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Negative Wiarmeleitung in Spinsystemen

von E. Fick, G. Sauermann und H. Schwegler
Lehrstuhl fiir Theoretische Festkorperphysik der Technischen Hochschule Darmstadt

(6. V. 68)

Abstract. Equations for heat conduction in spin systems with several temperatures are
examined. It is shown from quantum mechanical statistics that negative heat conduction is
possible, which means that a partial system may be heated without another system present
possessing higher temperature. The second law of thermodynamics is not violated. The negative
heat conduction is important for the longitudinal magnetic susceptibility. It explains y(w, H)
as found in cross relaxation experiments.

1. Einleitung

Die dynamische magnetische Suszeptibilitdt y(w, H) und die damit korrelierte
Relaxationsfunktion @(¢, H) hingen wesentlich von den inneren Wechselwirkungen
in der paramagnetischen Probe ab. Dieser Einfluss ldsst sich in vielen Fillen — ins-
besondere im Fall der longitudinalen Suszeptibilitit — dadurch theoretisch erfassen,
dass man die zeitlichen Verdnderungen jener Teilenergien, von denen man annehmen
kann, dass sie am Prozess wesentlich beteiligt sind, auf Warmeleitungsgleichungen
abbildet. Das bedeutet, dass man das physikalische System in «Teilsysteme» (vgl.
dazu S. 815) aufteilt, die in thermodynamisch véllig legitimer Weise durch ihre
inneren Energien, Temperaturen und Wirmekapazititen gekennzeichnet sind; sie
miissen aber nicht rdumlich getrennt sein. Die zwischen diesen Teilsystemen herr-
schende (schwache) Wechselwirkung bewirkt einen Wirmeleitungsprozess, bei dem
sich die Temperaturen und Energien der Teilsysteme zeitlich verdndern. Wenn einer
der Teile das Zeeman-System ist, so erhidlt man iiber die Zeeman-Temperatur die
Relaxationsfunktion @(¢, H) und daraus die magnetische Suszeptibilitdt y(w, H).

Dieses Konzept wurde erstmals [1] an Hand der Spin-Gitter-Relaxation entwickelt,
in der zwischen dem Zeeman- und Phononensystem die Elektron-Phonon-Wechsel-
wirkung eine Wiarmeleitung bewirkt. Die Spin-Spin-Relaxation [2] ldsst sich eben-
falls mit diesem Verfahren behandeln, wenn man den durch die magnetische Dipol-
Dipol-Wechselwirkung bedingten Energiestrom innerhalb des Spinsystems zwischen
Zeeman- und Austauschsystem untersucht. Die Methode ist aber keineswegs auf zwei
Teilsysteme beschrinkt [3-6]. Man kann zu Zeeman-, Austausch- und Gitterenergie
etwa noch die Kristallfeldenergie, Pdarchenenergie oder die Hyperfeinenergie hinzu-
nehmen und gelangt damit zu einer theoretisch befriedigenden Erkliarung der soge-
nannten Cross-Relaxation, die in verschiedenen Experimenten [7] untersucht wurde.

In der vorliegenden Arbeit wollen wir darauf hinweisen, dass innerhalb eines Spin-
systems, in dem mindestens drei Teilenergien am Relaxationsvorgang beteiligt sind,
eine negative Wirmeleitung stattfinden kann, was in der normalen Wirmeleitung
raumlich getrennter Systeme nicht moglich ist. Es sollen schliesslich die Folgerungen
diskutiert werden, die sich aus negativen Wiarmeleitungskoeffizienten ergeben.
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2. Die Wirmeleitungskoeffizienten

Liegen in einem System b Teilsysteme mit den Temperaturen 7, = 1 [(kB,) (k=
Boltzmann-Konstante; 4 = 1, ..., b) vor, so ist die zeitliche Anderung der Energie
U, gegeben durch die allgemeine VV drmeleitungsgleichung

de

=—kZGvﬂﬂﬂ : (1)

Sie folgt unmittelbar aus der Thermodynamik irreversibler Prozesse [8]. Wiein einer
fritheren Arbeit [5] gezeigt wurde, ldsst sich diese Gleichung aber auch quanten-
theoretisch herleiten. Gleichzeitig erhdlt man damit fiir die Koeffizienten G, , einen
Ausdruck, der ihre mikrophysikalische Berechnung erlaubt,

e / Le ifh ot 9 U, —@/h#of "H,) T |
s (2)
mlt :”v = ‘;@_ [#’ #v]

Dabei ist vorausgesetzt, dass die b Teilhamiltonoperatoren alle untereinander ver-
tauschen ([H#,, #,] = 0). Die weiteren Voraussetzungen kénnen der zitierten Arbeit
[5] entnommen werden. < >4 ist der thermische Erwartungswert bel einer mittleren
Temperatur f,, von der die §,(¢) nur wenig abweichen sollen.

Eine Konsequenz der Beziehung (2) ist

ZGVM:OJ (3)

welche nach Gleichung (1) besagt, dass die gesamte innere Energie }' U, zeitlich

konstant ist. Mit Gleichung (3) ldsst sich die allgemeine Wirmeleitungsgleichung (1)
auch in der Form

dU'*““ kZGvy /3/1 (4)

schreiben. Der Ausdruck kG, , (8, — f,) stellt den Energiefluss von u nach » dar
(Fig. 1). Die Ausserdiagonalelemente G,, (v= w) sind daher die Wdarmeleitungs-
koeffizienten. zwischen den Systemen » und u. Die Diagonalelemente G, , sind nach

Gleichung (3) lediglich eine Abkiirzung fiir die Summe — 3 G, ,
v(+p)

Figur 1
Zur Wirmeleitungsgleichung (4).
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Mit Hilfe der Beziehung (2) lasst sich verifizieren, dass die G, , eine negativ semi-
definite Matrix bilden, die Diagonalelemente G, , sind also negativ. Damit ist ge-
wihrleistet, dass die Entropieproduktion

as al, 2‘ = k_z E —
ar =k ,,2 ﬁ,, *Efmwkzvﬂ Gu,uﬁv )Bﬂ 2 v}quﬂ (ﬁl’ ﬁﬂ)2 (5)
stets positiv ist.

Die Wirmeleitungskoeffizienten G, , dirfen nicht mit dem Wirmeleitfahigkeitstensor 4,, des
Fourierschen Gesetzes rdumlicher Wirmeleitung verwechselt werden. Den Zusammenhang erhilt
man bekanntlich [8], indem man die Indizes u als Nummern der verschiedenen raumlichen Zellen
interpretiert (12— t) und in Gleichung (1) den Ubergang zu sehr kleinen Zellenvolumen ausfiibrt,

o) —5;— = —k f G, ) B/, 1) @3«

Wenn die értliche Verdnderung von § langsam gegeniiber jener von G ist, entwickelt man f§(r') bis
zu Quadraten in #;— #;. Man erhilt damit die Fouriersche Warmeleitungsgleichung. Im einfach-
sten Fall eines translationsinvarianten Problems, G = G (r—1’), lautet damit der (dann orts-
unabhingige) Warmeleitfihigkeitstensor

Ay =k [G@) 2, %, s

Dieser Tensor eines anisotropen Mediums kann natirlich bei geeigneter Wahl des rdumlichen
Koordinatensystems negative Ausserdiagonalelemente besitzen. Dies hat jedoch mit unseren
Aussagen iiber negative Warmeleitung nichts zu tun.

3. Die Vorzeichen der Warmeleitungskoeffizienten

a) Warmeleitung im zeviegten Fall

Die Hamiltonoperatoren der Teilsysteme gew6hnlicher Wirmeleitungsprobleme
haben die Eigenschaft, dass jedes H, fiir sich in einem Teilraum 2, des gesamten
unitdren Raumes U wirkt, der direkter Produktraum

u=u1®u2@..-®ub

ist (Beispiel: Zeeman-Energie und Phononen-Energie). Ein solcher Satz von Obser-
vablen definiert eine zerlegbare Beobachtungsebene [9], die definitionsgemaiss bereits in
zerlegter Gestalt vorliegt?).

Ausserdem habe die Wechselwirkung ' zwischen den Teilsystemen die Gestalt

W= YU, (6)

i*o

wobei H, , ur von den Variablen der Teilsysteme A und p abhidngen sollen (Fig. 2),
so dass [H#,,, H,] =0 fiir u + A, ¢ gilt. Damit folgt aus Gleichung (2), wenn man
berticksichtigt, dass man unter der Spur die Operatoren zyklisch vertauschen darf,
dass die Warmeleitungskoeffizienten G, , (v + u) sich als Funktional der Teilhamilton-

1) Eine Beobachtungsebene ist nur bis auf lineare Transformationen (vgl. Kap. 8 von [9]) definiert.
Sie heisst zerlegbar, wenn durch solche Transformationen die oben erkldrte zerlegte Gestalt
hergestellt werden kann,
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operatoren H,, H#, und dem Wechselwirkungsanteil #, , allein ergeben. Das heisst,
dass z.B.

G12 = Gl2(?'l1’ "uzs ‘”12)

unabhingig davon ist, ob die weiteren Teilhamiltonoperatoren H;, #,,... und
Wechselwirkungen 5, Has, ... vorhanden sind oder nicht. Der Wert von G, ist also
aus einem reinen Zweiersystem, allein bestehend aus #;, H#, und ¥, berechenbar.
Fiir dieses liefert Gleichung (3)

Gy = G(122) - "ngsz) >0
Im zerlegten Fall mit Wechselwirkungen (6) sind alle W drmeleitungskoeffizienten positiv,
Gy 20 (v + ) 7

d.h. fiir jeden Wirmeleitungskanal existiert eine positive Entropieproduktion.

G G,
NZA
]
Figur 2

Wirmeleitung im zerlegbaren Fall fur & = 3.

b) Wirmeleitung im nichtzerlegbaren Fall

Betrachtet man innerhalb eines Spinsystems etwa die Warmeleitung zwischen
dem Zeeman- und Austauschsystem, so haben die zugehérigen Hamiltonoperatoren
nicht mehr die Eigenschaft, dass jeder fiir sich in einem Teilraum des gesamten
unitiren Raumes wirkt. Dasselbe gilt, wenn wir noch einen Kristallfeld-Hamilton-
operator, einen Pirchen-Hamiltonoperator oder einen Hyperfeinwechselwirkungs-
Hamiltonoperator hinzunehmen. Ein solcher Satz von Observablen ,2) definiert eine
nichizerlegbare Beobachtungsebene [9]. Auch die Wechselwirkung (z. B. die magnetische
Dipol-Dipol-Wechselwirkung) kann dann nicht mehr die Gestalt (6) haben. Sie ver-
bindet alle Teilsysteme3) gleichmissig (Fig. 3). Die Warmeleitungskoeffizienten sind

Figur 3

Wirmeleitung in nichtzerlegbaren Fall fiir b = 3.

%) Ihre Vertauschbarkeit sei nach wie vor vorausgesetzt.

3) Die «Teilsysteme» sind also im nichtzerlegbaren Fall lediglich durch die Hamiltonoperatoren
H,. ..., Y, definiert und nicht — wie in der gewéhnlichen, zerlegbaren Thermodynamik — durch
eigene unitire Riaume.

52
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i. allg. Funktionale aller Hamiltonoperatoren, z.B. hingt G,, auch von #;,..., H;s,

Hos,... ab,
612 = G12('-'H1, “”2: 7‘3» vooey 7“12: :Hls» 7‘123: ) . (8)

Man kann daher G, nicht mehr als Warmeleitungskoeffizienten eines reinen Zweier-
systems betrachten. Damit versagt auch der Schluss, der auf Gleichung (7) gefiihrt
hat. Bet der Warmeleitung im Rahmen einer nichtzerlegbaren Beobachtungsebene kinnen
daher evnige Wirmeleitungskoeffizienten G, , negativ sein?),
G,,=20 (v + p) (9)
G, , ist natiirlich stets negativ.
Bei der theoretischen Untersuchung [6] eines Spinsystems, bestehend aus Zeeman-
Energie, einem beliebigen System ¥, (z.B. Kristallfeld-, Parchen- oder Hyperfein-

energie) und der Austauschenergie ; zeigte sich explizit, dass tatsidchlich negative
Wirmeleitungskoeffizienten realisiert sind?®),

1 1

Gos=—CH,; (H — H)T}>O' (10)
Dabei sind C die Curiekonstante, H das dussere, statische Magnetfeld, H; die harmoni-
schen Feldstirken der Cross-Relaxation und 7; positive Zeitkonstanten. Diese
negativen Wirmeleitungskoeffizienten sind die Ursache fiir zusétzliche Erhaltungs-
sitze innerhalb des Spinsystems, die sich augenscheinlich in der magnetischen
Suszeptibilitdt dussern (vgl. Kap. 4).

Wir betrachten den Wéirmeleitungsvorgang in einem nichtzerlegbaren Dreier-
System mit G, > 0, G;3 < 0 und Gy3 > 0 (Fig. 3). Wenn lediglich die Teilenergie H,
magnetfeldabhiingig ist (Zeeman-Energie), so erfolgt durch eine plétzliche Verringe-
rung des Magnetfeldes nur eine Abkiihlung von 1, d.h. unmittelbar nachher ist
B > p3 = Py. Aus Gleichung (4) folgt fiir die Energiednderungen in diesem Zeitpunkt

(d%) =k (Gyy + G13) (ﬂ? - ﬁg) = Gy )81 ﬁo
(22) =% Gua (83— B <0, (1)
('dgi)oz 13 /30 ﬁl > 0.

Wir erhalten also das Ergebnis, dass die Energie des Systems 3 von selbst zunimmt,
obwohl kein anderes System mit einer hoheven Temperatur vorhanden ist (vgl. Fig. 4).

Dieser Sachverhalt bedeutet aber keine Verletzung des Zweiten Hauptsatzes, da
in einer nichtzerlegbaren Beobachtungsebene nur eine Entropie S (%y,...,%,, f1,---,0)

4) Dies ist auch im Fall einer zerlegbaren Beobachtungsebene mdoglich, wenn man die zerlegte
Gestalt kiinstlich durch lineare Transformationen zerstort.

5) Dasselbe gilt auch fiir ein System, in dem zwischen dem Zeeman-, Kristallfeld- und Phononen-
system durch die Elektron-Phonon-Wechselwirkung ein Wirmeleitungsvorgang erzeugt
wird [10] (Spin-Gitter-Relaxation). Da hierfiir ein Ein-Ionenmodell geniigt, kann dieses
Ergebnis auch direkt durch Bilanzgleichungen gewonnen werden.
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(x, = dussere Parameter, wie Magnetfeld, Volumen usw.) fiir das Gesamtsystem
existiert [11, 12, 9]. Diese Entropie nimmt nach Gleichung (5) beim Warmeleitungs-
vorgang zu, da ja die Wirmeleitungskoeffizienten eine negativ semidefinite Matrix

bilden.

()
L)

t)

IEH

At
0 7
Figur 4

Qualitativer Verlauf der Temperaturen in einem Dreiersystem mit negativer Warmeleitung.

Die negativen Wairmeleitungskoeffizienten sind nicht etwa eine Folge eines
illegitimen Gebrauchs des Temperaturbegriffs. Es wurde gezeigt [9], dass die iiber
einem verallgemeinerten kanonischen statistischen Operator definierten Grossen £,
tatsichlich die Eigenschaften besitzen, die der Nullte Hauptsatz erfordert, und dass
nach dem Zweiten Hauptsatz T, = 1/(k ) die absoluten Temperaturen [12] der Teil-
systeme darstellen.

Beachtet man, dass im nichtzerlegbaren Fall jede innere Energie U, (x4,...,%,,
By.--.,B,) i. allg. eine Funktion aller Temperaturen ist, so ldsst sich Gleichung (4) als
D1fferent1a1g1e1chungssystem fur die 8 ,(¢) schreiben [4, 5], aus dem sich etwa der zeit-
liche Verlauf der Zeeman-Temperatur (7; in Fig. 4) und damit die magnetische
Relaxationsfunktion @(¢, H) berechnen lisst [6].

4. Die Méglichkeit von Erhaltungssitzen als Folge
negativer Wiarmeleitungskoeffizienten

Bei der Diskussion der Wirmeleitungsgleichungen ist die Frage wichtig, ob es
ausser der Gesamtenergie U = X' U, weitere Linearkombinationen der Teilenergien
gibt, die zeitlich konstant sind.

Es gilt der Satz: Wenn alle Warmeleitungskoetfizienten G, , = 0 (v + u) sind,
so ist ein zusdtzlicher Erhaltungssatz einer Linearkombination von Teilenergien stets
an einer Kdstchenstruktur der Matrix G, , direkt zu sehen (von trivialen Vertauschun-
gen einzelner Zeilen oder Spalten abgesehen). Liegt also fiir G,, = 0 (v + u) keine .
Kdstchenstruktur vor, so existiert auch kein zusdtzlicher Evhaltungssatz.

Zum Beweis nehmen wir an, dass eine Erhaltungsgrosse

U=Ya, U,t) = const (12)

existiert. Dann muss auf Grund der Wirmeleitungsgleichungen (1) fiir beliebige

Zeiten ¢ gelten
Zoc G, . B(8) Z’a G,,B,0) =0. (13)
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Dies muss fiir beliebige Anfangsbedingungen stimmen, also
1
ZO(,,G,,'M:O; Zd’V Gvyaﬂ:_fz(;u}u(aﬂ_au)z:o (14)
v v, ¢ v, u

(wobei } G, = 0 benutzt wurde). Setzen wir nun alle G, , = 0 (v + ) voraus, so muss

fiir jedes » und u

Gv,u (01” - OCV)Z b= (15)

sein. Unter den «, kénnen einige den gleichen Wert « haben. Ordnen wir die Indizes
folgendermassen

o, = o i p=L .9, @, * o fir w=p+1,...,0, (16)

dann muss G, , die Késtchenform haben

1...p p+1...0

o
p+1

(17)

b

Der Spezialfall p = b bedeutet die Erhaltung der Gesamtenergie. Wenn alle o, ver-
schieden sind, folgt, dass die ganze Matrix verschwindet.

Wihrend also bei positiven Warmeleitungskoeffizienten ein (zum Erhaltungssatz
der Gesamtenergie) zusdtzlicher Erhaltungssatz stets direkt zu Tage treten muss,
konnen nach Gleichung (14) ber negativen Wirmeleitungskoeffizienten «verborgeney
Evhaltungssdtze existieren, d.h. solche, die nicht an einer Kédstchenstruktur der Matrix
G, , unmittelbar abzulesen sind.

Daraus ergeben sich Konsequenzen fiir die Diskussion von magnetischen Relaxa-
tionsproblemen. Bei Suszeptibilititsmessungen koppelt namlich ein Teilsystem, fiir
das ndherungsweise ein Erhaltungssatz gilt, bei geniigend hohen Frequenzen ab; d.h.,
es liefert keinen Beitrag zur Suszeptibilitdt. Liegen lauter positive Wirmeleitungs-
koeffizienten vor, so kann nach dem oben Gesagten das abkoppelnde System nur eines
der urspriinglichen Teilsysteme oder eine einfache Summe solcher Teilsysteme (glei-
chea,; u=1,...,p) sein. Ublicherweise ist das abkoppelnde System das Gitter. Man
misst fiir Frequenzen oberhalb 1/7; s (155 Spin-Gitter-Relaxationszeit) die adiabati-
sche Spinsuszeptibilitdt mit dem bekannten Magnetfeldverhalten.

Haben wir dagegen negative Warmeleitungskoeffizienten vorliegen, so kann eine
Erhaltung fiir kompliziertere Linearkombinationen der Teilenergien gelten. So wurde
fir die in [6] diskutierte Cross-Relaxation (vgl. Kap. 3b) gefunden, dass ndherungs-
weise eine magnetfeldabhdngige Linearkombination zweier Spin-Teilenergien Er-
haltungsgrosse ist. Daraus ergibt sich, dass die der adiabatischen Spinsuszeptibilitit
entsprechende Grosse einen komplizierten Magnetfeldverlauf besitzt. Dieses mit den
Experimenten [7] iibereinstimmende Verhalten ist als eine Folge der negativen War-
meleitung anzusehen.
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Newtons Auffassung der Mathematik
und die mathematische Form der «Principia»

von Markus Fierz
(ETH Ziirich)

(29. T1. 68)

Wer theoretische Mechanik unterrichtet, der beruft sich auf Newton, und er nennt
Bewegungsgleichungen «die Newtonschen Gleichungen». Aber in dem beriihmten

Werke Newtons iiber Mechanik, den «Philosophiae Naturalis Principia Mathematica»
von 1687 wird er vergeblich nach Bewegungsgleichungen suchen. Und doch behandelt
Newton in seinem Werk einen grossen Teil all der Probleme, die wir auch heute in
unseren Vorlesungen behandeln. Aber dies geschieht in einer uns fremd gewordenen
mathematischen Form: diese ist geometrisch. Anstatt Formeln erscheinen Figuren,
in denen Endpunkte von Strecken mit Buchstaben bezeichnet sind. Die mathemati-
schen Aussagen sind nun solche tiber Proportionen zwischen Strecken oder zwischen
Flidchen, die umstindlich mit Worten formuliert werden.
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