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Application de la théorie relativiste des phénomènes irréversibles
à la phénoménologie de la supraconductivité1)

par F. Rothen
Institut für Theoretische Physik V der Philipps-Universität Marburg 2)

(26 II 68)

Summary. The dynamics of a superfluid system is thoroughly described with the help of the
relativistic theory of irreversible processes ; one finds that it is the general form of enthalpy in a
continuous system which allows the decomposition of the movement into a superfluid movement
and a 'normal' movement. The only specific assumptions are related to the superfluid which is
supposed to transport no entropy and to have an irrotational movement. In the case of a type-I
superconductor moving with a uniform rotation speed <3, it is stated that the ratio of the so
created field to a> diverges of the elementary value 2 meiectronjeeiectrm; this is a mesurable relativistic

effect, following Josephson's suggestion. At last, a result of Luttinger concerning the form
of the thermal conductivity of a superconductor is generalised.

1. Introduction

Le modèle des deux fluides introduit par Tisza [1] pour l'étude des propriétés
dynamiques de l'hélium II liquide s'est également révélé fructueux dans l'étude de la
supraconductivité [2], L'irréversibilité du mouvement du fluide normal s'est traduite
dès l'origine par l'attribution à ce seul fluide de la totalité de l'entropie du système,
hypothèse que l'on retrouve pratiquement dans tous les articles traitant du sujet [3].
Une seconde caractéristique, fondamentale aussi bien pour l'hélium II liquide que
pour le supraconducteur, c'est le caractère irrotationel du mouvement, caractère
reconnu en particulier par Landau dans le premier cas [4] et par London dans le
second [2].

Le but du présent article est de donner une formulation très générale du phénomène
«superfluidité» - par là nous entendons aussi bien la supraconductivité que la propriété
caractéiistique de l'hélium II - et ceci dans le cadre de la théorie des phénomènes
irréversibles. Parmi les phénomènes irréversibles considérés, nous envisageons en

particulier les échanges de type chimique qui peuvent avoir lieu entre superfluide etfluide
normal, échanges symbolisés sur le plan microscopique et dans le cas du
supraconducteur par la formation à partir de deux électrons normaux d'une paire de

Cooper, considérée comme molécule d'une substance chimique autre que la «substance

électronique normale». L'équation d'équilibre ainsi obtenue joue un role particulier dans
la discussion de la conductivité thermique des supraconducteurs du type I où l'on généralise
un résultat de Luttinger [5]. La coexistence de plusieurs superfluides3) est également

1) Ce travail a été accompli grâce à l'appui financier du Fonds National Suisse de la Recherche
Scientifique.

2) Adresse actuelle: Institut de Physique Expérimentale de l'Université de Lausanne, Place du
Château, Lausanne (Suisse).

3) Les notions de superfluides, substances chimiques, etc., sont exactement définies au § 2.
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considérée dans cet article. Du point de vue phénoménologique, elle correspond,
à l'hypothèse selon laquelle les électrons seraient capables de former des paires de

Cooper de spin total égal à 1 [6]. L'ensemble de ces paires peut être considéré comme
une substance chimique distincte de celle qui est constituée par des paires à spin nul,
et à ce titre la coexistence d'au moins deux superfluides aux propriétés presque
semblables [6] est physiquement concevable.

La formulation de la théorie des phénomènes irréversibles utilisée dans cet article
est celle de Stueckelberg et Wanders [7]. Le formalisme relativiste utilisé est

particulièrement adapté aux propriétés du superfluide. De plus, il trouve son utilité
directe au § 7 où l'on montre l'existence en supraconductivité d'un effet relativiste
observable, effet prévu par Josephson [8]. La métrique que nous avons utilisée est tout
à fait générale: De Witt et d'autres [9] ont attiré l'attention sur l'existence d'effets
gravitationnels à l'intérieur des supraconducteurs du type I comme la production de

courants par un champ de Lense-Thirring [10]. Il convient de noter expressément
que la généralité attribuée à la métrique est la seule allusion à la relativité générale :

la métrique est supposée donnée d'avance et agit uniquement comme champ extérieur.
Dans une première partie (§§ 2 à 5) nous développons le formalisme général qui

permet d'exprimer le mouvement d'un système comprenant des composantes
superfluides. La seconde partie (§§ 6 à 8) est consacrée à l'application de ce formalisme à un
supraconducteur du type I. Les résultats obtenus sont également développés dans le

cas non relativiste, tout particulièrement en ce qui concerne la conductivité thermique.

2. Equations de continuité

Nous considérons un système isolé quelconque formé de substances chimiques.
Outre les premier et second principes de la thermodynamique, le système vérifie les lois
de conservation de la quantité de mouvement et du moment cinétique totaux.

Sous forme locale, ces lois de conservation s'écrivent4)

Da daß 0 (2.1)

Equation de conservation du tenseur impulsion-énergie.

Da s* i (2.2a)
Equation de continuité pour l'entropie.

i > 0 (2.2b)
Expression locale du second principe.

Dan*A^QA (2.3a)

Equation de continuité pour la substance. ^4.

Z'uA «U ° (2'3b)
A-i

Loi des proportions constantes.

Le formalisme adopté est celui de la relativité généralisée; la métrique gaß prend dans un
repère galiléen la forme ga — 1, git 1, gaß 0 (a ^= ß) ; un indice latin prend les valeurs 1

à 3 alors que tout indice grec prend l'ensemble des valeurs de 1 à 4. Par définition daf s djdx^f,
alors que Dx désigne la dérivation covariante. Les grandeurs locales considérées dépendent de
l'événement x"- {*, et}.
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sa désigne le courant quadridimensionnel d'entropie et i sa source, ou irréversibilité;
n\ désigne le courant quadridimensionnel de substance A et q la vitesse de production

de la substance A- La chimie relie les q (< 0) par la loi des proportions constantes

(2.3b), les coefficients Ck, étant des entiers non négatifs et l'indice k=l,...n
dénombrant les espèces chimiques6).

L'équation (2.3b) se résoud immédiatement sous la forme

qa-Evaawa <2-4>

A

coA est ici la vitesse de la A" réaction chimique (A 1,... E), et les entiers v iA
satisfont l'équation

£cv4M. ° (2"5>

A
Un système normal peut être caractérisé par les variables d'état s(x), n Ax) et ua(x)

où ua est la quadrivitesse d'un élément de fluide. Conformément à l'esprit du modèle
des deux fluides, et à côté des variables coutumières s et n nous introduisons dans

le modèle considéré ici ,/V + 1 variables u%(x), chacune définie en un point-événement
du système et décrivant chacune le mouvement d'un fluide B différent, qui trouve
là sa définition (B 0,1, N).

C'est l'existence de ces différentes quadrivitesses u%, chacune normalisée suivant
l'équation

uBuBa c2 (2.6)

qui définit donc la notion de fluide. La fluide repéré à l'aide de l'indice 0 est par
définition lefluide normal; les N autres fluides sont des superfluides. Au § 1 nous avons
déjà mentionné la possibilité de l'introduction de plusieurs superfluides dans un
même système: un supraconducteur dans lequel coexistent des paires de Cooper de

spin total 0 et 1 constitue un exemple de système comportant 2 superfluides.
Pour préciser les notions de substance chimique et de fluide, nous leur imposons les
restrictions suivantes :

1) Chaque substance chimique appartient à un et un seul fluide.
2) Chaque superfluide est constitué d'une seule substance chimique.

3) L'équation de continuité du tenseur impulsion-énergie se décompose en une somme
de termes relatifs à chacun des fluides

DJ«ß=Jt(DJ«\. (2.7)

Plus précisément, l'expression (Da 6"-ß)B n'est formée que de fonctions d'état relatives
au seul fluide B.

4) La décomposition (2.7) se fait après attribution de l'entropie au fluide normal.

Ces différents points appellent certains commentaires: La notion de substance

chimique est plus fine que la notion habituelle. Est considéré par exemple comme

6) Par là nous entendons un type déterminé de particule ou d'atome. Voir par exemple au § 6.

38
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substance chimique l'ensemble des paires de Cooper de spin nul6). D'autre part la
restriction 1) conduit dans le cas de l'He II à considérer 2 substances He différentes
suivant leur appartenance à l'un ou l'autre des superfluides. Dans tous les cas on

vérifie néanmoins l'existence d'une loi des proportions constantes (2.3b) avec des coefficients

Cki entiers.

Ces 4 restrictions ont pour conséquence qu'il est possible d'écrire pour chaque
fluide une série d'équations de continuité analogues aux équations (2.1) à (2.3):

Pour le fluide normal, on a

{Dae"ß)o eß0 (2.8a)

Da nAo eAo (2-8b)

Da sa i > 0 (2.8c)

A0 t0, Co désigne les substances qui forment le fluide normal.

alors que pour chaque superfluide D (D 1,... iV)

(Da6"ß)D QßD (2.9a)

DaLn% QD. (2.9b)

A cause de (2.7), les fonctions o| - qui sont encore inconnues - satisfont à l'équation

2JnB 0 (2.10)
B-o

Les équations (2.8) sont au nombre de C0 + 5 pour les C0 + 4 variables indépendantes
«Ô. s, ti-Ao (les composantes u% ne comptent que pour 3 variables à cause de (2.6)).
De même, on compte 5 équations (2.9) pour les 4 variables uß et nD. Il doit donc
exister dans chacun des cas une identité entre les différentes équations de continuité,
identités que nous écrivons

«D«e*\-eû%-2>av«nX-*a)-Tv«s*-^s° (2-lla)

l(Da 6^)D - &] uDß-pD (Da ni - qd) 0 (2.11b)

en généralisant la méthode de Stueckelberg et Wanders [7]. piA et T' sont des

fonctions d'état encore indéterminées.

3. Partie réversible du tenseur impulsion-énergie

En hydrodynamique, le tenseur impulsion-énergie se compose de 2 parties, une
partie réversible 0?£ qui décrit le «fluide parfait»7) et une partie irréversible 6frf;
QfP s'écrit sous la forme

6) On peut considérer cependant une paire de Cooper comme un atome de masse atomique nulle
2 fois ionisé!

') Le fluide parfait ne doit pas être confondu avec le superfluide.
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w, qui dans un référentiel local géodésique au repos LGR8) s'identifie à

l'enthalpie spécifique, a ici la forme
du

^A ~dy4
w u + p= Z^A nA + Ts

A T - ——~ AÌ7

u étant l'énergie interne spécifique et p la pression. Dans le cas étudié, on pose

Ötf«0/"/+ö?i (3.1a)

-gaßP-E^^A^A-tßP (3.1b)

(ni ™ [t ßr* BVÔ S*" - B"V BßÖ Sy*\ (3.1c)

Baß= daAß— dß Aa est le champ électromagnétique et Aß — (A{, — ujc) le quadri-
potentiel électromagnétique; p0 est ici la permittivité du vide, toute polarisation tant
électrique que magnétique étant exclue. C'est le système d'unités MKSA qui est
utilisé.

En l'absence de polarisation, les équations de Maxwell s'écrivent

D7B»a MJ (3.2a)

Da Bßy + Dß BYa + D7 Baß 0 (3.2b)

où jf est le (quadri) courant de charge total. En conséquence

D.WL=-hrB,fi' (3-3)

Le courant de charge total s'exprime à l'aide des courants de matière par la relation

G 'if C
/T= E eAonA0+ Z6DnD=ZiA (3-4)

A-i. D~1 A-i
qui définit les charges élémentaires e..

D'autre part
Co NNàp T nAoôpAo + sôT + JJnDopDs JJôpB (3.5)

/Ci. D'1 B-°

Il vient par conséquent

Da 0Ü=Z[-iBy B7ß + Da Uf uBuB) - D"pB] s £(DM)b (3-6)

et la décomposition imposée par la restriction 3) est effectivement réalisable pour la
partie réversible des équations du mouvement.

C'est à dire où ua (0, 0, 0, c) et g00 est galiléen.
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4. Mouvement du superfluide
L'équation du mouvement du superfluide (2.9a) prend la forme

Da 8"> -QßD Da (nD f uDuD)~ D'Pn - iny ^ ~ & -f uD Da(nD ««)

+ nD «« [Da M <] _ Mfl DVß - eD nDy (D" A? - D» A*) - gi 0

A cause de (2.6)
«SXW-0. (4.1)

Il vient par conséquent, après réarrangement des différents termes,

»z> «j>« [^ (f" < - <0 ^') - D" (f < - eD A«)] + f < D>D ««)

- eD K« - % %«) (Ö" ^ - D"A<) - QßD 0 (4.2)

L'équation (4.2) a comme solution particulière le système9)

àa (y «^ - 'd Aß) - dß (^- Mfla - efl 4.) 0 (4.3)

& ^ < ö,(% «S) - ^ (»Da - nD %a) S"" (4-4)

Les équations (4.3) constituent fes équations de London sous forme relativiste que
nous considérons comme valables pour un superfluide D dans tous les cas, même en
dehors de l'équilibre (mis à part les phénomènes de haute fréquence).

Si l'on introduit (4.3) et (4.4) dans l'identité (2.11b), il vient

Pd dÀ»d ud) - &d nD* ußB"ß- qd uDß n'D (Da nD - qd) (4.5)

identité satisfaite par
Pd Pd (4-°)

nD =nDuD. (4.7)

L'équation (4.4) permet alors de déterminer çD :

Qn ^<QD- (4-8)

5. L'irréversibilité du mouvement
Conformément à l'identité (2.11a), le mouvement du fluide normal est irréversible.

Nous introduisons donc dans 6%ß un terme irréversible 0q£, dont on admet a priori
qu'il a la forme d'une combinaison linéaire covariante en les gradients des différentes
fonctions d'état, en le champ électromagnétique et en les vitesses de réaction, cette
combinaison étant la plus générale possible ; cette linéarité de 0q tr entraîne la propriété
correspondante pour les différents courants.

Avant toute chose, nous donnons encore quelques définitions : A partir du tenseur

métrique ga «, on peut former un tenseur analogue gj_a « normal à la quadrivitesse u%\

_ _ yoy*o£ /c i \

A cause de sa forme particulière, l'équation (4.3) s'écrit indifféremment à l'aide de dérivées
partielles simples ou à l'aide de dérivées covariantes.
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S Laß Permet de former à partir d'un tenseur arbitraire t"1' """un tenseur r± J-
' n

"l " * "m 1
'

tn

totalement orthogonal à Ma :

X« Ä 6 I „, '-'o l„, 6lj •••61« lß>...ß> ' ^ 'ï>l Pm al aM Pi P»> Pi pm

A partir de

M0a/? - 2 (D« M°A + Dfi U°^

on forme par exemple wôi ; on note les propriétés suivantes (pour toute grandeur /,
nous désignons par/ la dérivée matérielle w0ct Da f) :

«oL, «oS (5-3)

«W < y «o -Dy uop y «V (5-4)

*0a ""0< 0 (5.5)

Compte tenu de ces définitions, la forme la plus générale de Q$f„ qui soit compatible
avec les conditions de linéarité et d'invariance relativiste est la suivante :

KL «! Kl + *2 <XY t/ + *3 « < + U{ <) + K, UIL
Y g^

** T +Zx«AoMo\ gaß+(*7 T +Zx*AoMo\ £l
Ao /VA /

+ Z*A "A fj +Z*10A "A t" + /5 -^- + /S T
Ao

<£ <-j-gf<iv (5-7a)

0 (5.7b)

ou

et
z«,01a '

+ 27^0 (&" «,M. - f" Mo - Mo BaY «„„) (5-8a)
-4o

/Â=i7MoBo(goiror/*g0 -yr/*Bo- eBo^ar«oy)

+ Mo0(?ròyr--f T) (5.8b)

Les coefficients nouveaux comme %,-, Ìqq, etc., sont des fonctions d'état inconnues
indépendantes des dérivées de fonctions d'état, du champ électromagnétique et des

vitesses de réaction. L'arrangement des termes des équations (5.6) et (5.8) a été choisi
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pour des raisons de commodité sans que la généralité de l'expression (5.6) en eût été

réduite. Le même souci de généralité ne s'oppose pas à ce qui la matrice L définie par

¦^oo-^qio -^oCo

L '100

LCoQ

soit inversible. On note enfin que le courant de chaleur /g et les courants de diffusion
J\ sont par construction orthogonaux à la quadrivitesse «ô:

/a«oa=/>«o« 0. (5-9)

Pour utiliser l'identité (2.11a), il faut évaluer tout d'abord l'expression

uofi Da Of u0ß [Da 0$ + Da Btfm + Da 0&]

- «o, [Da (-> < «g) - Dß Po] + D„(u0ß BU) - "oß Joy Byß - Kl u0aß (5.10)

On vérifie sans difficulté que

uoß (Da (^ < «g) - D" p0) TDa(s <) + £Mo Da(»Ao K) ¦ (5.11)
Ao

Il convient de s'arrêter sur le calcul du dernier terme de (5.10) ; on obtient tout d'abord
à l'aide de (5.4), (5.5) et (5.7)

"oirr U0aß "l u0L<*ßU0L ~^~ \X2 4" y "l + xi J (U0±_y) A X3 U0a UQ

*s T AZ x*Ao MoV
Ao /

-27<l0Ly ' ^ ^"9/1
A

Ta Ûoa

^ZJao^-
Ao

(5.12)

Grâce aux hypothèses faites sur la matrice L, les équations (5.8) sont solubles

(5.13a)

relativement à «J. Il vient

âl - yr x - lqq )q a- 2*, ^o^o y^0
Ao

"*.± - Uo B*Y u»y - f AU. *i7^o Bo /go + LAoO /§ (5-l3b)
Bo

ou

Utilisant alors tour à tour (5.13a) et (5.13b) suivant que ù0x forme un produit scalaire

avec /a ou /", on transforme les 2 derniers termes de (5.12) suivant la formule

rot "oa y ra uoa _ JQa r-7-a 7-1 ri V1 T ~x Ta
JQ c2 +^ -Mo c2 ~ T -i- ^QQJQ Ai^QAoJAo

Ao

-z
Ao

JAoa

Ao **Ao
mm'*-

PA OL Ao B* V ZLAo"ßo^Bo
Bo

yto° Jq (5.14)
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Dès lors, compte tenu de (2.10), (4.8), (5.10), (5.11), (5.12) et (5.14), l'identité (2.11a)
s'écrit

TDa(S K) +ZVA0 Da(»Ao O + Da {*3 <? < + [*4 Kly 4" (*8 + »7 <?) T
Ao

+ Z(**Ao + *%Aoc2)Mo +Z*«umA~i K + Jq+ZjAoÌ
Ao A Ao

%r Ur, „o U.aß
1 w01a/3 "01 -(j + Xj+ **) (<iy)2 - «3 «0a < - M0Xy [«S T

^Z^Aopao+Z (*,a + *»a)i - -r- n-EJ-£rfo*i
Ao A Ao Ao

LQQ
4 T~ JoaJçA^ f JoaJAo+ 2j n JAoa JBo

Ao AoBo Ao

LAoç JAoa+ Z^JAoarQ+Z-~^eAoB°yuOY~ZeAonAoyBVßu0ß
Ao ''Ao Ao ßAo Ao

- Z uoß y? udZvda mA- Z Mo Da Mo + 2727Mo vAoa mA
D-l A

- r Da sa + i r o

avec la condition

Ao Ao
(5.15)

i > 0

On est conduit aux identifications suivantes

"s — "4 — X5 — K$Ao — "7 — ^8ylo — "l0/ 0 (5.16a)

r'=r Mo Mo (5-16b)

/^4o Mo Moi /ç T sl (5-16c)

Mo Mo < + Moi s* « < + sl (5.16d)

Dans ces conditions, on peut exprimer i comme forme quadratique en les courants
et la condition que la forme soit définie s'exprime comme une condition sur la matrice
des coefficients.

Si l'on pose encore

A'

+Z9v»*<

Y _0±y — ' Jj^AA' Z^VA0A-<
Ao

uo* + 0A Kly

AT x x - ~Â 1

AAo Moi y Mo ~~ Mo " *0y

r)=xx i=Hi+~+Vx,
A

2Xi= -(Z*»a.Ïa.aA0a)

S ' £j "9/1 A3 A

(5.17)

(5.18a)

(5.18b)

(5.19)
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LQQ va y•' Y U <L «Ä + S «/ +272 XA <y <f>A +ZÏAA- <f>A <f>A- ~
{ A A A'

+ E(hAo_ + _^oy\ xAoXTa+ Z l^L~L **.*B..1| (5.20)
Ao \ ßAo ] AoBo ^Bo Jl

Le fait que cette forme est définie positive entraîne les conditions usuelles sur les

coefficients de cette forme. Il faut toutefois noter que le choix de la métrique est tel
que pour tout vecteur ax normal à m{|, on a l'inégalité

il suffit de choisir un référentiel LGR pour s'en convaincre.
En conséquence, la matrice L' est définie positive

(5.21)

L' \

LQQ LQU lqCo
T T T

UQ
LQQ LqAo

ZCoo
LCoQ

l to

"0C0
>0 (5.22)

A l'équilibre, l'irréversibilité est nulle et l'on a les équations

<i= 0 «Sly 0

0,
Co TV

27 Mo vAoa <+ Z Pd vda <
-4o i„ -0=1

X$ T« - -°- T 0

*n Pv - -t- p-n - e-Q Bay u 0
Bo rBo± c2 rBo Bo oy

(5.23)

(5.24)

(5.25a)

(5.25b)

L'équation (5.24) est la généralisation de l'équation d'équilibre chimique à un système
àiV+1 fluides ; en hydrodynamique conventionnelle cette équation s'écrit

27mm^ °
A

(5.26)

D'autre part, et c'est un point qui n'est pas usuel en hydrodynamique, il est un grand
nombre de circonstances où la «force» X\ est nulle, même en dehors de l'équilibre.
Evaluons en effet l'expression

x£ =&"x «£[£.(¦ C2 UDß eD A„) - Dß (f uDa - eD Aaj\ 0 (5.27)

10) $>x est l'affinité chimique de la réaction A.
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où par définition

L'expression XD est évidemment nulle à cause des équations de London (4.3).
Si l'on définit encore

fD^uDDJ
il vient

XD Sl\ [daPD~ -f «BI-^«L- eD Baß ut]
uDy

PVdl - Pd -y- - eD Byß uDß 0 (5.28)

Or XYA et XD sont les mêmes fonctions, l'une de p et u%, l'autre de pD et uD.

Bien plus, si l'équation d'équilibre chimique (5.24) est vérifiée, l'égalité des quadri-
vitesses «ô e* ud entraîne celle de XY, et XD. Cette égalité a certainement lieu dans

un supraconducteur au-delà de la limite de pénétration du champ électromagnétique.
On arrive donc à la conclusion que la force X\ est nulle dans tout le domaine où le

champ électromagnétique ne pénètre pas, quel que soit par ailleurs l'état de mouvement du
système. Ce résultat est analogue à celui de Luttinger [5] ; au § 8 nous étudions dans

quelle mesure il peut être étendu à la portion superficielle du système où champs et
courants électromagnétiques ne sont pas nuls.

Transposition des formules obtennes dans le formalisme usuel.

Pour simplifier, nous choisissons un système local géodésique au repos relativement
au fluide normal, c'est-à-dire que

g44 g44=l gij g» -òiJ <=(0,0,0,c). (5.29)

Dans ce référentiel11)

U° ((l-^D/e)»)0* ' (l-("flW2) ' U°« ((l-ivDlc)*)1* ' (1-(vdIc)Y'V (5'30a)

C= 27 (i-Z^i, + Z Mo Mo 4- Ts - p + |(£o £« + £) (5.30b)
"-1 A,-\

Les équations de London s'écrivent

dt AW O^dIWW + grad Af lîy4w« -eDE 0 (4.3)'

tandis que la densité de force et de puissance chimiques prennent la forme

ß _ PD^ v-i / Vp ç \ /a oyQd- c2 Z, vdawa {{l-ivDlciyf (1-(vdIc)2)112) K '

Voir formules (7.6).
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Les vecteurs Xf et X\ s'expriment à l'aide des symboles de Riemann-Christoffel T7^

X% 0 XI. - grad-T - (dt v[ + ru c«) | « grad'7/

^0 0 X«^ - grad Mo - ft ^ + ^ ^^
« - [w_40 d, ^0 - (eAo E' - gradMo)] • (5-18)'

Les expressions approchées ne tiennent pas compte des effets gravifiques ou inertiaux.
Enfin l'équation (5.24) qui régit l'équilibre chimique s'écrit

27MoM<m +Zpd Vda (i-(Pl)/6)i)ifi ° • (5-24)/
Ao D

6. Le supraconducteur

Nous envisageons l'application des résultats précédents à un supraconducteur de

type I, chimiquement pur.
On a 3 substances en présence : les ions j et les porteurs de charge normaux n qui

ensemble constituent le fluide normal et les superélectrons s qui constituent le
superfluide, w et s sont constitués de la même espèce chimique, l'espèce électronique e.

La formation du superfluide est régie par la loi des proportions constantes

CesQs + CenQn Q (61)

avec Ces 2 et Cen 1, ce qui correspond à l'hypothèse de l'existence des paires de

Cooper.
La vitesse de réaction correspondante est me et l'on a

Qs vs coe Qn v„ we (6.2)

avec
c v A- c v=2vA-v=0. (6.3)

es ys ' en vn *s ' n V^'^V

Si l'on prend vs 1 et vn — 2, l'équation (6.1) correspond à l'équation chimique

*s**-> 2 e* (6.4)

où e* symbolise une paire de Cooper et e* un électron normal.
(6.4) s'écrit aussi

». «, 4- vn e„ 0 (6.5)

7. Les équations de London

En présence d'une métrique quelconque, l'élément de longueur ds2 peut se mettre
sous la forme [11]

ds2 g44 (dx*)2 + 2gi{ dx* dx1 + g{j dx1 Ax' g44 Ux* - -|- dxY - Al2 (7.1)

où

IL - IL* ; dl2 y,, dx{ dx' (7.2)
C gu r"
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g est ici un vecteur de l'espace de Riemann 72 à 3 dimensions dont

yw^-Ku (7.3)

est le tenseur métrique12). On vérifie la relation

Yijgil=-àl. (7.4)

On nomme potentiel dynamique le vecteur h e 71 défini par

h~)/g~~g. (7.5)

Il est possible d'exprimer la quadrivitesse ua(x) à l'aide d'un vecteur v(x, t) que l'on
interprète comme la vitesse d'un élément de fluide mesurée en temps propre:

u'
(i-(v/c)*)V* u*= toyiyy)2))1/2

(7-6a)

M,
(l-Wc)2)1/2

On récrit alors les équations de London (4.3) dans ce formalisme:

(t^f)1,2c <7-6b)

fis Vs + h
esc* (l-(vsjcYYrot^- n _,:r" +B 0 (7.7a)

àt "A- /i ,'+Xxm + grad m^+m*i/» -E 0 (7.7b)
esc* (l-^s/c)2)1'2 ° (l-^s/c)2)1/2

OÙ

est le potentiel gravifique.
Les équations (7.7) correspondent au cas étudié par De Witt et Papini [9].
Supposons que le supraconducteur, supposé homogène, soit animé d'une rotation

uniforme Q autour d'une axe fixe. Le processus étant par ailleurs stationnaire, on
choisit un système de référence au repos par rapport au supraconducteur ; en un point
suffisamment éloigné de la surface, vs est nul. Dans ce cas

h fiA>" ln o\
(l-fß2»-2/^))1/2

V >

r étant un rayon vecteur issu normalement de l'axe. L'équation (7.7a) s'écrit alors

rot-^ßAr + B 0 (7.9)

avec

Pour des vitesses de rotations accessibles à l'expérience le facteur (1 — Q2 r2jc2)-xl2

peut être sans inconvénient remplacé par 1. Néanmoins m's s'écarte appréciablement

12) Lorsqu'il s'agit d'un tenseur de 7\\, la variance des indices est définie relativement à la métrique
Vij-



604 F. Rothen H. P. A.

de ms, défini comme la somme des énergies de repos des composants électroniques
de la paire :

vsms + vnmn 0 (7.11)

ms pouvant donc être considéré comme une constante, l'équation (7.9) s'écrit

B + I*!. ß= o (7.12)
es

Le «rapport gyromagnétique» 2m\jes s'écarte ainsi de la valeur élémentaire
2 mélectron!eéiedt<m> conformément à une remarque de Josephson citée par Anderson [8].

8. Limite non relativiste et conductivité thermique

A la limite non relativiste et dans un système de référence animé d'une vitesse de

rotation Q, les équations de London (4.3) s'écrivent

rot -^i (V, + k) + B 0 (8.1a)
es

d, ^ (F, + ft) + grad £L. V! + % Acp + *£) E (8.1b)

où
APs =Ps~ms °2

est le potentiel chimique non relativiste et

Ay c2 ((gii)V2 - 1)

représente le potentiel gravifique ou d'inertie. Quant à

ft flAr
c'est la limite non relativiste du potentiel dynamique. Dans des conditions station-
naires, les équations d'équilibre (5.23) à (5.25) s'écrivent

Voik ~ (di Vok + dk Voi) (8.2a)

div V0 0 (8.2b)

Apn vn + Aps vs + msvs\ (V, - VA2 0 (8.3)

XT grad T 0 (8.4)

Xn s grad Aftn - mn (V0 V) V0-enE

+ grad mn Acp - V0 A (rot mn k + en B) 0 (8.5)

équations auxquelles il faut ajouter la forme stationnaire des équations de London
(8.1).
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Alors que les équations (8.2) admettent la solution v0 a> a r, ce n'est pas en
général le cas des équations (8.3) à (8.5) ; pour le montrer, nous transformons xn en
faisant usage successivement de (6.5), (7.11), (8.1) et (8.3) :

xn — [grad vn Apn + vn mn (V0 V) V0 + mn vn grad A(p -vnenE

~V0A (rot vnmnk + vn en B)] —• [grad vn Apn
"n

Vn mn (V0 V) V0 + grad Vs APs + grad ^ m. 2

1 .„ „,o V^
2 i

+ F0 A rot vn mn Vs mn [(F0 V) F0 + grad (-i- (V, - V0)2

+ V0A rot Fs «*K [grad F0 (F0 - F,) - F0 A rot (F0 - F,)] (8.6)

Cette dernière expression est en général différente de zéro, sauf si v0 0. La chose
était prévisible car nous nous sommes placés dans un système de référence relativement

auquel les champs électromagnétiques sont fixes: l'équilibre ne peut y être
atteint que si la partie normale du système est également au repos. Il faut noter
d'ailleurs que si les charges élémentaires en et es étaient nulles, une famille plus
étendue de solutions annulerait Xn, à savoir

Fs -ßAr F0 öAf (8.7)

Q est ici la vitesse de rotation du système de référence et o un vecteur axial uniforme
quelconque.

En définitive, l'équilibre du supraconducteur est régi par les équations

rot ^i (V, + k) + B 0
es

(8.8a)

«^(-^+^ + ^)-*-0 (8.8b)

Xn grad (Apn vn + mn Acp) - en E 0 (8.8c)

XT grad T 0 (8.8d)

Apn vn + Aps vs + msvszj F? 0 (8.8e)

F0=0 (8.8f)

(8.8c) étant la conséquence de (8.8b) et (8.8e).
Supposons que l'on mesure la conductivité thermique d'un supraconducteur dont

les dimensions sont grandes relativement à la profondeur de pénétration. Dans tout le
domaine intérieur D,, on peut raisonnablement s'attendre à ce que

Vs 0 (8.9)

or, quand cette condition est remplie, l'équilibre chimique est également réalisé.
Dès lors Xn est encore nul, et dans tout le domaine Dj (nous négligeons la contribution
ionique) :

JQ - - LQQ Srad T - LQn Xn - LQQ grad T (8-l°a)

L en P»1 Jn en Pn^ t~ Kn Xn ~ LnQ grad "H ~ en fc' LMograd T • (8-10b)
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jn est le courant électrique total dû aux charges normales. La conductivité thermique
X est donc simplement

X LQQ (8.11)

Il convient de noter que cette formule est valable pour un supraconducteur animé
d'un mouvement de rotation quelconque.

Ainsi les calculs montrent que les formules (8.10) sont valables dans tous les
domaines supraconducteurs où aucun échange chimique n'a lieu, et cela que l'on se

trouve ou non au voisinage immédiat de la surface13).
En conclusion, l'auteur tient à remercier le Prof. S. Grossmann et ses collaborateurs

pour leur hospitalité ainsi que le Fonds National Suisse de la Recherche Scientifique

pour son aide financière.
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