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IICHHIO pacCeMBaHMA HOCHTEJeH 3JMeKTpHuecTBa (T.e.ry U r, HMEIT OTpHIa-
TeJIbHbIE 3HAKH), TO B 006J1acTH Ok < T<@; napanpouecc auTudeppOMarHuTHOIO
THNA MPHBOJUT K YBEJIHUCHHIO PACCEMBAHUS YKA3aHHBIX HOCHTENEH, T. €. Iy U I}
NPUOOGPETAIOT NMOJOXKHUTENbHBIE 3HAKH.
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Ferroélectriques et antiferroélectriques non colinéaires

par E. F. Bertaut
CEN-G, B.P. 269 et CNRS, B.P. 319, Grenoble

(26. V. 68)

Résumé. La théorie des groupes montre que des modes non colinéaires ferro-antiferro-électriques
peuvent étre associés sur un méme site atomique et que l'expression de 1’énergie dipolaire peut
contenir des termes invariants linéaires dans la polarisation. On établit un critére de moments non
colinéaires en présence de forces purement dipolaires.

Abstract. Group theory shows that non colinear ferro-antiferro-electric modes can be associated
on the same atomic site and that the dipolar energy may contain invariant terms which are linear
in the polarisation. A criterion for the existence of non colinear moments is established when the
acting forces are purely dipolar.

Introduction

Des structures magnétiques non colinéaires sont bien connues et les méthodes
d’analyse que nous avons décrites ailleurs [1] peuvent étre transposées avec peu de
modifications pour les ferro- et antiferro-électriques. La théorie que nous présentons
n’a pas ou peu de rapports avec celle de LANDAU [2]. Nous ne cherchons pas de
critére pour qu’une transition soit du premier ou second ordre, nous ne cherchons pas
non plus a paramétriser de telles transitions en fonction de la pression et (ou) de la
température. Notre théorie n’est donc pas thermodynamique, mais purement géo-
métrique. Nous nous plagons dés le début dans le cadre d’'une symétrie donnée, a
savoir celle du groupe G observé aux rayons-X et nous analysons tous les couplages
compatibles avec cette symétriel). Pour cela nous construisons une expression de

1) LANDAU partant du groupe paraélectrique G, cherche les groupes G ferro- (ou antiferro-)
électriques possibles dans une transition du second ordre.
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I'énergie qui soit invariante dans a) les opérations de symétrie de G, b) le renverse-
ment de fous les moments. Cette derniére hypothése oblige 1'expression d’énergie a
étre pair, c’est-a-dire d’ordre deux, quatre ou six dans les moments.

Pour tenir notre exposé aussi simple que possible, nous commengons par construire
une expression d’énergie d’ordre deux dans les moments sans nous soucier par
ailleurs de la nature des forces agissantes. Nous examinons ensuite le cas spécial des
forces dipolaires et nous précisons les critéres sous lesquels elles font apparaitre des
couplages non colinéaires. Nous considérons briévement le cas de couplages d’ordre
supérleur a deux.

La théorie est illustrée par la considération du groupe Pna-Cj,. GaFeO, [3] et
f-FeNaO, [4] en sont des représentants. Nous inférons I’existence d'une «ferroélec-
tricité et magnétoélectricité?) spontanées et induites» dans f-FeNaO,,.

Expression de 1’énergie-théorie générale

Nous supposons d’abord?) que tout site atomique j est porteur d'un moment m;.
L’énergie est de la forme

W=26lmmkmt+m+m+m- (1)

Ici la sommation est sur tous les moments du cristal; 2 remplace le double indice
J,xola = x, y, z désigne les composantes de m, selon les axes. W, et W, correspondent
aux termes d’ordre 4 et 6. Au lieu d’examiner 'invariance de W terme par terme, il
est plus avantageux d’exprimer 1'énergie en fonction des «vecteurs de base de repré-
sentations irréductibles» 0. Ceux-ci, combinaisons linéaires des moments, s’ob-
tiennent en utilisant les lois de transformation connues des vecteurs polaires m; et ont
toujours une signification physique simple.

Soit T une transformation agissant sur la composante « (« = #, y, z) du moment
m;.

T my = ZDk’k(T) W + (2)
kl

Si # est I'ordre du site j (= nombre de points équivalents), £ variera de 1 & 3 »
et I'ensemble des 3 # équations (2) définit une matrice D(7’). L’ensemble des matrices
D(T) fournit une représentation I"du groupe cristallographique G. T est de dimension
3#n et réductible. Les relations bien connues d’orthogonalités entre caractéres
permettent de savoir immédiatement combien de fois @, une représentation irréduc-
tible I"® du groupe G est contenue dans I

0, = 2 1(T) (D). 3

La méthode la plus élégante pour déterminer les vecteurs de base de représenta-
tions irréductibles est celle des opérateurs de projection [5] (4)

wo = ) DT Ty, (4)
T

%) Effet prévu et actuellement étudié au laboratoire par M. J. MERCIER.
3) Nous reviendrons plus tard sur les conditions imposées par I'invariance.
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Le vecteur %) de la relation (4) se transforme en effet selon la représentation
irréductible I'". Ici D¥(T) est un élément 7§ de la matrice D®(T) représentative
de I’élément 7" dans I'® de dimension #,. La sommation dans (3) et (4) est sur les
g éléments du groupe G. y est une fonction quelconque dont on connait les lois de
transformation sous 7. Nous allons prendre pour p la «fonction» m,, (&« = %, v, 2).
Dans (4) t est fixe; les 9% (s =1, ..., n,) sont des partenaires équivalents, sous-
tendant un espace invariant 4 #, dimension.

L’énergie peut alors s’écrire

W =DA% s o+ - (o, B=1x,9,2). (5)

Le cas le plus simple est évidemment #, = 1. Dans ce cas chaque vecteur de
base ) (6)

v = 2O Ty, (6)
se transforme en lui-méme (a un facteur prés de module un).

Exemple

Il est temps de donner un exemple simple, choisi dans le groupe non centrosymé-
trique Pna 2, — C3,. Des exemples typiques sont GaFeO, [3] et NaFeO, — f§ [4].
Il v a une position générale d’ordre quatre (cf. [6]).

1 1 1 1
4a) %, 9,2 (1) —x,—y, 5 +2 (2); 5 —%45+¥. 5 +23);
1 1
Lint oy o

Nous numérotons les moments m; dans I'ordre indiqué ci-dessus, # est un plan
de glissement?) perpendiculaire 4 0x en 1/4 y z. a est un plan de glissement?) per-
pendiculaire a Oy en x 1/4 z. 2; est un axe hélicoidal®) en 00z.

Matrices de substitution — Les quatre opérateurs ¢ (identité), #, a et 2,, forment un
groupe abélien, isomorphe du groupe V (V = vier) de Klein et que I'on rencontre
dans tous les problémes de quatre points non cycliques. Le tableau 1 résume les
quatre représentations & une dimension I'®) de V.

L’opérateur » fait passer le point 1 en 3, 2en 4, 3 en 1 et 4 en 2. Cette substitution
peut-étre représentée par la matrice « (8). De méme I'opération a, réalisant la substi-
tution 1 =>4; 2 &> 3 est représentée par la matrice 5. Enfin la substitution produit,
réalisée par 2, (1 == 2, 3 = 4) est représentée par la matrice y = o 8 (8).

s L x 5 B m b A

4) Réflexion suivie d'une translation 0 1/2 1/2.
%) Réilexion suivie d’une translation 1/2 0 0.
%) Rotation de 180° suivie d’une translation 0 0 1/2,
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Si nous complétons par la matrice unité ¢ d’ordre quatre, nous voyons que les

traces sont y(e) = 4; y(x) = x(B) = x(y) = 0.
Les quatre matrices forment donc une représentation réguliére /', laquelle contient
une fois chacune des quatre représentations irréductibles I'® du tableau 1.

Tableau I

Représentations et vecteurs de base dans Pna 2, — C§,

e 2, n a x ¥ z
r 1 1 1 1 A G F
r@ 1 1 - -1 G A C
r®e) 1 =~ 1 1 C F @
4 1 -y oq 1 F C A

4a) v, 2 (1); —x, —v,1/242(2); 1/2—x,1/24+y,1/242 (3); /24 x, 12—y, 2 (4)

Matrices D(T) — Plagons maintenant dans les points 1 a 4 (7) des vecteurs polaires
m; (7 =1, ..., 4) tous de méme longueur. On établit facilement leurs lois de transfor-
mation. On a ainsi pour les composantes paralleles a 1’axe hélicoidal

2My, =My, 2y Mg, =My, 2y My, = My,; 2y My, = My, . (9)

Pour les composantes perpendiculaires #;, et m;, on a les mémes équations (9)
mais avec un changement de signe du second membre. Dans 'espace a 12 dimensions
desmy =m;, (1 =1, ...,4;a = %, ¥, 2) les opérateurs 2,, » et a sont donc représen-
tés par des matrices de dimension 12, notées (2,), (#) et (a) et formées uniquement
avec les matrices de substitution (8)

¥ 5y £ ® ¥ # X vy 2

—0 . . g . . -y ..
(n) = s B sl (@)=\|. =B .|; (2,) = .=y - (10)
« « P . s Y

Ces matrices D(7), complétées par une matrice identité ¢ d’ordre 12 forment une
représentation I” d’ordre 12 = 3 # du groupe V. On voit sur I'exemple précis une
premiére décomposition de /" selon les trois sous-espaces %, y, et z

F:Frx®Fry®Frz' (11)

Vecteurs de base — Construisons 4 titre d’exercice un vecteur de base ), combinaison
linéaire des m;,, se transformant selon la représentation «identitéy» I'V (y (T) =1

jxo

pour tout 7). On a par ailleurs
eMyy = My, WMy = — Mg, AMy, = My, 2g My, = —Mg,. (12)

L’application de l'opérateur de projection (4) (6) avec y, = m,, nous fournit
immédiatement

'Pil) = (my — my — mg + my), = A (13a)

X"
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On trouve de méme
Wy = (my — my + my — my), = G, (135)

w(zl) = (my + my + my + my), = F, . (13¢c)

On peut ainsi construire tout le tableau 1 ol sur une méme ligne on trouve les
vecteurs de base appartenant & une méme représentation I'®. Tous les vecteurs sont
les composantes des quatre vecteurs (14)

F=m,+my+my;+m,; G=m, —m,+m,—m,
C=m+m,—my;—m,; A=m,—m,—my;+m,. (14)

Inversement, grice aux relations (10) le lecteur pourra vérifier comment se
transforment les composantes des vecteurs (14). (Par exemple: 2, G, = —G,; nG, =
+ G,; donc G, e I'®),

Sens physique des vecteurs de base — F, est maximal pour m,, = My, = M;, =
my,; 1l caractérise une polarisation ferroélectrique selon 0z. En méme temps G,, C, et
A, sont nuls. Le vecteur 4, est maximal pour m, , = —my, = —my, = m,,; il carac-
térise un état antiferroélectrique; en méme temps F,, G, et C, sont nuls. Tout vecteur
non nul caractérise un «mode» et nous parlerons plus simplement de modes F (++++),
G (+—+-), C (++——) et A (+——++), la succession des signes entre les parenthéses
correspondant aux signes des moments #,,. Le systéme (14) est complet en ce sens
que tout vecteur m; peut étre exprimé a I’aide des vecteurs de base de représentations
irréductibles. Donc toute expression d’énergie, quadratique dans les moments, peut
étre transformée en une forme bilinéaire dans les composantes des vecteurs de base
(5). Mais pour que I'énergie soit invariante dans les opérations T du groupe G il faut
que les vecteurs de base entrant dans un terme bilinéaire appartiennent a la méme
représentation irréductible. W(I'™) (15) est invariant dans G, car 4,, G, et L
appartiennent A la méme représentation I'" et de plus invariant dans le renverse-
ment de tous les moments.

W(Fm) = axA?: + ay Gﬁzl + a, GE + axy Ax Gy + dyz Gy‘FZ + azx}?z A"' * (15)

Nous voyons (15) qu'une polarisation ferroélectrique F, peut étre associée avec
un mode antiferro-électrique (4, ou G,) dans une direction perpendicuvlaire. On peut
donc avoir dans I'expression de I'énergie d'un ferroélectrique des termes invariants
linéaires dans la polarisation E, et méme des termes provenant de couplages de modes
antiferro-€lectriques différents (4, G,) (Fig.).

En fait dans une structure ferroélectrique ce sont généralement plusieurs sortes
d’ions qui contribuent 4 la polarisation. Dans 1'exemple choisi de FeNaO, — 8 ou tous
les ions sont sur les sites 4a) on aura des modes 4,, G,, I, pour chaque sorte d’ions §
donnant de plus lieu, dans l'expression de 1'énergie, a des termes mixtes tels que
G,(0) E(Fe) ou G,(Fe) F(O) etc. L’énergie s’écrira donc en général

W= WG+ Wi—1) (16)
i 77

ou le premier terme est sommé sur les interactions entre ions de méme espece 7, le

second terme sur les interactions entre ions d’espéces différentes j et 7'
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A
S R

£
AN

———
+

A-A

4

LN

Moments colinéaires et non colinéaires.
Les deux dessins du haut représentent des modes colin€aires ferroélectriques F(+ + + +) et anti-
ferroélectriques 4 (+ — — +). Les deux dessins du bas représentent des modes non colinéaires I'un
du type 4, F,, 'autre du type 4, G, (voir texte).

Ferroélectricité spontanée et induite

Dans un ferroélectrique la polarisation spontanée (en absence de champs extérie-
urs) est invariante dans le groupe G, ou encore dans le langage des représentations la
polarisation spontanée appartient & la représentation identité I'™. Quel est alors le
sens des autres représentations /™™ avec » + 1 qui elles aussi permettent de construire
des invariants bilinéaires (par exemple F, A4, dans I'®). Il est évident que

W(IYy < w(I™) »=2,3,4 (17)

(sinon la symétrie changerait spontanément). Pour illustrer une application, qui peut
paraitre spéculative, supposons que dans un ferroélectrique appartenant au groupe
Pna on applique un champ électrique E, susceptible de créer une polarisation F,
donc d’ajouter une contribution — E_ F, a I'énergie. Il peut alors arriver que pour E,
suffisamment grand

W) — E,E, < W(IT™). (18)

Dans ce cas on induirait de la ferroélectricité selon la «représentation» I"®. En
méme temps on réduira la symétrie. En effet dans I'® le seul élément de symétrie
ayant le caractére + 1 est a. Donc avec un champ E, suffisamment fort on pourrait,
théoretiquement du moins, induire une transition vers un ferroélectrique monoclinique
appartenant au groupe cristallographique Pa polarisé selon Ox et se souvenant de la
structure orthorhombique & travers les composantes antiferroélectriques selon y et z.
On peut aller plus loin et inférer la transition d'un état non ferroélectrique vers un
état ferroélectrique. Dans le groupe P 2,2,2; non centrosymétrique par exemple on
ne peut avoir que des modes antiferromagnétiques dans 'V (cf. tableau 2). L’appli-
cation d'un champ E, pourrait induire la ferroélectricité selon Ox et abaisser la
symétrie vers P 2, (I'®; tableau 2).
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Tableau II
Représentations et vecteurs de base dans P 2, 2, 2, — D}

2 x 21y x ¥ #
ro 1 1 G A C
re 1 -1 F C #
re -1 1 C F G
4 -1 = A G F

4a) v, 9,2 (1); 1/2—x, —y,1/242(2); 1/2+ %, 12—y, —2 (3); — &, 1[24+y, 1/2— 2 (4)

On peut méme prévoir, que des transitions ferroélectriques pourraient étre induites
a partir d’'un composé centrosymeétrique.

Il parait plausible que ’on trouvera de telles transitions en appliquant des champs
non prohibitifs prés de températures critiques.

Remarque. Un phénomeéne analogue a la ferroélectricité «induite» est celui de la
«magnétoélectricité induite».

La magnétoélectricité peut s’interpréter comme étant due a l'existence d'un
terme F,, F,; dans I'expression de I'énergie. Ici F,, polarisation magnétique dans
la direction & se transforme selon un groupe de Shubnikov que 1'on connait d’apres la
structure magnétique alors que F,; polarisation électrique selon f se transforme selon
le groupe cristallographique G. Le groupe de Shubnikov de FeNaO, —f est Pn’a2;
[4]. Icin’ = nR; 2; = 2, R ol R est 'opérateur renversement de temps. Le tableau I11
montre les représentations du groupe Pn’a2], les vecteurs de base formés avec les
spins, vecteurs axiaux, et dans les derniéres colonnes les vecteurs de base formés avec
les moments électriques, vecteurs polaires, qui, eux, ne subissent pas l’opération de
renversement de temps. On voit que dans '™ une polarisation magnétique F,, peut
étre couplée avec une polarisation électrique F,,. Mais de plus on peut prévoir le
phénomeéne de magnétoélectricité «induite» qui produirait dans I'® le couplage de
E,, avec F,.7). Des cas de magnétoélectricité induite ont d’ailleurs été observés [7]
dans les composés de type MLiPO, (M = Mn, Co, Ni) centrosymétriques au point de
vue cristallographique (groupe Pbmn).

Tableau TI1
Vecteurs de base des moments électriques (polaires) et magnétiques (axiaux) dans Pn’a2;

21 a Vecteurs magnétiques vecteurs électriques
x y z x v z
rw 1 1 ¢ F G A G F
re 1 -1 F C A G A C
re -1 +1 G A G C F G
re -1 -1 A G F F C A

?) Dans FeGaO; le groupe de SHUBNIKOV est Pna’2] ou dans les notations de la référence [3]
Pc’2; n. L'effet de magnétoélectricité induite n’a pu etre observé a cause de la trés grande
anisotropie de ce composé (cf. [3, 8]).

44
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Energie dipolaire et non colinéarite des moments

Nous n’avons pas spécifié la nature des forces actives entre les moments ne rete-
nant que leur nature de vecteurs polaires. Nous nous demandons maintenant dans
quelle mesure des forces purement dipolaires sont capables de donner lieu a des
structures non colinéaires.

L’auteur a indiqué une méthode [9, 10, 11] de calcul d’énergie dipolaire W}, dans
I'espace réciproque?®) qui fait intervenir le facteur de structure dipolaire D(h)

D(h) =2mj exp(2mih-r;). (19)

Ici h est un vecteur del'espace réciproque, m; est un dipdle au point r;. La somma-
tion est sur tous les dipdles de la maille. On a:

Wy =X (3| D(h) - h[ — | D) [ [ B ) () — 57V P2 (20)

Le dernier terme dans (20) est celui de Lorentz (P = 2'm;). La fonction y(k) est
explicitée dans les références citées (cf. notamment appendice réf. [10]) et ne nous
intéresse pas spécialement ici. Le fait intéressant est que D(h) (19) forme linéaire
dans les moments m, peut étre exprimée en fonction des vecteurs de base des repré-
sentations irréductibles. Le terme | D(h) |2 ne peut évidemment pas associer de modes
perpendiculaires (tels que 4, G,, F). C’est donc le terme

D k2, +0 (21)

qui sera responsable d’éventuels couplages. Ici le symbole <C...>, signifie une
moyenne sur toutes les symétries du vecteur réciproque h qui laissent sa longueur
invariante.

Exemple

On a dans le groupe Pna grace a (14) et (19)
D(h)zZ(fF+cC+gG+aA)j. (22)

1

Ici la sommation est sur les différentes espéces d’ions (j = Fe, Na, O;, Oy; dans
FeNaO, — f8); f, ¢, g et a sont des coefficients trigonométriques, explicités dans
I’appendice. Les opérations de symétrie permises sur le vecteur h (23) dans le groupe
orthorhombique sont les changements de signe + 4, + %, +/

h=rhb,+ kb, +1b,. (23)

Lorsque 4,; et G,; sont présents, le terme | D - h|? contiendra des contributions
de la forme

hE(a;gf +afg)d,; G, . (24)

On montre dans 'appendice que (24) est invariant par rapport a tout changement de
signe de 4, %, I. Cela prouve déja la possibilité de structures non colinéaires purement

8) La forme donnée ici différe de celles dérivées de la méthode de EwaLp [12] par le fait qu’une
seule série convergente est a évaluer (au lieu des deux séries chez EwALD).
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dipolaires®). Les contributions (24) sont non nulles aussi bien pour j = ;' que pour
7 #7. Quant au couplage A F il donne lieu a des termes de la forme
Isin (27l (z; — z;)) x fonction paire de 4, & (cf. appendice) qui sont différents de zéro
uniquement pour des espéces atomiques différentes (7 = j'). Il en est de méme du
couplage G, F,.

Aussi paradoxalement que cela puisse paraitre nous devons conclure que des
structures dipolaires sont en général non colinéaires, sauf pour des positions parti-
culieres. La forme (24) est nulle pour x;, y;, %, ¥, égaux a 0 ou 1/2. Or la plupart des
calculs d’énergies dipolaires ont été faits pour de telles positions particulieres ce qui
a pu créer I'impression que des structures dipolaires seraient toujours colinéaires
(méme microscopiquement).

Termes d’ordre supérieur

Les termes W,, W; dans (1) peuvent «mélanger» des représentations; en effet dans

Pna (tableau 1) A% F, G, est encore un invariant!?). On montre aisément que des
xty Tz q

parties d'un moment m; appartenant 4 des représentations irréductibles I"*) et I"?

différentes doivent étre orthogonales. Soit en effet
m, = m® + mf
Comme | m; |? doit étre invariant, le produit m{® - m{ qui se transforme selon
I'® x "B doit disparaitre (c.q.f.d.). De plus, m; ne peut participer 2 plus de trois
représentations irréductibles.

Détection de modes non colinéaires

Il n’existe pas encore d’expérience de diffraction directe ou des particules mono-
cinétiques douées d'un moment électrique dipolaire interagiraient avec des structures
dipolaires (comme en diffraction neutronique le dipéle magnétique du neutron inter-
agit avec les moments magnétiques). On doit espérer que les techniques de diffraction
aux rayons-X atteindront un degré de précision suffisant pour apprécier les moments
dipolaires en grandeur et direction a partir de la connaissance de la densité électro-
nique.

On peut aussi songer a des mesures diélectriques en champs croisés a des fréquences
différentes.

Appendice

Le facteur de structure dipolaire est grace a (7) et (19)
D(h) = ) D,(h) (A-1)
i

avec
D;(h) =exp2milz; {myexpip+ (—1)myexp —ip+ (—1)**

J

X [(—1)!'myexpi g +myexp —1iql} (A-2)

%) Soit Wy =a, A%+ a, Gy+ay, A,G,. Supposons a, < 0 et a, < a,; (a, peut méme étre positif).
Si a,,, = 0, le mode 4, existera seul. Si a,, # 0, il y aura foujours couplage non colinéaire.
Pour s’en rendre compte on pose 4, = cosg, G, = sing. En minimisant W;, W; =
1/2 [a, + ay +]/(a,x —ay)?+al,] ~a,+1/4 (a},la,— ay) < a,.

10) Induit par application d’un champ selon Oy.
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et les abréviations
p=2mi(hx;+ky);, q=2mi(—hx;+ky). (A-3)

Les fonctions trigonométriques f, ¢, g, a dans (22) peuvent s’exprimer a 1’'aide d’une
seule fonction scalaire # (e, &, €5, &) (4 — 4)

t(ey, €2, €3, €4) = %epo:rm'lz {erexpip + (1)l g, expi p + (— 1)r+k

X [(—1)tegexpig+ g exp — g} (A-4)
=11 L 115 c=1¢1,1,—-1,—-1);
g=1t(1,-1,1,-1); a=1¢1,—-1,—-1,1). (A-5)

Bien que les calculs soient fastidieux, ils sont faciles; on a par exemple

a;“gj,—{—a?.g;',‘:%cosan(z—z')

X [y Bysec,c, s, +ofcs,s, ¢, —a fice,s, s, —a f_ss,ccl. (A6
Ici on a abrégé
gl b= =i — 118
Bo= 14 (—1hH; B 1— (— 1P,
s, =sin2xhx; s, =sin2nky;
s, =sin2mhx'; s, =sin2zmky .

De mémec,, c,, Co» c'y sont les abréviations pour les fonctions cosinus correspondantes.
On a écrit x pour x; et &’ pour x;,. On voit sur A-6 que 4 & (4, g + 4" g;), coefficient de
A,; G, , est une fonction paire de 4, &, et de /.

On a avec les mémes abréviations

1. ,
a,-f;'f+a;"fj,=~2—sm2nl(z—z)

X [oy Bys.c 6 ¢, —ayfc.s,s,s,+a_foc.o 5,6 —a f_s.c.c.s] (A7)

ce qui prouve que le coefficient de 4,; F;;, (f # 1'; z + 2’) dans (21) est pair en 4, &
et /. 11 en est de méme du coefficient de G; F, ;.
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