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Dynamique quantique des systèmes amortis «non markoviens»

par Christian Favre et Philippe A. Martin
Institut de Physique Théorique de l'Université de Genève

(14 XII 67)

A bstract. A quantum dynamical description of a small system interacting with a thermal bath
is given. The Liouville space formalism allows us to derive a 'Macrocanonical Master Equation'
(i. e. an equation describing the evolution of the reduced state of the small system [9, 10]) within
a precisely formulated mathematical frame. The weak coupling assumption is taken into account by
applying the Born approximation. The integrodifferential equation obtained in this way is solved
for the cases where the small system is a spin or a harmonic oscillator interacting with a thermal
bath. The solution is valid for a very general class of baths. For these models, the thermodynamic
limit taken over the bath suffices to ensure an approach towards thermal equilibrium, and the use
of stochastic assumptions is avoided. The approach to equilibrium may be studied in terms of the
microscopic structure of the bath. In general it is not an exponential one. The Boltzmann thermal
equilibrium is reached for every initial state. In the limit of high temperature and short internal
correlation times for the bath, the given macrocanonical master equation reduces to the phenome-
nological Bloch equation (with two relaxation times Tx ^= T2) for the spin, and to the Fokker-
Planck equation for the harmonic oscillator.

I. Introduction
Le problème fondamental de la mécanique statistique des systèmes hors d'équilibre

est de concilier une équation irréversible du type de Boltzmann, aux équations
élémentaires de la mécanique classique ou quantique, réversibles. L'histoire de ce

problème est déjà fort longue et un très bon survol des différentes approches utilisées

pour le résoudre peut être trouvé dans un article de Yvon [1]. Cet auteur remarque
que la méthode correspondant au traitement macrocanonique semble avoir été sous
estimée et que de nombreux résultats intéressants peuvent en être extraits. Cette ligne
sera suivie dans ce travail. Elle s'applique en particulier chaque fois que l'approche à

l'équilibre d'une quantité microscopique a un sens. C'est le cas lorsque cette quantité
microscopique peut être considérée comme représentative de l'état moyen d'un
ensemble de systèmes indépendants. On rencontre cette situation lorsqu'on s'intéresse
à l'effet (macroscopique) produit par un grand nombre de tels systèmes indépendants
« démocratiquement » en interaction avec un thermostat. Bien qu'individuellement
aucun élément ne montre un comportement irréversible, l'état représentatif de

l'ensemble peut cependant atteindre un équilibre. Cette voie a été développée pour
traiter les phénomènes de la résonance magnétique. Une assemblée de spins indépendants

couplés à un thermostat montre avec éclat la tendance du système à atteindre
l'équilibre thermique. Ce schéma est également commode pour l'étude de la relaxation
d'un mode de champ électromagnétique dans une cavité. Son utilité a été mise en
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évidence dans la théorie quantique du laser. Ces situations ne peuvent être décrites à

l'aide de l'équation maîtresse de Pauli qui ne gouverne que les éléments diagonaux de

la matrice densité. Les spécialistes de ces questions ont donc été conduits à faire
directement la théorie de leurs expériences et leur but a été avant tout pragmatique.
Les points de vues développés dans ce domaine vont être brièvement rappelés ci-
dessous.

Une méthode employée pour traiter le bain thermique consiste à le décrire par un
potentiel extérieur aléatoire agissant sur le système d'intérêt. L'irréversibilité ainsi
que la température sont introduites par une hypothèse ad hoc sur cette variable
aléatoire, par exemple l'existence d'un temps de corrélation fini. Ce schéma a été
utilisé dans les travaux de pionniers de B.P.P. [2] puis élaboré par Redfield [3] et
Primas [4]. Une présentation très simple de ce point de vue est donnée par Stenholm
et ter Haar [5]. Cette approche a pour avantage de ne pas introduire les variables
internes du bain. Bien que la compréhension intuitive du phénomène soit assez
satisfaisante, une telle méthode offre conceptuellement de sérieux inconvénients, car
le traitement ne correspond pas aux principes de base de la mécanique statistique.
En effet, dans ce cadre on se proposerait d'obtenir des équations macroscopiques à

partir de:
I les lois de la mécanique qui régissent les particules formant le système,
II des hypothèses probabilistes qui traduisent notre manque d'information sur le

système.
La description mécanique et les considérations statistiques devraient donc être
clairement séparées. Ceci n'est évidemment pas le cas pour la méthode du potentiel
aléatoire.

Pour pallier cet inconvénient on considère un système physique isolé, obéissant
donc à l'équation de Schrödinger, qu'on divise en deux sous-systèmes: le système
d'intérêt A et le reste, considéré comme un bain thermique B. Conformément aux
principes de base de la mécanique quantique, la quantité contenant l'information
nécessaire au calcul des valeurs moyennes de toutes les observables du sous-système A
est l'état réduit de A [6], Il s'obtient par élimination des variables du bain au moyen
de l'opération de trace partielle (ou opération de réduction) sur l'opérateur densité du
système total g(t) :

qa(1) TrB Q(t).

Le problème se ramène alors à trouver une équation d'évolution purement mécanique
pour QA(t) où le thermostat n'apparaît que par l'intermédiaire de ses valeurs moyennes
internes. De plus, la connaissance de l'état du bain n'est requise qu'à l'instant initial.
La discussion de l'approche à l'équilibre peut se faire alors en prenant une limite
thermodynamique sur le bain.

A notre connaissance Bloch et Wangness [7] ont été les premiers à développer ce

point de vue. Cependant ces auteurs introduisent une hypothèse de nature statistique
supplémentaire: l'effacement des corrélations entre les deux systèmes, répété après
chaque intervalle de temps At, si bien que gA(t) n'est plus régi par des lois strictement
mécaniques. D'autres auteurs [8] introduisent diverses formulations de ces hypothèses
de perte de mémoire. Le système est ainsi rendu «markovien» (cf. IIB). C'est à

Argyres et Kelley [9a] qu'il faut attribuer le mérite d'avoir obtenu sur une base
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purement mécanique, une équation close pour çA(t) qui contient un terme de mémoire.
Sa dérivation suit une ligne parallèle à celle qui conduit à l'équation maîtresse

généralisée [10] et nous l'appellerons équation maîtresse macrocanonique (équation
(11.31)). En fait, l'équation d'évolution de l'état réduit qA(t) est donnée ici en toute
généralité quels que soient les deux systèmes A et B. Cette terminologie est réservée

au cas où le système B est un thermostat. Fano [9b] use d'une technique similaire
dans sa théorie de la relaxation.

Il faut encore remarquer que dans tous les traitements cités, l'approche à l'équilibre
n'est pas étudiée, mais seule la solution stationnaire est calculée. Le problème de

savoir si cet état est effectivement atteint pour n'importe quelle condition initiale du

système d'intérêt n'est pas abordé.
On se propose de montrer ici que pour des systèmes simples tels l'oscillateur

harmonique et le spin 1/2 (ou système à deux niveaux), dont les exemples d'application
sont nombreux, les équations de mouvement peuvent être résolues sur cette base

purement mécanique. Ainsi, le comportement du système en dehors de l'équilibre et
son approche peuvent être discutés pour n'importe quelle condition initiale. Ces

évolutions ne sont généralement pas de nature exponentielle. Il est néanmoins clair

que pour obtenir une description explicite, il est nécessaire de faire une approximation
d'interaction faible. En effet, à notre connaissance un seul modèle est actuellement
rigoureusement soluble: c'est celui d'un ensemble d'oscillateurs harmoniques en

couplage linéaire [11]. Le calcul de perturbation ordinaire se montre tout à fait
inadéquat dans les problèmes d'approche à l'équilibre. Il faut donc recourir à d'autres
approximations, et celle qui sera faite ici est du type de celle de Born.

Dans le second paragraphe, le formalisme de l'espace de Liouville est introduit afin
de situer la dérivation de l'équation maîtresse macrocanonique dans un cadre
mathématique précis. Ainsi, des conditions de validité des opérations effectuées peuvent
être données (Appendice A). Les conditions qui restreignent le second système à un
thermostat sont introduites et l'approximation de Born précisée. De plus, cette
formulation permet de montrer très simplement et en toute généralité que l'hypothèse
de chaos moléculaire répété (ou effacement répété des corrélations) conduit à la

propriété de semi-groupe pour l'évolution du système réduit.
En application, le troisième paragraphe est consacré à la description d'une

expérience de précession libre d'un spin 1/2, ou à la relaxation d'un système à deux
niveaux en interaction avec un environnement donné. Les équations intégrodifféren-
tielles obtenues pour les composantes de la matrice densité sont rigoureusement
résolues et l'approche à l'équilibre discutée. Dans la limite des températures élevées,

l'équation phénoménologique de Bloch [12] correspondant à notre cas est retrouvée,
ce qui concorde bien avec son domaine de validité.

Finalement, dans le dernier paragraphe, l'oscillateur harmonique en interaction
avec un thermostat est traité dans la représentation des états cohérents [13]. L'équation
de mouvement de la quasiprobabilité P est donnée. Elle se réduit à l'équation de

Fokker-Planck habituelle [14] dans le cas où les temps de corrélation du bain sont
infiniment courts. Les valeurs moyennes de l'énergie et des opérateurs de position et

d'impulsion sont discutées. On termine (Appendice B) par une brève comparaison de

ces quantités avec les solutions exactes obtenues dans le cas particulier du couplage
linéaire.
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II. L'équation maîtresse macrocanonique

A. L'espace de Liouville et l'opérateur de réduction

Considérons deux systèmes A et B, décrits respectivement dans les espaces de

Hilbert hA et hB, dont les hamiltoniens sont HA et HB.
Le système composé, décrit dans l'espace produit hA ® hB, évolue avec la loi

unitaire de Schrödinger Ut e~'Ht, où H est l'hamiltonien total:
v

H HA®IB+IA®HB+V H0+V. (1)

On se propose de trouver la loi d'évolution de l'état réduit QA(t):

&A(t) TrBUt9(0)U;1. (2)

La connaissance de l'état réduit gA(t) à tout temps suffit à décrire l'évolution de

toutes les observables relatives au système A [6]. Une caractéristique essentielle de

cette évolution est qu'elle n'est plus unitaire, et peut transformer un état pur en un
mélange. U est donc approprié de choisir comme ensemble de base non pas les

éléments de l'espace de Hilbert, qui ne décriraient que des états purs, mais l'ensemble
des opérateurs densité eux-mêmes. U faut remarquer que cet ensemble, caractérisé par

q q1; e>°> Trg=l (3)

n'est pas linéaire, mais jouit seulement de la propriété de convexité. Afin de donner
un sens précis aux opérations qu'on effectue sur les états, il convient de considérer une
structure un peu plus large que celle qui est définie par (3). Ceci est réalisé par
l'introduction de l'espace de Liouville £, dont les éléments sont les opérateurs de type
Hilbert-Schmidt agissant sur h. L'espace de Liouville possède lui-même la structure
d'un espace de Hilbert, si bien qu'on est maintenant capable de représenter et de

discuter les diverses opérations qu'on effectue sur les états dans le cadre de la théorie
des transformations linéaires dans un espace de Hilbert. C'est son principal intérêt,
et la raison de son emploi [9b, 10].

Soient Ca et CB les espaces de Liouville attachés respectivement à hA et hB.
L'espace de Liouville £ du système composé est alors donné par le produit tensoriel
habituel

£ CA ® CB ¦

Introduisons maintenant les principaux opérateurs dans l'espace de Liouville £.
Tout d'abord, l'opérateur d'évolution:

%Q=uto u;1 (4)

et le liouvillien proprement dit :

U e [H, q] [H0, q] + [v, e] CU0+V)Q. (5)

%lt est unitaire sur £ et admet ?/ comme générateur infinitésimal. Nous posons des

définitions analogues pour les systèmes individuels A et B.
L'opération de réduction définit également un opérateur linéaire dans £.

Considérons tout d'abord l'opération de trace partielle, notée par V:

Ve~TrBg=oA. (6)
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J conserve les propriétés (3) caractéristiques des états, fj applique donc les états de £
sur ceux de £4.

Afin de construire un opérateur agissant dans l'espace de Liouville £ du système
composé, il est commode d'envisager une application A, appelée amplification, de £4
dans £ par

A QA QA ® QB (7)

où qb est un état fixé qui est supposé commuter avec l'hamiltonien libre du système B :

[Hb,qb] 0.

A cette restriction près, qb est choisi pour l'instant arbitrairement dans £B.
L'opérateur de réduction R que nous voulons considérer est alors défini par

rl AV. (8)

R jouit des deux propriétés remarquables suivantes: premièrement, R est idempotent

n2 n. (9)

On le vérifie en notant que 3A JA, 3A étant l'opérateur unité dans £4L). On a aussi

¦RA A, UTî=U. (10)

Deuxièmement, R commute avec le liouvilhen libre. On a précisément :

R 7/0 #0 R /1 7/^ J (H)

c'est une simple conséquence des définitions et des propriétés de la trace partielle
(cf. Appendice A6).

Avec ces notations, l'état réduit (2) s'écrit

QA(t) v%m (i2)

ou encore, dans l'espace de Liouville £ du système composé,

atW®e*=Re(*) Htye(o). (i3)

Cette expression montre que l'évolution du système A est gouvernée par RK,,
appelé opérateur d'évolution réduit. Sa connaissance permet de donner les lois de

mouvement de toutes les quantités relatives au système A. En général R ïlt ne jouit
plus des propriétés de groupe et d'unitarité. C'est une application dynamique qui
conserve l'hermiticité, la positivité et la normalisation des états, mais qui est de
caractère beaucoup plus général que celle de Schrödinger.

La signification de R est la suivante: supposons que les systèmes soient sans
corrélations initiales

e(o) qa®qb
et qu'on choisisse précisément de faire l'amplification (7) avec qb, l'état initial du
système B. Alors q(0) est invariant sous R:

Re(0) e(0). (14)

x) Il faut toutefois remarquer que R n'est en général pas un projecteur (cf. appendice A).
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La quantité (3 — Ti) Q(t) q(t) — qA(t) ® qb, qui est nulle à t 0, est donc une
mesure des corrélations introduites entre les deux systèmes par leur interaction au
cours de l'évolution.

B. L'effacement répété des corrélations

Avant de procéder à la dérivation de l'équation exacte à laquelle obéit R %lt, nous
voulons montrer que l'effacement répété des corrélations entre les systèmes conduit à

attribuer à l'évolution réduite le caractère de semi-groupe.
Supposons qu'après un temps At les corrélations entre les deux systèmes se sont

pratiquement complètement dissipées. L'état du système composé q(At) peut alors
être approximé par l'expression décorrelée QA(At) ® QB(0) où le système B est rétabli
dans son état initial qb(0). Supposons de plus que l'on puisse répéter cette approximation

après chaque nouvel intervalle de temps At. On se convainc que l'état du
système composé est donné après un temps x n At par [15] :

Q(n At) Qt QA(n At) ® qb(0) UUAt KUAtTlUAt QA(0) ® qb(0)

(nUAt)n QA(0) ® qb{0)

l'amplification étant effectuée à chaque fois avec l'état QB(0). Pour l'état réduit, on
obtient immédiatement

QA(nAt) V(nUAt)nAQA(0) (UUAtA)nQA(0). (15)

Si l'échelle d'observation de la variation du phénomène dans le temps est beaucoup
plus grande que le temps d'effacement At, on peut traiter x n At comme un
paramètre continu. Après cette opération de lissage dans le temps, l'évolution du système
réduit est décrite par ÇJ XlAtA)xlAt qui est manifestement un semi-groupe du
paramètre t. Le générateur de ce semi groupe est

K ßllAtA-3
At

et les équations de mouvement de l'état réduit forment le système d'équations
différentielles linéaire suivant :

*£t KßA(r). (16)

On dit dans ce cas que le comportement du phénomène observé est markovien.
Ceci doit être compris dans le sens des équations (16) qui montrent que l'état au

temps t + dx est complètement déterminé par sa valeur à l'instant antérieur x2).
Une caractéristique importante de l'évolution décrite avec cette approximation est

que le propagateur qui gouverne l'état du temps initial xx au temps final t2 ne dépend

que de la différence t2 — tx. Ceci signifie que l'évolution du phénomène, à l'échelle
macroscopique de temps x (macroscopique par rapport à At) apparaît comme homogène.

L'usage du terme markovien par les physiciens ne coïncide pas avec la définition adoptée par
les mathématiciens. En fait, la connaissance de la forme de l'équation d'évolution pour l'état
ne permet pas de décider si le processus est markovien au sens de la théorie des probabilités [16].
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C. L'équation maitresse macrocanonique

Nous voulons maintenant établir l'équation exacte à laquelle satisfait l'opérateur
d'évolution réduit RIXAt valable pour toute valeur du temps microscopique t, suivant
la méthode de projection utilisée dans [10].

Nous partons de l'équation de Liouville qui régit l'évolution du système total

i^ UUt. (17)

En multipliant cette expression à gauche par R, et utilisant (5) et (11), on obtient

Comme en général R ne commute pas avec l'interaction TS, (17) et (18) forment un
système de deux équations différentielles couplées pour les quantités 1it et R %lt ¦

Afin d'obtenir une équation close pour la quantité réduite R \lt, on se propose de
résoudre ce système par la méthode de la transformation de Laplace.

Notre premier but sera d'établir entre Xlt et R %lt une relation intégrale équivalente
à (18). Pour ceci, introduisons les deux résolvants

G(s)^j e-st%dt=(s + iU)-1
0

oo

G0(s) f e-st Uot dt=(s + i %rx. (19)
jo

Les conditions d'existence de ces formules et la validité des opérations qui suivent
sont discutées dans l'appendice A. Ces résolvants vérifient l'identité fondamentale
suivante :

G(s) - G0(s) - i G(s) 19 G0(s) - i G0(s) Ï3 G(s). (20)

En multipliant cette expression à gauche par

n^j-n (2i)
on obtient

G(s) R G(s) - i G0(s) R 13 G(s) + G0(s) R. (22)

On revient à la variable t en prenant la transformée de Laplace inverse de (22) et en
appliquant le théorème de la convolution :

t

%=TlUt~ifU0TnVUt.tdx + Umn- (23)
0

Cette équation intégrale, qui lie l'évolution unitaire %lt à l'évolution réduite R %lt,

prend une forme plus claire si on l'applique sur un état sans corrélations initiales.
Avec (14), on trouve

Q(t) QA(t) ®ÔB- if U0TnX9e(t~r) dx. (24)
0
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On reconnaît que la relation entre l'état corrélé par l'interaction et l'état sans
corrélations se présente, sous cette forme, de façon analogue à une relation intégrale de
diffusion. Le terme intégral décrit le développement temporel des corrélations. Sa

solution par itérations successives fournit pour elles une série en puissances de

l'interaction.
Notre seconde tâche est de résoudre (23) de façon à exprimer TJLt entièrement par

l'évolution réduite. Ceci peut se faire au moyen de nouveaux résolvants définis à partir
des liouvilliens réduits :

G(s) f e~st e-'KUt dt= (s + iJl W
o

G0(s) / e~st e-iWH.* dt=(s + irl %)-' ¦

o

(25)

On remarque qu'avec (9), (11) et (21)

RG0(s) RG0(s) (26)

si bien que (22) peut se mettre sous la forme

P + * G0(s) U T9) G(s) R G(s) + G0(s) R. (27)

De l'identité (20) écrite cette fois pour G(s) et G0(s), on tire

P - i G(s) R V) p + i G0(s) nV) 3. (28)

Combinant (27) et (28), on reçoit

G(s) R G(s) - i G(s) nT91i G(s) + G(s) R (29)

ou encore
j _ _

%= n% ~ if e-rtV* nV7lUt-Tdx A- e-WW H. (30)

0

Cette expression est la solution explicite de (23).
Nous sommes maintenant en mesure d'écrire l'équation de mouvement générale

désirée pour l'état réduit QA(t). Il suffit de substituer (30) dans le dernier terme de (18).
On a alors l'équation qui régit l'opérateur d'évolution réduit TtV.t, qu'on applique
sur un état initial arbitraire g(0) (qui n'est pas nécessairement sans corrélations).
Après avoir effectué une réduction sur le système B, en utilisant (10) et (11), on
obtient :

^r-^-iUAQAU-iWAQAt)
t

__

- J19f e-Wli* ni9AQA(t-x)dx-iW «t'A«' R e(0). (31)
0

Le premier terme — i[HA, QA(t)] donne l'évolution libre.
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Le second terme peut également être mis sous forme d'un commutateur. Il suffit
d'utiliser les propriétés (A6) de la trace partielle :

UT9AgA(t)^[U(VIA®QB),ÔA(t)]. (32)

On peut donc l'interpréter comme une modification de l'hamiltonien libre HA par un
potentiel VA Ü (V IA ® qb) dû à la présence du système B.

Le troisième terme décrit l'effet sur A de la formation des corrélations entre les
deux systèmes, résultant de l'enclenchement de l'interaction. Cette partie intégrale
dans (31) contient les effets de mémoire typiquement non markoviens. Remarquons
que le nouveau propagateur qui y apparaît n'est pas unitaire si R n'est pas un
projecteur.

Le dernier terme enfin donne l'évolution des corrélations antérieurement présentes
entre les systèmes.

Jusqu'à présent, aucune approximation n'a été faite et aucune spécification des

systèmes n'a été donnée. En fait, (31) s'applique dans toute situation où on ne
s'intéresse qu'à un système partiel, et le mouvement qu'elle décrit peut être aussi bien
réversible qu'irréversible suivant la nature des systèmes en présence. Afin d'utiliser
(31) pour l'étude explicite de l'approche à l'équilibre, il convient de préciser leurs
propriétés ainsi que celles de leur interaction mutuelle. Nous appelerons (31) l'équation
maîtresse macrocanonique si B joue le rôle d'un thermostat.

D. Propriétés du thermostat et l'approximation de Bom

Nous introduisons maintenant essentiellement une dissymétrie entre A et B:
A est un système microscopique tandis que B est un bain thermique dont le nombre
de degrés de liberté est infiniment supérieur à celui de A. C'est cette dissymétrie qui
est responsable du comportement irréversible de A. Nous traduisons ceci dans la
description au moyen des quatre hypothèses suivantes:

1) une hypothèse sur la nature de l'état initial des systèmes : nous choisissons l'état
initial o(0) le plus probable compatible avec les contraintes, que Tr q HB — EB
est l'énergie du bain et que Ü o g^(0) est un état initial de A donné; c'est à
dire l'état sans correlation:

Q(0)=QA(0)®eî-

où qb est l'état d'équilibre thermique du système macroscopique:

e~ßHB i l
<?*« TrBg-ßHB- ß=JT- W

Nous choisissons de faire l'amplification A au moyen de l'état initial gB du système B.
En conséquence

R e(o) o

ce qui supprime le dernier terme de (31).
Nous soulignons que cette hypothèse d'absence de corrélations n'est faite qu'au

temps t 0.
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2) L'ensemble des interactions possibles doit être restreint à celles qui sont
susceptibles de décrire une approche à l'équilibre. En particulier, les interactions qui
donnent lieu à l'effet d'une force extérieure constante sur le système A sont à proscrire.
Ce serait précisément ce que donnerait le second terme de (31). Nous astreignons donc
l'interaction à satisfaire à3) :

U(VIA®QTB) 0. (34)

En conséquence ce second terme est supprimé, ainsi que l'opérateur R qui figure sous

l'intégrale devant l'interaction IP.

3) Le thermostat B est suffisamment grand par rapport k A, et son interaction
avec A est suffisamment faible pour permettre de traiter les corrélations au premier
ordre. On voit que ceci revient à se limiter à la première itération dans l'équation

intégrale (24), ou à remplacer e''"-™' par le propagateur libre dans (30) et (31). On
a donc traité la relation de l'état correlé g(t) à l'état sans corrélations gA(t) ® qb à

l'approximation de Born.
Avec les trois hypothèses énoncées ci-dessus, (31) devient

d^p_ _ ^ ; sM -Ulf _m<)T v ^ {t _ t) 0 ^ dx | (35)

o

Quant aux corrélations, elles peuvent être évaluées au moyen de (24)

t

Q(t) - QA(t) ®QÏ- - * f e~m°T V (Qa V-*)® Ol) dr (36)

0

sitôt que la solution gA(t) de (35) est connue.
Sous la forme (35), l'équation de mouvement n'est pas encore explicitement écrite

en termes de l'état réduit gA(t) à cause de l'opération de trace partielle U devant
l'intégrale, qui reste à effectuer. Pour ceci, remarquons qu'une interaction générale V
peut être développée de la façon suivante :

V=ZVa®Vb (37)
i

où les VA et VB agissent respectivement sur les systèmes A et B. Ces opérateurs sont
tels que V soit hermitien. En introduisant cette expression de l'interaction dans (35)
et en effectuant les opérations d'algèbre et de réduction indiquées, on obtient

dj^i _. [H^ qM _ /"^{^(t) [VI UA(x) V\Qa (t - r) U-A\x)]

ou
- *,-,(- r) [Vj, UA(x) qa (t - r) Vi U2>(x)]} dx (38)

lt(x) TrBqI V* UB(x) Vj, UB\x) (39)

(34) ne peut pas être satisfait en toute généralité pour n'importe quelle interaction, par simple
renormalisation de l'hamiltonien libre.
Si on modifie l'hamiltonien HA, on modifie aussi la description physique du système A.
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UA(t) et UB(t) sont les opérateurs d'évolution libre des deux systèmes. On a utilisé le

fait que l'état initial du bain commute avec HB, et la possibilité de permutter les

opérateurs sous la trace.
On constate que le système B n'apparaît dans la description du mouvement (38)

que par l'intermédiaire des fonctions y(£) qui sont des fonctions de corrélation
internes du thermostat.

C'est à ce point que s'introduit la quatrième hypothèse, celle de limite
thermodynamique. Le thermostat possède un si grand nombre de degrés de liberté que la
densité des états propres de son hamiltonien peut être considérée comme continue.
Dans le calcul des quantités ctj(t) les sommes discrètes sur ces états (provenant de
l'évaluation de la trace) peuvent être remplacées par des intégrations. Ce passage au
continu a pour effet d'éviter les cycles de Poincaré qui apparaîtraient nécessairement
si le bain était fini.

Définissant les transformées de Fourier des fonctions de corrélation4)

+ 00

Li;M ^ f cit(t) e+i°" dt, (40)

- oo

on trouve [17]
+ 00

Ltj(oj) f de r](e) rj (e A-m) e~ße <e | Fj | e + ft»<e + m \ V1B \ s> (41)

- oo

7j(e) étant la densité des états d'énergie du bain.
De cette dernière expression, on tire deux propriétés essentielles de ces fonctions :

1) une propriété de symétrie
L(j(œ) eß» Ljt(- co) (42)

2) une propriété de positivité

Lij(œ)>0 si 7< VB>. (43)

L'équation de mouvement (35) ainsi que ces deux dernières propriétés forment la
base de la description, et aucune hypothèse nouvelle autre que les quatre que nous
venons d'exprimer ne sera introduite. Avant de procéder à la résolution de (35) dans
des modèles particuliers, faisons encore quelques remarques sur l'approximation de

Born, qui est en réalité la seule approximation à la solution exacte que nous avons
faite.

Les fluctuations du bain autour de la valeur d'équilibre thermique peuvent être
évaluées en calculant qB(t) TrA g(t). L'état du système total est donné à l'approximation

de Born par (36). En y introduisant la forme (37) de l'interaction, on trouve

QB(t)=QTB-ivVB(t),QTB] (44)

VB(t) / Z(Tr* Qa (t - x) VX) UB(x) Vi UB\x) dx.

4) En supposant l'existence de ces transformées de Fourier, nous faisons une hypothèse implicite
sur la nature du bain et des opérateurs d'interaction VB.
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Soit 0B une constante du mouvement du bain libre :

[0B, HB] 0 (45)

alors 0B est encore une constante du mouvement après l'enclenchement de l'interaction
avec le système A. C'est une conséquence directe de (44) et (45) :

Tr8 0B QB(t) TrB 0B qtb constante.

Ainsi, à l'approximation de Born, les fluctuations du bain ne sont pas négligées comme ce
serait le cas dans le cadre d'un traitement avec effacement répété des corrélations. Cependant,

elles sont décrites de telle façon que les constantes du mouvement du thermostat
libre ne sont pas affectées par son couplage avec le système A. Ces constantes du
mouvement sont essentiellement des quantités macroscopiques, comme par exemple
l'énergie totale HB. Il est raisonnable de penser qu'elles sont insensibles à la présence
du système microscopique A.

III. Spin en interaction faible avec un thermostat

A. Le modèle

Comme première illustration des équations générales, nous nous proposons
d'obtenir explicitement l'évolution de l'état d'un moment magnétique (spin 1/2) en
interaction avec un bain thermique, tel qu'il a été introduit dans le paragraphe II D.
Les éléments de ce modèle, qui correspond à la description d'une expérience de

précession libre en résonance magnétique, sont fixés de la façon suivante :

1) Les matrices de Pauli o*0 1 ; az; o"± 1/2 (ax Az i <*y) forment une base dans
l'espace de Liouville £4 attaché au spin, il sera donc commode d'exprimer les quantités
qui s'y rapportent au moyen de ces matrices.

2) L'hamiltonien du système d'intérêt est celui d'un spin 1/2 dans un champ
magnétique statique de direction z et d'intensité cojy % (y est le rapport gyromagné-
tique).

Ha -y OJoaz (U

3) L'hamiltonien du thermostat, qui n'est pas précisé microscopiquement, est HB.
4) L'interaction la plus générale possible s'écrit

V a+®V+A-a_®VB+az®VBz. (2)

L'hermiticité de V entraîne

VB¥=(VB)-; V>=(V*)>. (3)

5) Nous imposons une propriété de symétrie géométrique naturelle au thermostat :

l'environnement du spin est isotrope autour de la direction privilégiée z que crée le

champ statique. Nous exprimons cette symétrie cylindrique en requérant que
l'équation de mouvement (11.38) soit invariante sous les rotations autour de l'axe z.
Plus précisément, si

UR eicta*12
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est la représentation d'une rotation d'angle a dans le plan (x;y), alors

QRA(t) URQA(t)U-'

obéit à la même équation que QA(t),
Ve développement de l'opérateur densité sera noté

M*)=2>^K v-(o, *,+,-) (4)

avec

mo y Tr QA(t) -
mz(t) y Tr az QaV) mS) rf ffT e^W • (5)

Dans cette base les composantes de l'état ont une signification physique immédiate:

y U mz(t) est l'aimantation le long du champ statique (eo0 mz(t) étant l'énergie moyenne)
tandis que y % m±(t) donne l'aimantation transversale.

B. Les équations de mouvement

Nous allons maintenant spécialiser l'équation maîtresse macrocanonique (à

l'approximation de Born) à ce modèle particulier. Pour ceci, il suffit d'utiliser le dictionnaire

qui fait correspondre les symboles lus dans (11.38) à ceux que nous venons de

définir, c'est-à-dire

HA -±-c»0oz UA(t) «">»—.''. Vj ot i=+,-,z
On constate dans (11.38) que les 9 fonctions de corrélation c^(t), i,j +, —, z

apparaissent respectivement associées aux termes qui comprennent les deux facteurs
o",- et Gj. La condition d'invariance se manifeste alors de la façon suivante : en notant
que

URo±UR1 e±i«a± URazU^ az.

QA(t) satisfait encore (11.38) si et seulement si les termes d'indices + +, — z, A- z,

z + et z — disparaissent. C'est dire que la symétrie cylindrique impose que seules

contribuent les fonctions c+_(t), c_+(t) et czz(t) et que les 6 autres sont identiquement
nulles.

Après cette simplification, on applique l'algèbre des matrices de Pauli pour
effectuer les commutateurs, et on établit les équations de mouvement des composantes
de l'état réduit au moyen de (5).

Tous calculs faits, on trouve:
jwg _ Q
dt

qui exprime la conservation de la trace.

dmz (t) - j dxmz(t-x)f(x) + g(t) (6)
dt

ô
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OÙ

f(x) 2 Re [e-'«"* (c+_(t) + c_+(- t))] (6a)

t

g(t) Ä« fe~'^ (c_+(- x) - c+.(t)) dx (6b)

o

'->o fH-(t) — / ^t w_ (t — x) h(x) (7)
dm tt)

-tco„dt

h(x) 2 e~^ (cjx) + czz(- x)) + c+_(x) + c_+ (- x) (7a)

et l'équation complexe conjuguée de (7) pour m+(t).
L'influence du thermostat se manifeste par l'intermédiaire des trois fonctions

/, g et h, formées par certaines combinaisons des fonctions de corrélation. Pour faire
apparaître explicitement la dépendance de la température, on écrira ces dernières
sous forme des transformées de Fourier (11.40), et on utilisera (11.42). Les expressions
(6a), (6b) et (7a) deviennent

+ 00

/ (t) / dm cos (m — m0) t <p(œ) (8a)

— oo

+ oo

g(t) f dco sÀn{0,-^lA L H (i _ g-ß.) (8b)
J a>-a>0 +

- oo

+ 00

h(t) f dm e~imt xp(m) (9)

ou
<p(œ) 2 L_+(m) (1 + e~ßm) (10a)

f(m) \ cp(œ) + 2 Lzz (m - wQ) (1 + e~^~^) (10b)

comme conséquence de (11.43) et (3) :

9>(eu)>0 et f(m)>0. (11)

Avant de procéder à l'examen de ces équations, faisons la remarque suivante: les

parties diagonale et non diagonale de l'état (dans la représentation qui diagonalise
l'hamiltonien libre) évoluent tout à fait indépendamment. Cette propriété, due à la
symétrie imposée, entraine celle de «conservation de la diagonalité» de l'état au cours
du temps, à savoir, si pour t 0 [^(0), HA] 0 alors pour tout t > 0, on a encore
[Qa(ì), Ha] =0.

Ainsi l'évolution de l'aimantation longitudinale n'est pas couplée à celle de

l'aimantation transversale.
La résolution de (6), que nous allons présenter maintenant en détail, servira

d'exemple à celle d'équations du même type que nous rencontrerons par la suite
(cf. équation (7) et celles obtenues dans le paragraphe suivant pour l'oscillateur).
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C. Résolution

L'emploi de la transformation de Laplace a l'avantage de transformer, au moyen
du théorème de la convolution, les équations intégrodifférentielles telles que (6) en
équations algébriques. On désignera par

00

/(s) j e~st f(t)dt, s > 0 (12)

o

la transformée de Laplace de/(iS). (6) devient

s mz(s) - mz(0) - f(s) mz(s) + g(s) (13)

où mz(0) est la condition initiale mz (t 0). En résolvant (13) par rapport à m(s) on a:

»,(«) G(s) g» + G(s) mz(0) (14)
où

G(s) - — (15)
s + f{s)

L'inversion de (14) donne la solution

t

mz(t) =fG(t-x) g(x) dx + G(t) mz(0). (16)

o

Il s'agit maintenant de trouver la forme explicite de G(t) qui est la transformée inverse

de G(s). Cette forme est fixée par la structure analytique de G (s) dans le plan complexe
s. Le point essentiel est que les deux propriétés générales (11.42) et (11.43), combinées

dans (11), déterminent complètement la nature des singularités de G(s)&).

D'après (15), (12) et (8a):

(^))-1 '(1+/^^) (17a)

-4- CO

s+ I f dmw(m) { ~ r + ~ 4. (17b)
2 J rv ' \s + t{o)-(o0) s-i{a>-a>0)\ v

De ces expressions, on conclut que G(s) est holomorphe dans tout le plan s sx 4- i sa

coupé par l'axe imaginaire. En effet, il suffit de remarquer que (17) n'a pas de zéros

pour sx 4= 0. Sur (17a), on voit que si s 4= 0 le premier facteur n'est pas nul. Le second
facteur est non nul pour s sx réel non nul en vertu de (11). Pour s sxA- i s2,

sx 4= 0 et s2 4= 0 sa partie imaginaire vaut

+ 0O

-2sxs2 f dm
((a)_Wo). + 4'?i,+ (2,lSl).

(18)

5) (p[a>) est supposée dans ce qui suit suffisamment régulière pour assurer la validité des diverses
opérations effectuées, c'est à dire satisfait à la condition de Holder et est absolument intégrable
[23a].
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qui est également non nulle puisque l'intégrande est positif. Ainsi (17b) définit une

fonction holomorphe en dehors de l'axe imaginaire [23]. Sur celui-ci, G(s) a une
discontinuité qui peut être évaluée à l'aide de la propriété limite:

lim ——. -
e_>0 x 4_; i E p(A)y^ó(*).

D'autre part, le comportement asymptotique de G (s) est donné par

lim s G(s) 1.

(19)

(20)

Ces considérations permettent l'application de la formule d'inversion complexe [18] '

s0 + »'oo

G(t) -^ f eisG(s)ds, s0>0. (21)

s0 - ÏOO

Afin de calculer cette intégrale par la méthode de Cauchy, il est convenable de ramener

pour un instant la ligne de discontinuité à une portion finie de l'axe imaginaire. Pour
ceci, on introduit la suite de fonctions tronquées

(99(a))
| co | < Q

0 \m\>Q
ainsi que le GQ(s) correspondant. On s'assure que GQ(s) est holomorphe partout sauf

sur le segment
0, <Q +

s2

/ R^^\
s ö+ü)0

il

' \ fï
-(a+u)0)

S.

Envisageons les contours définis sur la figure. On vérifie que les contributions des

segments horizontaux et du grand cercle s'annulent lorsque R -> 00. En vertu du
théorème de Cauchy:

s0 + too

Ä7 y
L, L2
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Finalement, en faisant Q -> oo afin de recouvrer la fonction cp(m) originale, on
constate qu'il suffit d'évaluer l'intégrale le long de la ligne de discontinuité sx 0.

Si on fait usage de la propriété limite (19) sur l'expression (17b), on obtient pour
l'intégrale (21) :

+ 00

G(t) y / eixt B(x) dx (22)

B^ ~ {x + pW + qW
(23)

avec

?(*) y (<p(a>0 + x) +q>{m0-x)) (24a)

+ 0O

P(*)= f **? i dm. (24b)
J (ci>-co0)2-*2

D. Discussion de la solution

L'évolution de l'aimantation longitudinale est maintenant explicitement donnée

par (16) et (22) en fonction de L_+(m) et de la température T. On se propose de

montrer qu'elle approche l'équilibre thermique dans la limite du temps infini.
Examinons auparavant quelques propriétés caractéristiques de G(t) et leurs

conséquences.
1) On remarquera tout d'abord que

B(x) B(- x) > 0 (25)

Donc
oo

G(t) | f B(x) cos% t dx (26)

0

est une fonction réelle paire du temps. Comme g(t) est impaire, (16) montre que mz(t)
est symétrique sous l'inversion du temps.

2) On a de (26) :

dG(t)
dt

0.
* -o

La courbe de relaxation débute toujours avec une tangente horizontale, ce qui n'est
jamais le cas dans une relaxation purement exponentielle.

3) La propriété assymptotique de la transformée de Laplace lim sG(s)= G(0) [19],
combinée avec (20), donne s~*

+ 00

G(0) y / B(x) dx=l. (27)

On a donc bien, sur (16), lim mz(t) mz(0) qui est la condition initiale arbitraire
donnée.

Notons que de (26) et (27) \G(t) | < 1 à tout temps.
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4) De (25) et (27), B(x) est absolument intégrable, d'où [20]:

lim G(t) 0. (28)
/—*-oo

Par conséquent, la valeur de l'aimantation à l'équilibre est indépendante de sa valeur
initiale. Il ne subsiste pas de mémoire de l'état initial.

Montrons maintenant que mz(t) atteint effectivement une limite pour t -> oo.

Il faut remarquer que la fonction g(t) possède une limite qui, d'après (8b) vaut

lim g(<)=*I_+(u>o).(l-«-**). (29)
t—>oo

Dans ce cas, comme conséquence du théorème cité dans [21], on obtient6)

no

lim mAt) lim g(t) I Gif) dt. (30)
£—»-00 t-+ÖO J

0

Cette dernière intégrale peut être évaluée en utilisant [22] :

oo

f G(t) dt lim G(s) --r-¦- (31)
J s^+o n<p((»a)
o

Combinant (29), (31) et (10), on voit qu'on trouve la valeur correcte de la magnétisation

à l'équilibre thermique

&, m^ 2 ^i^^JT T th-^ ¦ (32)

L'existence et la valeur de la limite sont donc complètement indépendantes de la
nature détaillée du thermostat et de l'interaction.

Par contre, l'approche est explicitement liée à un modèle spécifique du bain par
l'intermédiaire de L_+(co), dont il faut connaître la forme pour calculer G(t). Remarquons

cependant que si L_+(m) est telle que B(x) est k fois derivable, alors on peut
affirmer que [23]7)

<W-o(£).
Si B(x) est infiniment derivable, la mémoire de la condition initiale disparaît asymp-
totiquement comme une exponentielle.

Avant de conclure cette discussion, examinons rapidement l'évolution de l'aimantation

transversale. Les équations qui régissent les éléments non diagonaux m+(t) et
mj$) sont tout-à-fait similaires à celles que nous venons de traiter à la différence
près qu'elles n'ont pas de terme inhomogène. Le calcul peut être mené de façon
complètement parallèle au précédent, et tous les mêmes arguments s'y appliquent.
On trouve:

m_(t) D(t) m_(0) (33)

6) Il faut encore que G(t) soit absolument intégrale, ce qui est vrai dès que q>(oS) est suffisamment

régulière.
') Le §12 de la référence [23a] entraîne que k > 1.
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avec
+ oo

D(t)= f e-"' —VW dx (34)

(+00
\ 2

y>(x) étant donnée par (10b).
D(t) jouit de propriétés semblables à celles de G(t), en particulier:

D(0) 1, lim D(t) 0. (35)
t—>oo

Les résultats sont analogues pour m+(t) (m_(t))*. Ainsi, on voit que les termes non
diagonaux s'annulent pour t -> oo.

Ceci achève de prouver que l'état QA(t) du spin évolue vers la valeur canonique
d'équilibre e~ßHA\Tr e~ßHA à partir de tout état initial donné et pour la classe très
générale de thermostats envisagée.

Si le bain et l'interaction n'avaient pas cette propriété de symétrie cylindrique,
on obtiendrait pour les composantes de l'état un système d'équations intégrodifféren-
tielles linéaires couplées qui pourrait être résolu en principe de la même façon.
L'existence et la valeur de l'état d'équilibre dépendraient alors plus spécifiquement
des caractéristiques du thermostat.

E. L'équation de Bloch

Comme (22), (23) et (24) le montrent, les lois d'approche à l'équilibre ne sont en

général pas exponentielles8) (p(x), q(x) n'étant pas constant, B(x) n'est pas une courbe
de Lorentz) et dépendent explicitement de la structure microscopique du bain, par
l'intermédiaire de <p(m) et \p(m). Cependant nous allons voir que dans la limite où la
température du thermostat devient infiniment élevée, le système tend vers l'équilibre
thermique exponentiellement, ce qui correspond à la solution des équations
phénoménologiques de Bloch, avec deux temps de relaxation. Pour une agitation thermique
maximum dans le bain, il est raisonable de prendre des durées de corrélation internes
du bain (temps pendant lequel les fonctions c,-,(t) sont appréciablement non nulles)
extrêmement courtes. Prenons pour commencer le cas idéalisé

Cy(T)-ct1ô(T) (36)

et la relation de symétrie (11.43) devient avec T -> oo

L» L» ^~y.. (37)

Dans ce cas, de (36) et (37) on a

q(x)=2c^_+>Q (38)

p(x) 0 (la partie principale prise sur une fonction symétrique étant nulle) d'où

+ 00

GW y / ^^ftjdx^e-2^. (39)

- Cû

Ceci est confirmé par des calculs explicites et numériques [29].
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D'autre part, de (6b)

rBmgW«0.

A la limite de la température infinie, l'aimantation longitudinale a le comportement9) :

mz(t) =-- <r'/r' mz(0) (40)
où

T^yy^. (41)

De même on obtient pour les composantes transversales

m±(f) e±im"' e-tlT* ro±(0) (42)

ou encore
T2=y-y2—, y>0 (43)

c_ + T * °zz

mJA) e~tlT' (cosft)01 mx(0) 4- sinft>0 t m (0))

wy(2) e-"7"2 (— sino)0 i! w^(0) + cosew0 < wv(0)) (44)

(40) et (44) sont les solutions de l'équation phénoménologique de Bloch pour un
système magnétique dans un champ statique de direction z

dm ,_ „ mr mv mrT Sy(mxflJ-.-r-yI-i
avec d'après (41) et (43)

Tr

Ti>\t2. (45)

Les résultats obtenus dans le cas limite des températures infinies et durées de

corrélation nulles sont encore valables avec une très bonne approximation pour les
hautes températures

4y- <l (46)

et les durées de corrélation courtes

— (47)

où mx, est l'intervalle sur lequel L_+(m) peut être considéré comme constant.
En effet on voit sur (22) que la contribution majeure à l'intégrale provient du

voisinage de x 0, puisque p(x) et q(x) sont proportionelles au couplage, donc petites.
D'après les définitions (23), (24), il suffit donc que <f(m) varie peu au voisinage de m0

pour avoir approximativement le résultat (39). C'est le cas dès que L_+(m) est elle
même lentement variable près de m0, et que la condition (46) est remplie. Pour l'ordre
de grandeur de xc, nous renvoyons à l'appendice de la référence [24] où une discussion
détaillée est faite sur une fonction du type de (22), (34).

L'inégalité Tx > 1/2 T2 est générale pour tout bain, décrivant l'interaction spin-
réseau, qui possède la propriété de symétrie donnée.

En introduisant directement (36) dans l'équation de mouvement (6), on peut vérifier que (40)
en est bien la solution.
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IV. Oscillateur en interaction faible avec un thermostat

A. L'équation maitresse

L'oscillateur harmonique amorti a fait l'objet de si nombreux travaux que nous ne
voulons pas discuter ici tous les aspects de cet intéressant système. Nous nous

proposons de donner la généralisation non markovienne de l'équation maîtresse
obtenue généralement avec l'approximation de l'effacement répété des correlations.
Nous choisissons l'hamiltonien total de la forme suivante, où le couplage entre les

deux systèmes est linéaire :

H ft)0 a' a ® IB + IA ® HB + a' ® V^ + a ® VB (1)

Il est convenable de décrire l'état de l'oscillateur dans la représentation des états
cohérents, à l'aide de la fonction de quasi-probabilité introduite dans [13] :

QA(t)=fd*oLP(x, t) jaXaj. (2)

Cette représentation doit son avantage au fait que l'état y est entièrement caractérisé

par une seule fonction (ou éventuellement distribution) réelle de deux variables
a (ari a2) et du temps [25].

Il s'agit maintenant de transcrire l'équation opératorielle (11.38) pour P(a, t).
L'action des opérateurs a* et a sur un état cohérent |a> est connue. De là, on établit
facilement [26]10) :

a e(t) fd2x [oc P(a, t)] | <xXa| (g(t) a')' (3)

«t e(t) =fd2* [(a* - A) P(a, O] | a><a | (ô(t) a)> (4)

et également

g-i^atar Q^ jo^ot f^ p(a j^r; £) | a> <oc j (5)

Il suffit d'appliquer ces règles de correspondance à (11.38), afin de la transformer en
une équation portant uniquement sur P(oc, t). Par exemple, le terme

UA(x) a> qa (t - x) UA\x) a

qui apparaît dans le premier commutateur de (11.38) donne lieu pour P(a, t) à la
contribution suivante:

oca*- ; x-J^a*+ J^P(a.eia"T,t-r).da. da* da. da.*

Transformant ainsi chaque terme de (11.38) et collectant toutes les expressions reçues,
on arrive à

»(^a*"ia)/J(a'^+/"T|[A(îdt ° \ ôa* da / K ' ' L w âa à*

Mx) JL a - X'(x) -^ - fi'(x) ± a*] P(« eim'\ t - x)+ compi, conj.} (6)

10) Nous considérons maintenant a ax + i a2 et a* a,x — i a2 comme variables indépendantes

23
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avec
-.:- oo

A(0 c_+(t) e-™'1 f L+Am)e~ß"Jeiim-a'')'dm (7a)

- oo

+ 00

p(t) (c+_(*) - c_+(- <)) e""1 f L+_(m) (1 - e~ßm) e^0" "'«>' *» (7b)

- OO

A'W « e++(*) «-'-' /«'W (c++(0 - c++(- *)) «-'»•' (8)

c*+W c_+(- t), c*+(t) c__(- 0

L'équation maîtresse (6) est de type intégrodifférentiel partiel de second ordre.
Pour discuter l'existence et l'approche de l'équilibre, il faudrait la résoudre en toute
généralité, ce qui est un problème difficile. Il sera plus simple, et aussi plus illustratif,
d'étudier le comportement de certaines valeurs moyennes, comme celle de l'énergie de

l'oscillateur, de sa position ou de son impulsion.
Auparavant, on peut faire sur (6) quelques remarques d'ordre général.
1) On constate qu'il apparaît dans (6) essentiellement deux sortes de termes:

a) les termes qui sont associés à c_+(t) (ou à c+_(t)) appelés résonants. Ils sont
invariants sous la transformation de phase a -> elip a.

b) les termes qui sont associés à c++(t) (ou à c (t)) généralement appelés anti¬
résonants [27]. Ils ne sont pas invariants sous cette transformation.

Nous imposons dès maintenant une restriction supplémentaire à l'interaction entre
les deux systèmes : nous la supposerons indépendante de la phase de l'oscillateur, de

façon qu'elle ne donne pas de contribution non résonante. En conséquence, les termes
non invariants (8) doivent être nuls, c'est-à-dire

c++(*) e—(0-0. (9)

Dans ce cas, (6) conserve la diagonalité de l'état, comme on l'avait pour le spin.
En effet, la commutation de çA(t) avec l'hamiltonien libre équivaut à dire que la
quasi-probabilité ne dépend que du module r — | a | de la variable a. Si (6) est
invariante sous la transformation a -> é"p a, cette propriété est préservée au cours du

temps. Ce fait permet de découpler les équations de mouvement qui régissent les

parties diagonale et non diagonale de l'état. Pour la partie diagonale, on peut alors
écrire une équation plus simple en passant à la variable r | a | :

dP(rA) _ /V V £>„ v^ t à I à \ „ 1

dt
/ dx [2 Re Hx) ±--°-(r-°-)+2Re/i(x) | -L r2] P(r, t - x). (10)

2) Si P(a, t) atteint une limite P(a, 00) pour t -> 00, cette limite est alors
nécessairement l'état d'équilibre thermique. En effet, si on fait t -> 00 dans (6) et qu'on
applique le théorème [21] on trouve que P(a, 00) doit satisfaire à:
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où les constantes réelles X, /ux et /jl2 s'obtiennent facilement de (7a) et (7b) :

X Re X(t) dt Tt L+_(m0) e' -ßmc

0

jxx \ Re n(t) dt ji L+_(m0) (1 - e~ßm°)

o

(co) (l-e~ßm) dm
fj,2 / •""" '"" -* — — -'

o

Imft(t) dt ff ^-M(1-rl^ (12)

(11) admet une unique solution non nulle qui est, après normalisation:

P(«( oo) —î— e~ a a*lnT (13)v ' n nT
OU

Ì,
nT —

ßr
(14)

(13) est la représentation de l'état canonique de l'oscillateur.
3) Si la température est très élevée (fi mjk T -4 1) et que les temps de corrélation

internes du thermostat sont extrêmement courts, la situation peut être approximée
par le cas limite où on pose les deux fonctions X(t) et fi(t) proportionelles à ô(t) :

X(t) 2X ô(t) fi(t) =2fix ô(t)

X et fjLx sont déterminés par (12). On voit alors que (6) se réduit à l'équation marko-
vienne habituelle de Fokker-Plank pour la quasi-probabilité P(oc, t) dont la solution
explicite est donnée dans [14].

B. L'approche de l'équilibre
Nous voulons maintenant montrer l'approche de l'équilibre sur la valeur moyenne

de l'énergie m0 N(t)

N(t) zzTra'a gA(t) I'd2a. a a* P(a, t) (15)

dt J dt

Après avoir substitué sous l'intégrale la valeur donnée par (6) pour l'évolution de la
quasi-probabilité, on peut facilement se débarrasser des dérivées partielles djdo. et
d/doc* par intégration par partie.

Les parties intégrées sont nulles, car la conservation de la trace

Tr QA(t) \d2u. P(ol, t) l (16)

ainsi que l'existence de quantités telles que N(t) et des moments d'ordre supérieur
assure que P(oc, t) tend suffisamment rapidement vers zéro pour a -> oo. On trouve
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alors que N(t) obéit à
t

-dT -ffW N(t-x)dx + g(t) (17)

o

où
+ oo

f(t) 2 Re/j,(t) 2 f L+Am) (1 - e~ßu>) cos (m - m0) t dm (18a)

- OO

t -fco

gii) Ï2 Re X(x) dx 2 f L+_(m) e~ßm "y^— dm. (18b)
Ò -oo

Ces équations sont tout-à-fait similaires à celles qui régissent l'aimantation
longitudinale (équations III.6, III.8, III.10a). Comme seule différence, le facteur
thermique de Fermi est remplacé par celui de Bose dans (18a)11).

Ainsi toute la discussion du paragraphe précédent peut être intégralement reprise
ici, et les conclusions valables pour mz(t) le sont pour N(t). La solution s'écrit sous la
forme (III.16) où les fonctions sont convenablement définies dans (III.24) conformément

à (18a) et (18b). En particulier

lim NU) nT= —a

pour toute condition initiale.
Si nous calculons maintenant

A(t) Tra qaU) /a P(a, t) d2«. (19)

nous obtenons l'évolution de

p —==- (a' —a) et q — —==- (a' + a)^ \/2
V H f2

V

et une information sur le mouvement de la partie non diagonale de l'état.
En appliquant les mêmes considérations que pour Nif), on établit:

dA(t)
dt

i

i m0 A(t) - f h(x) A(t-x) dx (20)

h(t) rio,'VW f dm L+4m) (1 - e-ßm) e~""'. (21)

- oo

Ici à nouveau l'équation et sa solution sont semblables à celles de l'aimantation
transversale (équations III.7, III.9, III.10b). On a pour tout état initial:

lim A(t) 0.
;—>oo

Dans l'appendice B, nous particularisons le bain à celui d'un ensemble d'oscillateurs

libres, linéairement couplés avec l'oscillateur d'intérêt. On peut alors comparer

n) Les conséquences que cette différence entraîne pour la résolution de (17) sont discutées dans
l'appendice B.
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les quantités obtenues ici à l'approximation de Born aux résultats du calcul rigoureux
qui est possible avec ce modèle. On constate que pour A (t) les expressions trouvées
dans les deux cas sont identiques. Ceci n'est plus vrai pour les moments d'ordre
supérieur. Ce fait ne constitue en aucune manière une justification de l'approximation
de Born, mais montre qu'il existe au moins des cas où, pour certaines grandeurs, les

résultats sont identiques, ou très proches de la valeur exacte.

Conclusion

Nous nous sommes principalement attachés, dans cette présentation, à montrer
comment la théorie générale de la relaxation, reformulée dans le §11, peut conduire
à des résultats explicites. En tirant parti de ses caractéristiques essentielles, nous
avons pu résoudre l'équation maîtresse dans des exemples simples, mais qui possèdent
un haut degré de généralité, sans recourir à toute les approximations habituelles
(§111 et IV). Deux voies de recherche semblent s'ouvrir naturellement.

D'une part, l'exploration de l'équation maîtresse serait poursuivie dans le cadre
de l'espace de Liouville, où l'existence, l'approche de l'équilibre ainsi que la nature
des interactions qui y conduisent pourraient être discutées indépendamment des
modèles spécifiques. On tâcherait en particulier de s'affranchir de l'approximation
de Born, ou au moins, d'en délimiter nettement le domaine de validité.

D'autre part, l'application à des situations physiques concrètes peut aisément
être donnée, vu la large classe d'interactions et de thermostats envisagée : il suffit de
les préciser de façon réaliste et de calculer les fonctions de corrélation. On obtiendrait
alors l'ordre de grandeur des effets non markoviens, qui doivent être d'autant plus
manifestes que les temps de relaxation sont longs et la température du bain est basse.
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Appendice A

Rappelons ici la définition de l'espace de Liouville et quelques unes de ses

propriétés. Nous nous référons à [10b] pour une exposition plus détaillée.
L'espace de Liouville £ attaché à un espace de Hilbert h est formé de l'ensemble

des opérateurs X bornés sur h qui satisfont à :

TrX>X<oo. (AA)
La formule

(Xx,X2) TrX\X2 (A.2)

définit sur 13 un produit scalaire et une norme positive définie \\X\\ \/Tr X* X.
Par rapport à ce produit scalaire, C a la structure d'un espace hilbertien complexe.
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Un sous-ensemble important de £ est celui des opérateurs à trace finie (c'est-à-dire
tels que Tr(X X*)112 < oo), dont les états forment la partie convexe. Ce sous-ensemble
est dense dans £.

De la définition (4), on peut vérifier l'unitarité et la continuité de l'application 1Jtt.

Si l'hamiltonien H est borné sur h, l'opérateur de Liouville T4 l'est aussi sur £, et on a

\"U\C<2\H\k. (A.3)

Dans ce cas, l'application 1Xt est uniformément continue et peut être écrite sous la
forme [10b, 28]

oo »

%-i;ir (-*'*)" «-•*'. (A.4)

La représentation (11.19) du résolvant G(s) comme transformée de Laplace devest
alors valable au moins pour \s\ > |"U\~ [28a].

Si H0 est borné sur £, les mêmes considérations s'appliquent à *U0( et G0(s).
Les identités (11.20) et (11.22) sont valables partout où les résolvants G(s) et G0(s)

existent, et (11.23) s'obtient comme conséquence de [28b].
Examinons maintenant la nature de l'opérateur de réduction R. Tout d'abord

remarquons que l'opération de trace partielle jouit des propriétés suivantes:
1) Si q est un état dans C= CA ® CB, alors Ü Q QA est un état dans £4.
2) Soient XA, XB, X respectivement dans £4, £B, £ alors on a formellement

U(XA®XB) XAUXB (A.5)

u((xA ® xB) x) xA u((iA ® xB) x)
U(X(XA ®XB)) U((IA ® XB) X) XA (A.6)

En général, fj ne peut être étendu à £ entier comme le montre (A.5) : £T est seulement
défini sur le sous-ensemble d'éléments de £ dont la composante dans CB est à trace
finie.

L'amplification A applique £4 sur le sous-ensemble de £ de la forme XA ® qb,
XA e £4, qb fixe dans CB ¦ Ainsi "R A U est défini au plus sur un domaine dense dans
£ et n'est pas borné.

En fait, if? n'est borné sur £ que si la dimension NB de l'espace de Hilbert du
système B est finie, et on a alors

\n\c=fN~B\\QB\\- (A.7)

Si c'est le cas, les opérateurs de Liouville réduits "R 11 et 7? ^0 sont également bornés
(supposant toujours H et Ha bornés), et les mêmes considérations que ci-dessus

s'appliquent aux résolvants, G(s) et G0(s) et à l'équation (11.30).
Ce cas est réalisé en particulier si les systèmes A et B sont de dimension finie,

B pouvant consister en un très grand nombre de systèmes finis. Si ces conditions ne
sont pas remplies, les opérations de ce paragraphe doivent être considérées comme
formelles, et leur validité vérifiée dans chaque exemple particulier.

Ajoutons la remarque suivante : Si NB est la dimension de hB, on vérifie facilement
que Jl devient un projecteur si et seulement si on amplifie avec l'état de dégénérescence
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maximum dans £B, soit IB/NB. La borne de R est alors égale à 1 (comme on peut
aussi le voir directement sur (A.7)). Dans ces circonstances très particulières,

||R % x\\q < ||s|| x dans £ (A.8)

montre que l'évolution réduite U \lt est un opérateur de contraction sur £. Cette
situation serait réalisée dans le cas limite où le système B serait un thermostat à

température infinie.

Appendice B

Dans le cas de l'oscillateur, on a de (IV.18a) cp(m) 2 L+_(m) (1 — e~ßm) au lieu
de (III.10a). Alors que (III.10a) était positive pour toute valeur de m, ici, à cause de la
modification de signe, on a seulement

95(a)) > 0 co > 0

<p(m) < 0 m < 0. (B.l)

Le fait que G (s) n'a pas de pôles pour Sj 4= 0 était basé sur la positivité de çp(m).

Elle assure que l'intégrale qui apparaît dans (III. 17a) soit positive pour s réel, et que
sa partie imaginaire soit non nulle pour sx + 0, s2 4= 0. On a encore les mêmes résultats
ici si on suppose

L+_(m) - L_+(m) > 0 pour m > 0. (B.2)

Dans ce cas, avec (IV.18a) et (11.42) :

95(0)) + <p(- m) (l-e~ßm) (L+_((o) - L_+(m))>0 m > 0 (B.3)

Ceci suffit à rendre l'intégrale dans (III.17a) positive. En effet, en scindant l'intervalle
d'intégration en deux parties, on a

<p(a>)
dm= f M dm A- f !(-"> dm

J (co-cu0)2 + .s2 J (a)-c»0)2 + s2 T./ (o) + cu0)2 + s2

-00 0 0

00

> j ?M [ «o-o^'+ir " (co+^+ld im

par (B.3).
Avec (B.l), cette dernière intégrale est manifestement positive. Par un raisonnement

analogue, on montre que la partie imaginaire (III.18) est non nulle.
La condition (B.2) est vérifiée en particulier si l'opérateur d'interaction V% est

hermitien, puisqu'alors L+_(m) L_+(m). Elle est également remplie dans le cas du
couplage linéaire discuté ci-dessous.

Ensemble d'oscillateurs harmoniques en couplage linéaire

Prenons un modèle de bain formé d'oscillateurs indépendants

00 00

HB =Z"i blh V= 2jYi «f ® h + h. c. (B.4)
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Les fonctions de corrélation sont aisément calculées à partir de leur définition. En
posant y (co) dm £ 7ion obtient après passage à la limite thermodynamique :

eu < eoj- < oi + äw

co

c+_(t)=J \y(m)\* ^1.^ e-îmtdm (B.5)
o

c__(t) c++(t)=0.
D'où

flyH!2—1-zzr~ m>°
L+_(m) \ x-"~ßm (B.6)

0 w < 0

et

L_+(ft)) /mL+_(-ft)).

De (IV.20), (IV.21) et (III.34), on trouve

OO

A(t) A(0) f e-"" — - lY{x)f dx.

'-da> ] +ni\y(x)\2
I OO v

">*f ££*)
C'est exactement la solution qu'on aurait obtenue en résolvant rigoureusement

[lia] les équations de Heisenberg du mouvement à partir de (B.4). Le fait que
l'approximation de Born donne pour A (t) la même valeur que le calcul rigoureux peut
se comprendre de la façon suivante : si on avait retenu des termes d'ordre supérieur
dans l'interaction, on aurait aussi des dérivées d'ordre supérieur en djda. et d/doc*
dans (IV.6). Dans le cas du couplage (B.4), les dérivées supérieures ne donnent pas de

contribution au premier moment (à cause de l'intégration par partie dans le calcul de

dA(t)jdt). Par contre, elles se manifesteraient dans le calcul des moments d'ordre
supérieur.
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