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Magnetically Coupled Impurities in a Linear Chain
Heisenberg Ferromagnet

by Paul Erdés!) and Edgar Rhodes
Department of Physics, The Florida State University, Tallahassee, Florida 32306, USA

(6. V. 68)

Zusammenfassung. Ein Fremdspin verindert das Spinwellenspektrum einer ferromagnetischen
Kette, und im Grundzustand treten um den Fremdspin herum Spinabweichungen auf, die eine
ortliche magnetische Polarisation bewirken. Diese werden, besonders im Falle des antiferro-
magnetisch gekoppelten Fremdspins, untersucht. Der Effekt eines beliebigen 4dusseren Magnet-
feldes und verschiedener g-Faktoren wird mitberiicksichtigt.

I. Introduction

Materials such as EuS [1], CrBry [2], CrO, [3] and EuO [4] are ferromagnetic
insulators. The properties of these substances are considerably changed by the
introduction of other magnetic ions in the metal positions. A particular difficulty in
the understanding of the impurity-induced properties stems from the fact that
perturbation theories break down when applied. The reason for this breakdown is
that the magnetic coupling constant of the impurity ion to its surrounding is often
largely different from that of the host metal ions to each other.

Therefore, more sophisticated theories have to be used, such as the technique of
Green functions [5]. The important features of the solution are: (1) The appearance
of localized states outside the spin wave band, (2) Resonant states in the band. For
a ferromagnetically coupled impurity, the problem has been extensively treated [6].
The antiferromagnetically coupled impurity presents more difficulties, because the
total spin of the ground state may deviate by more than one unit from the totally
aligned state. An approximate analysis [7] leads to ground state energies which are
509/, higher than those obtained in an exact solution of single spin deviation
states for the case of impurity spin 1/2 [8].

The fact that the excitation energies of spin deviations from the fully aligned
state are negative for states below the spin wave band for an extended range of
parameters leads us to a variational calculation of the ground state in which the
mixing of higher (> 1) spin deviation states is considered. This will be described
in a subsequent publication.

It is the object of this paper to treat the linear chain with arbitrary host and
impurity spins S and S,, exchange constants J and J, and Landé-factors g and g,,

1) On leave from the International Business Machines Corporation Research Laboratory,
Rischlikon-Ziirich,
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786 Paul Erdés and Edgar Rhodes H. P. A.

respectively. An external magnetic field H of arbitrary magnitude is applied to the
system.

It should be pointed out that we use the linear spin-wave approximation, but in
contrast to previous work, obtain the correct ground state energy (as known for
So = 1/2) [8]. This is achieved by using the fully aligned state as the state with no
excitations both for ferro- and antiferromagnetic spin waves.

II. The Green Function Formalism

Figure 1 shows the linear chain Heisenberg ferromagnetic with an impurity at the
origin. Its Hamiltonian is

AT

74——]25 Sivr—Jo 8o (S1+ Sy_) — 2 —ugH S, (1)

where J is the host exchange integral and is positive, [, is the impurity exchange
integral, S'i is the spin operator for site 7, N is the number of atoms (even), H is an
external magnetic field in the z direction, g and g, are the host and impurity Landé-
factors, and p is the Bohr magneton. We impose periodic boundary conditions by
requiring S ap = §0.

In terms of the HOLSTEIN-PRIMAKOFF [9] boson operators Equation [1] may be
written as

N-2

]52 al a "‘“1+1“ 14 aj—}-l_&g_ai+l)+]o {So(af ay + af;_,ay_y)

12830 — Y/ S0S [a0 (af + &) + & (@ + dy_)]) |
N-1

’|‘l‘gH2‘I “+/‘goH“0a0+Zl‘u (2)

Here, ?-2, is of order 2 ¢ + 2 in boson operators and has matrix elements only between
states with at least 7 4+ 1 boson excitations. The state with no excitations |0) is the
one where all spins are fully aligned along the positive z-direction. Its energy is taken
as 0. The states a] | 0> represent states with a single spin deviation.

Figure 1

The linear chain Heisenberg ferromagnet with an impurity at the origin.
The symbols are defined in the text.

We neglect all '-fli (=1, ..., c0) in Equation (2). If the number of spin deviations
excited is small, these terms will make only a small contribution. Our results will be

exact for the single spin deviation states, since the ﬁi have no matrix elements
between such states.
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Proceeding to diagonalize ¥, the remaining part of H, we introduce new boson

operators Bj by the definition
~ N1
b= ¢id, j=0,..., N—1, )
-0

where the matrix of the ¢;; coefficients must be unitary in order that b; satisfy the
boson commutation rules, We wish to determine the ¢,; such that U, takes on the

form ‘-7'[0— 2L, b"‘ b Utilizing the equations of motlon for the operators b-, we

require that - _
b, H) = Eb;, §=0,..., N—1. n

In contrast to the conventional notation, we define matrix elements through the
commutator relationships as

& N-1
[ai:yojzzq‘l()ijﬂj, ZIO,,N—]. (5)
i=0

Equations (2), (3), (4) and (5) then lead to the following set of N homogeneous
equations in the N unknowns ¢;,; for each value of the free index 7,

N -1 |
Z("inl—Eéil)Cji$0, 7=0,..., N—1. (6)

=0
Since the impurity only interacts with its nearest neighbors, the following Green
function technique will reduce the N Equations (6) to three. First we rewrite H,,, in

the f
M #wz:u?l"‘vit: (7)

where HY, are matrix elements of the Hamiltonian of the perfect chain (impurity
replaced by host). Explicitly, we have

syl ”—~(2]S—{—p,gH) —JS(0; 11+ 90;,,-1), (8)
Vo=2S (o~ 1) +pleo—8 Hl 610610+ o So— T S) G811 + 8ine1 8p01)
+ (TS = ToVSaS) [8:0 811+ 0y wer) + 810 i1 + 03u-1)] - (9)

The resolvent G" = (E — ﬂ")“l of the perfect chain has the matrix elements
(as defined by Equation (5))
Bzl

- NZg””’” "[E—2]S(1—cosk)—ugH1, (10)

mn

between one spin deviation states, where %k ranges over the first Brillouin zone
(— @ <k < m@) in the reciprocal lattice. By definition of the Green function above,

ggfﬁ”@ (0, — H) =B o

Using H, = H%, and U,, = ¥,,, we multiply Equation (6) by G ,(E) and sum over /,
to obtain .
=2 Gui ) Biiegi, ym =0, N =1, (12)
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where the prime indicates that / and 7 need range only over N — 1, 0 and 1, since ¥,
is zero otherwise. Equation (12) gives all ¢;,, in terms of those for the impurity site
and its neighbors. Thus, we have only to solve the 3 x 3 determinant,

iami—lzv’g?nl(E) vli‘=0’ (13)

which will supposedly have NV solutions E;, counting degeneracies.

III. The Single Spin Deviation Solutions

It is convenient to express the equations in terms of the dimensionless parameters

§=—JJo, v=SS, h=pH2]S
and (14)
n=0(—8h, e=E]2]S, &=e—gh
Also, the dimensionless Green-function G,,_,(¢") = 2 J S §,,.(E) will be used. The
determinant, Equation (13) splits into two factors, giving rise to symmetric (S) and

antisymmetric (4) solutions with respect to the plane of symmetry of the chain,
located at the site 0.

a) Symmetric Solutions

The energies are roots of the equation

[+ A +y8) (& =nlf7E) = Gole), (15)
with
) =nyé+ll—pE-(0+yEnle+1+yde?. (16)
The coefficients (for m + 0) are given by
Ciw = 1(6%) Gulef®) folE Y7, (17)

where cfo is determined by unitarity. We recall that the coefficients ¢, represent the
probability amplitude for a unit spin deviation to be found at site # when the chain
is in its eigenstate of energy ;.

We note that the wave function is symmetrical, so that

¢ = (18)

im - .Il:n N—m *
b) Antisymmetric Solutions

The energies are obtained from

I+y§e—yE& ,
1+y&e(e—2) Grole) - (19)

Since for the antisymmetric solutions

cfo = CfN/2 =0, (20)
on account of the relation

Cfm - _CfN—m ’ (21)
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the coefficients are expressed in terms of cfl, form + 0 or 1, as
1 ' ’
m =5 1+ 78 [Cpisler) — Gpale™)] 1 - (22)

The eigenvalues of HO are doubly degenerate at every value of £, except at 0 and s,
since the excitation energy for — % is the same as for k.

As may be seen from the root diagram, Figure 2a, this degeneracy is totally lifted
by the impurity: There are (1/2) N symmetric and (1/2) N — 1 antisymmetric
solutions. The missing solution is the state in which each spin deviates by 1/N from
the z-axis, i.e. the state of zero wavenumber £.

A
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: ; . [ <o e 900 Jo=0
: | ! 1 So=S b
. Y O LY s B
S R R .
! 1 ] | 0 €' |0 €’ |0 N
: 1 i , Jo
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i ~
: 1 Pt | N\ {go-glh=¢’
oy o 3
| | } %
a b c d

Figure 2

Schematic diagrams of the excitation energies for the symmetric states of the linear chain Heisen-
berg ferromagnet with one impurity spin and an infinite number of host spins. In Figure Za,
only 5 of the infinite set of poles of the Green function G,(¢’) in the spin wave band are shown.
The excitation energies (open circles) are solutions of the equation J,/(J — J,) £€'2—1/e = —G,(&).
In Figures 2b, 2c and 2d, (g,—g) # is shown as a function of & for representative values of S;/S
and J,/J. In Figure 2d, ¢’4 is the excitation energy for the antisymmetric states and has the value
—J2S32]S (JS—Ju Sy)- The energy & is negative (decreases to the right) and &' = e—g h.
Thus ¢’ is shifted from the true excitation energy ¢ if a field is present. The symbols are defined
in Figure 3.

Within the spin wave band, the wave function coefficients are all of the order
N-12, but oscillate from site to site, very much like the standing spin waves of the
unperturbed spin system. However, although of the order N=Y2, ¢, or ¢; may become
large relative to the other coefficients for certain ranges of the parameters, giving rise
to virtual states which manifest themselves as peaks in the density of the spin wave
states in the band [6].

IV. Impurity States Below the Spin Wave Band

For certain values of the parameters, solutions exist with energy below the spin
wave band. The form of the Green function in this region is found by direct inte-
gration [10] for the limit N - oo to be

Gole) = —ofle' (¢ — 2), (23)
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whexs S m if m<NJ2,
o= 1—8'~|/5’ (¢"—2) and f= . (24)
N —m if m > NJ2.
Note that 0 < « << 1, and as &’ varies from 0 to — oo, « varies from 1 to 0. Equa-
tions (23) and (17) show that the spin deviations decrease exponentially with distance
from the impurity. The range of localization decreases with increasing |&’|.

a) Symmetric Solutions

Inserting Equation (23) into Equation (15), the equation for ¢’ becomes cubic but
reduces to quadratic if =0 or p § = —1. If = 0, we have one solution & < 0.
If y =1 and & = —1, the root is given by

e5=1—)14+9, 5<o0. (25)

The schematic root diagram in Figure 2a for y = 0 and y = 1 shows how the states
in the upper portion of the band ‘press’ downward as the impurity exchange J,
decreases from J, ‘pushing’ a localized mode out of the bottom of the band as the
interaction becomes antiferromagnetic.

For general values of  we do not present the equations, but plot 7 against &' for
fixed values of ¥ and & in Figures 2b, ¢ and d. Also plotted is the line = &' + &,
to which Equation (15) is asymptotic as &¢'® = — co. If £ < 0, we find a solution
below the band, if n << 0. If & = 0, no solutions of this form exist, since then there is
no interaction coupling the impurity spin to the rest of the lattice. If £ > 0, we find
2 solutions below the band, if # < 0, one of which is always lower than the other,
separated by a pole of Equation (15) at £’4, the antisymmetric solution.

The symmetric wave function coefficients for ¢’ < 0 become

i =~ ey e (¢~ 2)
These coefficients are represented in Figures 3a and b for particular values of the
parameters. For & > 0 we notice two striking features. First, ¢, has the opposite sign
to all other coefficients, and second, for < 0, ¢, varies from 1 to some finite limit as &
varies from 0 to co. This decrease in ¢, as & increases is in contrast to the results of
WaNG and CALLEN [8] for the three dimensional simple cubic lattice, for which ¢,
increases from O to a finite limit. In both cases, the limit as £ - oo can be understood
in terms of the states of an isolated system consisting only of the impurity and its
nearest neighbors. In our case, for instance, the actual limits are |¢,|~2 > 1 + y/2,
cyfco > — V'JT/Z and ¢; >0, 7 > 1, which, for a single spin deviation, agree with a
calculation of the ground state of a system of 3 spins of magnitude 1/2 each fory = 1.
But the fact that ¢y - 1 at the bottom edge of the spin wave band for << 0 and
& > 0 appears to be peculiar to the one dimensional case. This particular solution
also is unstable for 7 ~ 0 near the band edge, since, as Figure 2a shows, if g, is
increased infinitesimally greater than g, the entire character of the solution changes.
The higher symmetric energy root varies from 0 to ¢'4 as # varies from 0 to — oo,
while ¢, varies from order N-Y2 to a maximum to 0, ¢, varies from order N-%/2 to a
maximum, and the other coefficients vary from order N-12 to finite values, decreasing
faster with distance from the impurity as n - — oo,

r_1s, m =+ 0, (26)

g =&
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Figure 3

Symmetric localized wave functions of the linear chain Heisenberg ferromagnet with a magnetically

coupled impurity. The host and impurity have exchange constants J and J,, spins S and S, and

Landé-factors g and g, respectively. The energy ¢ is in units of 2/S measured from the energy of

the fully aligned state and & = u H[2]S, where u = Bohr magneton and H = magnetic field,
The different curves are obtained with the parameter values listed in the Table.

Table
Curve No. JolJ (8o—8) 1 &
1 —>0_ >0 >0_+gh
2 -1 0 —1.39044+-g 4
3 — 00 >—ooand < oo >—co+gh
4 —->0_ >—ocand <0 =>0_+gh
>—ooand <0 —=>—00 —>—oco+gh
5 1 -1 —041424+2gh
6 >0 =>0_ =>0_+gh
—>00 >—ooand <0 =>0_+gh
7 >0and < o > — 00 —>o0+gh
—9‘0+ <0 +Oo+gh

b) Awntisymmetric Solutions

There exists only one antisymmetric solution below the spin wave band, with
energy

fl= B2 (L4yE), >0
No such solutions exist for & < 0. The corresponding spin deviation at site m is
found from the coefficients
d=of1-a)2 m>=1,
where

a=14+y¢.

These coefficients become equal and of order N—'/2 as the energy approaches the
bottom of the spin wave band (& - 0), thus becoming delocalized. Also, the coefficients
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tend to zero as ¢’ > — oo (& > o0), except for ¢;, which becomes 1. Of course, the
antisymmetric solution is independent of #.

V. The Phase Transition and the New Ground State

If the parameters describing the system are such that the excitation energy ¢ is
greater than 0, the fully aligned state is the ground state. At such parameter values
that ¢ = 0, there is a sharp transition to another ground state, which has one or more
spin deviations as ¢ becomes negative. The condition for this transition is gained by
the substitution ¢’ = — g & in Equation (15). If we fix  and &, then Figures 2b, cand d
become phase diagrams describing this transition as a function of % and g A.

~ Above the solid line, the ground state is the fully aligned state, but the solid line
below the pole in Figure 2d should in this context be disregarded, since it corresponds
to a state which is always above the lowest energy state below the band. Thus the
ground state always has at least one spin deviation below the pole. The linen=§—g#
in these figures describes the transition of the corresponding classical spin system
from the fully aligned ground state to the ground state with the impurity spin down
and all others up.

Since the excitation energy is negative, linear spin wave theory yields the result
that everywhere below the solid lines of Figures 2a, b and c, the ground state will have
the maximum number of deviations consistent with the restriction that no single spin
is deviated more than twice its value. Therefore, we obtain classical behavior for
large  and g A.

When interactions between the states of spin deviations larger than one are taken
into account by the variational calculation referred to in the introduction, we expect
that the solid lines of Figures 2b, ¢ and d will describe the transition to the ground
state having one spin deviation. Also, we expect that new lines below these lines will
appear, which will describe the transitions to a ground state of higher spin deviation,
as the parameters of the chain are varied.
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