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Ferroélectriques et antiferroélectriques non colinéaires

par E. F. Bertaut
CEN-G, B.P. 269 et CNRS, B.P. 319, Grenoble

(26. IV. 68)

Résumé. La théorie des groupes montre que des modes non colinéaires ferro-antiferro-électriques
peuvent être associés sur un même site atomique et que l'expression de l'énergie dipolaire peut
contenir des termes invariants linéaires dans la polarisation. On établit un critère de moments non
colinéaires en présence de forces purement dipolaires.

A bstract. Group theory shows that non colinear ferro-antiferro-electric modes can be associated
on the same atomic site and that the dipolar energy may contain invariant terms which are linear
in the polarisation. A criterion for the existence of non colinear moments is established when the
acting forces are purely dipolar.

Introduction
Des structures magnétiques non colinéaires sont bien connues et les méthodes

d'analyse que nous avons décrites ailleurs [1] peuvent être transposées avec peu de
modifications pour les ferro- et antiferro-électriques. La théorie que nous présentons
n'a pas ou peu de rapports avec celle de Landau [2]. Nous ne cherchons pas de
critère pour qu'une transition soit du premier ou second ordre, nous ne cherchons pas
non plus à paramétriser de telles transitions en fonction de la pression et (ou) de la
température. Notre théorie n'est donc pas thermodynamique, mais purement
géométrique. Nous nous plaçons dès le début dans le cadre d'une symétrie donnée, à

savoir celle du groupe G observé aux rayons-A7- et nous analysons tous les couplages
compatibles avec cette symétrie1). Pour cela nous construisons une expression de

L) Landau partant du groupe paraélectrique G0 cherche les groupes G ferro- (ou antiferro-)
électriques possibles dans une transition du second ordre.
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l'énergie qui soit invariante dans a) les opérations de symétrie de G, b) le renversement

de tous les moments. Cette dernière hypothèse oblige l'expression d'énergie à

être pair, c'est-à-dire d'ordre deux, quatre ou six dans les moments.
Pour tenir notre exposé aussi simple que possible, nous commençons par construire

une expression d'énergie d'ordre deux dans les moments sans nous soucier par
ailleurs de la nature des forces agissantes. Nous examinons ensuite le cas spécial des

forces dipolaires et nous précisons les critères sous lesquels elles font apparaître des

couplages non colinéaires. Nous considérons brièvement le cas de couplages d'ordre
supérieur à deux.

La théorie est illustrée par la considération du groupe Pna-C2„. GaFe03 [3] et
/3-FeNa02 [4] en sont des représentants. Nous inférons l'existence d'une «ferroélec-
tricité et magnétoélectricité2) spontanées et induites» dans /?-FeNa02.

Expression de l'énergie-théorie générale

Nous supposons d'abord3) que tout site atomique / est porteur d'un moment »y
L'énergie est de la forme

W=Zaklmkml + Wi + W6+.... (1)

Ici la sommation est sur tous les moments du cristal ; k remplace le double indice
;', a où a x, y, z désigne les composantes de rtij selon les axes. Wi et Wt correspondent
aux termes d'ordre 4 et 6. Au lieu d'examiner l'invariance de W terme par terme, il
est plus avantageux d'exprimer l'énergie en fonction des «vecteurs de base de
représentations irréductibles» y>$. Ceux-ci, combinaisons linéaires des moments,
s'obtiennent en utilisant les lois de transformation connues des vecteurs polaires rtij et ont
toujours une signification physique simple.

Soit T une transformation agissant sur la composante oc (a x, y, z) du moment

rrij.
Tmk=£Dk,k(T)mk,. (2)

k'

Si n est l'ordre du site j nombre de points équivalents), k variera de 1 à 3 n
et l'ensemble des 3 n équations (2) définit une matrice D(T). L'ensemble des matrices
D(T) fournit une représentation r du groupe cristallographique G. T est de dimension
3 w et réductible. Les relations bien connues d'orthogonalités entre caractères

permettent de savoir immédiatement combien de fois a„ une représentation irréductible

/1W du groupe G est contenue dans r.

av jZ!x*(T) X(V)(T) (3)

La méthode la plus élégante pour déterminer les vecteurs de base de représentations

irréductibles est celle des opérateurs de projection [5] (4)

V>y=ZD$(T)*Tw. (4)

2) Effet prévu et actuellement étudié au laboratoire par M. J. Mercier.
3) Nous reviendrons plus tard sur les conditions imposées par l'invariance.
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Le vecteur ip1^ de la relation (4) se transforme en effet selon la représentation
irréductible J,(r). Ici Df)(T) est un élément ij de la matrice D^(T) représentative
de l'élément T dans 71(*,) de dimension nv. La sommation dans (3) et (4) est sur les

g éléments du groupe G. ip est une fonction quelconque dont on connaît les lois de

transformation sous T. Nous allons prendre pour ip la «fonction» mlot (a x, y, z).
Dans (4) t est fixe; les ip^} (s 1, nv) sont des partenaires équivalents, sous-
tendant un espace invariant à nv dimension.

L'énergie peut alors s'écrire

yy " Zj ^st.aßrst.aLWst.ß (oc, ß x, y, z) (5)

Le cas le plus simple est évidemment nv 1. Dans ce cas chaque vecteur de
base yW (6)

rM=27*>(r)*7>a (6)
T

se transforme en lui-même (à un facteur près de module un).

Exemple

Il est temps de donner un exemple simple, choisi dans le groupe non centrosymé-
trique Pna 2X — C2„. Des exemples typiques sont GaFe03 [3] et NaFe02 — ß [4].
Il y a une position générale d'ordre quatre (cf. [6]).

4a) x, y, z (1) ; —x, -y,-2-+z (2);

1 x IA\y Ax,— ~y,z (4)

l + y,^r+z (3);

(7)

Nous numérotons les moments rrij dans l'ordre indiqué ci-dessus, n est un plan
de glissement4) perpendiculaire à Ox en 1/4 y z. a est un plan de glissement5)
perpendiculaire à Oy en x 1/4 z. 2X est un axe hélicoïdal6) en OOz.

Matrices de substitution - Les quatre opérateurs e (identité), n, a et 2Xz forment un
groupe abélien, isomorphe du groupe V (V vier) de Klein et que l'on rencontre
dans tous les problèmes de quatre points non cycliques. Le tableau 1 résume les

quatre représentations à une dimension J1'*' de V.
L'opérateur n fait passer le point 1 en 3, 2 en 4, 3 en 1 et 4 en 2. Cette substitution

peut-être représentée par la matrice a. (8). De même l'opération a, réalisant la substitution

1 ^± 4 ; 2 <± 3 est représentée par la matrice ß. Enfin la substitution produit,
réalisée par 2Xz (1 <± 2, 3 <± 4) est représentée par la matrice y — oc ß (8).

1

4) Réflexion suivie d'une translation 0 1/2 1/2.
5) Réflexion suivie d'une translation 1/2 0 0.
6) Rotation de 180° suivie d'une translation 0 0 1/2.

(8)



686 E. F. Bertaut H. P. A.

Si nous complétons par la matrice unité e d'ordre quatre, nous voyons que les

traces sont X(e) 4; x(a) %(ß) %(y) 0.

Les quatre matrices forment donc une représentation régulière Tr laquelle contient
une fois chacune des quatre représentations irréductibles JT(") du tableau 1.

Tableau I

Représentations et vecteurs de base dans Pna 2X — C\ „

e \ n a x y z

f(l) 1 1 1 1 A G F
_T(2) 1 1 -1 -1 G A C

r<3> 1 -1 1 -1 C F G

rw 1 -1 -1 1 F C A

4a) x.y.z (1); - x, -y, 1/2-M (2); 1/2- x, 1/2+y, 1/2-M (3); 1/2 + *, 1/2-y,* (4)

Matrices D(T) - Plaçons maintenant dans les points 1 à 4 (7) des vecteurs polaires

rrij (j 1, 4) tous de même longueur. On établit facilement leurs lois de transformation.

On a ainsi pour les composantes parallèles à l'axe hélicoïdal

2xmXz= m2z ; 2X m2z mXz ; 2xm3 m. 2xmi (9)

Pour les composantes perpendiculaires m,x et mjy on a les mêmes équations (9)
mais avec un changement de signe du second membre. Dans l'espace à 12 dimensions
des mk — m,-a (j 1, 4; oc x, y, z) les opérateurs 2X, n et a sont donc représentés

par des matrices de dimension 12, notées (2X), (n) et (a) et formées uniquement
avec les matrices de substitution (8)

(n)

x y z X y z

— oc ß

a ; («) -i? •

oc • ß

(2r)

x

-y
y

-y
y

(10)

Ces matrices D(T), complétées par une matrice identité e d'ordre 12 forment une
représentation T1 d'ordre 12 3 n du groupe V. On voit sur l'exemple précis une
première décomposition de r selon les trois sous-espaces x, y, et z

r rrx@rry®rrz. (n)

Vecteurs de base - Construisons à titre d'exercice un vecteur de base ip^, combinaison
linéaire des mjx, se transformant selon la représentation «identité»/7'1' (% (T) 1

pour tout T). On a par ailleurs

e m. m. n m. — m. a m. m. 2i mXx (12)

L'application de l'opérateur de projection (4) (6) avec y>a mXx nous fournit
immédiatement

fx1] (mx — m2 — m3 + mAx Ax. (13a)



vf (mx - m2 + m3~ mt)y G«

wm (mx + m2 + m3 + mAz F>
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On trouve de même

(13b)

(13c)

On peut ainsi construire tout le tableau 1 où sur une même ligne on trouve les
vecteurs de base appartenant à une même représentation .Tw. Tous les vecteurs sont
les composantes des quatre vecteurs (14)

F mx + m2 + m3+mi; G =mx—m2 + m3—mi
C mx + m2 — m3 — mi; A mx — m2 — m3 + m^. (14)

Inversement, grâce aux relations (10) le lecteur pourra vérifier comment se

transforment les composantes des vecteurs (14). (Par exemple: 2XGZ — Gz; nGz
+ G,;doncGzer<3').

Sens physique des vecteurs de base — Fz est maximal pour mXz m2z mSz

miz; il caractérise une polarisation ferroélectrique selon Oz. En même temps Gz, Cz et
Az sont nuls. Le vecteur Ax est maximal pour mXx —rn2x= — m3x mix;ïl caractérise

un état antiferroélectrique; en même temps Fx, Gx et Cx sont nuls. Tout vecteur
non nul caractérise un « mode » et nous parlerons plus simplement de modes F (++++),
G (H \-—), C (+-1 et A (H )-), la succession des signes entre les parenthèses
correspondant aux signes des moments mia. Ve système (14) est complet en ce sens

que tout vecteur m,- peut être exprimé à l'aide des vecteurs de base de représentations
irréductibles. Donc toute expression d'énergie, quadratique dans les moments, peut
être transformée en une forme bilinéaire dans les composantes des vecteurs de base

(5). Mais pour que l'énergie soit invariante dans les opérations T du groupe G il faut
que les vecteurs de base entrant dans un terme bilinéaire appartiennent à la même

représentation irréductible. W(rw) (15) est invariant dans G, car Ax, Gy et Fz

appartiennent à la même représentation rm et de plus invariant dans le renversement

de tous les moments.

W(rw) axA2x + ay G2y + azG2 + axy Ax Gy +ayz Gy Fz + azx Fz Ax. (15)

Nous voyons (15) qu'une polarisation ferroélectrique Fz peut être associée avec
un mode antiferro-électrique (Ax ou Gy) dans une direction perpendiculaire. On peut
donc avoir dans l'expression de l'énergie d'un ferroélectrique des termes invariants
linéaires dans la polarisation Fa et même des termes provenant de couplages de modes

antiferro-électriques différents (AxGy) (Fig.).
En fait dans une structure ferroélectrique ce sont généralement plusieurs sortes

d'ions qui contribuent à la polarisation. Dans l'exemple choisi de FeNa02 — ß où tous
les ions sont sur les sites 4a) on aura des modes Ax,Gy,Fz pour chaque sorte d'ions j
donnant de plus Heu, dans l'expression de l'énergie, à des termes mixtes tels que
Gy(0) Fz(Fe) ou Gj,(Fe) Fz(0) etc. L'énergie s'écrira donc en général

W=gW(j-j)+£W(j-f) (16)

où le premier terme est sommé sur les interactions entre ions de même espèce /, le
second terme sur les interactions entre ions d'espèces différentes j et /'.
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- IMI
a 1 I I I

» O ü If

A-A

A h
Moments colinéaires et non colinéaires.

Les deux dessins du haut représentent des modes colinéaires ferroélectriques F(+ + + + et anti-
ferroélectriques A (H h Les deux dessins du bas représentent des modes non colinéaires l'un

du type Ax Fz, l'autre du type AxGy (voir texte).

Ferroélectricité spontanée et induite

Dans un ferroélectrique la polarisation spontanée (en absence de champs extérieurs)

est invariante dans le groupe G, ou encore dans le langage des représentations la
polarisation spontanée appartient à la représentation identité T7'1'. Quel est alors le

sens des autres représentations .Tw avec v =t= 1 qui elles aussi permettent de construire
des invariants bilinéaires (par exemple Fx Az dans /I(4)). Il est évident que

W(rw) < W(r(v)) v 2, 3, 4 (17)

(sinon la symétrie changerait spontanément). Pour illustrer une application, qui peut
paraître spéculative, supposons que dans un ferroélectrique appartenant au groupe
Pna on applique un champ électrique Ex susceptible de créer une polarisation Fx

donc d'ajouter une contribution —ExFxk l'énergie. Il peut alors arriver que pour Ex
suffisamment grand

W(r(v)) -EXFX<: W(r(l)) (18)

Dans ce cas on induirait de la ferroélectricité selon la «représentation» i"1'4'. En
même temps on réduira la symétrie. En effet dans T7*4' le seul élément de symétrie
ayant le caractère 4- 1 est a. Donc avec un champ Ex suffisamment fort on pourrait,
théoretiquement du moins, induire une transition vers un ferroélectrique monoclinique
appartenant au groupe cristallographique Pa polarisé selon Ox et se souvenant de la
structure orthorhombique à travers les composantes antiferroélectriques selon y et z.

On peut aller plus loin et inférer la transition d'un état non ferroélectrique vers un
état ferroélectrique. Dans le groupe P 2J2J2J non centrosymétrique par exemple on
ne peut avoir que des modes antiferromagnétiques dans rw (cf. tableau 2). L'application

d'un champ Ex pourrait induire la ferroélectricité selon Ox et abaisser la
symétrie vers P 2X (F{2); tableau 2).
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Tableau II
Représentations et vecteurs de base dans P 2X 2X 2X — D2

f(4)

2XX 2« x y z

1 1 G A C

1 -1 F C A

1 1 C F G

1 -1 A G F

4a) x,y, z (1); 1/2-*, -y, 1/2 + z (2); 1/2 + *, 1/2-y, -z (3); - *, 1/2 + y, 1/2- z (4)

On peut même prévoir, que des transitions ferroélectriques pourraient être induites
à partir d'un composé centrosymétrique.

Il paraît plausible que l'on trouvera de telles transitions en appliquant des champs
non prohibitifs près de températures critiques.

Remarque. Un phénomène analogue à la ferroélectricité «induite» est celui de la
«magnétoélectricité induite».

La magnétoélectricité peut s'interpréter comme étant due à l'existence d'un
terme Fma Feß dans l'expression de l'énergie. Ici Fma polarisation magnétique dans
la direction a se transforme selon un groupe de Shubnikov que l'on connaît d'après la
structure magnétique alors que Feß polarisation électrique selon ß se transforme selon
le groupe cristallographique G. Ve groupe de Shubnikov de FeNa02 — ß est Pn'a2(
[4]. Ici n' n R ; 2'x 2X R où R est l'opérateur renversement de temps. Le tableau III
montre les représentations du groupe Pn'a2J, les vecteurs de base formés avec les

spins, vecteurs axiaux, et dans les dernières colonnes les vecteurs de base formés avec
les moments électriques, vecteurs polaires, qui, eux, ne subissent pas l'opération de

renversement de temps. On voit que dans T7'1' une polarisation magnétique Fmy peut
être couplée avec une polarisation électrique Fez. Mais de plus on peut prévoir le

phénomène de magnétoélectricité «induite» qui produirait dans J1'4' le couplage de

Fmz avec Fexn). Des cas de magnétoélectricité induite ont d'ailleurs été observés [7]
dans les composés de type MLiP04 (M Mn, Co, Ni) centrosymétriques au point de

vue cristallographique (groupe Pbmn).

Tableau III
Vecteurs de base des moments électriques (polaires) et magnétiques (axiaux) dans Pn'a2j

2i a Vecteurs magnétiques vecteurs électriques

x y z x y z

rw i 1 C F G A G F
r<2> i -1 F C A G A C

_r(3) -i + 1 G A C C F G

rw -i -1 A G F F C A

7) Dans FeGaOg le groupe de Shubnikov est Pna'2x ou dans les notations de la référence [3]
Pc'2j n. L'effet de magnétoélectricité induite n'a pu être observé à cause de la très grande
anisotropie de ce composé (cf. [3, 8]).
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Energie dipolaire et non colinéarite des moments

Nous n'avons pas spécifié la nature des forces actives entre les moments ne retenant

que leur nature de vecteurs polaires. Nous nous demandons maintenant dans

quelle mesure des forces purement dipolaires sont capables de donner lieu à des

structures non colinéaires.
L'auteur a indiqué une méthode [9, 10, 11] de calcul d'énergie dipolaire WD dans

l'espace réciproque8) qui fait intervenir le facteur de structure dipolaire D(h)

D(h) =Xmi exP (2 n * h " rj) • (1Q)

i

Ici h est un vecteur de l'espace réciproque, rtij est un dipôle au point r,-. La sommation

est sur tous les dipôles de la maille. On a :

WD =27 (3 | D(h) ¦ h I« - | D(h) \2 | h \2) x(h) - Af- V P2. (20)
h

Le dernier terme dans (20) est celui de Lorentz (P Emf). La fonction %(h) est

explicitée dans les références citées (cf. notamment appendice réf. [10]) et ne nous
intéresse pas spécialement ici. Le fait intéressant est que D(h) (19) forme linéaire
dans les moments mx peut être exprimée en fonction des vecteurs de base des

représentations irréductibles. Le terme | D(h) \2 ne peut évidemment pas associer de modes

perpendiculaires (tels que Ax, Gy, Fz). C'est donc le terme

<|D -/i|2>A 4= 0 (21)

qui sera responsable d'éventuels couplages. Ici le symbole <...>A signifie une

moyenne sur toutes les symétries du vecteur réciproque h qui laissent sa longueur
invariante.

Exemple

On a dans le groupe Pna grâce à (14) et (19)

D(h)=2J(fF + eC + gG + aA)j. (22)
i

Ici la sommation est sur les différentes espèces d'ions (/ Fe, Na, 0T, On dans

FeNa02 — ß) ; /, c, g et a sont des coefficients trigonométriques, explicités dans

l'appendice. Les opérations de symétrie permises sur le vecteur h (23) dans le groupe
orthorhombique sont les changements de signe Az h, +k, ± l

h hbx + kb2 + lbz. (23)

Lorsque Axj et Gyy sont présents, le terme \D • h\2 contiendra des contributions
de la forme

hk(a]g* + a*gr)AxjGyr. (24)

On montre dans l'appendice que (24) est invariant par rapport à tout changement de

signe de h, k, l. Cela prouve déjà la possibilité de structures non colinéaires purement

8) La forme donnée ici diffère de celles dérivées de la méthode de Ewald [12] par le fait qu'une
seule série convergente est a évaluer (au lieu des deux séries chez Ewald).
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dipolaires9). Les contributions (24) sont non nulles aussi bien pour / /' que pour
/ 4= /'. Quant au couplage Ax Fz il donne lieu à des termes de la forme
/ sin (2 n l (Zj — zA) X fonction paire de h, k (cf. appendice) qui sont différents de zéro

uniquement pour des espèces atomiques différentes (/ + /'). Il en est de même du
couplage Gy Fz.

Aussi paradoxalement que cela puisse paraître nous devons conclure que des

structures dipolaires sont en général non colinéaires, sauf pour des positions
particulières. La forme (24) est nulle pour y y y, y égaux à 0 ou 1/2. Or la plupart des

calculs d'énergies dipolaires ont été faits pour de telles positions particulières ce qui
a pu créer l'impression que des structures dipolaires seraient toujours colinéaires
(même microscopiquement).

Termes d'ordre supérieur
Les termes Wt, Wa dans (1) peuvent «mélanger» des représentations; en effet dans

Pna (tableau 1) A\FyGz est encore un invariant10). On montre aisément que des

parties d'un moment rrij appartenant à des représentations irréductibles T""*01' et i"1'^

différentes doivent être orthogonales. Soit en effet

m- mf] + mf
Comme | m,12 doit être invariant, le produit m'™' • mj/3) qui se transforme selon

-T(a) X r^\ doit disparaître (c.q.f.d.). De plus, rtij ne peut participer à plus de trois
représentations irréductibles.

Détection de modes non colinéaires

Il n'existe pas encore d'expérience de diffraction directe où des particules
monocinétiques douées d'un moment électrique dipolaire interagiraient avec des structures
dipolaires (comme en diffraction neutronique le dipôle magnétique du neutron interagit

avec les moments magnétiques). On doit espérer que les techniques de diffraction
aux rayons-X atteindront un degré de précision suffisant pour apprécier les moments
dipolaires en grandeur et direction à partir de la connaissance de la densité électronique.

On peut aussi songer à des mesures diélectriques en champs croisés à des fréquences
différentes.

Appendice
Le facteur de structure dipolaire est grâce à (7) et (19)

D(h)=£Dj{h) (A-l)
f

avec

Dj(h) exp 2 n i l Zj {mx exp ip + (-1) ' m2 exp - i p + (- l)h+h

X [(— 1)(m3 exp iq + m-n exp —iq]} (A-2)

Soit Wd axAx+ayGy+ axy AxGy. Supposons ax < 0 et ax < ay; (ay peut même être positif).
Si axy 0, le mode Ax existera seul. Si axy =fc 0, il y aura toujours couplage non colinéaire.
Pour s'en rendre compte on pose Ax cosy, Gy siny. En minimisant Wd, Wd

1/2 [ax + ay + ]/(ax - a,,)2!- a2xy] ^ax + l/4 (a\y\ax - ay) < ax.
Induit par application d'un champ selon Oy.
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et les abréviations

p 2 ti i (h Xj + k yj) ; q 2 n i (— h Xj + k yf) (A-3)

Les fonctions trigonométriques /, c, g, a dans (22) peuvent s'exprimer à l'aide d'une
seule fonction scalaire t (ex, e2, e3, e4) (A — 4)

t(sx, e2, s3, e4) -r- exp 2 Tt i l z {ex exp i p + (— l)1 e2 exp i p + (— l)h+k

X [(— 1)' £3 exp i q + sx exp — i q]} (A-4)

/ =t(l, 1, 1, 1); c=t(l, 1,-1,-1);
g 1(1,-1,1,-1); a t(l,-l,-l,l) (A-5)

Bien que les calculs soient fastidieux, ils sont faciles ; on a par exemple

a* gr + «,• g* y cos 2 7rJ (z - *')

X [oc+ ß+ sx cy c'x s'y + oc+ ß^ cx sy s'x c'y - oc_ ß+ cx cy s'x s'y - oc_ /3_ sx sy c'x c'y] (A-6)

Ici on a abrégé

oc+ l + (-l)<; a_ l-(-l)<;
/S+ l + (-l)ft+*; /S_ l-(-l)*+*;
sx sin 2 n h x ; sy sin 2 ti k y ;

s'x sin 2 ti h x' ; s sin 2ti k y'

De même cx,cy,cx, cy sont les abréviations pour les fonctions cosinus correspondantes.
On a écrit x pour Xj et *' pour «;-,. On voit sur A-6 que h k (a; g* + af gy), coefficient de

AXj Gyj,, est une fonction paire de h, k, et de /.

On a avec les mêmes abréviations

ai f* + aî U y sin 2 tt Z (x - z')

X [oc+ ß+ sx cy c'x cy - a+ ß_ cx sy s'x s'y + cc_ ß+ cx cy s'x cy - a_ ß_ sx cy c'x s'x] (A-7)

ce qui prouve que le coefficient de AXj FX]; (j 4= /'; z 4= ^') dans (21) est pair en h, k
etl. II en est de même du coefficient de Gyi iy.
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