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Verallgemeinerung der MAPW-Methode für ein beliebiges Potential

von Helmut Bross
Sektion Physik der Universität München

(I. V. 68)

Zur Berechnung der Einelektronenzustände in Kristallen wird eine Verallgemeinerung

der Modifizierten Augmented Plane Wave (MAPW)-Methode beschrieben,
bei der die Ortsabhängigkeit des Einelektronenpotentials V(r) völlig beliebig sein

kann.

1. Problemstellung

Theoretische Untersuchungen der Bandstruktur von Festkörpern sind in den
letzten Jahren sehr häufig durchgeführt worden. Ermöglicht wurde diese Entwicklung

durch den Bau leistungsfähiger Rechenautomaten, welche die umfangreichen
Untersuchungen in relativ kurzer Zeit durchzuführen gestatten. Weiterhin wurden
sie gefördert durch eine Reihe von experimentellen Methoden, welche bestimmte
elektronische Eigenschaften, wie z.B. die Gestalt der Fermioberfläche, die relative
Lage der Energiebänder gegeneinander, die effektive Masse und Zyklotronmasse,
der direkten Messung zugänglich machen und die den Wunsch aufkommen lassen,
diese Erscheinungen theoretisch zu verstehen.

Obwohl die Valenz- und Leitungselektronen, die für die typischen Eigenschaften
von Metallen und Halbleitern verantwortlich sind, über die Coulombsche Abstossung
miteinander gekoppelt sind, wird man bei allen Überlegungen von einer Einteilchennäherung

ausgehen, in die man möglichst viel vom Vielkörperaspekt hineinsteckt.
Vorschläge, wie man dies zweckmässigerweise machen kann, sind schon verschiedentlich

veröffentlicht worden [1-7]. Die Einteilchennäherung selbst besteht im wesentlichen

darin, dass man die Schrödingergleichung für ein (eventuell fiktives) Teilchen
löst, das sich in einem periodischen Potential bewegt. Hierzu sind eine Reihe von
Verfahren vorgeschlagen worden; für die heute zur Verfügung stehenden Rechenautomaten

haben sich die OPW-Methode [8], die APW-Methode [9] sowie die Korringa-
Kohn-Rostocker-Methode [10] als am besten geeignet erwiesen, wenn man von der
Pseudopotentialmethode [11] absieht, die mehr den Charakter eines Interpolationsverfahrens

hat. Alle genannten Verfahren lösen das gestellte Problem mehr oder weniger

gut. Auf den ersten Blick scheint das OPW-Verfahren am vorteilhaftesten zu sein.
Hierbei stellt man bekanntlich die Wellenfunktion durch eine Linearkombination
von Funktionen dar, die aus einer ebenen Welle und einer atomaren Wellenfunktion
so zusammengesetzt sind, dass jede dieser Funktionen auf den Wellenfunktionen der
Rumpfelektronen orthogonal ist. Die Wellenfunktionen in der OPW-Methode sind
also im ganzen Raum stetig; darüber hinaus kann das Potential völlig beliebig sein.

Trotzdem besitzt das Verfahren eine Reihe von Mängeln, die seine Brauchbarkeit
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wesentlich einschränken, auf die jedoch hier nicht weiter eingegangen werden soll
[12-13]. Sowohl bei der APW-Methode als auch bei der Korringa-Kohn-Rostocker-
Methode wird vorausgesetzt, dass das Potential sog. muffin-tin-Form hat. Man
versteht darunter ein Potential, das innerhalb von Kugeln, deren Mittelpunkte mit den
Atomkernen zusammenfallen, sphärisch symmetrisch und im Restgebiet konstant
ist. Als weiteren Nachteil der beiden Verfahren sei erwähnt, dass die Wellenfunktionen
an der Grenzfläche, welche die beiden verschiedenen Potentialgebiete trennt, nicht
mehr stetig sind. Solange man sich nur für den qualitativen Verlauf der Bandstruktur
interessiert, scheint diese Unstetigkeit belanglos zu sein. Das wird sicherlich nicht
mehr der Fall sein, wenn man Erscheinungen verstehen will, bei denen explizit die

Ortsabhängigkeit der Wellenfunktionen benötigt wird. Sowohl für die APW-Methode
als auch für die Korringa-Kohn-Rostocker-Methode wurden inzwischen Verfeinerungen

vorgeschlagen, bei denen die Wellenfunktionen im ganzen Raum stetig sind und
bei denen auch das Potential in den Gebieten zwischen den Kugeln eine beliebige
Ortsabhängigkeit haben kann [14-15]. Innerhalb der einzelnen Kugeln wird jedoch das

Potential weiterhin als sphärisch vorausgesetzt. Schon im einfachsten Fall lässt sich
zeigen, dass diese Voraussetzung näherungsweise nur dann erfüllt werden kann, wenn
man die Kugeln nicht zu gross macht. Als Modell wollen wir das freie Elektronengas
betrachten, in dem die Ionen als Ladungspunkte mit der Kernladung Z an den
Gitterplätzen Rn lokalisiert sein mögen. Bis auf eine Konstante, die wir gegebenenfalls
gleich Null setzen, ergibt sich das Potential aus

tl

Wenn der Wertebereich von r auf das Atompolyeder mit JR„ 0 beschränkt ist, ist
|f |/|Ä„| < 1, und wir können den Nenner in der Gittersumme in bekannter Weise
nach Multipolen entwickeln1).

m^ + Z^r'S^i. (1.2,
,-¦ » I"

Pf. Legendresche Polynome.

Das Potential ergibt sich somit als winkelabhängig, und die Anisotropie nimmt mit
wachsendem \r\ zu. Ähnliche Überlegungen lassen sich auch für heteropolare Kristalle
anstellen. Als Beispiel seien nur die III-V-Verbindungen erwähnt, bei denen bekanntlich

der elektronische Zustand dadurch demjenigen von Germanium ähnlich wird, dass

jeweils - grob gesprochen - das fünfwertige Ion ein Elektron an das dreiwertige Ion
abgibt. Hierdurch entsteht ein heteropolares Gitter, das auch zu einem Potential mit
nichtsphärischem Anteil führt. Eine noch stärkere Abweichung von der sphärischen
Symmetrie ist dann zu erwarten, wenn das Potential über die Poissongleichung aus
der Ladungsdichte der Elektronen und diese wiederum aus den Kristallwellenfunktionen

bestimmt wird. Für solche Selbstkonsistenz-Untersuchungen scheiden auch
die verfeinerten Formulierungen der APW- und der Korringa-Kohn-Rostocker-

x) In den meisten Fällen werden infolge der Gittersymmetrie verschiedene Gittersummen in (1, 2)
bei festem l verschwinden. In einem Kristall mit kubischer Symmetrie beginnt z. B. die Summe
erst bei l 4.
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Methode aus, weil der Fehler, der dadurch entsteht, dass nur der sphärische Anteil
des Potentials berücksichtigt wird, grösser als die Genauigkeitsschranke werden kann,
die man sich bei der Selbstkonsistenzforderung setzt. Ziel der vorliegenden Arbeit
wird es sein zu zeigen, wie sich die MAPW-Methode ohne viel Mühe auch auf beliebige
Potentiale erweitern lässt.

2. Kurzer Abriss des Verfahrens

Wie beim ursprünglichen MAPW-Verfahren [14] wird das Atompolyeder durch
eine einbeschriebene Kugel in die beiden Bereiche I und II unterteilt2). Den Radius der
Kugel r0 wählen wir so, dass die Abweichungen des Potentials vom sphärischen
Mittelwert

Vsph(r)=-^nfdQrV(r) (2.1)

gering sind. Damit die Wellenfunktionen der im Kristall mehr oder weniger freien
Valenz- bzw. Leitungselektronen auf den Wellenfunktionen der Rumpfelektronen
orthogonal sind, müssen sie im Bereich des Ionenrumpfes oszillieren. Wir stellen sie

deshalb im Bereich I, der durch 0 sS r 5Ï r0 bestimmt ist, durch Produkte von
Kugelflächenfunktionen Ylm (r°) und Lösungen der Radialdifferentialgleichung

2 dR±+rJ, i(i+i)^ + A -^ + [£< - ^1 - W)] *> 0 (2.2)

dar. Im Unterschied zum entsprechenden Problem beim freien Atom sind die
Separationsparameter El nicht durch Randbedingungen festgelegt, sondern sind zunächst
als freie Grössen anzusehen, über die später noch verfügt wird. Die zu einer Dreh-
impulsquantenzahl l gehörende Radialfunktion Rt wird man im allgemeinen aus
einer Reihe von im Nullpunkt regulären Lösungen der Differentialgleichung Rn mit
verschiedenen Energien E zusammensetzen, die wir durch den weiteren Index n
unterscheiden wollen. Die Unterscheidung wird so durchgeführt, dass n die Zahl der
Knoten der Funktionen Rnl im Bereich 0 ^ r :g r0 abzählt. Da im allgemeinen die

En:i von den Eigenwerten E(k) verschieden sind, und da wir zunächst nur den
sphärischen Teil des Potentials berücksichtigt haben, wird weder ein Produkt YlmRn
noch eine Linearkombination von solchen Produkten eine Lösung der Schrödinger-
gleichung sein. Wie die bisherigen Überlegungen gezeigt haben, bedeutet dieser
Verzicht auf die exakte Lösung der Schrödingergleichung im Bereich I keine wesentliche
Einbusse an Genauigkeit, wenn die Lösungen wenigstens das der Schrödingergleichung

äquivalente Extremalprinzip erfüllen, wenn sie ausserdem im ganzen Raum
stetig sind und das richtige Translationsverhalten zeigen. Das Extremalprinzip löst
man zweckmässigerweise mit dem Ritzschen Verfahren, wobei für die
Vergleichsfunktionen im Bereich I der Ansatz

L oo

n(r) ES(2l+x)il + 2m Anlm Rnl (r) Ylm(r°) +£ Z V(KA

m m

x (21+1) il + 2mYl:_m (\k + Kj j«) x /, (\k + Kj r) Ylm(r<>) (2.3)

In einem Gitter mit Basis wird man jedes Gitterion mit einer Kugel umgeben, deren Radius
höchstens so gross gewählt wird, dass die einzelnen Kugeln sich gerade berühren.
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gemacht wird. (Kf. reziproker Gittervektor). Die komplexen Entwicklungskoeffizienten

Anlm und v(Kj) werden später durch das Variationsverfahren festgelegt.
jf(x) sind sphärische Besselfunktionen. Wie wir gleich zeigen werden, wird durch die
zweite Summe erreicht, dass die Wellenfunktionen einschliesslich ihrer ersten
Ableitungen im ganzen Raum stetig sind. Über die obere Grenze L der Summe über die

Drehimpulsquantenzahlen kann im allgemeinen frei verfügt werden; grösseres L
bedeutet ebenso wie die Mitnahme von Radialfunktionen mit mehr Knoten eine
bessere Annäherug an die wirkliche Wellenfunktion. Berücksichtigt man die
Entwicklung einer ebenen Welle nach Kugelwellen, so lässt sich der obige Ansatz auch
umordnen in

VIk(r)=]Tv(Kj) eikr'+£(2l+l) il + im Ylm(r°) \£Anlm RJr)
j 2=0 \ n

m

mit kf=k+ K,. - £v{Kj) \ _ m(fe?) /,( \k} \r)\. (2.4)

Der Vorteil dieser Darstellung (2.4) ist, dass sie nur endliche Summen umfasst, so dass

Summation und Differentiation ohne weiteres vertauscht werden können.
Im Restgebiet des Atompolyeders wird die Wellenfunktion nicht stark

ortsveränderlich sein, so dass eine Entwicklung nach ebenen Wellen mit relativ wenigen
Gliedern ihren Verlauf gut wiedergeben wird.

Vl'W-gvlK,)/*-'. (2.5)
i

Aus (2.5) ist leicht ersichtlich, dass die Wellenfunktion das richtige Translationsverhalten

Vk(r+Rn)=eik-Rn¥k(r) (2.6)

besitzt. Ein Vergleich der beiden Darstellungen für die Wellenfunktionen zeigt, dass
sie auf der Kugel r r0 stetig ineinander übergehen, wenn für diesen Wert r0 die
geschweifte Klammer von (2.4) verschwindet. In entsprechender Weise lässt sich auch
die Stetigkeit der ersten Ableitungen zeigen. Die Stetigkeitsbedingungen lauten somit

ZAmm KM -2>(*S) \ - Jty I\(\k, \ r0) 0 (2.7a)
n j

für l < L

ZAnlm d±^A -2>(W -»(*?) Mfe,Jjl
dr dr

0 (2.7b)

Wie schon erwähnt, begnügen wir uns damit, dass die Vergleichsfunktionen genau so

wie bei der OPW-Methode den Erwartungswert der Energie

dx W'k H Wk (2.8)

zu einem Extremum machen. Als Nebenbedingung muss berücksichtigt werden, dass

die Wellenfunktion Wh normiert ist und dass die Wellenfunktion und ihre erste
Ableitung auf der Oberfläche der Kugel r r0 stetig sind. Hierzu benützen wir die Me-
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thode der Lagrangeschen Multiplikatoren. Die genaue Durchrechnung, die wir hier
nicht angeben wollen, führt zu dem Ergebnis, dass der Lagrangesche Multiplikator
der über die Normierungsforderung der Wellenfunktion in den Formalismus eingeführt

wird, mit der Gesamtenergie identisch ist. Die übrigen Lagrangeschen Multiplikatoren,

die mit den Stetigkeitsbedingungen verknüpft sind, bezeichnen wir mit
a,mbzw. ßlm.

Die Extremalforderung führt auf das folgende System linearer Gleichungen

£{ Hjr ~ E(k) ß,,,} v(Kr) - 2X-».(*/) h(\ki I '«) *,„
j Im

-2X-»(*°) -^11 _
A. 0 für alle / (2.9a)

Im r ra

Zj \P~nlm,n'Vm' "*" ^ W *W ^mm' ^nlm,n'lm) ^n'l'm' + ^nlvo) alm
n'l'm'

+ dRnJ{r) |

ßlm 0, für alle«,/ undm, (2.9b)dr \,-urm
wobei folgende Abkürzungen verwendet werden

E
i=0

ß„, Q0 Ó,,, - 4 *£(2Z + 1) P, (fe° ¦ k«)J dr r2 j,(| ft, | r) ;,(| ft,, j r) (2.10a)
o

^U ..*, 4 7t (2 ; + 1) l±5f /"ir r2 RJr) RnH(r) (2.10b)
(/ — m)

o

+ \ n drr2 Vsph(r) {/„( j K,, - K, | r) -£ (2 l + 1) i> (ft? • ft») /,(| ft, | r) /,(| ft,, | r)}
0 * u

-27(2 / + 1) (2 /' + 1) i1'-1 (- l)m + m-
Y,, _„(*?) Y;^m,(k»,)JdQr Y;m(r°)

X YVm.(r») Kr (r°) xjdr r2 j,(\ft, | r) jv{\kf \ r) V(C, r) (2.11a)
o

u
Hnlm,n.Vm- =271(21+1) |±£|f «5„, ômm, [Enl + E^Jdr r2 Rnl(r) R„n(r)

o

+ 2J(2 l+l)(2l' + 1) **-' (- 1)» + ™' fdQr y;m(r») YPm,(r°) Kr(r0)

Xy* r2 ÄH/(r) Rn,r(r) V(t, r) (2.11b)
o

D0: Volumen des Atompolyeders. V(r) bezeichnet die Abweichung

\V(r) - Vsph(r) für 0 < r < r0
V(r) (2.12)

\V(r) sonst
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vom muffin-tin-Potential. Sie lässt sich durch die Fourierreihe

V(r) £V{K) eiKV (2.13)
i

darstellen. Im Bereich I erweist es sich als zweckmässig, V(r) nach sphärischen
Harmonischen K^r") zu entwickeln, die invariant sind gegenüber allen Deckoperationen

des betrachteten Kristalls [16].

V(r) =£V(l, r) Kt(r°) iür 0 < r < ra (2.14)
i

In (2.11) erstrecken sich die Oberflächenintegrale über die Einheitskugel; sie lassen
sich aber ohne weiteres durch Clebsch-Gordan-Koeffizienten ausdrücken. In (2.11)
sind alle Summen endlich, so dass keine Konvergenzschwierigkeiten zu erwarten sind.

Im Unterschied zum ursprünglichen MAPW-Verfahren [14] ist es nicht mehr möglich,

einen Teil der Unbekannten, die durch das homogene Gleichungssystem (2.9)
und durch die Nebenbedingungen (2.7) bestimmt sind, zu eliminieren. Der Rang der
Koeffizientendeterminante, welche die Eigenwerte E(k) festlegt, wird dementsprechend

grösser sein.
Die vorliegende Formulierung hat andererseits den Vorteil, dass das Eigenwertproblem

von Standardform ist, so dass beim praktischen Rechnen Routineprogramme
verwendet werden können. Beim ursprünglichen MAPW-Verfahren hingegen mussten
die Nullsteilen der Säkulardeterminante iterativ aufgesucht werden. Alle übrigen
Überlegungen verlaufen analog der ursprünglichen Formulierung, so dass wir darauf
nicht weiter einzugehen brauchen. Hervorzuheben ist vielleicht noch, dass die
vorliegende Formulierung auch gut dazu geeignet ist, die Fehler abzuschätzen, die durch
die alleinige Berücksichtigung eines sphärischen Potentials im Bereich I bedingt sind.
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