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On the Asymptotic Condition of Scattering Theory
by J. M. Jauch, B.Misra

Institut de Physique Théorique de 1'Université, Genéve

and A.G. Gibson

University of California, Hayward, California

(24. 1. 68)

Abstract. A new and more general asymptotic condition for scattering systems is formulated.
It is based on a physically motivated topology in the set of all states. This topology turns out to
be the same as that induced by the trace norm. The existence of wave operators is demonstrated in
this more general setting and the relation of these generalized wave operators to the conventional
ones is clarified. A simple example is mentioned of a system which satisfies the new but not
the old asymptotic condition.

1. Introduction

The purpose of this paper is to analyze the so-called asymptotic condition of
scattering theory. This condition expresses the physically essential property of a
scattering system, viz. that it behaves like a system of free particles in the remote past
and in the distant future. The mathematically rigorous scattering theory dates from
the time that this condition was first expressed in a mathematically rigorous form by
one of the authors [2].

The problems which such a formulation must solve are: to give a physical motiva-
tion for the choice of a topology in the set of the states of the system; to formulate the
asymptotic condition in this topology; and to render explicit its consequences.

The previously used definition of the asymptotic condition did specify a topology
and did furnish a starting point for scattering theory which is mathematically
completely satisfactory. However, the physical motivation for this topology was not
sufficient. Indeed certain rather trivial cases, which one could hardly exclude on
physical grounds, are in fact excluded by the asymptotic condition of Reference [2].
For example, such a case is the one characterized by two evolution operators H, and
H = H, + ¢ I, where ¢ I is a real-valued constant times the identity operator.

For these reasons we reexamine here the asymptotic condition, keeping in mind
the physical motivation for the choice of topology in the state space. This space is the
set of all density operators I, that is, the set of all positive, self-adjoint operators in
Hilbert space with trace 1. These operators are a subset of the linear space of all
nuclear operators (sometimes also called traceclass operators). The nuclear operators
are all those operators which admit a finite trace norm (to be defined below). We shall
show in this paper that the topology induced by the trace norm is the natural topology
which admits a simple physical interpretation.

We then examine the question to what extent the new asymptotic condition
determines the Mgller wave-operators and the scattering operators. We shall prove
that the new asymptotic condition defines generalized wave operators and scattering
operators, and we examine and clarify the nature of this generalization.

33
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2. Mathematical Preliminaries

Throughout this paper we shall be concerned with a separable Hilbert space #
over the complex scalars. Of particular importance is the #race class of linear operators
(cf. [1], [4], or [5]). If T is a compact operator which maps H into , then T has the
form T = U | T| where | T| = ]/_f*—f is a positive-definite compact operator in }, and
U is an isometric operator which maps the range of T into H#[1, p. 29]. If 4, 4,, ...are
the non-negative eigenvalues of the operator | 7|, then the frace norm of T is defined
by

I Th = 3h = Tr | T]. )

k=1

The set of all 7" with || T'||, << oo is the nuclear space B;(#). Since the convergence of
the series X4, implies the convergence of the series X'2%, the nuclear operators form a
subclass of the Hilbert-Schmidt operators B,(#).

We summarize some of the properties of nuclear operators [1], [4], or [5]:

(a) By(H) is a noncommutative Banach *-algebra with the norm |-|;.

(b) The product ST of any two Hilbert-Schmidt operators is a nuclear operator, and,
conversely, every nuclear operator is the product of two Hilbert-Schmidt opera-
tors.

© [Tl=[T*=]IT].-

() [Tr T| <[ T],-

) Tr (S+T)=TrS+TrT and Tr ST =TrTS.

(f) |UT||y=|TU|,=|T|, for any unitary operator U

© [T <[Tl,.

(h) If T € By(H) and S e B(H) (the bounded operators), then

[T <|IS[ - [ 7]y and | TS| <[ T [S] -
@) If Te By(H)i

repeated eigenvalues of T.

T |, is equal to the sum of the absolute values of the

For convenience in terminology we define a ray to be a projection with one-
dimensional range, i.e. P2 = P* = P and || P”1 =dim P = 1.
Lemma 1

If £ and F are rays, say E = (¢, ) ¢ and F = (y, *) 9, then

|E—=Fli=20—|(gy) )7 =2(1— |EFE|)"
and
|E— Fl = 12| E - Fl,— (L |E F
Proof
By property (7) above |E — F||, is equal to the sum of the absolute values of the

repeated eigenvalues of (£ — F). Furthermore,
of the maximum eigenvalue of (E — F). Therefore, we caIculate these eigenvalues.
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Lettingg=(E— F) fin (E— F)g= (4, g) ¢ — (v, g y, we obtain

(E-FPf=[d— W) dylé—Us]) o — v

Now equate (E — F)2 fto A% f, let f = o ¢ + B v, and equate the coefficients of ¢ and
to obtain

2=1—|(dw |-

Thus the eigenvalues of (E — F) are 4 (1 — [(¢, )|?)*/2. It follows that |E — F| =
(1—[(g )2 =(L—|EF[3)'2 and [|[E~F|, =21~ [($, )" =2(1—Tr
EF)2 = 2 (1 — | EFE|,)'2, q.e.d.

3. Topology in State Space

The essential property of a scattering system is that the actual time-evolution of
the states of a scattering system becomes nearly indistinguishable from the time-
evolution of the free particle states in the remote past and in the distant future. We
shall now transcribe this property into appropriate mathematical language. The main
problem is to give precise meaning to the heuristic expression ‘nearly indistinguish-
able’.

The expression clearly refers to an asymptotic limiting property. If such a property
is to be made precise, we need a topology in the set UI(H) of all the states. This set
consists of all density operators W on H, i.e., all W for which W* = W > 0 and
Tr W =1.

The topology in a set is determined if the class of open sets is specified. A standard
way to define the open sets is to give a family of neighborhoods which generate the
open sets through the processes of unions and intersections. In the present context the
neighborhoods can be defined through a numerical valued distance function which
measures in terms of real numbers the distance between two states. How this distance
function is defined depends on the physical interpretation of the limiting processes we
wish to express.

The distance between two states must be a quantity which manifests itself through
the expectation values of observables. Roughly speaking: Two states are close to each
other if all the expectation values of observables are close to each other. If 4 is an
observable and W}, W, € W(H) are two states, we may write for this differenee

KAdy =y = Tr(W A) — Tr(Wo A) = Tr (W, — Wy) 4. (2)

This quantity is, however, not yet suitable for defining a distance function in
state-space. The fact that it is indefinite is relatively easily corrected by replacing it
by the absolute magnitude. More disturbing is the fact that it is unbounded. Indeed
if 4 is an observable, then 4 4 with A real is one too, and the substitution of 4 by 4 4
multiplies the above expression by a factor 4. Thus, it is justified to admit only
normalized observables. This we do by restricting ourselves to bounded observables
with bound 1. Another difficulty stems from the fact that in general the set of all
(bounded) observables is mathematically an ill-defined concept since its extent
depends essentially on the skill of the experimenter. In order to obtain a mathematic-
ally more suitable set of operators we shall admit for 4 all operators of bound 1.
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Further, in order to assure that no measurement whatsoever distinguishes two
neighboring states to an arbitrary predetermined degree of precision, we need to
require a uniform approximation with respect to all operators 4.
With these motivations in mind we are led to consider the following functional on
pairs of states
o(Wy, Wy) =sup | Tr (W, — Wy) 4

4|l =1

; (3)

where the supremum is taken with respect to all operators of norm 1. This distance
function is in fact a metric, and the space WH(H) of all states W is a metric space, i.e.,
the mapping of W(H) x UH(H) into the real numbers R satisfies:

(1) o(W,W)=0 and o(W,, W,) >0 1if W, = W,,
(i1) Q(W1» W, = Q(Wz: Wy,
(111) o(W,, Wy < Q(Wlx W) + Q(Wz: W) .

The choice of this topology which we have introduced in the state space U} H) was
motivated by the proximity of the observable quantities for neighboring states.
There is however a slight blemish in this formulation since we have had to introduce
the supremum over all bounded operators of bound 1, and not just the observables
(that is, the self-adjoint operators). This goes beyond the original intention and was
done primarily for mathematical convenience.

The most satisfactory topology would have been the one generated with a distance
function with the supremum taken over bounded self-adjoint operators only, or better
still, projections. The projections are indeed the most important observables. They
represent the so-called yes-no experiments and every other quantum mechanical
observable (even unbounded) can be constructed from them via the spectral theorem
[3, sec. 8-5]. For this reason we shall also define the metric

0o(Wy, Wy) = sup |Tr (W, — W,) E|. (#)
E*-E-E*

Of course it is hardly to be expected that the metric g, defined with such a restricted
class of operators should be identical with the metric g which is defined for all bounded
operators. However, it is not the distance function itself which is of primary interest
but the asymptotic convergence properties based on the neighborhoods, defined with
such functions. We shall show in the next section that p and g, imply the same
asymptotic convergence properties.

We note that the right side of Equation (3) is meaningful for a larger class of
operators than Y(). In fact, we shall prove:

Theovem 1

For any pair S, T of nuclear operators

oS, T)=[S—=T|;.
Proof

Using property (4) and then (%) we obtain
[ Tr TA| <[ T4 <[ T]o 4] = [Tl -
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Thus,
o(T, 0) =sup |Tr TA| <||T|,.
ll4]l =1

If T e B,(H), then T has a polar decomposition T = U |T| where |T| = [/T*T
and U is an isometric operator which maps the range of |7| into . Using the fact
that U* U is the identity operator on the range of | 7|, and property (¢), we obtain

|T|,=Tr|T|=TrU*U|T|=TrU|T|U*=Tr TU* <o(T, 0).

It follows that
o(T, 0) = | T|, for all T € By(#),
or
oS, T)=p(S—T,0)=|S—T|,forall S, Te By(H), q.e.d.

Corollary

The metric space UHH) is a closed convex subset of the Banach space B;(H) and
hence is complete.

Proof

Suppose that Wl', WoeW(H) and 0 < a < 1. Define W=a W, + (1 — a) W,.
Then
Wet=aW¥+(Ql—a)Wk=aW,+1L—a)W,=W,
and
TrW=TraW,+ Tr (1 —a) W2=a+(1—a)=1.

Hence W € W(H) and W(H) is convex.
Suppose further that W, e W(H) is a sequence of density operators converging to a

limit point W €B,(H), i.e., o (W,, W) > 0 as n - oo.
By properties (e) and (d)

11— Tr W| = | Ty Wy— Tr W| = | Tr (W, — W)| < |W,~ W]; >0

as n - oo. Therefore, T W = 1. Further, by the Cauchy-Schwartz’ inequality and
property (g), we have for all unit vectors 0, ¢ € H

|(W0,8)— (6, Wd)| <|(W0,8) — (W,0,¢)| + |6, W, ) — (6, W ¢)|
L% — W) 0] - 18] + 0] - | 0%, — W) 4]
2| W, — W| <2|W,~ W|,—0

/

NN

as n - oo. Thus (W0, ¢) = (0, W¢), i.e.,, W* = W. Positivity of W can also be as
easity proved. Consequently, W e U}(H), and W (H) is closed, q.e.d.

It follows that the metric p on UH(H) may be extended to all B,(H), where it is in
fact a norm. This result is particularly useful because it enables us to express physic-
ally-motivated convergence properties in terms of the trace-norm topology, about
which many theorems are known.
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4. The Asymptotic Condition

In the preceding section we have introduced a physically-motivated topology in
the state space Y (H). Equipped with this topology we are now in a position to formu-
late the asymptotic condition for scattering systems. This condition must express the
characteristic property of a scattering system, which is that the system evolves in
the remote past and in the distant future like a system of free particles.

Let H, denote the evolution operator for a free particle and denote by / the evolu-
tion operator for the scattering system. Further, let U, = ¢7*#!, V, = ¢! and if

W e W(H) is any state, let W, = U, WU¥ and W, = V, WV},
We shall say that H satisfies the asymptotic condition (A) if for every state W € U ()
there exists a pair of states W= (unique) such that:

(A): o(W,, W) = | W, — WE|; = 0 as t > F oo

It is clear that the condition (4) is a restriction on H since H, is given explicitly as
the evolution operator of a free particle. Furthermore the condition (4) translates the
physical characteristics of a simple, non-relativistic scattering system into precise
mathematical language. The condition (4) is thus the point of departure of the entire
scattering theory. A main objective of this theory is to extract the physically observ-
able quantities from condition (4) and to relate them to the properties of the evolu-
tion operator H.

By property (f) we can transform (4) as follows:

[W, — Wiy = | U, WUE = V, W= VE |, = | X, WKE — W=,
where X, = V;* U,. Thus (4) is equivalent to
(A): | X, WXF — W[, —~0 as > F oo.
We shall write for the above relation
W+ = t;;:qzlcién X, WXF (5)

and refer to W= as the trace-limit of W(t) = X, WX}.

The two limits ¢ > + oo have very similar properties and most of the theorems
derived below are identical in wording for the two cases. Thus to simplify the notation
we shall omit in the following the double index -+ and replace it by a prime. Further-
more we shall omit the designation ¢ - F oo which may be replaced at its proper
place together with the double index at the end of any of the formulae to be derived in
the following, to yield a correct and complete formula.

In this simplified notation the formula (5), for example, appears as

W' = u(W) = tr — lim X, WX* = tr — lim W (¢) . (6)

The mapping u is thus defined on UY(H) and maps W(H) into U(H). We now show
that the correspondence W — W' maps pure states into pure states.

Lemma 2
If W is pure (W2 = W), then W' is pure also.
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Proof

Since W2 = W, it follows that W({)2 = X, W2 X} = W (), i.e., W(¢) is also pure for
allz. Now

| W2 =W < W2 — W2, + | W2 — W,
= |7 — wi) T2 VO i), + | — W

<2 H W — W(t) Hl

RO 1w - w,
3 |[ W) — W’ﬁl.

Here we have used | W’ + W/( (#)/2]y = 1 which is true since W=1/2 (W + W()e
W(H) and hence | WHl — Ty W = 1. Since | W(2) ’|, tends to zero by condition
(4), we have | W2 — W’||; = 0. This implies that W’2 — W', or that W’ is pure, which
proves the lemma.

Let us now investigate the effect on the asymptotic condition if we had chosen the
distance function g, or the operator norm as the metric on W(H) instead of p = || -||;.
We shall say that the evolution operator H satisfies the asymptotic condition (4,) or
(A'), respectively, if for every state W e UY() there exists a pair of states W=
(unique) such that:

(Ag) (W,,W)-—>Oastu—>IFoo
(A") “W—%ﬂﬂW@—WﬂaO%b+$m.
Theorem 2 The three asymptotic conditions (4), (4,), and (4’) are all equivalent.

Proof We note that
alWs, W) = sup |Tr (Wy — Wy) E| <sup | Tr (W, — W) 4| = | W, — W,

E*~E—E* 4l =1

by Theorem 1. On the other hand, if we take the supremum only over those projections
P? = P* = P whose range has dimension 1, say P ¢ = ¢, we observe

0o PR, ) = sup |Tr (W — W) P| = sup | (4, (s — W) )| = [ Wh — Wa] -
1:1 1m};: 1 llgll =1
Therefore, | W; — W, < ¢o(3, W) < | W; — Wy
It follows that (4) = (4,) = (4’). It remains only to prove that (4') = (4).
If P, and P, are two rays (projections with one-dimensional range), then by
Lemma 1

| Py = Pyly =2 Py — Pof .

Furthermore, if W is a pure state and | W’ — W (¢) | - O then W’ (recall that W' = W#)
1s pure too (proof is similar to the proof of Lemma 2). Hence for pure states

| W' — W(t) || — 0 implies | W' — W(#)|,— 0.
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Next let W be an arbitrary state and 4, the positive (possibly repeated) eigenvalues of
W arranged in descending order so that

W=XaP, -1

W(t) =)' P,t), where P() =X, P, X} .

Then

Because of condition (4) all the P,(f) tend in the norm to some limit P,, and thus

w’ =er £ .
We may thus write
W —W(t) =34 (P, — P,t)

and therefore

W — W), <32 P, — P, =234 P, - P . (7)

Now for any two rays P;, P, we have by Lemma 1 || Py — Py| = /1 — | (dy, &,)[%
where ¢, is a unit vector in the range of P; and ¢, a unit vector in the range of P,.
Hence | P, — P,| < 1.
Considering now the sum at the right of Equation (7) we can divide it into two parts
o0 N 00
2=+
r=1 7r=1 N+1

For the second part we choose IV so large that

DA P =P <D)2 <el4.
N+1 N+1

For the first part we choose a v so large that for all £ > 7 and all » << N we have
| P, — P,(#)|| < e/4. With this choice we find

N
W — W), <ef2})A + €2 <e.
r=1

Since ¢ is arbitrary the left side tends to zero. This finishes the proof of Theorem 2.

The condition (4,) is the closest mathematical transcription of the physical
content of the asymptotic condition. The equivalence of (4,) with the other two
formulations is thus a very satisfactory result. Throughout the remainder of this
paper we shall restrict ourselves to the asymptotic condition (4).

5. Consequences of the Asymptotic Condition

Equation (6) defines a mapping x4 of UH(H) into W(H). We now show that this
mapping can be extended to B, (}). First, we note that any 4 € B,(H) may be written
asAd=A4,+ 1A, where A, =1/2 (A + A*¥)and 4, = 1/(27) (4 — A*) are self-adjoint.
Second, any self-adjoint nuclear operator 4 ; (¢ = 1,2) may be writtenas 4; = AT — A7
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where A7 > 0. For this we take |4,| = (4312, and AF=1/2(]4,| 4 4,) (1 =1,2).
Finally, if A7 > 0, define if = Tr AF + 0. Then A¥ — Af W where W =
(A7) A7 € W(H). Therefore, we define u(0) =0, w(d¥) =2iruWi), wd)=
w(AT) — u(A47) (i =1,2), and u(d) = u(A4,) = < u(4,). Note that with this construc-
tion every A € B,(H) is the linear combination of at most four states. '

It follows that

wd) =tr —lim X, AXF =tr — lim A(¢) , (8)

A(t) = X, AX],is a mapping from B,(#) into B,(}). Recall that the trace-limit is the
limit in trace-norm as ¢ - F oo, and we omit the designation # - T oo since the two
cases are entirely analogous.

Lemma 3 The mapping u(4) has the following properties:

(i) ) ]o =] 4]

(11) ooy Ay + oy Ag) = oy pu(Ay) + o u(Ay)
(1) Ay Ag) = pu(Ay) u(d,)

(iv) p(A*) = p(4)*

Proof We indicate the method of proof by proving (iii). The other proofs are similar.
Since (4, 4,) (£) = A,(f) A4(¢), property (iii) follows by taking the trace-limit of

| i(Ay Ag) — p(Ay) plAs) |y < [ uldy A5) — (41 49 O]
+ 1 4:0) [A0) — (Al + | 1420 — ()] 4o 1 -
Corollary 1 The mapping p is continuous with respect to the trace-norm topology.
Corollary 2 The mapping u maps pure states into pure states.

Proofs By properties (ii) and (i)

| () — (A ) [l = [ (4 = A,) [, = |4 — 4,

hence, Corollary 1. Corollary 2 follows from properties (i), (iii), and (iv) since u(W)? =
u(W?) = pu(W) = w(W)* it W2 =W = W*, and ||u(P)|, = 1if | P|; = dim P = 1.

We note that if 2 is any isometry of Hilbert space, then the mapping 4 - Q2 4 Q%
has all the properties (i) — (iv) of Lemma 3. The following theorem establishes the
converse.

1>

Theorem 3 Let A > u(A) be a mapping of the Banach algebra B,(H) into B,(H)
which satisfies (i) — (iv). Then there exists an isometry 2 such that u(4) = 2 4 Q*.
Furthermore, the projection F = 2 Q* reduces all the operators u(4) and it is the
smallest projection with this property.

Proof Any A e B,(H) has a canonical expansion or polar representation of the form

A =Zﬂ'k(wk! ) bk (9)
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with | 4], = 24, < oo (cf. [4] or [5]). Here {¢,} and {y,} are orthonormal sequences,
and the 4,’s are the positive eigenvalues of |/ A* 4.

By Corollary 2 of Lemma 3, if P is a ray, then u(P) is also a ray. For any unit
vector ¢ € #, P = (¢, ) ¢ is the ray such that P ¢ = ¢. Since Q = u(P) is also a ray,
there exists an w € H such that Q = (w, *) . Thus the mapping u associates an element
w € # with every ¢ € H. The unit vector w is unique up to a phase factor (a scalar
multiple of modulus 1).

Now select some fixed ¢, € H and decide on the phase factor for the corresponding
w,. If ¢ is any unit vector of W, define 4, = (¢, *) §. Then A¥ = (¢, ) ¢,. Also,

A§ Ao = (4, (bo, -) B) bo = Py,

AoA(,)k = (?50: (‘75, ) ¢0)¢: P¢-
Therefore, by properties (iii) and (iv)

pu(Ao)* u(dog) = u(dy Ao) = u(By) = O,

u(do) w(Ao)* = u(do A5) = u(Py) = Q. -

It follows that u(4,) is an operator which maps the one-dimensional space {w,} into
the one-dimensional space {w}. It may be written in the form u(4,) = « (w,, *) w,
where a is a complex constant of modulus 1.

We now keep ¢, and o, fixed, and for each unit vector ¢ € #¥ we choose the phase
factor for the corresponding w in such a way that « = 1. Then

and

and

w(dy) = (wg, .) ® for all g e H. (10)

For any unit vectors ¢,, ¢j e W define
Ay =(d;, ), 6,7=0,1,2.

Ay = (ﬁbz, ) @1 = (B0, (B2, .) o) 1= A1 Ao2 - (11)
By property (iii) and Equation (10)

Then

u(As) = p(Ayg) u(Age) = (wq, (wg, .) W) w1 = (w,, .) Wy . (12)

Thus, the choice of the phase factors for @, and w, (with respect to the fixed w,) pro-
duces the mapping:

(B2, -) 1~ (g, .) oy for all s, do€ H.

Furthermore, if ¢ is any complex number of modulus 1, let ¢ = ¢, +  ¢,, and
A = (¢, -) ¢. Then by property (ii)

u(4) =M(P¢l + P¢2 + 2 RgijAm) == Qwi -+ sz + 2 RB;M(AH) = (0, J)o (13)

where o = w; + y w,. Now | A[|; = | ¢|/2 ([5], p. 41), so that property (i) gives

I +ydal?=1l4]1 = |w(d) |1 = |+ yw]?. (14)
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Expanding the squares in the left and right sides of this equation and simplifying,
we obtain

Re(dy, y ¢a) = Re(wy, y wy) .

Here ¥ may take the values 1 and %, hence

¢'1: 9’52 (wy, wy) (15)

for all unit vectors ¢, ¢, € H.

We define 2 to be that operator which maps ¢ into o, i.e., 2 ¢ = w. Clearly, if
the range of £2 is closed, then Equation (15) implies that £ is an isometry. But the
range of 2 is closed by the following argument. In Equation (14) puty = — 1, ¢, = ¢,,
by = b, 0; = W, and w, = w,, then ¢, — ¢,| = |0, — o,].

Therefore, if £2 ¢, = w, converges to w, then {¢,} is Cauchy and there exists a ¢ € #
such that 2 ¢ = w.
It

4, Ekzlk(q)lzr ) b
=1

then by Equation (12) and property (ii)
(An) __—sz(QQPk’ ) Q¢k - QA?: L.
k=1

In general, 4 € B,(H) is of the form (9). Thus, given ¢ > 0, choose N such that
|4, — Al < /2 for all n > N. Then

[ (d) — @ 4%, <[ p(d) — p(d,) ], + [ 2 4, 2% — 2 402,
=2|4,—4|.<e.
It follows that
pd) =2 A4 0% =Y 4(Qvy;, .) 2, (16)
k=1

for all 4 € B,(H).
Clearly,

Q2% u(d) = p(d) = p(4) 2 2%,

so F =0 0* reduces u(4). Suppose there exists a projection E < F which also
reduces all u(A4). Choose w, in the range of E and w, in the range of F — E. Then for
the operator u(4,5) = (w,, *) w; we have

0 =pu(dy) E = E pu(dyy) = u(dyy) +0.

Therefore, F = £ % is the smallest projection which reduces all the operators u(4).
This proves Theorem 3.

Theorem 4 The asymptotic condition (4) is satisfied if and only if, given a vector ¢,
there exists a vector p (p = 2 ¢) and a complex function &, of modulus 1 such that

litht¢_'P“_>O
as! > | oo.
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Proof

Suppose &(f) X, ¢ >y strongly. Using Lemma 1 and the fact that X, P, X[ and
P, are prO]ectlons with one-dimensional range, we observe

| X, Py XF — Pyfly =201 — [(X, ,9) ), (17)

since
P, X, By X} P,y = Tr B, X, By XF = (. Py X, By X¥ y) — (X2, By XF )
= Xy (b XFyp) d) = |(X, b 9|2

Now &(¢) X, ¢ — o strongly implies |(&() X, &, v)| = | (X, &, »)| > |p|2 = 1.
Therefore ]IX P, X} — P, >0by Equa.tlon (17).
In general, any W e W(H) is of the form

2’1 o

where ¢, ¢,, ...are a sequence of orthonormal states with respective probabilities
My As, oooy A > 0 for all %, and

lk: 1 .
k-1

$r
k=1

If we take

where y, = s — lim &(f) X, ¢,, then

” X, WX:* - W,Hl = szlk (Xt P¢k X;" - Pwk) Hl
~1

N
< M| X, Py X}~ P, |+ ZJLH!X P, XF—P, |
k=1

ESN+1
Given ¢ > 0, we choose N sufficiently large so that
Zlk < g/4
NT1
then choose 7" sufficiently large so that || X, P, X y— Py |, <ef2forall|f| > T and
forall #=1,2,..., N. Then

| X, WX} — W'H1<8222 o 2 21 £

k=N-+1

It follows that the asymptotic condition (A4) is satisfied.
Using Theorem 3 with the asymptotic condition (4) and Equation (8), we obtain

X, AX} — QA4 0%, -0 (18)
for all 4 € B,(#). In particular, for all rays P = P
| X, PXF—QPQ*%,—0. (19)
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If we define Y, = X} £2, then the continuous one-parameter family of isometric
operators Y, satisfy

| PY,— Y, P|,—0. (20)
But by Lemma 1 (compare Equation (17))

|PY,— Y, P|,=2(1—|(¢, Y, ¢) 1"
so that

{¢Y¢|_[1—— | PY, — YP||2] —~>last— Foo.

If we choose

88 = 15

(6, &5(@) Yi ) = [, Y )| > 1

as t > F oo, and for all ¢ € Y. But then

then |&, (¢)| = 1, and

|65 (@) Y. ¢ — 4> =2 — 2 Re(4, }(¢) Y. ) >0,

l.e.,

1Y, ¢ —&(d) ¢ -0 ast— Foo. (21)

We now show that &, = &, (¢) is independent of ¢. For a fixed cyclic vector ¢y + 0

the set {4 ¢, |4 € B,(H)}, is a dense linear manifold M in H, ie., {4 ¢y} = H,
A € By(H). Given any vector ¢ € M, we choose A € B;(H) such that ¢ = 4 ¢,. Then

since &, (o) ¢ = &,(do) A do = A &,(dy) Do,

1Y, ¢ — &) | <[Vid do — AY, By + | AY, $o — A &ildo) ol

< ”YtA — AY,| - ”9‘50” + ”AH -|Y, o — &i(do) ¢0H
<[ YA — AY ||y [ o] + [ A]x - [V, do — Eilbo) So -

Letting > F oo, the first term on the right goes to zero by Equation (18) and the
second term goes to zero by Equation (21). Therefore,

|Y,d — &) ¢|| > O forallpe M. (22)
For any given ¢ € ¥ choose {¢,} such that ¢, > &, ¢, € M.
Then
[ Y ¢ —&udo) ¢ <[Yid = Yool + Vi by — Euldo) ball + | E:(do) b — Eulbo) ¢

<
<2 “¢_¢n|l+“17t¢n—— t¢0 ¢nH—>‘O

Consequently, &, = &,(¢,) is independent of ¢ and

|6 X, 6 -Q4| =|Y.¢ & ¢ =0
forallde N, q.e.d.
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Corollary The asymptotic condition (4) implies

(i) for some real constant «

im — &4 _ detforall 7.

t— F o0 &t

(i1) the intertwining property holds in the sense
U =V,0.
(11) &, is a differentiable function of ¢.

Proof By Theorem 4 we know

m & X, — 0] =0 23
and
,Jim 160, Xyvd— 2¢| =0forallz. (24)

By the group property of U, and V, we have

Xt+r - Vt*+r Ut-f-r - V;k Vt* Ut Ur = V;k Xt U

T*

Then

HéST_HQ Ur¢“ T/;.Qt;ﬁH \<\ ”‘gi EH-IQ Ur¢_§t+z Xt Urng
+ [|€: X, U p— V. 26|
= HQ‘P_‘EtXtTPH + H‘EH-I Xt-i—rgb—QgﬁH

where = U, ¢ in the first term on the right.
Letting £ > & oo and using (23) and (24) we obtain

tu_li:r,:noo %|§t5t+19Ur¢_ V.24 =0. (25)
Therefore, given ¢ > 0, there exists a 7" > 0 such that |¢|, |#| > T implies
b= bl =BG — B 8| 12 U]
= 86..QU, ¢~ &5, 2U. 4
|86 QU SV Q4| + [V, 24— &6, QU $| <,
i.e., (& &) is Cauchy convergent. Thus

v "EIH—I' _ . . _
t—lglpoo & t—1>1:IFnoo $t&r4r = 0(7) (26)

exists, and
|o@ QU ¢~ V, Q4| <|o@ QU ¢ &6, 2V, ¢
+ Hgté:t+1:9 U‘r¢— Vtggﬁ” _*O
as t > F oo. Since the left side of this equation is independent of ¢, we have

wrt) QU d=V. Q¢ forall¢ge Handall 7. (27)
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It follows from Equation (27) that w(z) ¢ = U} Q2* V, 2 ¢ is continuous in 7 since
U, and V, are strongly continuous in 7. Also,

— lim S0EntT) gy ST Sltm)
Ol = M et i@ & wale
Consequently, w(t) = ¢'** for some real constant «. With this substitution, Equations
(26) and (27) become respectively (i) and (ii).

By the definition of £, we have

(B0, Yt o) (X By, 26)
=SB = g Vgl T T%e o, 2601
Since X, ¢, = V¥ U, ¢, is differentiable for ¢, € D(U,).

(Xfdo=1 V¥ (H— Hy) U,dy,), it is clear that &, is a differentiable function of ¢,
q.e.d.

Theorem 4 shows that the new asymptotic condition is equivalent to the old
asymptotic condition (cf. [2]) with the addition of a phase factor &,. Also, it is clear
that H, and H = H, + cI will satisfy the new asymptotic condition because, in this
case, &, = ¢!, We point out that this is not the only possible choice of phase factor.
For example, &, = exp (ic - log?), ¢ a real constant, is allowable.

Finally, we remark that the isometries £2, obtained by Theorem 3 for the two
limits £ - &+ oo are a slightly more general definition of the so-called wave operators
introduced into scattering theory by Mgller. Also, the scattering operator may be
defined by S = 2* Q, as was done in [2].

6. Acknowledgments

This paper was written during a visit of the authors at the Battelle Memorial
Institute in Seattle, Washington. We are very grateful to Battelle for financial support
which made this visit possible.

We have greatly benefited from correspondence with Professor A. LENARD of the
University of Indiana on various aspects of this problem. The ‘only if’ part of Theo-
rem 4 was first proved by him using a different method, and the Corollary of Theorem
4 is entirely due to him. The proof of Theorem 3 is based on ideas due to CLASINE
vAN WINTER and Professor J. A. STAMPFLI.

References

(1] GeL’FaND, L. M., and VILENKIN, N. YA., Genervalized Functions, Vol. 4 (New York, Academic
Press 1964).

[2] JaucH, J. M., Theory of the Scattering Operator, Helv. phys. Acta 37, 127 (1958).

[3] JaucH, J. M., Foundations of Quantum Mechanics (Reading, Massachusetts, Addison-Wesley
1968).

[4] Karto, T., Perturbation Theory for Lineay Opervators (New York, Springer-Verlag 1966).

[5] ScHATTEN, R., Novm Ideals of Completely Continuous Operators, Evgebnisse der Mathematik und
threr Grenzgebiete (Berlin-Gottingen-Heidelberg, Springer-Verlag 1960).



	On the asymptotic condition of scattering theory

