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Dynamique quantique des systémes amortis «non markoviens»

par Christian Favre et Philippe A. Martin
Institut de Physique Théorique de 1’Université de Genéve

(14 XII 67)

Abstract. A quantum dynamical description of a small system interacting with a thermal bath
is given. The Liouville space formalism allows us to derive a ‘Macrocanonical Master Equation’
(i.e. an equation describing the evolution of the reduced state of the small system [9, 10]) within
a precisely formulated mathematical frame. The weak coupling assumption is taken into account by
applying the Born approximation. The integrodifferential equation obtained in this way is solved
for the cases where the small system is a spin or a harmonic oscillator interacting with a thermal
bath. The solution is valid for a very general class of baths. For these models, the thermodynamic
limit taken over the bath suffices to ensure an approach towards thermal equilibrium, and the use
of stochastic assumptions is avoided. The approach to equilibrium may be studied in terms of the
microscopic structure of the bath. In general it is not an exponential one. The Boltzmann thermal
equilibrium is reached for every initial state. In the limit of high temperature and short internal
correlation times for the bath, the given macrocanonical master equation reduces to the phenome-
nological Bloch equation (with two relaxation times 1'; £ T,) for the spin, and to the Fokker-
Planck equation for the harmonic oscillator,

I. Introduction

Le probleme fondamental de la mécanique statistique des systémes hors d’équilibre
est de concilier une équation irréversible du type de Boltzmann, aux équations
¢élémentaires de la mécanique classique ou quantique, réversibles. L’histoire de ce
probléme est déja fort longue et un trés bon survol des différentes approches utilisées
pour le résoudre peut étre trouvé dans un article de Yvon [1]. Cet auteur remarque
que la méthode correspondant au traitement macrocanonique semble avoir été sous
estimée et que de nombreux résultats intéressants peuvent en étre extraits. Cette ligne
sera suivie dans ce travail. Elle s’applique en particulier chaque fois que 1'approche a
I'équilibre d’'une quantité microscopique a un sens. C'est le cas lorsque cette quantité
microscopique peut étre considérée comme représentative de 1'état moyen d'un
ensemble de systémes indépendants. On rencontre cette situation lorsqu’on s'intéresse
a l'effet (macroscopique) produit par un grand nombre de tels systémes indépendants
«démocratiquement» en interaction avec un thermostat. Bien qu’individuellement
aucun €lément ne montre un comportement irréversible, I'état représentatif de
I'ensemble peut cependant atteindre un équilibre. Cette voie a été développée pour
traiter les phénomenes de la résonance magnétique. Une assemblée de spins indépen-
dants couplés A un thermostat montre avec éclat la tendance du systéme a atteindre
I'équilibre thermique. Ce schéma est également commode pour 1'étude de la relaxation
d’'un mode de champ électromagnétique dans une cavité. Son utilité a été mise en
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évidence dans la théorie quantique du laser. Ces situations ne peuvent étre décrites a
I'aide de I’équation maitresse de Pauli qui ne gouverne que les éléments diagonaux de
la matrice densité. Les spécialistes de ces questions ont donc été conduits a faire
directement la théorie de leurs expériences et leur but a été avant tout pragmatique.
Les points de vues développés dans ce domaine vont étre brievement rappelés ci-
dessous.

Une méthode employée pour traiter le bain thermique consiste a le décrire par un
potentiel extérieur aléatoire agissant sur le systéme d’intérét. L’irréversibilité ainsi
que la température sont introduites par une hypothése ad hoc sur cette variable
aléatoire, par exemple l'existence d'un temps de corrélation fini. Ce schéma a été
utilisé dans les travaux de pionniers de B.P.P. [2] puis élaboré par REDFIELD [3] et
Primas [4]. Une présentation trés simple de ce point de vue est donnée par STENHOLM
et TER HAAR [5]. Cette approche a pour avantage de ne pas introduire les variables
internes du bain. Bien que la compréhension intuitive du phénomene soit assez
satisfaisante, une telle méthode offre conceptuellement de sérieux inconvénients, car
le traitement ne correspond pas aux principes de base de la mécanique statistique.
En effet, dans ce cadre on se proposerait d’obtenir des équations macroscopiques a
partir de:

I les lois de la mécanique qui régissent les particules formant le systéme,

IT des hypothéses probabilistes qui traduisent notre manque d’information sur le

systeme.
La description mécanique et les considérations statistiques devraient donc étre
clairement séparées. Ceci n’est évidemment pas le cas pour la méthode du potentiel
aléatoire.

Pour pallier cet inconvénient on considére un systéme physique isolé, obéissant
donc a I'équation de Schrodinger, qu'on divise en deux sous-systémes: le systéme
d’intérét A et le reste, considéré comme un bain thermique B. Conformément aux
principes de base de la mécanique quantique, la quantité contenant l'information
nécessaire au calcul des valeurs moyennes de toutes les observables du sous-systéme A
est 'état réduit de A [6]. Il s’obtient par élimination des variables du bain au moyen
de I'opération de trace partielle (ou opération de réduction) sur 'opérateur densité du
systéme total p(¢):

04(t) = Tr" o(t).

Le probléme se ramene alors a trouver une équation d’évolution purement mécanique
pour g4(¢) ou le thermostat n’apparait que par l'intermédiaire de ses valeurs moyennes
internes. De plus, la connaissance de 1'état du bain n’est requise qu’a l'instant initial.
La discussion de I'approche a I'équilibre peut se faire alors en prenant une limite
thermodynamique sur le bain.

A notre connaissance BLOCH et WANGNESS [7] ont été les premiers a développer ce
point de vue. Cependant ces auteurs introduisent une hypothése de nature statistique
supplémentaire: 1'effacement des corrélations entre les deux systémes, répété apres
chaque intervalle de temps ¢, si bien que p4(¢) n’est plus régi par des lois strictement
mécaniques. D’autres auteurs [8] introduisent diverses formulations de ces hypothéses
de perte de mémoire. Le systéme est ainsi rendu «markovien» (cf. IIB). Clest a
ARGYRES et KELLEY [9a] qu’il faut attribuer le mérite d’avoir obtenu sur une base
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purement mécanique, une équation close pour g4(¢) qui contient un terme de mémoire.
Sa dérivation suit une ligne parallele & celle qui conduit a 'équation maitresse
généralisée [10] et nous I'appellerons équation maitresse macrocanonique (équation
(IT.31)). En fait, 'équation d’évolution de I'état réduit g,(¢) est donnée ici en toute
généralité quels que soient les deux systemes 4 et B. Cette terminologie est réservée
au cas ou le systéme B est un thermostat. FaAno [9b] use d’une technique similaire
dans sa théorie de la relaxation.

Il faut encore remarquer que dans tous les traitements cités, 'approche a I'équilibre
n’est pas étudiée, mais seule la solution stationnaire est calculée. Le probleme de
savoir si cet état est effectivement atteint pour n’importe quelle condition initiale du
systéme d’intérét n'est pas abordé.

On se propose de montrer ici que pour des systémes simples tels 1'oscillateur
harmonique et le spin 1/2 (ou systéme a deux niveaux), dont les exemples d’application
sont nombreux, les équations de mouvement peuvent étre résolues sur cette base
purement mécanique. Ainsi, le comportement du systéme en dehors de I'équilibre et
son approche peuvent étre discutés pour n’importe quelle condition initiale. Ces
évolutions ne sont généralement pas de nature exponentielle. Il est néanmoins clair
que pour obtenir une description explicite, il est nécessaire de faire une approximation
d’interaction faible. En effet, 4 notre connaissance un seul modéle est actuellement
rigoureusement soluble: c’est celui d'un ensemble d’oscillateurs harmoniques en
couplage linéaire [11]. Le calcul de perturbation ordinaire se montre tout a fait
inadéquat dans les problemes d’approche a 1'équilibre. Il faut donc recourir a d’autres
approximations, et celle qui sera faite ici est du type de celle de Born.

Dans le second paragraphe, le formalisme de I’espace de Liouville est introduit afin
de situer la dérivation de I'équation maitresse macrocanonique dans un cadre mathé-
matique précis. Ainsi, des conditions de validité des opérations effectuées peuvent
étre données (Appendice A). Les conditions qui restreignent le second systéme a un
thermostat sont introduites et I'approximation de Born précisée. De plus, cette
formulation permet de montrer trés simplement et en toute généralité que I'hypothese
de chaos moléculaire répété (ou effacement répété des corrélations) conduit a la
propriété de semi-groupe pour 1'évolution du systéme réduit.

En application, le troisitme paragraphe est consacré a la description d’'une
expérience de précession libre d'un spin 1/2, ou 4 la relaxation d’un systéme a deux
niveaux en interaction avec un environnement donné. Les équations intégrodifféren-
tielles obtenues pour les composantes de la matrice densité sont rigoureusement
résolues et I'approche a 1'équilibre discutée. Dans la limite des températures élevées,
I'équation phénoménologique de BLocH [12] correspondant & notre cas est retrouvée,
ce qui concorde bien avec son domaine de validité.

Finalement, dans le dernier paragraphe, l'oscillateur harmonique en interaction
avec un thermostat est traité dans la représentation des états cohérents [13]. L’équation
de mouvement de la quasiprobabilité P est donnée. Elle se réduit a 1'équation de
Fokker-Planck habituelle [14] dans le cas ou les temps de corrélation du bain sont
infiniment courts. Les valeurs moyennes de I'énergie et des opérateurs de position et
d’impulsion sont discutées. On termine (Appendice B) par une bréve comparaison de

ces quantités avec les solutions exactes obtenues dans le cas particulier du couplage
linéaire.
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II. L’équation maitresse macrocanonique

A. L’espace de Liouville et I'opérateuy de réduction

Considérons deux systemes A et B, décrits respectivement dans les espaces de
Hilbert h, et hy, dont les hamiltoniens sont H, et Hj.

Le systéme composé, décrit dans l'espace produit hy ® hg, évolue avec la loi
unitaire de Schrodinger U, = ¢!, ot H est I'hamiltonien total: .

On se propose de trouver la loi d’évolution de I'état réduit g,(¢):
04(t) = Tr" U, 0(0) U )

La connaissance de 1'état réduit g4(f) a tout temps suffit & décrire 1'évolution de
toutes les observables relatives au systéme A [6]. Une caractéristique essentielle de
cette évolution est qu’elle n’est plus unitaire, et peut transformer un état pur en un
mélange. Il est donc approprié de choisir comme ensemble de base non pas les
éléments de 1'espace de Hilbert, qui ne décriraient que des états purs, mais I'ensemble
des opérateurs densité eux-mémes. I1 faut remarquer que cet ensemble, caractérisé par

o=o0 0>0; Tro=1 (3)

n’est pas linéaire, mais jouit seulement de la propriété de convexité. Afin de donner
un sens précis aux opérations qu’on effectue sur les états, il convient de considérer une
structure un peu plus large que celle qui est définie par (3). Ceci est réalisé par I'intro-
duction de I'espace de Liouville £, dont les éléments sont les opérateurs de type
Hilbert-Schmidt agissant sur h. L’espace de Liouville posséde lui-méme la structure
d’un espace de Hilbert, si bien qu’on est maintenant capable de représenter et de
discuter les diverses opérations qu’on effectue sur les états dans le cadre de la théorie
des transformations linéaires dans un espace de Hilbert. C’est son principal intérét,
et la raison de son emploi [9b, 10].

Soient £, et Ly les espaces de Liouville attachés respectivement a h, et hg.
L’espace de Liouville £ du systéme composé est alors donné par le produit tensoriel
habituel

CZEA®EB-

Introduisons maintenant les principaux opérateurs dans l'espace de Liouville C.
Tout d’abord, 'opérateur d’évolution:

Uo=U, U’ (4)
et le liouvillien proprement dit:
Ho=1[H, ol =[Hy ol + [V.el = (H+ V) o. (5)

U, est unitaire sur £ et admet H comme générateur infinitésimal. Nous posons des
définitions analogues pour les systémes individuels 4 et B.

L’opération de réduction définit également un opérateur linéaire dans L. Consi-
dérons tout d’abord I'opération de trace partielle, notée par J:

gQETF’BQEQA. (6)
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T conserve les propriétés (3) caractéristiques des états. J applique donc les états de C
sur ceux de L .

Afin de construire un opérateur agissant dans 'espace de Liouville £ du systéme
composé, il est commode d’envisager une application A4, appelée amplification, de C,
dans L par

Ags=04®0p (7)
ou1 gp est un état fixé qui est supposé commuter avec ’hamiltonien libre du systéme B:
(Hp, 5] = 0.

A cette restriction pres, gz est choisi pour l'instant arbitrairement dans Cp.
L’opérateur de réduction R que nous voulons considérer est alors défini par

R=AJ. (8)
R jouit des deux propriétés remarquables suivantes: premiérement, R est idempotent
RZ=R. (9)
On le vérifie en notant que J 4 = J,, J, étant I'opérateur unité dans £,1). On a aussi
RA=A, JR=97. (10)

Deuxiémement, R commute avec le liouvillien libre. On a précisément:
RU=H,R=AH,T (11)

c’est une simple conséquence des définitions et des propriétés de la trace partielle
(cf. Appendice A6).
Avec ces notations, 1’état réduit (2) s’écrit

04(t) = T U, 0(0) (12)
ou encore, dans I'espace de Liouville £ du systéme composé,
24(t) ® g5 = Rol) = RU; 0(0). (13)

Cette expression montre que l'évolution du systéme A est gouvernée par R U;,
appelé opérateur d’évolution réduit. Sa connaissance permet de donner les lois de
mouvement de toutes les quantités relatives au systéme A. En général R U, ne jouit
plus des propriétés de groupe et d’unitarité. C’est une application dynamique qui
conserve 'hermiticité, la positivité et la normalisation des états, mais qui est de
caractere beaucoup plus général que celle de Schrédinger.

La signification de R est la suivante: supposons que les systémes soient sans
corrélations initiales

0(0) =04 ® @5

et qu'on choisisse précisement de faire I'amplification (7) avec gp, I'état initial du
systeme B. Alors g(0) est invariant sous R:

R0(0) = 0(0). (14)

1) 1l faut toutefois remarquer que R n’est en général pas un projecteur (cf. appendice A).
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La quantité (J— R)o(t) = o(f) — 04(f) ® 05, qui est nulle & ¢t =0, est donc une
mesure des corrélations introduites entre les deux systémes par leur interaction au
cours de 1'évolution.

B. L’effacement répété des corvélations

Avant de procéder a la dérivation de 1’équation exacte a laquelle obéit R U;, nous
voulons montrer que I'effacement répété des corrélations entre les systémes conduit a
attribuer a 1'évolution réduite le caractere de semi-groupe.

Supposons qu’apres un temps At les corrélations entre les deux systémes se sont
pratiquement complétement dissipées. L’état du systéme composé g(A?¢) peut alors
étre approximé par l'expression décorrelée p,(A¢) ® pp(0) ol le systéme B est rétabli
dans son état initial pz(0). Supposons de plus que 1'on puisse répéter cette approxi-
mation apreés chaque nouvel intervalle de temps A¢. On se convainc que l'état du
systéme composé est donné aprés un temps 7 = » A¢ par [15]:

o(n At) ~ o,(n At) @ 05(0) = R um < RU4 RU,, 0400) @ 05(0)
= (R udt)n 04(0) ® 05(0)

I'amplification étant effectuée a chaque fois avec 'état g5(0). Pour I'état réduit, on
obtient immédiatement

0a(n At) = T(RU)" A04(0) = (T U, A)” 04(0) - (15)

Si I’échelle d’observation de la variation du phénomeéne dans le temps est beaucoup
plus grande que le temps d’effacement A¢, on peut traiter 7 = # A¢f comme un para-
metre continu. Apres cette opération de lissage dans le temps, I'évolution du systéme
réduit est décrite par (J U4, A4)74? qui est manifestement un semi-groupe du para-
metre 7. Le générateur de ce semi groupe est

TUs A-T
K= Aztlt

2

et les équations de mouvement de 1'état réduit forment le systéme d’équations
différentielles linéaire suivant:

d ,
a0 _ K gu(a). (16)

On dit dans ce cas que le comportement du phénomeéne observé est markovien.
Ceci doit étre compris dans le sens des équations (16) qui montrent que l'état au
temps 7 + dt est completement déterminé par sa valeur a l'instant antérieur 72).
Une caractéristique importante de 1'évolution décrite avec cette approximation est
que le propagateur qui gouverne 1'état du temps initial 7, au temps final 7, ne dépend
que de la différence 7, — 7,. Ceci signifie que I'évolution du phénomene, a 1'échelle
macroscopique de temps 7 (macroscopique par rapport a /A¢) apparait comme homo-
géne.

2) L’usage du terme markovien par les physiciens ne coincide pas avec la définition adoptée par
les mathématiciens. En fait, la connaissance de la forme de I’équation d’évolution pour 1'état
ne permet pas de décider si le processus est markovien au sens de la théorie des probabilités [16].
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C. L’équation maitresse macrocanonique

Nous voulons maintenant établir 'équation exacte a laquelle satisfait I'opérateur
d’évolution réduit R U,, valable pour toute valeur du temps microscopique ¢, suivant
la méthode de projection utilisée dans [10].

Nous partons de 1'équation de Liouville qui régit I'évolution du systéme total

. d
2y, (17)
En multipliant cette expression a4 gauche par R, et utilisant (5) et (11), on obtient
. d

Comme en général R ne commute pas avec l'interaction ¥, (17) et (18) forment un
systéme de deux équations différentielles couplées pour les quantités U, et R U,.
Afin d’obtenir une équation close pour la quantité réduite R U,, on se propose de
résoudre ce systeme par la méthode de la transformation de Laplace.

Notre premier but sera d’établir entre U, et R U, une relation intégrale équivalente
a (18). Pour ceci, introduisons les deux résolvants

o0

Gfs) :f et U dt= (s +i W
0

Gyls) = | 5t Uy, dt = (s + i Hy)™. (19)
OJ
Les conditions d’existence de ces formules et la validité des opérations qui suivent

sont discutées dans 'appendice 4. Ces résolvants vérifient 1'identité fondamentale
suivante:

G(s) — Gy(s) = =1 G(s) VW Gyfs) = —1 Gyfs) YG(s). (20)
En multipliant cette expression a4 gauche par
R=J-R (21)
on obtient B
G(s) = R G(s) — i Gyls) R U G(s) + Gofs) R (22)

On revient a la variable ¢ en prenant la transformée de Laplace inverse de (22) et en
appliquant le théoréme de la convolution:

U= RU i [ U RO U, 7+ Uy, R. @3)

Cette équation intégrale, qui lie ’évolution unitaire U, a 1'évolution réduite R U,,
prend une forme plus claire si on 'applique sur un état sans corrélations initiales.
Avec (14), on trouve

o) = 0uft) ® 05— i [ Up, RV (1 =) dr. 24)
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On reconnait que la relation entre I'état corrélé par I'interaction et 1'état sans corré-
lations se présente, sous cette forme, de fagon analogue a une relation intégrale de
diffusion. Le terme intégral décrit le développement temporel des corrélations. Sa
solution par itérations successives fournit pour elles une série en puissances de
I'interaction.

Notre seconde tache est de résoudre (23) de fagon & exprimer U, entiérement par
I'évolution réduite. Ceci peut se faire au moyen de nouveaux résolvants définis a partir

des liouvilliens réduits:
o0

G(s) “f st iRM g — (s iR W,

0

(25)
Gols) :fmf” e R gr— (s + i B Uy
5
On remarque qu'avec (9), (11) et (21)
R Gy(s) = R Gy(s) (26)
si bien que (22) peut se mettre sous la forme
(I + 7 Gyls) R U) G(s) = RG(s) + Gyls) R. (27)
De I'identité (20) écrite cette fois pour G(s) et G,(s), on tire
(J—iGE)RV)(T+iGys) RV)=17. (28)
Combinant (27) et (28), on recoit
G(s) = RG(s) —iG(E)RYRG() + Gl R (29)
ou encore
U=RU —1 te—iﬁ#’ ﬁvnut_,drw“ﬁ#’ R. (30)
6

Cette expression est la solution explicite de (23).

Nous sommes maintenant en mesure d’écrire I’équation de mouvement générale
désirée pour I'état réduit p4(¢). Il suffit de substituer (30) dans le dernier terme de (18).
On a alors I'équation qui régit 'opérateur d’évolution réduit R U;, qu'on applique
sur un état initial arbitraire p(0) (qui n’est pas nécessairement sans corrélations).
Apreés avoir effectué une réduction sur le systéme B, en utilisant (10) et (11), on
obtient:

i) — i 3, 04t) — i TV A0

i
- gvfe-iﬂ?%f'ﬁvAgA - de—i TV R¥Ro0).  (31)
0

Le premier terme — ¢[H 4, p4(f)] donne 1’évolution libre.
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Le second terme peut également étre mis sous forme d'un commutateur. Il suffit
d’utiliser les propriétés (A6) de la trace partielle:

TV Aoult) =TV I ® o), 040)]. (32)

On peut donc l'interpréter comme une modification de ’hamiltonien libre H, par un
potentiel V, =T (V I, ® pp) dt 4 la présence du systéme B.

Le troisiéme terme décrit l'effet sur 4 de la formation des corrélations entre les
deux systémes, résultant de I'enclenchement de l'interaction. Cette partie intégrale
dans (31) contient les effets de mémoire typiquement non markoviens. Remarquons
que le nouveau propagateur qui y apparait n’est pas unitaire si R n’est pas un pro-
jecteur.

Le dernier terme enfin donne I'évolution des corrélations antérieurement présentes -
entre les systémes.

Jusqu’a présent, aucune approximation n’a été faite et aucune spécification des
systemes n'a été donnée. En fait, (31) s’applique dans toute situation ol on ne
s'intéresse qu’a un systéme partiel, et le mouvement qu’elle décrit peut étre aussi bien
réversible qu’irréversible suivant la nature des systémes en présence. Afin d’utiliser
(31) pour I'étude explicite de I'approche & 1’équilibre, il convient de préciser leurs
propriétés ainsi que celles de leur interaction mutuelle. Nous appelerons (31) I'équation
maitresse macrocanonique si B joue le role d’un thermostat.

D. Propriétés du thermostat et I'approximation de Born

Nous introduisons maintenant essentiellement une dissymétrie entre 4 et B:
A est un systéme microscopique tandis que B est un bain thermique dont le nombre
de degrés de liberté est infiniment supérieur A celui de 4. C’est cette dissymétrie qui
est responsable du comportement irréversible de A. Nous traduisons ceci dans la
description au moyen des quatre hypothéses suivantes:

1) une hypothése sur la nature de I’état initial des systémes: nous choisissons 1’état
initial (0) le plus probable compatible avec les contraintes, que Tr ¢ Hy=Ejp
est I'énergie du bain et que J g = p,(0) est un état initial de 4 donné; c’est a
dire I'état sans correlation:

2(0) = 2,4(0) ® g5-
ol gf est I'état d’équilibre thermique du systéme macroscopique:

7. B*BHB 1 -

——; f= : (33)
4z B —BHy p KT

T

Nous choisissons de faire 'amplification 4 au moyen de I'état initial o} du systéme B.
En conséquence

Ro(0) =0

ce qui supprime le dernier terme de (31).
Nous soulignons que cette hypothése d’absence de corrélations n’est faite qu’au
temps £ = 0.
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2) L’ensemble des interactions possibles doit étre restreint i celles qui sont
susceptibles de décrire une approche A I'équilibre. En particulier, les interactions qui
donnent lieu & I'effet d'une force extérieure constante sur le systéme A sont a proscrire.
Ce serait précisement ce que donnerait le second terme de (31). Nous astreignons donc
I'interaction a satisfaire 43):

TV IL®gg =0. (34)

En conséquence ce second terme est supprimé, ainsi que I'opérateur R qui figure sous
I'intégrale devant l'interaction .

3) Le thermostat B est suffisamment grand par rapport & A, et son interaction

avec A est suffisamment faible pour permettre de traiter les corrélations au premier
ordre. On voit que ceci revient 4 se limiter a la premiére itération dans 1’équation

intégrale (24), ou a remplacer e RH: par le propagateur libre dans (30) et (31). On
a donc traité la relation de l'état correlé p(f) 4 I’état sans corrélations p,(f) ® o} &
I'approximation de Born.

Avec les trois hypothéses énoncées ci-dessus, (31) devient

Ul o —iH, 0~V [ V(o -D@eF) . (33)
0

Quant aux corrélations, elles peuvent étre évaluées au moyen de (24)

t
o) —eal) @ 5= —i [ «Ho" Y (o, (1 — 1) @ f) d (36)
0
sitot que la solution g,(¢) de (35) est connue.
Sous la forme (35), I’équation de mouvement n’est pas encore explicitement écrite
en termes de I'état réduit p,(f) a cause de 'opération de trace partielle J devant

I'intégrale, qui reste a effectuer. Pour ceci, remarquons qu’une interaction générale V
peut étre développée de la fagon suivante:

vV=2Viev; (37)

ol les V} et V}; agissent respectivement sur les systémes A et B. Ces opérateurs sont
tels que I soit hermitien. En introduisant cette expression de 'interaction dans (35)
et en effectuant les opérations d’algebre et de réduction indiquées, on obtient

‘%@“ = —1 [Hy, 04(6)] — f;{cii(‘c) [Vi, Uylx) Viog (¢ — 1) UGt(r)]
=) V), Ugle) 0 (6= 9) Vi U@} dr (39
ou

¢;i(%) = TP of, VEUylr) Vi Uz'(n) (39)

3) (34) ne peut pas étre satisfait en toute généralité pour n’importe quelle interaction, par simple
renormalisation de I’hamiltonien libre.

Si on modifie 'hamiltonien H 4, on modifie aussi la description physique du systéme 4.
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U 4(2) et Ug(f) sont les opérateurs d’évolution libre des deux systémes. On a utilisé le
fait que I'état initial du bain commute avec Hy, et la possibilité de permutter les
opérateurs sous la trace.

On constate que le systéme B n’apparait dans la description du mouvement (38)
que par l'intermédiaire des fonctions ¢;;(#) qui sont des fonctions de corrélation
internes du thermostat.

C’est a ce point que s’introduit la quatriéeme hypothese, celle de limite thermo-
dynamique. Le thermostat posséde un si grand nombre de degrés de liberté que la
densité des états propres de son hamiltonien peut étre considérée comme continue.
Dans le calcul des quantités ¢;;(#) les sommes discrétes sur ces états (provenant de
I'évaluation de la trace) peuvent étre remplacées par des intégrations. Ce passage au
continu a pour effet d’éviter les cycles de Poincaré qui apparaitraient nécessairement
si le bain était fini.

Définissant les transformées de Fourier des fonctions de corrélation?)

+ 00
1 S ]
L) = - f ¢ () et dt, (40)
on trouve [17]

+ o0
Lijlw) = f den(e) n (e + o) P e | Vi e+ 0> e+ o |V} & (41)
— 00

7n(e) étant la densité des états d’énergie du bain.
De cette derniére expression, on tire deux propriétés essentielles de ces fonctions:
1) une propriété de symétrie
Li(w) = L,(— ) (42)

it
2) une propriété de positivité
Liw) >0 si Vi= Vit (43)

L’équation de mouvement (35) ainsi que ces deux derniéres propriétés forment la
base de la description, et aucune hypothése nouvelle autre que les quatre que nous
venons d’exprimer ne sera introduite. Avant de procéder a la résolution de (35) dans
des modeles particuliers, faisons encore quelques remarques sur I'approximation de
Born, qui est en réalité la seule approximation a la solution exacte que nous avons
faite.

Les fluctuations du bain autour de la valeur d’équilibre thermique peuvent étre
évaluées en calculant pg(¢) = T74 p(¢). L’état du systéme total est donné a I'approxi-
mation de Born par (36). En y introduisant la forme (37) de l'interaction, on trouve

o5(t) = Qg — 1 | Vy(8), Qg (44)

Vel = | X (Trtaq(t— ) Vi) Uslo) Vi Uz'(x) dr.

%) En supposant l'existence de ces transformées de Fourier, nous faisons une hypothése implicite
sur la nature du bain et des opérateurs d’interaction Vi,.
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Soit Oy une constante du mouvement du bain libre:
[OB! HB] =4 (45)

alors Oy est encore une constante du mouvement aprés I’enclenchement de I'interaction
avec le systeme 4. C’est une conséquence directe de (44) et (45):

T7? Oz o5(t) = T#® Oy 05 = constante.

Ainsi, al'approximation de Born, les fluctuations du bain ne sont pas négligées comme ce
seraitlecasdansle cadred’un traitement aveceffacement répété des corrélations. Cepen-
dant, elles sont décrites de telle fagon que les constantes du mouvement du thermostat
libre ne sont pas affectées par son couplage avec le systéme A. Ces constantes du
mouvement sont essentiellement des quantités macroscopiques, comme par exemple

I'énergie totale Hy. Il est raisonnable de penser qu’elles sont insensibles a la présence
du systéme microscopique A.

ITII. Spin en interaction faible avec un thermostat

A. Le modéle

Comme premiere illustration des équations générales, nous nous proposons
d’obtenir explicitement 1'évolution de 1'état d'un moment magnétique (spin 1/2) en
interaction avec un bain thermique, tel qu’il a été introduit dans le paragraphe II D.
Les éléments de ce modele, qui correspond a la description d’une expérience de
précession libre en résonance magnétique, sont fixés de la facon suivante:

1) Les matrices de Pauli 0y = 1; 0,; 0+ = 1/2 (0, 4 7 0,) forment une base dans
I'espace de Liouville £, attaché au spin, il sera donc commode d’exprimer les quantités
qui-s’y rapportent au moyen de ces matrices.

2) L’hamiltonien du systéme d’intérét est celui d’un spin 1/2 dans un champ
magnétique statique de direction z et d'intensité wy/y % (y est le rapport gyromagné-
tique).

H, =5 0,0, (1)

3) L’hamiltonien du thermostat, qui n’est pas précisé microscopiquement, est Hg.

4) L’'interaction la plus générale possible s’écrit

V=0, @Vi+o.®@V;+0,0 V§. | (2)

L’hermiticité de 7 entraine
Ve =(Vp), V= (V. (3)

5) Nous imposons une propriété de symétrie géométrique naturelle au thermostat:
I'environnement du spin est isotrope autour de la direction privilégiée z que crée le
champ statique. Nous exprimons cette symétrie cylindrique en requérant que
I’équation de mouvement (I1.38) soit invariante sous les rotations autour de 1'axe z.
Plus précisément, si

UR —_ 6imaz/2
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est la représentation d’'une rotation d’angle « dans le plan (x; v), alors

05(t) = Ug 04(0) Uz?

obéit a la méme équation que p(f).
Le développement de I'opérateur densité sera noté

0t) = m() e, =02+, ) 4)
avec ’
mo= 5 Troult) = 5
mlt) = 5 Tro,ou)  my(t) = Tr o 04f). (5)

Dans cette base les composantes de 1’état ont une signification physique immédiate:
v h m,(t) est I'aimantation le long du champ statique (w, 7, (f) étant I'énergie moyenne)
tandis que y % m(f) donne 'aimantation transversale.

B. Les équations de mouvement

Nous allons maintenant spécialiser I’équation maitresse macrocanonique (a I’ap-
proximation de Born) a ce modele particulier. Pour ceci, il suffit d’utiliser le diction-

naire qui fait correspondre les symboles lus dans (I1.38) 4 ceux que nous venons de
définir, c’est-a-dire

1
Hy= —— w0

5 W0, Uy(t) = elreest, Vi=o; t=+,—2

On constate dans (I1.38) que les 9 fonctions de corrélation c¢;(#), 4,7 =+, —, 2
apparaissent respectivement associées aux termes qui comprennent les deux facteurs
o; et 0;. La condition d’invariance se manifeste alors de la fagon suivante: en notant
que

-1 _ tia =l e
Ugo, Up" =¢"%0a, Uro,Ug =o0,.

0% (t) satisfait encore (I1.38) si et seulement si les termes d’indices + +, — —, — 2, + 2,
z + et z — disparaissent. C’est dire que la symétrie cylindrique impose que seules
contribuent les fonctions ¢, _(#), c_,(f) et c,,(¢) et que les 6 autres sont identiquement
nulles.

Apres cette simplification, on applique 1'algébre des matrices de Pauli pour
effectuer les commutateurs, et on établit les équations de mouvement des composantes
de 1'état réduit au moyen de (5).

Tous calculs faits, on trouve:

dmy,

= = 0.

qui exprime la conservation de la trace.

Pl Jam - i@ + g) (6)
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ou
f(z) = 2 Re [e ™" (ci (@) +c_y(—7) )] (6a)
o(f) = Re fe—iw»f (c_(—7) —c, () dr (6b)
D i g m_(t) — fdrm (t — 1) h() (7)
ou '
Mr) =277 (c,,(v) + c,0(— 7)) +ep(m) + ¢y (= 7) (7a)

et I'équation complexe conjuguée de (7) pour m_(f).

L’influence du thermostat se manifeste par l'intermédiaire des trois fonctions
f, g et k, formées par certaines combinaisons des fonctions de corrélation. Pour faire
apparaitre explicitement la dépendance de la température, on écrira ces dernicres
sous forme des transformées de Fourier (11.40), et on utilisera (I1.42). Les expressions
(6a), (6b) et (7a) deviennent

+ 00

i) = / dw cos(w — w,) t @(w) (8a)
+ﬂ00 .
g) = | do ool L ) - (8b)
hit) — f da> e () (9)
ou -

plo) =2 L_ (o) (1 + ¢ 7 (10a)
p(@) = 5 9l) +2 L, (@ — o) (1+ e @) (10b)

comme conséquence de (I1.43) et (3):
plw) =0 et yplw)=0. (11)

Avant de procéder a I'examen de ces équations, faisons la remarque suivante: les
parties diagonale et non diagonale de I'état (dans la représentation qui diagonalise
I’hamiltonien libre) évoluent tout a fait indépendamment. Cette propriété, due a la
symétrie imposée, entraine celle de «conservation de la diagonalité» de 1'état au cours
du temps, a savoir, si pour ¢ = 0 [p,(0), H,] = 0 alors pour tout £ > 0, on a encore
lea(t), Hy] = 0.

Ainsi 'évolution de l'aimantation longitudinale n’est pas couplée a celle de
I'aimantation transversale.

La résolution de (6), que nous allons présenter maintenant en détail, servira
d’exemple a celle d’équations du méme type que nous rencontrerons par la suite
(cf. équation (7) et celles obtenues dans le paragraphe suivant pour l'oscillateur).
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C. Résolution

L’emploi de la transformation de Laplace a 'avantage de transformer, au moyen

du théoréme de la convolution, les équations intégrodifférentielles telles que (6) en
équations algébriques. On désignera par

o0

fls) = [ Fi A, s >0 (12)

la transformée de Laplace de f{#). (6) devient

s 7y (5) — m,(0) = — 1) 7m,(s) + (o) (13)
ot m,(0) est la condition initiale m, (¢ = 0). En résolvant (13) par rapport & m(s) on a:
(s) = G(s) §(s) + Gls) m, 0) (14
ol
Gs) = (15)
s+/(s)

L’inversion de (14) donne la solution

jGt—r 1) dt + G(t) m,(0) . (16)

Il s’agit maintenant de trouver la forme explicite de G(¢) qui est la transformée inverse

de G(s). Cette forme est fixée par la structure analytique de G(s) dans le plan complexe
s. Le point essentiel est que les deux propriétés générales (I1.42) et (I~I.43), combinées

dans (11), déterminent complétement la nature des singularités de G(s)®).
D’apres (15), (12) et (8a):

- % .
(G(s))~1s(1 + / M) (17a)
1
fdw‘P {s+z(w o - s—i(w—-wo)}' (£78)

De ces expressions, on conclut que é(s) est holomorphe dans tout le plan s = s; -+ 7 g
coupé par 'axe imaginaire. En effet, il suffit de remarquer que (17) n’a pas de zéros
pour s, = 0. Sur (17a), on voit que si s = 0 le premier facteur n’est pas nul. Le second
facteur est non nul pour s = s; réel non nul en vertu de (11). Pour s = s; + ¢ s,,
s; #+ 0 et s, + 0 sa partie imaginaire vaut

P(w)
— 28,8, / dw (@ o)t =T 25,59 (18)

%) @(w) est supposée dans ce qui suit suffisamment réguliére pour assurer la validité des diverses

opérations effectuédes, c’est & dire satisfait a la condition de Holder et est absolument intégrable
[23a].
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qui est également non nulle puisque l'intégrande est positif. Ainsi (17b) définit une

fonction holomorphe en dehors de l'axe imaginaire [23]. Sur celui-ci, é(s) a une
discontinuité qui peut étre évaluée a l'aide de la propriété limite:

lim "= D) Fimdw. (19)

e—>0 Jw’_—_{:’t{:‘ ’

D’autre part, le comportement asymptotique de é(s) est donné par

lim s G(s) = 1. (20)

§—>00

Ces considérations permettent 'application de la formule d’inversion complexe [18]"

Sg+ 100
Gl = 51— [e”G(s)ds, 50> 0. (21)

Afin de calculer cette intégrale par la méthode de Cauchy, il est convenable de ramener
pour un instant la ligne de discontinuité a une portion finie de 1’axe imaginaire. Pour
ceci, on introduit la suite de fonctions tronquées

p(o) o] <02
o(w) =
0 |ow| >0

ainsi que le G~Q(s) correspondant. On s’assure que (fQ(s) est holomorphe partout sauf
sur le segment

$;=0, |s] <2+ w,.

u-(S?+w,.,}

Envisageons les contours définis sur la figure. On vérifie que les contributions des
segments horizontaux et du grand cercle s’annulent lorsque R - co. En vertu du

théoreme de Cauchy:
So+ 100

= lim f=f
R—o0
L,

So— 100 Ly
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Finalement, en faisant {2 - co afin de recouvrer la fonction ¢(w) originale, on
constate qu’il suffit d’évaluer 'intégrale le long de la ligne de discontinuité s; = 0.
Si on fait usage de la propriété limite (19) sur l'expression (17b), on obtient pour
I'intégrale (21):

+ 00

GOy = [ & Bx)ax (22)

ou -

_ q(%)
Bl = Gipmmrr o (23
avec
q(x) = 5 (9 (@0 + %) + @ (0o — %)) (24a)
57 agl)

b = ff ol de (24b)

D. Discussion de la solution

L’évolution de l'aimantation longitudinale est maintenant explicitement donnée
par (16) et (22) en fonction de L__ (w) et de la température T. On se propose de
montrer qu’elle approche ’équilibre thermique dans la limite du temps infini.

Examinons auparavant quelques propriétés caractéristiques de G(f) et leurs
conséquences.

1) On remarquera tout d’abord que

B(x) = B(—x) >0. (25)
Donc

G(t) = ;2;— f B(x) cosx t dx (26)
0

est une fonction réelle paire du temps. Comme g(¢) est impaire, (16) montre que ,(?)
est symétrique sous l'inversion du temps.
2) On a de (26):
dG ()
dt

= 0.

t=0

La courbe de relaxation débute toujours avec une tangente horizontale, ce qui n’est
jamais le cas dans une relaxation purement exponentielle.

3) La propriété assymptotique de la transformée de Laplace lim s G (s) =G(0) [19],
combinée avec (20), donne e

.\
GO) = - f B(x) dx — 1. 27)

On a donc bien, sur (16), lim m,(¢) = m,(0) qui est la condition initiale arbitraire
donnée. =0

Notons que de (26) et (27) |G(f)| <1 a tout temps.



350 Christian Favre et Philippe A. Martin H. P. A.
4) De (25) et (27), B(x) est absolument intégrable, d’ou [20]:
lim G(¢) = 0. (28)

t—00

Par conséquent, la valeur de I’aimantation a 1'équilibre est indépendante de sa valeur
initiale. Il ne subsiste pas de mémoire de 1'état initial.

Montrons maintenant que m,(f) atteint effectivement une limite pour ¢ — ooc.
Il faut remarquer que la fonction g(f) posséde une limite qui, d’apres (8b) vaut

lim g(f) =n L_ (wg) (1 — e P, (29)

t—o00

Dans ce cas, comme conséquence du théoréme cité dans [21], on obtient 6)

lim m,(f) = lim g(f) / G(t) dt . (30)
0

f—00 =00

Cette derniere intégrale peut étre évaluée en utilisant [22]:
f Gt)dt= lim G(s) = . (31)

Combinant (29), (31) et (10), on voit qu’on trouve la valeur correcte de la magnéti-
sation a I'équilibre thermique

gﬁ"-’om _ e“ﬁ“’om

lim m,(f) = 1 ) . 32)
# 2 2

t—o00 2 gﬁmu/2 + g’ﬂwn/‘a

L’existence et la valeur de la limite sont donc complétement indépendantes de la
nature détaillée du thermostat et de l'interaction.

Par contre, I'approche est explicitement liée & un modele spécifique du bain par
I'intermédiaire de L__ (w), dont il faut connaitre la forme pour calculer G(f). Remar-
quons cependant que si L_  (w) est telle que B(x) est & fois dérivable, alors on peut
affirmer que [23]7)

Glt) = o (tik) A
Si B(x) est infiniment dérivable, la mémoire de la condition initiale disparait asymp-
totiquement comme une exponentielle.

Avant de conclure cette discussion, examinons rapidement 1’évolution de I’aiman-
tation transversale. Les équations qui régissent les éléments non diagonaux . (¢) et
m_(¢) sont tout-a-fait similaires A celles que nous venons de traiter a la différence
prés qu’elles n’ont pas de terme inhomogeéne. Le calcul peut étre mené de facon
compléetement paralléle au précédent, et tous les mémes arguments s’y appliquent.
On trouve:

m_(t) = D(t) m_(0) (33)

6) 11 faut encore que G(f) soit absolument intégrale, ce qui est vrai dés que @(w) est suffisam-
ment réguliére.
") Le §12 de la référence [23a] entraine que & > 1.
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avec
(f) = /1 PR — p(¥) 5 dx (34)
T (x~—w0+ ;’f(_wi dw) + 7% p2(x)

w(x) étant donnée par (10b).
D(t) jouit de propriétés semblables 4 celles de G(f), en particulier:

., lim D{t) = 0. . (35)

t—>»00

D(0) =1

Les résultats sont analogues pour m_(f) = (m_(¢))*. Ainsi, on voit que les termes non
diagonaux s’annulent pour ¢ - cc.

Ceci acheve de prouver que 1'état g, (f) du spin évolue vers la valeur canonique
d’équilibre ¢ #H4/Ty ¢=PHa j partir de tout état initial donné et pour la classe trés
générale de thermostats envisagée.

Si le bain et I'interaction n’avaient pas cette propriété de symétrie cylindrique,
on obtiendrait pour les composantes de 1'état un systéme d’équations intégrodifféren-
tielles linéaires couplées qui pourrait étre résolu en principe de la méme fagon.
L’existence et la valeur de 1'état d’équilibre dépendraient alors plus spécifiquement
des caractéristiques du thermostat.

E. L’équation de Bloch

Comme (22), (23) et (24) le montrent, les lois d’approche a 1'équilibre ne sont en
général pas exponentielles®) (p(x), ¢(x) n’étant pas constant, B(x) n’est pas une courbe
de Lorentz) et dépendent explicitement de la structure microscopique du bain, par
I'intermédiaire de ¢(w) et ¢(w). Cependant nous allons voir que dans la limite ou la
température du thermostat devient infiniment élevée, le systéeme tend vers I'équilibre
thermique exponentiellement, ce qui correspond a la solution des équations phéno-
ménologiques de Bloch, avec deux temps de relaxation. Pour une agitation thermique
maximum dans le bain, il est raisonable de prendre des durées de corrélation internes
du bain (temps pendant lequel les fonctions ¢;;(t) sont appréciablement non nulles)
extrémement courtes. Prenons pour commencer le cas idéalisé

¢;i(t) = ¢;;0(7) ' (36)

et la relation de symétrie (11.43) devient avec T - oo

1 —
Ljw) = Lj{w) = 2 Cii (37)

Dans ce cas, de (36) et (37) on a
qlx) =2¢_, >0 (38)

p(x) = 0 (la partie principale prise sur une fonction symétrique étant nulle) d’ou

= mzxt 2 A — p2c, 8
o f ¥+ (2c L) ax=e ) (39)

8) Ceci est confirmé par des calculs explicites et numériques [29].
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D’autre part, de (6b)
lim g(¢) = 0.

T—>00

Ala limite de la température infinie, 'aimantation longitudinale a le comportement?):

m,(t) = ¢ 1T m,(0) (40)
oll
1
Ty= : 41
1 2¢ N ( )

De méme on obtient pour les composantes transversales

my(t) = et g1l g, (0) (42)
ou
1
T, = i 0 (43)
Oou encore

m,(t) = e T (cosmy t m,(0) + sinew, ¢ m,(0))
m,(t) = & (— sinwy ¢ m,(0) + coswg t m,(0)) (44)

(40) et (44) sont les solutions de 1'équation phénoménologique de Bloch pour un
systéme magnétique dans un champ statique de direction 2z

am , My . My, m,
g My imocHy) —iogn =g g — ke
avec d’apres (41) et (43)
T, >~ T,. (45)

Les résultats obtenus dans le cas limite des températures infinies et durées de
corrélation nulles sont encore valables avec une trés bonne approximation pour les
hautes températures

ko,
BT < l (46)
et les durées de corrélation courtes
1
T, = e (47)

ou w,, est I'intervalle sur lequel L__ (w) peut étre considéré comme constant.

En effet on voit sur (22) que la contribution majeure a l'intégrale provient du
voisinage de x = 0, puisque p(x) et g(x) sont proportionelles au couplage, donc petites.
D’apres les définitions (23), (24), il suffit donc que ¢(w) varie peu au voisinage de w,
pour avoir approximativement le résultat (39). C'est le cas dés que L__(w) est elle
méme lentement variable pres de w,, et que la condition (46) est remplie. Pour I'ordre
de grandeur de 7, nous renvoyons a 1'appendice de la référence [24] ol une discussion
détaillée est faite sur une fonction du type de (22), (34).

L’inégalité T, > 1/2 T, est générale pour tout bain, décrivant 'interaction spin-
réseau, qui posséde la propriété de symétrie donnée.

¥) En introduisant directement (36) dans I’équation de mouvement (6), on peut vérifier que (40)
en est bien la solution.
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IV. Oscillateur en interaction faible avec un thermostat

A. L’équation maitresse

L’oscillateur harmonique amorti a fait I’'objet de si nombreux travaux que nous ne
voulons pas discuter ici tous les aspects de cet intéressant systéme. Nous nous
proposons de donner la généralisation non markovienne de 1’équation maitresse
obtenue généralement avec 'approximation de l'effacement répété des correlations.
Nous choisissons I’hamiltonien total de la forme suivante, ot le couplage entre les
deux systémes est linéaire:

H=wadta@ I+ [,QH, +a'@Vi+a®V;. (1)

Il est convenable de décrire I’état de I'oscillateur dans la représentation des états
cohérents, a I'aide de la fonction de quasi-probabilité introduite dans [13]:

0,4(2) Mfdzoc Pla, t) |o> <a]. (2)

Cette représentation doit son avantage au fait que 1'état y est entierement caractérisé
par une seule fonction (ou éventuellement distribution) réelle de deux variables
o = (oty; otg) €t du temps [25].

Il s’agit maintenant de transcrire 1'équation opératorielle (II.38) pour P(a, ?).
L’action des opérateurs af et a sur un état cohérent |a) est connue. De 13, on établit
facilement [26]19):

aolt) = [ @ [n Pl 1)] o> <a| = (o) o) 3
at o(t) =fd2cx [(oc* — 0—(;) e t)] |y <a| = (e(®) a)t (4)

et également .
g—iwuatarg(t) eimoai‘ar e /dzd P(OL eiw,,'r’ t) ‘0() <OC| . (5)

v

Il suffit d’appliquer ces régles de correspondance a (I1.38), afin de la transformer en
une équation portant uniquement sur P(«, #). Par exemple, le terme

Uyr) al o, (t —7) Ug'(v) a
qui apparait dans le premier commutateur de (I1.38) donne lieu pour P(«,f) a la
contribution suivante:

6-—13-'.0»1: [1 J ook — __0_ o — _a_ ok - oj_u] P(O(. e'iw,,z . ’L')

Oot Oo* Oo Ooc* ’ )

Transformant ainsi chaque terme de (I1.38) et collectant toutes les expressions regues,
on arrive a

t
0P(a, t : 0 0 0?
((;t N w, (()a* ok g oc) P(a, £) +/dt{[l(1:) Frr
0
2 .
() 0 — X(D) g — (D) 50X Pla ™", ¢ — 1)+ compl. coni.|  (6)

19) Nous considérons maintenant o« = o; +7 oty €t @* = o; — % oy comme variables indépendantes

23
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avec
Al) = ey (t) e = j Ly (w) e et doy (7a)
X4 B
plt) = (es—(t) — c_o(— 1)) &' = f Ly (o) (1 =)t do  (7b)
V)=o) et WD) = (enald) = cun(— 1)) (8)

) =c_(—8, cf()=c_(—1.

L’équation maitresse (6) est de type intégrodifférentiel partiel de second ordre.
Pour discuter I'existence et 'approche de 'équilibre, il faudrait la résoudre en toute
généralité, ce qui est un probléme difficile. Il sera plus simple, et aussi plus illustratif,
d’étudier le comportement de certaines valeurs moyennes, comme celle de 1'énergie de
l'oscillateur, de sa position ou de son impulsion.

Auparavant, on peut faire sur (6) quelques remarques d’ordre général.

1) On constate qu’il apparait dans (6) essentiellement deux sortes de termes:
a) les termes qui sont associés a c__(f) (ou a c,_(f)) appelés résonants. Ils sont

invariants sous la transformation de phase o« — ¢'? «.

b) les termes qui sont associés a ¢, (f) (ou a c__(f)) généralement appelés anti-
résonants [27]. Ils ne sont pas invariants sous cette transformation.

Nous imposons dés maintenant une restriction supplémentaire a l'interaction entre

les deux systémes: nous la supposerons indépendante de la phase de l'oscillateur, de

fagon qu’elle ne donne pas de contribution non résonante. En conséquence, les termes

non invariants (8) doivent étre nuls, c’est-a-dire

c, () =c__(t)=0. (9)

Dans ce cas, (6) conserve la diagonalité de 1'état, comme on l'avait pour le spin.
En effet, la commutation de p,(f) avec 'hamiltonien libre équivaut a dire que la
quasi-probabilité ne dépend que du module » = |«| de la variable a. Si (6) est in-
variante sous la transformation « = ¢!? «, cette propriété est préservée au cours du
temps. Ce fait permet de découpler les équations de mouvement qui régissent les
parties diagonale et non diagonale de I'état. Pour la partie diagonale, on peut alors
écrire une équation plus simple en passant a la variable » = |« /|:

0P, 1)
ot

t
1 0 ([ 0 10
~fdr (2 Rea) 5 o (7 ) + 2 Reu(@) + -7 Pr,t =) (10)
0
2) Si P(a, t) atteint une limite P(x, oo) pour ¢ - oo, cette limite est alors néces-
sairement I’état d’équilibre thermique. En effet, si on fait # - oo dans (6) et qu'on
applique le théoréme [21] on trouve que P(«, co) doit satisfaire a:

[22%?;1*» + (Ti“+£?“*) +i1u2(0(l—m—£;a*)] P, 00) =0 (11)
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ol les constantes réelles A, u; et u, s’obtiennent facilement de (7a) et (7b):

b= [ Readt =L, () e
0

m=/j%Mﬂﬂ*ﬂLh@&@”fMﬂ

-0

L, (@) (1—e?) a
e = f[my i) df = []E (w)a()wafﬂ ) do (12)

— 00

(11) admet une unique solution non nulle qui est, aprés normalisation:

_ 1 — o a*/nT
P(x, c0) = o ¢ (13)
ol

A E (14)

(13) est la représentation de 1’état canonique de l'oscillateur.

3) Sila température est trés élevée (A wo/k T <€ 1) et que les temps de corrélation
internes du thermostat sont extrémement courts, la situation peut étre approximee
par le cas limite olt on pose les deux fonctions A(¢) et u(f) proportionelles a d(¢):

M) =2280)  ull) =2 1 8

A et u, sont déterminés par (12). On voit alors que (6) se réduit a I'équation marko-
vienne habituelle de Fokker-Plank pour la quasi-probabilité P(e, ) dont la solution
explicite est donnée dans [14].

B. L’approche de I équilibre

Nous voulons maintenant montrer I'approche de ’équilibre sur la valeur moyenne
de I'énergie w, N(?)

N(t) = Tratao,l) fdgocococ* P(a, 2) (15)
an f war 22D gz

Aprés avoir substitué sous l'intégrale la valeur donnée par (6) pour I'évolution de la
quasi-probabilité, on peut facilement se débarrasser des dérivées partlelles 0/0w et

0/0a* par intégration par partie. :
Les parties intégrées sont nulles, car la conservation de la trace

Trp,(8) j d?x Pla, t) =1 (16)

ainsi que l'existence de quantités telles que N(f) et des moments d’ordre supérieur
assure que P(«, 7) tend suffisamment rapidement vers zéro pour o - o0. On trouve
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alors que N(#) obéit a

L —ff (t — 1) 41 + g() (17)
ot |
F) =2 Re u(t) = 2 fmu_(w) (1— ) cos(w —wp) tdw  (18a)
t o + o0
gy = [2Reandr—2 [ L, (@)e# 07 lgy (18

Ces équations sont tout-a-fait similaires a celles qui régissent l’aimantation
longitudinale (équations IIL.6, III.8, 1II.10a). Comme seule différence, le facteur
thermique de Fermi est remplacé par celui de Bose dans (18a)11).

Ainsi toute la discussion du paragraphe précédent peut étre intégralement reprise
ici, et les conclusions valables pour m,(f) le sont pour N(f). La solution s’écrit sous la
forme (II1.16) ot les fonctions sont convenablement définies dans (II1.24) conformé-
ment a (18a) et (18b). En particulier

lim N(t) = n, =

{—00

1
ef@ 1

pour toute condition initiale.
Si nous calculons maintenant

A@) = Trao,lt) — f « Pla, 1) d% (19)

nous obtenons I'évolution de

(@t —a) et at + a)

) 1

= vz g= vz (

et une information sur le mouvement de la partie non diagonale de I’état.
En appliquant les mémes considérations que pour N(¢), on établit:

DO iwy A —flz('c) At —1)de (20)
+ o0 ’
hit) = et u(t) — f do L, (o) (1 — ¢ Pe) erot (21)

Ici a nouveau I'équation et sa solution sont semblables a celles de l'aimantation
transversale (équations I111.7, IT1.9, II1.10b). On a pour tout état initial:

Hm A(f) = 0.

t—>00
Dans 'appendice B, nous particularisons le bain a celui d’'un ensemble d’oscilla-

teurs libres, linéairement couplés avec l'oscillateur d’intérét. On peut alors comparer

11) T.es conséquences que cette différence entraine pour la résolution de (17) sont discutées dans
I'appendice B.
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les quantités obtenues ici 4 'approximation de Born aux résultats du calcul rigoureux
qui est possible avec ce modele. On constate que pour A(f) les expressions trouvées
dans les deux cas sont identiques. Ceci n’est plus vrai pour les moments d’ordre
supérieur. Ce fait ne constitue en aucune maniére une justification de I'approximation
de Born, mais montre qu’il existe au moins des cas ot1, pour certaines grandeurs, les
résultats sont identiques, ou trés proches de la valeur exacte.

Conclusion

Nous nous sommes principalement attachés, dans cette présentation, a montrer
comment la théorie générale de la relaxation, reformulée dans le §1I, peut conduire
a des résultats explicites. En tirant parti de ses caractéristiques essentielles, nous
avons pu résoudre I’équation maitresse dans des exemples simples, mais qui possédent
un haut degré de généralité, sans recourir 4 toute les approximations habituelles
(§I1I et IV). Deux voies de recherche semblent s’ouvrir naturellement.

D’une part, 'exploration de I'équation maitresse serait poursuivie dans le cadre
de I'espace de Liouville, ou 'existence, 'approche de 1’équilibre ainsi que la nature
des interactions qui y conduisent pourraient étre discutées indépendamment des
modeles spécifiques. On ticherait en particulier de s’affranchir de I'approximation
de Born, ou au moins, d’en délimiter nettement le domaine de validité.

D’autre part, I'application a des situations physiques concrétes peut aisément
‘étre donnée, vu la large classe d’interactions et de thermostats envisagée: il suffit de
les préciser de facon réaliste et de calculer les fonctions de corrélation. On obtiendrait
alors l'ordre de grandeur des effets non markoviens, qui doivent étre d’autant plus
manifestes que les temps de relaxation sont longs et la température du bain est basse.
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Appendice A

Rappelons ici la définition de 'espace de Liouville et quelques unes de ses pro-
priétés. Nous nous référons a [10b] pour une exposition plus détaillée.

L’espace de Liouville £ attaché & un espace de Hilbert h est formé de I'ensemble
des opérateurs X bornés sur h qui satisfont a:

Tr X1 X < oo. (A.1)
La formule
(X4, Xs) = Tr X{ Xy (A.2)

définit sur £ un produit scalaire et une norme positive définie | X| = l/ﬁ)_(TX_
Par rapport a ce produit scalaire, £ a la structure d’un espace hilbertien complexe.
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Un sous-ensemble important de  est celui des opérateurs a trace finie (c’est-a-dire
tels que T7(X X112 < o0), dont les états forment la partie convexe. Ce sous-ensemble
est dense dans L.

De la définition (4), on peut vérifier I'unitarité et la continuité de ’application U, .
SiI’hamiltonien H est borné sur h, 'opérateur de Liouville H 'est aussi sur L, et on a

| Hlg<2|H|,. (A.3)

Dans ce cas, I'application U, est uniformément continue et peut étre écrite sous la
forme [10Db, 28]

oo n

U= T (i =it (A.4)
n=0 :
La représentation (II.19) du résolvant G(s) comme transformée de Laplace de U, est
alors valable au moins pour |s| > |H| c [28a].

Si H, est borné sur L, les mémes considérations s’appliquent a U,, et Gy(s).

Les identités (I1.20) et (I1.22) sont valables partout ol les résolvants G(s) et Gy(s)
existent, et (I1.23) s’obtient comme conséquence de [28b].

Examinons maintenant la nature de l'opérateur de réduction R. Tout d’abord
remarquons que l'opération de trace partielle jouit des propriétés suivantes:

1) Sip est un état dans L = £, ® Lp, alors Jp = g, est un état dans C,.

2) Soient X,, Xy, X respectivement dans L,, Lz, £ alors on a formellement

F(X, ® Xp) = X, T X, (A.5)
T(X, ® Xp) X) = X, T(I, ® X,) X)
F(X(X, ® Xp)) = (L, ® Xp) X) X,. (A.6)

En général, J ne peut étre étendu a L entier comme le montre (A.5): J est seulement
défini sur le sous-ensemble d’éléments de £ dont la composante dans Ly est a trace
finie.

L’amplification 4 applique L, sur le sous-ensemble de £ de la forme X, ® pg,
X, € L4, op fixe dans L. Ainsi R = 4 J est défini au plus sur un domaine dense dans
L et n’est pas borné.

En fait, R n’est borné sur £ que si la dimension Ny de 'espace de Hilbert du
systeme B est finie, et on a alors

[RIg=VNsllesl- (A7)

Si c’est le cas, les opérateurs de Liouville réduits R H et R 3}, sont également bornés
(supposant toujours H et H, bornés), et les mémes considérations que ci-dessus
s’appliquent aux résolvants, G(s) et G,(s) et A 'équation (I1.30).

Ce cas est réalisé en particulier si les systémes A et B sont de dimension finie,
B pouvant consister en un trés grand nombre de systémes finis. Si ces conditions ne
sont pas remplies, les opérations de ce paragraphe doivent étre considérées comme
formelles, et leur validité vérifiée dans chaque exemple particulier.

Ajoutons la remarque suivante: Si N est la dimension de hg, on vérifie facilement
que R devient un projecteur si et seulement si on amplifie avec 1’état de dégénerescence



Vol. 41,1968  Dynamique quantique des systémes amortis «non markoviens» 359

maximum dans Lg, soit Iz/Ny. La borne de R est alors égale a 1 (comme on peut
aussi le voir directement sur (A.7)). Dans ces circonstances trés particulieres,

IRUx|c<|x|] =xdansC (A.8)

montre que l'évolution réduite R U, est un opérateur de contraction sur L. Cette
situation serait réalisée dans le cas limite ol le systéme B serait un thermostat a
température infinie.

Appendice B

Dans le cas de l'oscillateur, on a de (IV.18a) p(w) = 2 L, _(w) (1 — ¢#*) au lieu
de (IIT.10a). Alors que (II1.10a) était positive pour toute valeur de w, ici, a cause de la
modification de signe, on a seulement

p(w) =0 )
£ 0

VANV

0
0 (B.1)

Le fait que é(s) n’a pas de poles pour s, + 0 était basé sur la positivité de ¢(w).
Elle assure que I'intégrale qui apparait dans (III.17a) soit positive pour s réel, et que
sa partie imaginaire soit non nulle pour s; # 0, s, += 0. On a encore les mémes résultats

ici si on suppose
L, (w)—L_,(w)>0 pour w=>0. (B.2)

Dans ce cas, avec (IV.18a) et (I1.42):
Plw) + p(—w) = (1L =) (L, (o) = L_(0)) >0 @©=0 (B.3)

Ceci suffit a rendre l'intégrale dans (ITI.17a) positive. En effet, en scindant I'intervalle
d’'intégration en deux parties, on a

+ 00 o0

@(w) . @) —w)
/ (0 — wg) 2+ s2 da)—-./ (w—w0)2+32 dw +f (w+co )2+ s? dw
>_/(P(w) [(w—w0)2+52 - (w+w0)2+82] da»
0
par (B.3).

Avec (B.1), cette derniére intégrale est manifestement positive. Par un raisonne-
ment analogue, on montre que la partie imaginaire (II1.18) est non nulle.

La condition (B.2) est vérifiée en particulier si I'opérateur d’interaction V3 est
hermitien, puisqu’alors L, _(w) = L_ (w). Elle est également remplie dans le cas du
couplage linéaire discuté ci-dessous.

Ensemble d’oscillateurs harmoniques en couplage linéaire
Prenons un modele de bain formé d’oscillateurs indépendants

o0

Hy= Do, bl b, V=)"ya ®b+h.c. (B.4)
i=1

i=1
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Les fonctions de corrélation sont aisément calculées a partir de leur définition. En
posant ¥(w) dw = 2 y,; on obtient aprés passage a la limite thermodynamique:

o< o< o+do

c+_(t)=/|y(w)|2 L do (B.5)
; 1—e
e-_{t) = c.alt) = 0
D’ou
1
p(w) |2 g w=>=0
L, (o) Jirel s - (B.6)
l() w <0
et

L (w)=e°L,_(—w).

De (IV.20), (IV.21) et (1I1.34), on trouve

Al) = A©) [ e ] — dx.
¢ ¥—wg + f’%&flj dw) + 72 |y(x) |?

0

C’est exactement la solution qu’on aurait obtenue en résolvant rigoureusement
[11a] les équations de Heisenberg du mouvement & partir de (B.4). Le fait que
I'approximation de Born donne pour 4 (f) la méme valeur que le calcul rigoureux peut
se comprendre de la fagon suivante: si on avait retenu des termes d’ordre supérieur
dans l'interaction, on aurait aussi des dérivées d’ordre supérieur en 0/0x et 0/0o*
dans (IV.6). Dans le cas du couplage (B.4), les dérivées supérieures ne donnent pas de
contribution au premier moment (3 cause de I'intégration par partie dans le calcul de

0A(t)[0t). Par contre, elles se manifesteraient dans le calcul des moments d’ordre
supérieur.
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