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Verallgemeinerung der MAPW-Methode fiir ein beliebiges Potential

von Helmut Bross
Sektion Physik der Universitdt Miinchen

(L. V. 68)

Zur Berechnung der Einelektronenzustinde in Kristallen wird eine Verallgemei-
nerung der Modifizierten Augmented Plane Wave (MAPW)-Methode beschrieben,
bei der die Ortsabhingigkeit des Einelektronenpotentials V(r) véllig beliebig sein
kann.

1. Problemstellung

Theoretische Untersuchungen der Bandstruktur von Festkérpern sind in den
letzten Jahren sehr hiufig durchgefithrt worden. Ermoglicht wurde diese Entwick-
lung durch den Bau leistungsfihiger Rechenautomaten, welche die umfangreichen
Untersuchungen in relativ kurzer Zeit durchzufiithren gestatten. Weiterhin wurden
sie gefordert durch eine Reihe von experimentellen Methoden, welche bestimmte
elektronische Eigenschaften, wie z.B. die Gestalt der Fermioberfliche, die relative
Lage der Energiebinder gegeneinander, die effektive Masse und Zyklotronmasse,
der direkten Messung zuginglich machen und die den Wunsch aufkommen lassen,
diese Erscheinungen theoretisch zu verstehen.

Obwohl die Valenz- und Leitungselektronen, die fiir die typischen Eigenschaften
von Metallen und Halbleitern verantwortlich sind, iiber die Coulombsche Abstossung
miteinander gekoppelt sind, wird man bei allen Uberlegungen von einer Einteilchen-
niherung ausgehen, in die man méglichst viel vom Vielkdrperaspekt hineinsteckt.
Vorschlidge, wie man dies zweckmissigerweise machen kann, sind schon verschiedent-
lich verdffentlicht worden [1-7]. Die Einteilchenndherung selbst besteht im wesent-
lichen darin, dass man die Schrédingergleichung fiir ein (eventuell fiktives) Teilchen
16st, das sich in einem periodischen Potential bewegt. Hierzu sind eine Reihe von Ver-
fahren vorgeschlagen worden; fiir die heute zur Verfiigung stehenden Rechenauto-
maten haben sich die OPW-Methode [8], die APW-Methode [9] sowie die Korringa-
Kohn-Rostocker-Methode [10] als am besten geeignet erwiesen, wenn man von der
Pseudopotentialmethode [11] absieht, die mehr den Charakter eines Interpolations-
verfahrens hat. Alle genannten Verfahren 1osen das gestellte Problem mehr oder weni-
ger gut. Auf den ersten Blick scheint das OPW-Verfahren am vorteilhaftesten zu sein.
Hierbei stellt man bekanntlich die Wellenfunktion durch eine Linearkombination
von Funktionen dar, die aus einer ebenen Welle und einer atomaren Wellenfunktion
so zusammengesetzt sind, dass jede dieser Funktionen auf den Wellenfunktionen der
Rumpfelektronen orthogonal ist. Die Wellenfunktionen in der OPW-Methode sind
also im ganzen Raum stetig; dariiber hinaus kann das Potential véllig beliebig sein.
Trotzdem besitzt das Verfahren eine Reihe von Mingeln, die seine Brauchbarkeit
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wesentlich einschrinken, auf die jedoch hier nicht weiter eingegangen werden soll
[12-13]. Sowohl bei der APW-Methode als auch bei der Korringa-Kohn-Rostocker-
Methode wird vorausgesetzt, dass das Potential sog. muffin-tin-Form hat. Man ver-
steht darunter ein Potential, das innerhalb von Kugeln, deren Mittelpunkte mit den
Atomkernen zusammenfallen, sphirisch symmetrisch und im Restgebiet konstant
ist. Als weiteren Nachteil der beiden Verfahren sei erwidhnt, dass die Wellenfunktionen
an der Grenzfliche, welche die beiden verschiedenen Potentialgebiete trennt, nicht
mehr stetig sind. Solange man sich nur fiir den qualitativen Verlauf der Bandstruktur
interessiert, scheint diese Unstetigkeit belanglos zu sein. Das wird sicherlich nicht
mehr der Fall sein, wenn man Erscheinungen verstehen will, bei denen explizit die
Ortsabhingigkeit der Wellenfunktionen benétigt wird. Sowohl fiir die APW-Methode
als auch fiir die Korringa-Kohn-Rostocker-Methode wurden inzwischen Verfeinerua-
gen vorgeschlagen, bei denen die Wellenfunktionen im ganzen Raum stetig sind und
bei denen auch das Potential in den Gebieten zwischen den Kugeln eine beliebige Orts-
abhidngigkeit haben kann [14-15]. Innerhalb der einzelnen Kugeln wird jedoch das
Potential weiterhin als sphirisch vorausgesetzt. Schon im einfachsten Fall ldsst sich
zeigen, dass diese Voraussetzung naherungsweise nur dann erfiillt werden kann, wenn
man die Kugeln nicht zu gross macht. Als Modell wollen wir das freie Elektronengas
betrachten, in dem die Tonen als Ladungspunkte mit der Kernladung Z an den Gitter-
plitzen R, lokalisiert sein mogen. Bis auf eine Konstante, die wir gegebenenfalls
gleich Null setzen, ergibt sich das Potential aus

Vi) - 25 4 ze Y

7|

1
—. (1.1)
R =0 |r = Ra|
Wenn der Wertebereich von r auf das Atompolyeder mit R,, = 0 beschrankt ist, ist
Ir|/|R,,| <1, und wir konnen den Nenner in der Gittersumme in bekannter Weise
nach Multipolen entwickeln?).

2 o0
ey

Ir| I=1 R, +0

Py(r®- R?)

Vir)= T[Ra[ (1.2)

P,: Legendresche Polynome.

Das Potential ergibt sich somit als winkelabhidngig, und die Anisotropie nimmt mit
wachsendem |r| zu. Ahnliche Uberlegungen lassen sich auch fiir heteropolare Kristalle
anstellen. Als Beispiel seien nur die ITI-V-Verbindungen erwihnt, bei denen bekannt-
lich der elektronische Zustand dadurch demjenigen von Germanium dhnlich wird, dass
jeweils — grob gesprochen — das fiinfwertige Ton ein Elektron an das dreiwertige Ion
abgibt. Hierdurch entsteht ein heteropolares Gitter, das auch zu einem Potential mit
nichtsphdrischem Anteil fithrt. Eine noch stiarkere Abweichung von der sphirischen
Symmetrie i1st dann zu erwarten, wenn das Potential iiber die Poissongleichung aus
der Ladungsdichte der Elektronen und diese wiederum aus den Kristallwellenfunk-
tionen bestimmt wird. Fiir solche Selbstkonsistenz-Untersuchungen scheiden auch
die verfeinerten Formulierungen der APW- und der Korringa-Kohn-Rostocker-

1) In den meisten Fillen werden infolge der Gittersymmetrie verschiedene Gittersummen in (1, 2)
bei festem ! verschwinden. In einem Kristall mit kubischer Symmetrie beginnt z. B. die Summe
erst bei I = 4.
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Methode aus, weil der Fehler, der dadurch entsteht, dass nur der sphirische Anteil
des Potentials berticksichtigt wird, grosser als die Genauigkeitsschranke werden kann,
die man sich bei der Selbstkonsistenzforderung setzt. Ziel der vorliegenden Arbeit
wird es sein zu zeigen, wie sich die MAPW-Methode ohne viel Miihe auch auf beliebige
Potentiale erweitern lisst.

2. Kurzer Abriss des Verfahrens

Wie beim urspriinglichen MAPW-Verfahren [14] wird das Atompolyeder durch
eine einbeschriebene Kugel in die beiden Bereiche I und IT unterteilt ?). Den Radius der
Kugel 7, wiahlen wir so, dass die Abweichungen des Potentials vom sphérischen
Mittelwert

Vi 7) [ a0, Vir (2.1)

gering sind. Damit die Wellenfunktionen der im Kristall mehr oder weniger freien
Valenz- bzw. Leitungselektronen auf den Wellenfunktionen der Rumpfelektronen
orthogonal sind, miissen sie im Bereich des Ionenrumpfes oszillieren. Wir stellen sie
deshalb im Bereich I, der durch 0 < » < 7, bestimmt ist, durch Produkte von Kugel-
flichenfunktionen Y, (r°) und Losungen der Radialdifferentialgleichung

2R, . 2 dR I(I+1
Lt 220 B - — V| R = 0 (2.2

ar: ' v dr

dar. Im Unterschied zum entsprechenden Problem beim freien Atom sind die Separa-
tionsparameter E; nicht durch Randbedingungen festgelegt, sondern sind zundchst
als freie Grossen anzusehen, iiber die spiter noch verfiigt wird. Die zu einer Dreh-
impulsquantenzahl / gehdrende Radialfunktion R, wird man im allgemeinen aus
einer Reihe von im Nullpunkt reguldren Losungen der Differentialgleichung R, , mit
verschiedenen Energien E, ; zusammensetzen, die wir durch den weiteren Index #
unterscheiden wollen. Die Unterscheidung wird so durchgefiihrt, dass » die Zahl der
Knoten der Funktionen R, ;, im Bereich 0 < » < 7, abzdhlt. Da im allgemeinen die
E, , von den Eigenwerten E(k) verschieden sind, und da wir zunéchst nur den sphé-
rischen Teil des Potentials beriicksichtigt haben, wird weder ein Produkt Y, R, ,
noch eine Linearkombination von solchen Produkten eine Ldsung der Schrédinger-
gleichung sein. Wie die bisherigen Uberlegungen gezeigt haben, bedeutet dieser Ver- -
zicht auf die exakte Losung der Schrodingergleichung im Bereich I keine wesentliche
Einbusse an Genauigkeit, wenn die Losungen wenigstens das der Schrodinger-
gleichung dquivalente Extremalprinzip erfiillen, wenn sie ausserdem im ganzen Raum
stetig sind und das richtige Translationsverhalten zeigen. Das Extremalprinzip 16st
man zweckmadssigerweise mit dem Ritzschen Verfahren, wobei fiir die Vergleichs-
funktionen 1m Bereich I der Ansatz

L 0
=X @I )T A, Ry () %00 + ) X oK,

Kj-lLl
m

+

x 204+ 1) 82y, (ke + K [0) x4, (Jk + K; | 7) Y, (r0) - (2.3)

%) In einem Gitter mit Basis wird man jedes Gitterion mit einer Kugel umgeben, deren Radius
héchstens so gross gewihlt wird, dass die einzelnen Kugeln sich gerade beriithren.
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gemacht wird. (K;: reziproker Gittervektor). Die komplexen Entwicklungskoeffi-
zienten A und »(K;) werden spater durch das Variationsverfahren festgelegt.
7,(%) sind sphérische Besselfunktionen. Wie wir gleich zeigen werden, wird durch die
zweite Summe erreicht, dass die Wellenfunktionen einschliesslich ihrer ersten Ablei-
tungen im ganzen Raum stetig sind. Uber die obere Grenze L der Summe iiber die
Drehimpulsquantenzahlen kann im allgemeinen frei verfiigt werden; grosseres L
bedeutet ebenso wie die Mitnahme von Radialfunktionen mit mehr Knoten eine
bessere Anniherug an die wirkliche Wellenfunktion. Beriicksichtigt man die Ent-
wicklung einer ebenen Welle nach Kugelwellen, so ldsst sich der obige Ansatz auch
umordnen in

nim

L
=D u(K) é*i' + 321+ 1) Y (r0) {ZAW e
7 I=0
mitk;=k+ K, . —Zv DY, (k) (k| 7 } (2.4)

Der Vorteil dieser Darstellung (2.4) ist, dass sie nur endliche Summen umfasst, so dass
Summation und Differentiation ohne weiteres vertauscht werden kénnen.

Im Restgebiet des Atompolyeders wird die Wellenfunktion nicht stark ortsver-
dnderlich sein, so dass eine Entwicklung nach ebenen Wellen mit relativ wenigen
Gliedern ihren Verlauf gut wiedergeben wird.

P (y) Zv(K FURS (2.5)

Aus (2.5) ist leicht ersichtlich, dass die Wellenfunktion das richtige Translations-
verhalten

Y, (r+R,)=e"Rnl, (r) (2.6)

besitzt. Ein Vergleich der beiden Darstellungen fiir die Wellenfunktionen zeigt, dass
sie auf der Kugel » = 7, stetig ineinander iibergehen, wenn fiir diesen Wert 7, die ge-
schweifte Klammer von (2.4) verschwindet. In entsprechender Weise ldsst sich auch
die Stetigkeit der ersten Ableitungen zeigen. Die Stetigkeitsbedingungen lauten somit

2 ZU Y, k?) 7.1(|k; | 7o) = 0 (2.7a)
fur I<< L
2 A Bt | — Y o(K)Y, _, (k) R0 | =0, (2.7b)
n ar ’r=f dar |7 =7,

Wie schon erwidhnt, begniigen wir uns damit, dass die Vergleichsfunktionen genau so
wie bei der OPW-Methode den Erwartungswert der Energie

8.4 A (2.8)

zu einem Extremum machen. Als Nebenbedingung muss beriicksichtigt werden, dass
die Wellenfunktion ¥, normiert ist und dass die Wellenfunktion und ihre erste Ab-
leitung auf der Oberfliche der Kugel » = 7, stetig sind. Hierzu beniitzen wir die Me-
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thode der Lagrangeschen Multiplikatoren. Die genaue Durchrechnung, die wir hier
nicht angeben wollen, fithrt zu dem Ergebnis, dass der Lagrangesche Multiplikator
der tiber die Normierungsforderung der Wellenfunktion in den Formalismus einge-
fithrt wird, mit der Gesamtenergie identisch ist. Die iibrigen Lagrangeschen Multipli-
katoren, die mit den Stetigkeitsbedingungen verkniipft sind, bezeichnen wir mit
% DZW. B,

Die Extremalforderung fithrt auf das folgende System linearer Gleichungen

2{ HH’ — E(k 'QN} ZY (k;']) 7lz(|kj1 7o) i
]
_ E'Yl . kO) d71(| | 7)

Z{Hnlm,n’l’m' - E(k) all’ 6 m’ inm n’lm} An’l'm’ + Rnl(rO) OLlm

n'i’m’

Bi,, = 0 fiir alley  (2.9a)

r=7,

+ ian( 7) L B =0, fiirallen,/undm, (2.9b)

’}' =4

wobei folgende Abkiirzungen verwendet werden
L %0 _
Qi =000, —4n ) (21+1) B (k) - k;?,)fdr 21| k| 7) 1,(| k| 7)  (2.10a)
=0

Q

nim, n’im

— 4211 LML f dr 2 R (1) R,,(r) (2.10b)

h? ~

7o L
-+ 4 nfdr 7% Vo) {1o(| K;, — K| 7) Z 21+ 1) Bk} -E)) 1,(|K; | 7) 7,(| R | 7)}

=

Y @RIA) RU+ ) E (— 1Y, ()Y k“fd!)
% Y, (1% K, (1) f dr (| k| 7) Gk | 7) VT, 7) (2.11a)
H =P ) | 2
nlm, w'I'm" 3'5(2l+ 1) ( m)| 6ll 5mm [ nl + En 1] d?r R ( ) R l(y)
I+ vV
L N2041) @20+ 1) m+mfd,o (1) Kpu(r9)
>0
% f dr 2 R () R() VI, 7). (2.11b)

0

Q,: Volumen des Atompolyeders. V(r) bezeichnet die Abweichung

V(r) — Vo) fir 0<7 <7,

V(r) = (2.12)

V(r) sonst

46
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vom muffin-tin-Potential. Sie lisst sich durch die Fourierreihe
V)= V(K) eXi (2.13)
1

darstellen. Im Bereich I erweist es sich als zweckmaissig, V(r) nach sphirischen
Harmonischen K ,(r%) zu entwickeln, die invariant sind gegeniiber allen Deckopera-
tionen des betrachteten Kristalls [16].

Vi)=YV, K@) fir 0<r<7,. (2.14)
i

In (2.11) erstrecken sich die Oberflichenintegrale iiber die Einheitskugel; sie lassen
sich aber ohne weiteres durch Clebsch-Gordan-Koeffizienten ausdriicken. In (2.11)
sind alle Summen endlich, so dass keine Konvergenzschwierigkeiten zu erwarten sind.

Im Unterschied zum urspriinglichen MAPW-Verfahren [14] ist es nicht mehr mog-
lich, einen Teil der Unbekannten, die durch das homogene Gleichungssystem (2.9)
und durch die Nebenbedingungen (2.7) bestimmt sind, zu eliminieren. Der Rang der
Koeffizientendeterminante, welche die Eigenwerte E(k) festlegt, wird dementspre-
chend grdsser sein.

Die vorliegende Formulierung hat andererseits den Vorteil, dass das Eigenwert-
problem von Standardform ist, so dass beim praktischen Rechnen Routineprogramme
verwendet werden kénnen. Beim urspriinglichen MAPW-Verfahren hingegen mussten
die Nullstellen der Sikulardeterminante iterativ aufgesucht werden. Alle iibrigen
Uberlegungen verlaufen analog der urspriinglichen Formulierung, so dass wir darauf
nicht weiter einzugehen brauchen. Hervorzuheben ist vielleicht noch, dass die vor-
liegende Formulierung auch gut dazu geeignet ist, die Fehler abzuschétzen, die durch
die alleinige Beriicksichtigung eines sphirischen Potentials im Bereich I bedingt sind.
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