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Negative Wärmeleitung in Spinsystemen

von E. Fick, G. Sauermann und H. Schwegler
Lehrstuhl für Theoretische Festkörperphvsik der Technischen Hochschule Darmstadt

(6. V. 68)

Abstract. Equations for heat conduction in spin systems with several temperatures are
examined. It is shown from quantum mechanical statistics that negative heat conduction is
possible, which means that a partial system may be heated without another system present
possessing higher temperature. The second law of thermodynamics is not violated. The negative
heat conduction is important for the longitudinal magnetic susceptibility. It explains '/Aoi, H)
as found in cross relaxation experiments.

1. Einleitung
Die dynamische magnetische Suszeptibilität %(co, H) und die damit korrelierte

Relaxationsfunktion 0(t, H) hängen wesentlich von den inneren Wechselwirkungen
in der paramagnetischen Probe ab. Dieser Einfluss lässt sich in vielen Fällen -
insbesondere im Fall der longitudinalen Suszeptibilität - dadurch theoretisch erfassen,
dass man die zeitlichen Veränderungen jener Teilenergien, von denen man annehmen
kann, dass sie am Prozess wesentlich beteiligt sind, auf Wärmeleitungsgleichungen
abbildet. Das bedeutet, dass man das physikalische System in «Teilsysteme» (vgl.
dazu S. 815) aufteilt, die in thermodynamisch völlig legitimer Weise durch ihre
inneren Energien, Temperaturen und Wärmekapazitäten gekennzeichnet sind; sie

müssen aber nicht räumlich getrennt sein. Die zwischen diesen Teilsystemen
herrschende (schwache) Wechselwirkung bewirkt einen Wärmeleitungsprozess, bei dem
sich die Temperaturen und Energien der Teilsysteme zeitlich verändern. Wenn einer
der Teile das Zeeman-System ist, so erhält man über die Zeeman-Temperatur die
Relaxationsfunktion <P(t, H) und daraus die magnetische Suszeptibilität %(co, H).

Dieses Konzept wurde erstmals [11 an Hand der Spin-Gitter-Relaxation entwickelt,
in der zwischen dem Zeeman- und Phononensystem die Elektron-Phonon-Wechsel-
wirkung eine Wärmeleitung bewirkt. Die Spin-Spin-Relaxation [2] lässt sich ebenfalls

mit diesem Verfahren behandeln, wenn man den durch die magnetische Dipol-
Dipol-Wechselwirkung bedingten Energiestrom innerhalb des Spinsystems zwischen
Zeeman- und Austauschsystem untersucht. Die Methode ist aber keineswegs auf zwei
Teilsysteme beschränkt [3-6]. Man kann zu Zeeman-, Austausch- und Gitterenergie
etwa noch die Kristallfeldenergie, Pärchenenergie oder die Hyperfeinenergie
hinzunehmen und gelangt damit zu einer theoretisch befriedigenden Erklärung der
sogenannten Cross-Relaxation, die in verschiedenen Experimenten [7] untersucht wurde.

In der vorliegenden Arbeit wollen wir darauf hinweisen, dass innerhalb eines
Spinsystems, in dem mindestens drei Teilenergien am Relaxationsvorgang beteiligt sind,
eine negative Wärmeleitung stattfinden kann, was in der normalen Wärmeleitung
räumlich getrennter Systeme nicht möglich ist. Es sollen schliesslich die Folgerungen
diskutiert werden, die sich aus negativen Wärmeleitungskoeffizienten ergeben.
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2. Die Wärmeleitungskoeffizienten

815

Liegen in einem System b Teilsysteme mit den Temperaturen T =lj(k ß^ (k —

Boltzmann-Konstante; pb — 1, b) vor, so ist die zeitliche Änderung der Énergie
Uv gegeben durch die allgemeine Wärmeleitungsgleichung

düv(f)
dt e-i

0)

Sie folgt unmittelbar aus der Thermodynamik irreversibler Prozesse [8]. Wie in einer
früheren Arbeit [5] gezeigt wurde, lässt sich diese Gleichung aber auch
quantentheoretisch herleiten. Gleichzeitig erhält man damit für die Koeffizienten GP[I einen

Ausdruck, der ihre mikrophysikalische Berechnung erlaubt,

(2)

Dabei ist vorausgesetzt, dass die b Teilhamiltonoperatoren alle untereinander
vertauschen ([?/„, "HA 0). Die weiteren Voraussetzungen können der zitierten Arbeit
[5] entnommen werden. < y ist der thermische Erwartungswert bei einer mittleren
Temperatur ß0, von der die ß (t) nur wenig abweichen sollen.

Eine Konsequenz der Beziehung (2) ist

Gfiv - Gvp —

+ 00

-oo

mit % j- [% %]

27 c„ 0, (3)

welche nach Gleichung (1) besagt, dass die gesamte innere Energie £ Uv zeitlich
V

konstant ist. Mit Gleichung (3) lässt sich die allgemeine Wärmeleitungsgleichung (1)

auch in der Form

*£-=kZGVß ß, (4)

schreiben. Der Ausdruck k Gv (ßv — ß stellt den Energiefluss von pb nach v dar
(Fig. 1). Die Ausserdiagonalelemente G (v 4= pb) sind daher die Wärmeleitungskoeffizienten

zwischen den Systemen v und pi. Die Diagonalelemente G „ sind nach

Gleichung (3) lediglich eine Abkürzung für die Summe — JJ Gv

a-u^lin
Figur 1

Zur Wärmeleitungsgleichung (4).
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Mit Hilfe der Beziehung (2) lässt sich verifizieren, dass die Gv/l eine negativ
semidefinite Matrix bilden, die Diagonalelemente G sind also negativ. Damit ist
gewährleistet, dass die Entropieproduktion

§¦ kZß* d-df ~k2E G^ ß» h ^ZG*> (Ä- - ßj* (5)
V v, ii

stets positiv ist.
v, ii

Die Wärmeleitungskoeffizienten GVß dürfen nicht mit dem Wärmeleitfähigkeitstensor Xik des

Fourierschen Gesetzes räumlicher Wärmeleitung verwechselt werden. Den Zusammenhang erhält
man bekanntlich [8], indem man die Indizes fi als Nummern der verschiedenen räumlichen Zellen
interpretiert (/*->¦ r) und in Gleichung (1) den Übergang zu sehr kleinen Zellenvolumen ausführt,

eW -~yy- - hJG(t, r') ß(x', t) dH'.

Wenn die örtliche Veränderung von ß langsam gegenüber jener von G ist, entwickelt man ß(x') bis
zu Quadraten in x\ — x.. Man erhält damit die Fouriersche Wärmeleitungsgleichung. Im einfachsten

Fall eines translationsinvarianten Problems, G G (r — r')» lautet damit der (dann
ortsunabhängige) Wärmeleitfähigkeitstensor

Àik kJG(x)x.xkdix.

Dieser Tensor eines anisotropen Mediums kann natürlich bei geeigneter Wahl des räumlichen
Koordinatensystems negative Ausserdiagonalelemente besitzen. Dies hat jedoch mit unseren
Aussagen über negative Wärmeleitung nichts zu tun.

3. Die Vorzeichen der Wärmeleitungskoeffizienten

a) Wärmeleitung im zerlegten Fall
Die Hamiltonoperatoren der Teilsysteme gewöhnlicher Wärmeleitungsprobleme

haben die Eigenschaft, dass jedes "Hv für sich in einem Teilraum "iX„ des gesamten
unitären Raumes U wirkt, der direkter Produktraum

u ux@u2®... ®ub

ist (Beispiel: Zeeman-Energie und Phononen-Energie). Ein solcher Satz von Obser-
vablen definiert eine zerlegbare Beobachtungsebene [9], die definitionsgemäss bereits in
zerlegter Gestalt vorliegtx).

Ausserdem habe die Wechselwirkung "W zwischen den Teilsystemen die Gestalt

V-4-2X' (6)

wobei "Hx» nur von den Variablen der Teilsysteme X und o abhängen sollen (Fig. 2),
so dass [ilxp, -WJ 0 für pi 4= X, q gilt. Damit folgt aus Gleichung (2), wenn man
berücksichtigt, dass man unter der Spur die Operatoren zyklisch vertauschen darf,
dass die Wärmeleitungskoeffizienten Gv (v 4= pb) sich als Funktional der Teilhamilton-

1) Eine Beobachtungsebene ist nur bis auf lineare Transformationen (vgl. Kap. 8 von [9]) definiert.
Sie heisst zerlegbar, wenn durch solche Transformationen die oben erklärte zerlegte Gestalt
hergestellt werden kann.
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Operatoren "Uv, "U und dem Wechselwirkungsanteil ?/ allein ergeben. Das heisst,
dass z.B.

Gi2 GX2(UX, "U2, "UX2)

unabhängig davon ist, ob die weiteren Teilhamiltonoperatoren %l3, ?/4,... und
Wechselwirkungen 7/13, "U2Z,... vorhanden sind oder nicht. Der Wert von GX2 ist also

aus einem reinen Zweiersystem, allein bestehend aus "Ux, "U2 und "UX2 berechenbar.
Für dieses liefert Gleichung (3)

G12=G<22> -Gi>0
Im zerlegten Fall mit Wechselwirkungen (6) sind alle Wärmeleitungskoeffizienten positiv,

G,„>0(r>¥p) (7)

d.h. für jeden Wärmeleitungskanal existiert eine positive Entropieproduktion.

u ¦
CC11

¦ut
ks fä

u3

Figur 2

Wärmeleitung im zerlegbaren Fall für b 3.

b) Wärmeleitung im nichtzerlegbaren Fall
Betrachtet man innerhalb eines Spinsystems etwa die Wärmeleitung zwischen

dem Zeeman- und Austauschsystem, so haben die zugehörigen Hamiltonoperatoren
nicht mehr die Eigenschaft, dass jeder für sich in einem Teilraum des gesamten
unitären Raumes wirkt. Dasselbe gilt, wenn wir noch einen Kristallfeld-Hamilton-
operator, einen Pärchen-Hamiltonoperator oder einen Hyperfeinwechselwirkungs-
Hamiltonoperator hinzunehmen. Ein solcher Satz von Observablen "U2) definiert eine

nichtzerlegbare Beobachtungsebene [9]. Auch die Wechselwirkung (z.B. die magnetische
Dipol-Dipol-WechselWirkung) kann dann nicht mehr die Gestalt (6) haben. Sie
verbindet alle Teilsysteme3) gleichmässig (Fig. 3). Die Wärmeleitungskoeffizienten sind

,ö«
u s / Uz

*.JA
u>

Figur 3

Wärmeleitung in nichtzerlegbaren Fall für 6 3.

2) Ihre Vertauschbarkeit sei nach wie vor vorausgesetzt.
3) Die «Teilsysteme» sind also im nichtzerlegbaren Fall lediglich durch die Hamiltonoperatoren

rlr, ¦¦¦, Tit definiert und nicht - wie in der gewöhnlichen, zerlegbaren Thermodynamik - durch
eigene unitäre Räume.
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i. allg. Funktionale aller Hamiltonoperatoren, z.B. hängt Gx2 auch von î/3,..., 7/13,

743,... ab,

GM= GX2(UX, %, %,..., UX2, 7/13, %,,...) (8)

Man kann daher GX2 nicht mehr als Wärmeleitungskoeffizienten eines reinen
Zweiersystems betrachten. Damit versagt auch der Schluss, der auf Gleichung (7) geführt
hat. Bei der Wärmeleitung im Rahmen einer nichtzerlegbaren Beobachtungsebene können
daher einige Wärmeleitungskoeffizienten G negativ sein*),

G„^0 (v*pt) (9)

G ist natürlich stets negativ.
Bei der theoretischen Untersuchung [6] eines Spinsystems, bestehend aus Zeeman-

Energie, einem beliebigen System li2 (z.B. Kristallfeld-, Pärchen- oder Hyperfein-
energie) und der Austauschenergie ?/3 zeigte sich explizit, dass tatsächlich negative
Wärmeleitungskoeffizienten realisiert sind6),

GX2=CH H( -L > 0; G13 C H (H - HA ±- > 0;

G2S=-CH{(H-Hi)±$0. (10)
ii

Dabei sind C die Curiekonstante, H das äussere, statische Magnetfeld, Hi die harmonischen

Feldstärken der Cross-Relaxation und x{ positive Zeitkonstanten. Diese

negativen Wärmeleitungskoeffizienten sind die Ursache für zusätzliche Erhaltungssätze

innerhalb des Spinsystems, die sich augenscheinlich in der magnetischen
Suszeptibilität äussern (vgl. Kap. 4).

Wir betrachten den Wärmeleitungsvorgang in einem nichtzerlegbaren Dreier-
System mit G12 > 0, G13 < 0 und G23 > 0 (Fig. 3). Wenn lediglich die Teilenergie "Ux

magnetfeldabhängig ist (Zeeman-Energie), so erfolgt durch eine plötzliche Verringerung

des Magnetfeldes nur eine Abkühlung von 1, d.h. unmittelbar nachher ist
ßl > ß2 ßl- Aus Gleichung (4) folgt für die Energieänderungen in diesem Zeitpunkt

/dUx\o
\ dt
I +±) k (GX2 + G13) (ß\ -ß°2) -k Gxx (ß°x -ßl)>0

kGX2(ßl-ß\)<0, (11)

t7a\° kGX3(ß°z-ßl)>0.

Wir erhalten also das Ergebnis, dass die Energie des Systems 3 von selbst zunimmt,
obwohl kein anderes System mit einer höheren Temperatur vorhanden ist (vgl. Fig. 4).

Dieser Sachverhalt bedeutet aber keine Verletzung des Zweiten Hauptsatzes, da
in einer nichtzerlegbaren Beobachtungsebene nur eine Entropie S (xx,..., xa, ßx,... ,ßb)

4) Dies ist auch im Fall einer zerlegbaren Beobachtungsebene möglich, wenn man die zerlegte
Gestalt künstlich durch lineare Transformationen zerstört.

5) Dasselbe gilt auch für ein System, in dem zwischen dem Zeeman-, Kristallfeld- und Phononen-
system durch die Elektron-Phonon-Wechselwirkung ein Wärmeleitungsvorgang erzeugt
wird [10] (Spin-Gitter-Relaxation). Da hierfür ein Ein-Ionenmodell genügt, kann dieses

Ergebnis auch direkt durch Bilanzgleichungen gewonnen werden.
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(xa äussere Parameter, wie Magnetfeld, Volumen usw.) für das Gesamtsystem
existiert [11, 12, 9]. Diese Entropie nimmt nach Gleichung (5) beim Wärmeleitungsvorgang

zu, da ja die Wärmeleitungskoeffizienten eine negativ semidefinite Matrix
bilden.

\W w
m

Ut)

o

Figur 4

Qualitativer Verlauf der Temperaturen in einem Dreiersystem mit negativer Wärmeleitung.

Die negativen Wärmeleitungskoeffizienten sind nicht etwa eine Folge eines

illegitimen Gebrauchs des Temperaturbegriffs. Es wurde gezeigt [9], dass die über
einem verallgemeinerten kanonischen statistischen Operator definierten Grössen ß
tatsächlich die Eigenschaften besitzen, die der Nullte Hauptsatz erfordert, und dass

nach dem Zweiten Hauptsatz T lj(k ß die absoluten Temperaturen [12] der
Teilsysteme darstellen.

Beachtet man, dass im nichtzerlegbaren Fall jede innere Energie Uv (%,...,xa,
ßx,...,ßb) i. allg. eine Funktion aller Temperaturen ist, so lässt sich Gleichung (4) als

Differentialgleichungssystem für die ß (t) schreiben [4, 5], aus dem sich etwa der
zeitliche Verlauf der Zeeman-Temperatur (Tx in Fig. 4) und damit die magnetische
Relaxationsfunktion &(t, H) berechnen lässt [6].

4. Die Möglichkeit von Erhaltungssätzen als Folge
negativer Wärmeleitungskoeffizienten

Bei der Diskussion der Wärmeleitungsgleichungen ist die Frage wichtig, ob es

ausser der Gesamtenergie U S Uv weitere Linearkombinationen der Teilenergien
gibt, die zeitlich konstant sind.

Es gilt der Satz: Wenn alle Wärmeleitungskoeffizienten G > 0 (v 4= p) sind,
so ist ein zusätzlicher Erhaltungssatz einer Linearkombination von Teilenergien stets
an einer Kästchenstruktur der Matrix Gv direkt zu sehen (von trivialen Vertauschungen

einzelner Zeilen oder Spalten abgesehen). Liegt also für Gv/l > 0 (v 4= pb) keine
Kästchenstruktur vor, so existiert auch kein zusätzlicher Erhaltungssatz.

Zum Beweis nehmen wir an, dass eine Erhaltungsgrösse

ÌJ =£avUv(t) const (12)
V

existiert. Dann muss auf Grund der Wärmeleitungsgleichungen (1) für beliebige
Zeiten t gelten

2>„ GVflß^(t) =2>, G^/yO) =0. (13)
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Dies muss für beliebige Anfangsbedingungen stimmen, also

2JavGv/i 0; 27 a„ Gv/la/i= -^-£ G, ß(aß-av)2 0 (14)
2

V, ft

(wobei 2J Gv 0 benutzt wurde). Setzen wir nun alle Gvß ^ 0 (v =1= fx) voraus, so muss
V

für jedes v und fi
Gvit («„ - «,)• 0 (15)

sein. Unter den « können einige den gleichen Wert a haben. Ordnen wir die Indizes
folgendermassen

a für /Lb l,...,p, a^ 4= a für pb — p + 1, b, (16)

haben

1 ...p p + 1 b

dann muss G die Kästchenform haben

0

(17)G
p + 1

Der Spezialfall p b bedeutet die Erhaltung der Gesamtenergie. Wenn alle cy
verschieden sind, folgt, dass die ganze Matrix verschwindet.

Während also bei positiven Wärmeleitungskoeffizienten ein (zum Erhaltungssatz
der Gesamtenergie) zusätzlicher Erhaltungssatz stets direkt zu Tage treten muss,
können nach Gleichung (14) bei negativen Wärmeleitungskoeffizienten «verborgene»

Erhaltungssätze existieren, d. h. solche, die nicht an einer Kästchenstruktur der Matrix
Gv unmittelbar abzulesen sind.

Daraus ergeben sich Konsequenzen für die Diskussion von magnetischen
Relaxationsproblemen. Bei Suszeptibilitätsmessungen koppelt nämlich ein Teilsystem, für
das näherungsweise ein Erhaltungssatz gilt, bei genügend hohen Frequenzen ab ; d. h.,
es liefert keinen Beitrag zur Suszeptibilität. Liegen lauter positive Wärmeleitungskoeffizienten

vor, so kann nach dem oben Gesagten das abkoppelnde System nur eines
der ursprünglichen Teilsysteme oder eine einfache Summe solcher Teilsysteme (gleiche

a ; pb l,...,p) sein. Üblicherweise ist das abkoppelnde System das Gitter. Man
misst für Frequenzen oberhalb 1/tgs (tcs Spin-Gitter-Relaxationszeit) die adiabatische

Spinsuszeptibilität mit dem bekannten Magnetfeldverhalten.
Haben wir dagegen negative Wärmeleitungskoeffizienten vorliegen, so kann eine

Erhaltung für kompliziertere Linearkombinationen der Teilenergien gelten. So wurde
für die in [6] diskutierte Cross-Relaxation (vgl. Kap. 3b) gefunden, dass näherungsweise

eine magnetfeldabhängige Linearkombination zweier Spin-Teilenergien Er-
haltungsgrösse ist. Daraus ergibt sich, dass die der adiabatischen Spinsuszeptibilität
entsprechende Grösse einen komplizierten Magnetfeldverlauf besitzt. Dieses mit den

Experimenten [7] übereinstimmende Verhalten ist als eine Folge der negativen
Wärmeleitung anzusehen.
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Newtons Auffassung der Mathematik
und die mathematische Form der «Principia»

von Markus Fierz
(ETH Zürich)

(29. II. 68)

Wer theoretische Mechanik unterrichtet, der beruft sich auf Newton, und er nennt
die Bewegungsgleichungen «die Newtonschen Gleichungen». Aber in dem berühmten
Werke Newtons über Mechanik, den «Philosophiae Naturalis Principia Mathematica»
von 1687 wird er vergeblich nach Bewegungsgleichungen suchen. Und doch behandelt
Newton in seinem Werk einen grossen Teil all der Probleme, die wir auch heute in
unseren Vorlesungen behandeln. Aber dies geschieht in einer uns fremd gewordenen
mathematischen Form: diese ist geometrisch. Anstatt Formeln erscheinen Figuren,
in denen Endpunkte von Strecken mit Buchstaben bezeichnet sind. Die mathematischen

Aussagen sind nun solche über Proportionen zwischen Strecken oder zwischen
Flächen, die umständlich mit Worten formuliert werden.
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