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magnetic order and if in addition W 0, one reobtains Slater's split-band model of

antiferromagnetism as described by des Cloizeaux [4]. On the other hand, if
y* y, y, there is no magnetic order and the periodic charge distribution of the
band electrons and ionic charge distribution will adjust selfconsistently to one another,
leading to at least a partial compensation of the lattice and Coulomb contributions
to the gap. For y nj2, there will be optimum overlap of the electronic and ionic
charge densities. It is obvious that for intermediate values of ya one can achieve
states which correspond to mixtures of periodic electronic and spin densities.

In general one needs a gap at least comparable to the band width in order to
ensure an insulating ground state. One can obtain large gaps by allowing relatively
large crystallographic distortions accompanied by large or small Coulomb- and
exchange contributions. However, in order to achieve selfconsistency, both the
crystallographic distortion and the Coulomb- and exchange contributions are in
general required to be large. This is the point we want to make: in treating crystallographic

distortions of the type discussed above, one must not overlook the possible
importance of electron-electron interactions. However, detailed numerical calculations

on specific systems would be required, in order to decide whether the model has

any practical applicability. Of course, ion-ion interactions, which we have neglected
so far, would then also have to be taken into account.

Finally, we wish to remark that the model described above is a special case of the
charge-density-wave model, recently described by Overhauser [5].
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Ein Analogverfahren zur Berechnung der Eigenschaften
von Feldeffekttransistoren

von K. E. Drangeid und R. Sommerhaider
IBM Zürich Forschungslabor, 8803 Rüschlikon

(1. V. 68)

Shockley hat bereits 1952 eine Theorie des Feldeffekttransistors publiziert, welche
die Berechnung der statischen Kennlinien gestattet. Der Gültigkeitsbereich dieser
Theorie ist eingeschränkt durch die geometrische Auflage, dass die Länge der
Gateelektrode gross gegen die Dicke des Transistors sein muss, und durch die physikali-
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sehe Auflage, dass die Driftgeschwindigkeit der Ladungsträger im leitenden Kanal
genügend klein im Vergleich zum Sättigungswert bleibt.

Die Shockleysche Theorie scheint lange nicht weiterentwickelt worden zu sein.

In letzter Zeit hat sich allerdings wieder vermehrt technisches Interesse dem
Feldeffekttransistor zugewendet, insbesondere miniaturisierten Ausführungsformen. Dabei

werden beide Auflagen der Shockleyschen Theorie als störend empfunden; es

drängt sich auf, eine Theorie zu entwickeln, die ohne diese auskommt. Nun erfordert
leider eine allgemein gehaltene Diskussion der mit der Miniaturisierung sich stellenden
Probleme die numerische Bearbeitung nichtlinearer partieller Differentialgleichungen,
worauf hier nicht eingegangen werden kann. Wir möchten jedoch zeigen, dass wenigstens

die geometrische Auflage der Shockleyschen Theorie mit einfachen Mitteln
überwunden werden kann.

Gegeben sei eine Transistorgeometrie gemäss Figur 1. Das Halbleitermaterial sei

ein »-leitendes Plättchen (Dicke d, Breite b p d), seine Leitfähigkeit gegeben durch
die Störstellenkonzentration N und die Elektronenbeweglichkeit pi, seine
Dielektrizitätskonstante e. Source- und Drainelektroden seien Metallstreifen der Länge d, welche
ohmischen Kontakt mit dem Halbleiter herstellen. Die Gateelektrode sei gleichfalls
ein Metallstreifen der Länge d und besitze den Abstand d von den anderen Elektroden ;

der Gate-/Halbleiter-Kontakt wird als Schottky-Barrière angenommen, wobei die
mobilen Ladungen aus der Raumladungszone quantitativ verdrängt sein sollen.

Raumladungszone

S, G, D

Figur 1

Transistorgeometrie.
Source-, Gate- und Drainelektrode, d Transistordicke, b Transistorbreite (b > d).
Länge und Abstand aller Elektroden gleich gross wie die Transistordicke.

Zwischen Source und Drain liegt die Spannung VSD und fliesst der Drainstrom
id, zwischen Source und Gate liegt die Spannung VSG (die Diffusionsspannung am
Metalb/Halbleiter-Kontakt sei in VSG bereits mit eingeschlossen).

Unter den beschriebenen Bedingungen berechnet sich der Verlauf des elektrischen
Potentials in der Gatezone als Lösung der Poissonschen Gleichung

AV=-—, (1)

im übrigen Halbleiter (Kanalzone) als Lösung der Laplaceschen Gleichung

AV 0 (2)
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mit den Randbedingungen

V

V

V

äv_
an

0

0 auf der Source-Elektrode

VSG auf der Gate-Elektrode

VSD auf der Drain-Elektrode

auf dem Rand der Raumladungszone,
soweit dieser nicht Elektrode ist.

(3a)

(3b)

Lösungen der Gleichungen (1), (2) und (3) lassen sich mit einem Analogmodell wie
folgt finden :

Wir simulieren das Halbleitermaterial in u-facher Vergrösserung durch ein diskretes
zweidimensionales Netzwerk Ohmscher Widerstände R mit Maschenweite M, wie in
Figur 2 a gezeigt (Zx Zahl Maschenpunkte in Längs-, Z2 Zahl Maschenpunkte in
Querrichtung). Source-, Gate- und Drainelektrode werden als Kurzschlüsse am Netzwerk

angebracht und auf die entsprechend Gleichung (3 a) verlangten Potentiale
gelegt (Figur 2 b). Dann wird ein zunächst willkürlich berandetes Gebiet als Gatezone

angenommen. Innerhalb dieser Zone werden die von Gleichung (1) geforderten
Raumladungen dadurch simuliert, dass in jedem Maschenpunkt im Strom

/„ Ne A72

Ai v1
(4)

eingespiesen wird (Figur 2 b). In unserem Widerstandsnetzwerk verzweigen sich nun
die in der Raumladungszone eingespiesenen und die durch die Spannung VSD erzeugten

Ströme automatisch so, dass der Potentialverlauf im Netzwerk in der Gatezone
eine Lösung von Gleichung (1), im übrigen Halbleiter eine Lösung von Gleichung (2)
darstellt. Im allgemeinen wird aber die Randbedingung (3b) nicht erfüllt sein. Man
muss deshalb die Form der Raumladungszone iterativ so variieren, bis Gleichung (3 b)
befriedigt ist. Offensichtlich wird durch die Erfüllung der Randbedingung (3b) auch

z, M

r~R

Figur 2a

Analognetzwerk des Transistors.
M Maschenweite, 7? Maschenwiderstand,

Zx Zahl Maschen in Längsrichtung,

Z2 Zahl Maschen in Querrichtung.

<s>

©Raum-
ladungszone

Kanalzone

Figur 2b

Prinzip der Analogschaltung.
VSG Gatespannung, V^d Drainspannung,

725 Drainstrom (Analogwert),
7g Einspeisestrom zur Simulierung der

Raumladung in der Gatezone.
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verhindert, dass der durch die Drainspannung VSD im Netzwerk erzeugte Strom ID,
der einem Drainstrom

N epiRb IL (5)

im Transistor entspricht, sich mit dem die Raumladungen simulierenden eingespiese-
nen Strom Ig vermengen kann.

Die erzielbare Genauigkeit nimmt mit sinkender Maschenweite M zu. In der
Praxis ist der Anzahl der Maschenpunkte aber natürlich bald einmal eine Grenze
gesetzt. Wir verwendeten Zx 50 Maschenpunkte in Längs- und Z2 10 Maschenpunkte

in Querrichtung1).
Nachfolgend werden einige Resultate dargestellt, die sich auf folgende Daten

beziehen: N — 5 ¦ 1015/cm3, pi 650 cm2/P~ sec, e 12, d Ipi.

Raumladungszone

Source Gate Drain

025 0,5 1 1,5 2 2,5 3 3,5 4 4,25 4,5V

Figur 3

Beispiel eines Potentialbildes.
Gatespannung V$G — 2 Volt, Drainspannung FSB +4,6 Volt.

Figur 3 zeigt das Potentialbild für die Spannungen VSG — 2 Volt, {VSD 4,6 Volt.
Figur 4 veranschaulicht das Kennlinienfeld des Transistors.

v*** ov 2V

100

80

E 60

E 40

i l—l I 1

6 8 10 12 14

V*„ Voll

Figur 4

Transistorkennlinien: Drainstrom iD als Funktion von Drainspannung Vgp
bzw. Gatespannung V$G.

x) Das Netzwerk enthielt ausser den in Figur 2a gezeichneten Widerständen 7? zusätzliche
Diagonalwiderstände, die der Übersichtlichkeit halber hier ignoriert wurden.

49
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Figur 5 a und 5 b illustrieren Deformation und Expansion der Raumladungszone mit
wachsender Drainspannung VSD für zwei festgehaltene Gatespannungen VSG — 1

Volt bzw. VSG — 2 Volt. Es ist offensichtlich, dass ein Teil der Steuerwirkung des

Gates dadurch verloren geht, dass die Raumladungszone in Richtung Drain auswächst
statt quer zum Halbleiterplättchen, wie dies bei langer Gateelektrode nach der
Shockleyschen Theorie der Fall wäre.

GoteVSG=-1V Drain Gate Vs-=-2V Drain

VSD 0 2,6 4,6 6,7 12 V VSD=0 1,8 4,6 6,9 8,5 12,8V

Figur 5a und Figur 5b

Form der Raumladungszone für verschiedene Drainspannungen Fs^ bei festgehaltener Gate¬

spannung VSG. VSG — 1 Volt (Figur 5a), VSG — 2 Volt (Figur 5b).

Wenn mit IQ tot der totale Einspeisestrom bezeichnet wird, ist

C,GD -A'kA sc,
(6)

die für Verstärkerschaltungen wichtige Millerkapazität (Gate-/Drain-Kapazität). Im
vorliegenden Beispiel beträgt sie CGD a 0,15 pF/mm.

Würde man anstelle der Gatespannung die Drainspannung festhalten, dafür aber
die erstere verändern, so liesse sich auf sonst gleiche Weise noch die Summe von
Gate-/Source- und Gate-/Drain-Kapazität bestimmen, woraus dann mit Hilfe der
Gleichung (6) die Eingangskapazität CSG des Transistors gefunden werden könnte. In
unserem Beispiel ist CSG x 0,15 pF/mm.

Trägt man (Figur 6) die maximale Driftgeschwindigkeit der Elektronen im Kanal
unter dem Gate als Funktion der Gate- bzw. Drainspannung auf, so sieht man sofort,

2V
1 V

0 V

l 10

8 10 -

410

Maximale Driftgeschwindigkeit v

2 4 6 8 10

Vso Volt

Figur 6

max. für verschiedene Gate- und Drainspannungen V$G bzw. VSD.
Sättigungswert der Driftgeschwindigkeit für Silicium.
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dass für viele der gezeigten Analog-Bilder eine maximale Driftgeschwindigkeit
i>max herauskam, die grösser als die in gängigen Halbleitermaterialien mögliche, z. B.
vs » IO7 cm/sec in Si, ist.

Verwirft man solche Lösungen als unrealistisch und nimmt statt dessen an, dass
der Drainstrom seinen Sättigungswert erreicht, sobald i>max vs wird, so bekommt
man anstelle des Kennlinienfeldes Figur 4 dasjenige der Figur 7. Letzteres hat sich bei
verfeinerten Untersuchungen bis jetzt als recht brauchbare Näherung erwiesen. In
unserem Beispiel beträgt die grösste Steilheit (VSG 0) gm « 12 mA/F • mm, die
Drainspannung VSD « 3 Volt, die Gleichstromleistung Pdc » 150 mW/mm.

80

so

E 40

20

-1V

-2V

6
Volt

10

Figur 7

Transistor-Kennlinien bei Berücksichtigung der Materialsättigung
(Begrenzung der Driftgeschwindigkeit).

Würde man zwei Transistoren zu einem Verstärker hintereinander schalten, so
könnte bis zu einer Grenzfrequenz

V° ~ 2 ti CSG+ Cqd
y '

Verstärkung erwartet werden.
In unserem Beispiel ist va rj 7,5 Gigahertz. Allen hier angeführten Zahlwerten

kommt nur die Bedeutung eines Beispiels zu. Sie sollen keinesfalls als typisch für
Feldeffekttransistoren aufgefasst werden.


	Ein Analogverfahren zur Berechnung der Eigenschaften von Feldeffekttransistoren

