analysis zugrunde gelegt wird, ist Abbild des geometri-
schen Kontinuums. Darum kann auch die Analysis streng genommen nur geometrisch
begriindet und dargestellt werden. Als Axiome soll man daher die Existenz derjenigen
geometrischen Gebilde postulieren, die in der «mechanischen Praxis» am genauesten
konstruiert werden konnen.

Ich glaube, dass die hier gesammelten Zitate aus Newtons Werken sowie die Be-
richte seiner Zeitgenossen iiber sein Denken und seine Erlebnisse, deutlich genug zei-
gen, was Newtons Auffassung der Mathematik war.

Gewiss hat er nicht immer so gedacht. Als junger Mann war er Cartesianer, wenn
er auch schon frith Vorbehalte gegeniiber der cartesischen Philosophie anbrachte:
dass Ausdehnung und Materie dasselbe sein sollten, hat ihm gar nicht eingeleuchtet?).

Mit der Zeit schien ihm auch der mathematische Standpunkt Descartes’ immer
anfechtbarer. Mehr und mehr wuchs seine Achtung vor den klassischen Geometern der
dlteren Generation, und besonders Huygens ward ihm zum Vorbild. Das entspricht
einer natiirlichen geistigen Entwicklung. So ist er schliesslich zu einer grossartigen,
folgerichtigen und strengen Auffassung der Mathematik gelangt, was allerdings zur
Folge hatte, dass er seinem Werk eine altertiimliche und schwierige Form gegeben hat.

¥) Vgl. die Kritik an der cartesischen Raum- und Bewegungslehre in «de gravitatione et aequipon-
dio fluidorumn», herausgegeben in A.R.HarL und M.Boas Havrr, «Unpublished Scientific
Papers of I.N.» (Cambridge 1962). Die Herausgeber datieren diese Schrift in die Jahre 1664 bis
1668. Sie enthédlt u.a. schon Formulierungen, wie dass nichts existieren konne, das nicht irgend-
wie mit dem Raum zu tun habe. Darum sei der Raum die Folge der hochsten Existenz. Diese
Gedanken sind also keineswegs erst dem alten Newton eigen.
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