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Equilibre mécanique et de forme de petits cristaux?)

par R. Ghez

Laboratoire de Physique Technique
Ecole Polytechnique de 1’Université de Lausanne, Lausanne, Suisse?)

(8 X1 67)

Abstract. The gibbsian model for surfaces is reformulated in order to account for stress and
strain within quasi-ideal crystals and on their surface. Tensor calculus, extensively used, leads to
an invariant formalism. The symbols appearing therein are given a physical interpretation. The
Second Principle, applied to the crystal-crystalline surface-vapour system, yields necessary
equilibrium conditions. Herring’s formula for the chemical potential is derived as a special case.
The validity of the usual assumptions relating to shape equilibria are investigated.

1. Introduction

Il est depuis longtemps reconnu que des effets spécifiques sont entrainés par
I'existence, entre deux milieux, d’une surface de séparation douée de propriétés
intrinseques ou nferface et que ces effets, dits capillaires, jouent un grand réle dans
certains processus physico-chimiques. En ce qui concerne les fluides, la théorie
thermodynamique en a été élaborée par GIiBBs [1], qui a proposé son célebre modéle-
surface. GIBBS a également étudié les effets d’adsorption provoqués par la surface de
solides, qui, par exemple, sont importants en catalyse et dans les problémes d’ultra-
vide. Toutefois, les propriétés spécifiques du solide, en particulier sa structure cristal-
line et la migration d’atomes dans le réseau cristallin, propriétés alors inconnues,
n’entraient pas dans ses considérations. De plus, le champ élastique possible, provo-
qué par le présence d'une surface n’était pas envisagé.

Les mathématiciens ont construit un outil bien adapté a I'étude des surfaces, la
géométrie différentielle qui dans sa version tensorielle est d'une grande compacité.
Il parait alors étonnant que ’on n’ait pas songé a appliquer ces méthodes aux surfaces
physiques, surtout dans 1'étude des phénomeénes élastiques ol l'analyse tensorielle
joue un roéle central.

C’est précisément ces techniques que nous nous proposons d’appliquer au cas de
I'équilibre thermodynamique d'un cristal guasi-idéal dont la surface est munie de
propriétés physiques intrinséques. Le modele de GIBBS sera ainsi étendu a des maté-
riaux anisotropes. L’articulation de ce travail est la suivante. Les chapitres deux et
trois sont d’indispensables préliminaires d’analyse et d’élasticité et renferment beau-
coup de résultats classiques. Le quatriéme aborde le probléme des tensions; une
attention particuliere y est dévolue aux couples qui pourraient résulter d'une distri-

1) These de doctorat présentée a 1’Ecole Polytechnique de I’Université de Lausanne le 14 juillet
1967.

%) Adresse actuelle: Departement of Physics, University of Virginia, Charlottesville, Va. U.S.A.
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bution de double couche. Le cinquiéme énonce les hypothéses physiques fondamen-
tales et le sixieme en déduit les conditions d’équilibre. Un analyse partielle des résul-
tats est entreprise.

Quelques mots s'imposent au sujet des notations et conventions adoptées. Le
domaine des indices latins est {7, 2, 3}; celui des indices grecs est {7, 2}; une virgule
désigne la dérivée covariante et la convention sommatoire d’Einstein est partout
respectée. En général nous supposons bijectives et suffisamment réguliéres (en général
de classe C,) les applications qui interviennent, sauf sur un nombre fini de surfaces,
lignes ou points isolés. Une application constante sur un domaine est parfois appelée
un champ homogéne. Le bord (frontiére) d’'un domaine est désigné par 0 et le signe
d’identité, =, exprime toujours une définition pour le nouveau symbole apparaissant a
sa droite. Enfin, pour un étre mathématique & deux indices 7;;, est employée la
décomposition en partie symétrique et antisymétrique:

Ly = Tum + T[«;k]- (1.1)

7

2. Rappels d’analyse tensoriel

Le but de ce chapitre est de rappeler un certain nombre de résultats classiques[2, 3]
de 1’analyse tensorielle et de la géométrie différentielle des surfaces plongées dans E3,
résultats dont il est fait un usage constant par la suite. En particulier, suivant le
lumineux exposé de SEDOV [4], une large place est réservée aux vecteurs réciproques,
qui permettent de donner aux formules une forme symétrique bien commode.

Soit I'espace euclidien réel E3, partout rapporté a un repere orthonormé, (repere
absolu du laboratoire), dont les vecteurs-lieu sont désignés par y. Considérons le
changement de coordonnées défini par les formules

& = y(xl’ %2, x3) = y(%) (21)
et les nouveaux vecteurs de base (repére du cristal)
gi(x) = 0;y(), (2.2)
auxquels est associée la métrique
8ir = 8i 8- (2.3)
Si g'* est la matrice inverse de (2.3), on définit les vecteurs réciproques
g=¢"g (2.4)
qui satisfont aux relations
g£8=06 £=37"gxea, (2.5)

ou, g étant le déterminant associé a la matrice (2.3) et % I'indicateur de la permuta-

) 123
tion iin) le tenseur volume:
J 7fih = gV gk, (2.6)

Dr’ailleurs, I'élément de volume s’écrit

AV = ddy = gl g3y, (2.7)
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Un champ vectoriel admet les décompositions
v=1'g, =uv,g", (2.8)
dont les coefficients (composantes contravariantes et covariantes) sont donnés par
v =v g*, o =ng. . (2.9)

La dérivation des vecteurs de base (2.2) définit les symboles de Christoffel (symé-
triques)

0,8; = I'; g =1 g, (2.10)
que 'on sait évaluer. En particulier,
Okgij = Fijk T+ Loy, (2.11)
g2 0, 1% = I}y, (2.12)
0,8 =—TI}g. (2.13)
I1 en résulte que
o= (0 + T v) g =0 ,8=n0,8. (2.14)

Une surface X, variété 4 deux dimensions plongée dans E3, est définie par I'appli-
cation
y = y(x* (', %)) = y(x(w)). (2.15)
Avec la notation habituelle
0% =4 (2.16)

les vecteurs de base induits sur 2’ (repére de la superstructure cristalline de la surface)
s'écrivent
a,(x(1) = 0,y = %) &, (2.17)
et la métrique induite
By ™= B, 0= giz, 5 . (2.18)

Si a et a*f sont le déterminant et la matrice inverse associés a la matrice (2.18), la
normale unitaire en un point régulier de 2 et I’élément d’aire orientée sont

n=av'la xa,, dA = a2 2y n. (2.19)

La recherche des vecteurs réciproques du repére spatial (a,, @,, n) montre [5] que n est
réciproque a lui-méme et que les vecteurs

a* = a*f ag (2.20)
satisfont a la relation
a*=n*axn, (2.21)
ou
n*F = g~V g2B, (2.22)

12
&*f ¢tant U'indicateur de la permutation (oc ﬁ) ;

19
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Les relations suivantes sont encore vraies:
o
a*az=190; mna,=na*=0, nn=1. (2.23)

Un champ vectoriel défini sur 2’ admet la décomposition normale et tangentielle
suilvante

v=v'a,+tvn=yv,a8*+vn, (2.24)
dont les coefficients sont donnés par

[«

v=va* v ,=va v=vn. (2.25)

Pour la suite il sera utile d'introduire les symboles
a* g, =a*fg, xf; = x7. (2.26)

La dérivation des vecteurs de base (2.17) définit les symboles de Christoffel de la
surface ainsi que la deuxieme forme quadratique fondamentale (les vecteurs dérivés
ne sont généralement pas tangents a 2):

11 en découle que
0aap=Lups+ Lgur (2.28)
a 120,02 =T1%,, (2.29)

et des formules (2.23) que
Ogn = —bg, a*, 00 =—Iga" +a*"b,n. (2.30)
Les formules (2.27) et (2.30) permettent de dériver un champ vectoriel du type (2.24):
Oﬁv — (v’l,ﬁ —patt bﬁ.u) a, + (bﬁa v* 4 Oﬁv) n
= (v, 5— v bg;) a + (bg2 Aty 4 0pv) 1. (2.31)

Par ailleurs, grice a un célebre lemme dit 4 Hadamard (réf. [6], p. 492) relatif a la
dérivation de fonctions au voisinage d'une surface de discontinuité et sur laquelle les
fonctions ne sont peut-étre méme pas définies, les vecteurs (2.2), (2.4), (2.8) et la
métrique (2.3) peuvent étre dérivés par rapport aux coordonnées de la surface; par
exemple:

0oi{6(1)) = I (1)) 5 (1) &;((w)). (2.32)
Pour un champ vectoriel défini sur X,
o= (0 + ng- v ak) g, = v",a g (2.33)
et si ce champ est défini ailleurs que sur X
0,0 =, %, & = . & (2.34)

Enfin, il faut noter le théoréme de Ricci: les dérivées covariantes des tenseurs mé-
triques sont identiquement nulles.



Vol. 41, 1968 Equilibre mécanique et de forme de petits cristaux 291

3. Déplacements et déformations

Ce chapitre suit 'approche traditionnelle du probléme de la déformation des
milieux continus en faisant usage d'un champ de vecteurs déplacement. Cette méthode
tend a étre supplantée aujourd’hui [5-7] par celle des gradients de déformation,
approche avantageuse lorsqu’on désire étudier théoriquement le comportement de
matériaux divers (hypo- et hyper-élastiques, viscoélastiques, phénomenes de trainage
et d’hystérése), mais elle peut masquer le contenu géométrique simple des phéno-
meénes élastiqgues qui sont étudiés ici. De plus, la formulation lagrangienne ou en
coordonnées immergées admet une interprétation physique simple et commode.

Suivant SOKOLNIKOFF [3], considérons un domaine D < E3 et une famille mono-
paramétrique d’applications définies sur D et a valeurs dans E3:

ou 0 = 0, respectivement 7, spécifient 1’état non déformé, respectivement déformé
(d’ailleurs arbitraires). I s’agit d'une description lagrangienne, les points de D portant
toujours la méme étiquette (x) au cours de la déformation (3.1). Définissons 1’opéra-

teur de variation [22]

0
I’évaluation étant faite en 6 = 1. Celui-ci commute évidemment avec les variables
indépendantes. Définissons aussi le champ de vecteurs déplacement:

d’ou
0,5 = gi(», 6) — g, 0), (3.4)
05 = 00 0 y = 68(x) gi(x, 1). (3.5)

Les grandeurs géométriques introduites au chapitre précédent sont maintenant
fonction de 0 et sont susceptibles d’étre variées selon la regle (3.2):

5g; =000 0,5 = 0,06 — 62, g, (3.6)
8¢y = O, , + 08, ., (3.7)

g1 5gl2 = o8 = div 0 = ¢ 0g,, (3.8)
og'= —o& . g". (3.9)

L’interprétation des composantes du tenseur de déformation
2 e;3(x, 0) = g, 0) — g;:(x, 0) (3.10)

est connue, ainsi que son expression non-linéaire en fonction du vecteur déplacement
&. Mais, de (3.10) et (3.7) nous avons:

2 662"‘,‘ = 6gik = 2 55(1,]3) . (3.1].)
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Considérons maintenant une surface 2, frontiére (ou une partie de celle-ci) du
domaine D. Nous exigeons que la famille d’applications (3.1) soient définies non
seulement dans D, mais aussi sur 2. De plus, nous exigeons qu’elles soient, sur D U 2,
de classe C; au moins afin d’éviter que le champ de déplacements qui sera défini ne
soit discontinu sur 2. Le contraire signifierait que la surface se décolle du volume; le
formalisme exclut donc la formation de cavités. Soit la famille d’applications définies

sur’:

y = y(x(u), 0). (3.12)
Définissions aussi le champ de vecteurs déplacement:
E(x(), 0) = y(x(u), 6) — y(x(u), 0), (3.13)
d’otr
0,8 = a,(x(w), ) — a,(x(w), 0). (3.14)

Il est maintenant essentiel de remarquer que
oxt =0, (3.15)

car la fonction x(u#) ne contient pas la variable variationnelle §; nous en verrons une
interprétation physique. La variation des grandeurs géométriques définies sur 2’ est
aisée. De (2.17), (3.15), (3.6) et (2.34)

da, =08 , g,=0,0§. (3.16)
De (2.18), (2.31) et (3.15)
d’ol
a~V? §al? = 65*  — 2 H 66 = 1 a*P da,, (3.18)

2H = a*P b, 5 étant la courbure moyenne [8, 9]. Des conditions (2.23), il est possible
de calculer

on = —(no,o§) a*, (3.19)
da* = —(a* 0,08) @’ + a*’(n 0,08) n. (3.20)

Définissons alors un tenseur des déformations induit sur 2';

2e,4(x(u), 0) = a,4fx(u), 0) — a,4(x(u),0), (3.21)
qui, grace a (2.18) et (3.21) obéit aux relations:
Byg= Gy Xo Xy, 208,5=0a,,. (3.22)

En réalité, ¢, s pourrait ne pas étre une spécification suffisante de la déformation de &
étant donné qu’il ne décrit que la déformation dans le plan tangent. Or, il est possible
de calculer la variation de la seconde forme quadratique et des symboles de Christoffel.
Par exemple:

0b, 5= 1" 08, g {3.23)

Ces variations sont liées aux dérivées secondes du vecteur déplacement, et nous verrons
que ces derniéres n’apparaitront pas dans le travail virtuel des forces, car les équations
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différentielles d’équilibre sont du premier ordre. Cette «justification» est analogue &
celles qui sont faites dans la théorie des coques et des membranes élastiques [5].

A part les déplacements virtuels 6&, la surface X' peut se déplacer dans 'espace
indépendamment d’une pure déformation du cristal sous-jacent. Il s’agit 1a d’effets
cinétiques de croissance et de dissolution: diffusion de surface et de volume, évapora-
tion et condensation. La surface ne doit plus étre considérée comme étant constituée
d’atomes marqués, mais comme une structure géométrique susceptible de se déplacer
dans I'espace, non seulement a cause des champs de déformation, mais aussi grace aux
effets cinétiques mentionnés qui peuvent provoquer une variation de matiere con-
tenue dans D. Ces considérations seront reprises au chapitre cinq et pour le moment
il suffit de considérer la famille d’applications

y = y(x(u, 0)), (3.24)

le changement de coordonnées y(x), (formule 2.1), étant indépendant de 6. Ce n’est
rien d’autre qu'une description cinématique de X' se déplagant dans E® rapporté a un
systeme de coordonnées curvilignes (x). Une telle description est depuis longtemps
courante dans 1’étude des surfaces de discontinuité et ondes de choc [6, 10], le para-
meétre § étant habituellement le temps. La description est aussi lagrangienne, I'éti-
quette (%) étant invariable au cours du mouvement. Nous définissons le champ des
déplacements virtuels (que I'on pourrait appeler déplacements cinétiques):

Ox(x(u)) = 06—y = 60 0,y - x' = 8 (u) g(x(u, 1) (3.25)
et nous apprécions la différence avec la définition (3.13) ou
08" = 8&(x(w)).

La variation des grandeurs géométriques se fait aisément:

o0g;= I, g ox", 0gi= (Lijn+ i) ox*, etc. (3.26)
Mais, grace a la définition (3.25)
0, = 80 0 0,4 = 0, 87, (3.27)
de sorte que
da, = ox' g, + «* 8g;, = 0, 0x. (3.28)

Cette formule a la méme forme que (3.16), mais tandis qu’alors toute la variation
était portée par les vecteurs de base g;, nous avons ici une contribution due a «%.
Il en résulte que les formules (3.17-20) sont formellement les mémes en y substituant
dx pour 0§.

Enfin, le mouvement complet de X' est représentable par la famille d’applications

y = y(x(u, 0), 6), (3.29)
de sorte que

Oy = 0§ + ox. (3.30)

Ce n’est rien d’autre qu'une loi de «composition de vitesses»; 6§ étant une «vitesse
d’entrainement» du réseau curviligne (x) et dx une «vitesse relative» par rapport a
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celui-ci. A nouveau, les formules (3.17-20) se transcrivent formellement en y rem-
plagant d§ par 6§ + dx. Les autres formules relatives aux grandeurs définies sur D se
transcrivent en additionnant les diverses contributions déja calculées.

4. Forces et énergie potentielle mécanique

Dorénavant, les régions D U X' sont occupées par une matiére possédant des pro-
priétés élastiques anisotropes. Les tensions mécaniques de contact en des points inté-
rieurs sont décrites par des tenseurs des tensions appropriés. Ceux-ci obéissent a des
équations différentielles d’équilibre et il est facile de trouver 1'expression du travail
mécanique lors d'une déformation virtuelle. Cette expression est une généralisation du
résultat rapporté par DEFAY et PRIGOGINE [12].

En tout point de D, les forces intérieures de contact par unité de surface sont
représentables par la forme linéaire [3, 4, 6]

t=t*n,, (4.1)

ou tdA est la force agissant sur I'élément de surface dA4, orienté par sa normale uni-
taire n, qui sera toujours extérieure si la surface est fermée. Par convention, ¢ repré-
sente I'action de la matiére du cété n positif sur celle du coté n négatif. Si f est la
densité de force extérieure et c'* la densité de couple, les équations d’équilibre
sont [3,4,6]:

.+ =0, (4.2)

2 iR — ik (4.3)

De fagon analogue, dans X, les forces intérieures de contact peuvent étre repré-
sentées par un tenseur [8, 9]. Les équations qui vont suivre sont formellement ana-
logues a celles qui apparaissent dans les théories, dites directes, des coques et mem-
branes élastiques (réf. [6], p. 556). Toutefois, l'interprétation physique en est com-
pletement différente. Soient une ligne arbitraire £ tracée sur X' et » le vecteur
unitaire tangent & 2, perpendiculaire a £, orienté vers I'extérieur si £ est fermée.
Soit ods la force (non nécessairement tangente a X) agissant sur 1'élément linéaire ds
de L. Par convention, 0 représente I'action de la matiére (attribuée & 2) du coté »
positif sur celle du c6té v négatif.

En exprimant I'équilibre d'un triangle curviligne infinitésimal sur X, nous voy-
ons [6, 8, 9] que ces forces admettent la décomposition:

o' = (0 n* + 0*P i) vy = 0P vy = " v, = 6P . (4.4)

Si f, est la densité de force extérieure des éléments de masse de X' et ¢’ la densité de
couple sur X, nous savons aussi [6, 8, 9] que les équations d’équilibre sont:

o g+ fy + 1=0, (4.5)
2 058 == gf, (4.6)

Le crochet [¢] désigne la discontinuité, g, — ¢,, d'une grandeur ¢ au travers de 2 et
par convention, les indices 1 et 2 désignent les deux cotés de 2, la normale n étant
dirigée du coté 1 vers le coté 2. Les équations (4.5-6) forment une partie des conditions
aux limites pour la résolution du systéme (4.2-3). Dans les théories directes de struc-
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tures élastiques a4 deux dimensions, il est possible d’inclure des «couples internes» par
unité de ligne [6] qui compliquent les formules (4.6). Ceci est nécessaire pour tenir
compte de la rigidité, effet qui ne sera pas considéré ici.

L’équation (4.3) montre que #* est symétrique si et seulement si ¢** est nul. Un
résultat analogue peutétredémontrépourletenseur ¢**. Spécifiquement, PALTENGHI[13]
a montré que si ¢, désigne le vecteur adjoint [14] du tenseur antisymétrique c'f, les
relations suivantes sont vraies:

20 = ¢, nn*?, (4.7)

o’ =c,a,n*. (4.8)

Elles complétent un résultat partiel trouvé antérieurement [11] et permettent d’enon-
cer: le tenseur ¢*? est symétrique et @ n’a pas de composante normale si et seulement
si ¢t est nul.

Considérons une surface 2 de séparation de deux milieux élastiques et isolons une
région arbitraire telle que celle représentée sur la figure 1.

Figure 1

Schéma des domaines et des forces.

Le travail virtuel des forces appliquées est par définition:

W= [togda+ [t,06d4 + $ aogds+ [foEav + [ f,08aV
Julieds [aass poturs [naars |
+ f £, 0844 + f ¢, 60 dV + fcz S dV + f c,d0dd, (4.9
& Di D, z

les dw étant les rotations infinitésimales nécessaires pour faire travailler les couples.
Grace aux décompositions (4.1), (4.4), aux formules de la divergence a deux et trois
dimensions [2, 3] et aux équations d’équilibre (4.2), (4.5), nous obtenons:

SW = f (4 0, , + ¢, 6) dV -+ f (EF 08, , + ¢, 60) dV + f (0 88, ; + ¢, 0w) dA .
D, D, z

Or, d’aprés (3.11) et (4.3)
17 88, = t'9 deyy + 5 6 08 1y,
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dont le deuxiéme terme du membre de droite compense exactement ¢ - dw (voir
I'appendice A.3). De méme, d’aprés (3.17), (3.22),, (4.7) et (4.8),

a"'gﬁéi’ﬁ = (0" n* + 0*P &%) 0%, = (6P n + 0*P a,) 0,08
= 0.(05.3) 66(1.3 + % (CA n) naﬁ(acx 0,3 6§) e (CA aoa) ﬂﬁa(n Oﬁ 5§) ’

dont les deux derniers termes compensent exactement ¢, - dw (voir A.5).
Ainsi:

SW — ftiak) Sk AV 1 /'t(zz'k) St AV 4 fg(afﬁ) de,pdd, (4.10)
D, D, =

qui est une forme linéaire en les composantes des tenseurs de déformation, ce qui était
prévisible a priori étant donné que les équations d’équilibre expriment I’équilibre de
translation et de rotation. Cette formule est une généralisation directe de celles utili-
sées en thermodynamique [1, 12] puisque, pour un régime homogene et isotrope de
forces

th— —pg*, P =ga*f, (petoc>0), (4.11)

et grace aux relations (3.8), (3.18), il vient:

OW = —p, 8V, — p, 6V, + 6 84. (4.12)

5. Hypothéses physiques fondamentales

Par souci de concision, considérons un cristal & un seul constituant; la généralisa-
tion a plusieurs ne modifierait pas I’argumentation. Celui-ci est supposé contenu dans
une enceinte de volume fini et de ce fait est entouré de sa vapeur. Il est aussi supposé
quasi-ideal, c’est a dire que les seuls défauts de structure envisagés sont des lacunes et
des interstitiels. Le but de ce chapitre est de formuler un ensemble d’hypothéses
permettant la description macroscopique de 1'équilibre des trois phases en présence,
cristal, surface cristalline et vapeur.

Attachons-nous, tout d’abord, a I'interprétation physique des diverses formules
tigurant dans les chapitres précédents. Les applications (3.1) et (3.29) sont schémati-
sées dans la figure 2, ol nous considérons le cas d’une surface cristalline 2’ fermée, le
cristal occupant tout le domaine D, . La figure 1 représente le cas d'une partie ouverte
de 2 et les domaines D, et D, s’étendant dans le cristal et sa vapeur.

uZ

XS

Figure 2

Schéma des applications.
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Le développement de Taylor des applications (3.1) et (3.29), arrété au premier
ordre, fournit des applications linéaires, dites applications différentielles. Ces dernieres
appliquent dx’ = 1 et du* = 1 sur g, et a,. Nous choisissons maintenant les g; de sorte
qu'’ils représentent les vecteurs de base primitifs du réseau de Bravais du cristal. C'est
icl que nous supposons un cristal libre de dislocations ou de plus graves défauts, car on
sait [15] que la description de ces derniers nécessite I'emploi de symboles de Christoffel
non-symeétriques (connexions avec torsion). De méme, les a, représentent la super-
structure [35] cristalline de la surface. Nous voyons ainsi que les points a coordonnées
entieres de D,, respectivement D, , ont pour image les nceuds du réseau de Bravais
de D,, respectivement ceux de la superstructure cristalline de 2. II suit que g*/* et
a'® sont les volumes des mailles de Bravais et de surface, que le volume de D, et
I'aire de D, sont des mesures du nombre de nceuds (ou de cellules primitives) de ces
réseaux. Nous voyons immédiatement que le nombre de nceuds de 2 est supposé
constant, (D, a un bord fixe), tandis que x (#, 0) peut entrainer une variation du
nombre de nceuds du réseau de Bravais. Ainsi, le formalisme peut décrire une variation
du nombre de sites et le déplacement concomitant de X grice a des flux de matiere
(ou lacunes), ce qui traduit une croissance ou une dissolution du cristal. L’état
non-déformé est arbitraire, mais l'interprétation précédente du systéme de coordon-
nées (x), suggére que celui-ci soit tel, que les lignes coordonnées soient rectilignes et que
la métrique g;; (x, 0), constante, soit celle du type cristallographique. Dans un réseau
rectiligne, I'orientation cristallographique est décrite par les indices de Miller. Il est
clair qu’il faut trouver une mesure de cette orientation, méme si le réseau est déformé.
Or, d’apres (3.15), les grandeurs xi, composantes contravariantes des vecteurs @,
dans la base g; du réseau de Bravais sont invariantes par la déformation. Elles spéci-
fient entierement les plans tangents et sont donc des mesures bien adaptées de I'orien-
tation cristallographique. Remarquons qu’elles sont du type des «gradients de défor-
mation».

La théorie thermodynamique des surfaces repose sur le modéle proposé par
G1BBs [1], dans lequel il est supposé que:

a) toute grandeur extensive, (), (grandeur relative au systéme entier), peut étre
décomposée en la somme de trois contributions:

Q:(,)l+Qz+QA’ (5-1)

attribuées, respectivement, & D, (cristal), D, (vapeur) et & 2" (surface cristalline). En
tant que grandeurs extensives, ces trois contributions sont exprimables comme inté-
grales de densités.

b) les relations entre grandeurs ufensives (champs définis sur D,, D,, 2), vraies
pour les phases isolées, restent vraies en tout point intérieur de ces domaines.

Cette formulation [11], 1égérement différente de celle de GIBBs, évite la supposition
de phases homogénes a priori, ce qui serait particulierement génant dans une discussion
de phénomenes élastiques.

I1 faut maintenant discuter la fagon dont il convient d’exprimer les trois contribu-
tions (5.1); cela revient & savoir quel est le systéme thermodynamique infinitésimal
qui est considéré [6]. La description du gaz dans sa phase hydrodynamique est régie
par I'équation de BoLTzMANN [16-18]. L’étude de cette équation montre que les gran-
deurs macroscopiques sont représentables par des moyennes sur la fonction de distri-
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bution monoparticulaire f (r, », £). Il suit que si g, est la densité numérique des parti-
cules, il est raisonnable de considérer une représentation de Q, de la forme:

0a= [0al9) gal5) @y 52)

Les grandeurs intensives g, sont donc définies par particule, (ou par unité de masse),
qui joue le role de systéme thermodynamique élémentaire pour le gaz. Une telle
représentation est souvent utilisée pour les solides, mais alors elle masque compléte-
ment la structure cristalline et les défauts de structure concomitants. Il semble préfé-
rable de choisir la mazille primitive comme systéme thermodynamique élémentaire.
Etant donné la signification de g2 et a2, leurs inverses sont les densités numériques
des nceuds (ou sites, pour des solides & un constituant) des réseaux. Ainsi, nous
écrirons:

Q)= Jfg‘l 1 d%ﬁ—_/élx 0)d (5.3}
D,

Qu= [a"1q,dAd = [ q,(u, ) d*u. (5.4)
/ D{

Ce point de vue n’est pas entiérement nouveau, puisque CABRERA [19, 20] a utilisé
implicitement une représentation de ce type en coordonnées cartésiennes pour discuter
les propriétés de 1'énergie de surface. Dans ce qui suit, les diverses grandeurs exten-
sives () seront des scalaires. Or dV = d3y et dA4 sont de vrais scalaires, mais les multi-
vecteurs d3x et d%u sont des capacités scalaires [32], de sorte que ¢, est un vrai scalaire
et ¢,, ¢4 ont le caractere tensoriel de densités scalaires.

Le systéme physique est supposé décrit par les grandeurs extensives suivantes:
énergies internes U (densités #), entropies S (densités s) et nombres de particules N
(densités ) de I'espéce chimique envisagée. Pour simplifier I'exposé, mais ce n’est pas
essentiel, nous supposons le systéme dans un champ extérieur nul et au repos dans le
repere absolu du laboratoire. De simples modifications des calculs qui vont suivre per-
mettent de lever ces restrictions. En effet, il est connu [23] qu’a I'équilibre, les seuls
mouvements d’ensemble possibles sont des mouvements hélicoidaux uniformes et que
le champ extérieur modifie les équations mécaniquesd’équilibre et le potentiel chimique
par I'adjonction d'un second membre. Quant aux mouvements de diffusion, il s’agit de
phénomeénes ¢rréversibles donnant lieu & une source d’entropie et qui ne seront pas
discutés ici (voir réf. [18] et [11]. Ainsi le systéme total est bien caractérisé par une
énergie interne, puisqu’il ne posséde, ni énergies cinétiques, ni énergie potentielle.
Contrairement a la plupart des exposés de la mécanique du continu, nous spécifions le
nombre de particules au lieu de la masse. Ceci a I'avantage de permettre une descrip-
tion des lacunes, quasi-particules sans masse et de rapprocher 'exposé de ceux de la
mécanique statistique o1 la méme image discréte est utilisée. Pour le cristal et sa sur-
face, is est évident que le nombre de sites moins le nombre d’atomes est une mesure du
nombre de défauts. Les densités (par nceud du réseau) de ces défauts, i et 'f?,
positives s’il s’agit de lacunes, négatives dans le cas des interstitiels, obéissent aux re-
lations:

o to?=1, o,+09=1. (5.5)
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Nous voyons encore ici 'avantage du choix de la cellule primitive en tant que systéme
thermodynamique élémentaire.

Le Second Principe exprime que 1'état d’équilibre thermodynamique réalise un
maximum de l'entropie totale du systéme sous les contraintes suivantes: 1'énergie E
totale et le nombre N total de particules est constant. Les conditions suffisantes font
partie de I'étude de la stabilité de I’équilibre, étude qui dépasse le cadre de ce travail;
nous nous restreignons aux conditions nécessaires livrées par 1'exigence de la stationa-
rité. Alors, si T et u sont deux multiplicateurs de Lagrange (indépendants du lieu),
le principe variationnel s’écrit:

SE—To8S—udN=0. (5.6)

L’équation précédente montre la nécessité de trouver des formules de variation
pour les intégrales (5.2-4). Tout d’abord, pour le solide, puisque le bord 0D, est
variable, la variation de Q, peut étre déduite du résultat classique [21, 22]:

00, _ 0q, 3 1% ¥3) g2
28 ‘foe d"*S{;%](ﬂ;‘@)d“’
2D,

x

ou J est le jacobien de la transformation x (%, ). En calculant le produit mixte
(ay, a,, 6x), il est facile de voir que J60 = (a/g)V? n - x et nous obtenons alors:

80, = fg‘”z Oqy d%y + 9§g—”2 0% dA. (5-7)
z

D,

Le cas de la surface est plus simple puisque 0D, était supposé fixe:

0Q, = féqA d?u = §a—1’2 dq, d4 . (5.8)
Du

z

Enfin, pour la vapeur, nous transformons les variables eulériennes y en des variables
lagrangiennes par l'introduction d’une famille d’applications y" =y’ (y, ), avec la
condition initiale ¥’ (y, 1) = y. La formule (5.2) obtenue en y remplagant y par y’ est
alors fonction de 6. Avec la notation
oy’
Oy = 00 00 [g-1’
nous obtenons [22]:

0Q, = f {02095 + g2 (005 + 0o div dy)} a3y . (5.9)
D,

Nous allons maintenant appliquer le principe variationnel (5.6) a une région telle
que celle représentée sur la figure 1, ot la ligne £ entoure un petit domaine 2. Ceci
traduit le postulat souvent discuté [24—26] de I’équilibre Jocal de la surface, 1'équilibre
total n'étant pas nécessairement réalisé. Chaque élément de surface est en équilibre
avec les phases adjacentes, la région D, U D, U &' étant isolée au sens de la thermo-
dynamique. Ainsi, pour ce sous-systéme isolé, §E contient lesdU et en outreles travaux
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virtuels de forces de liaison t,, t,, 0, nécessaires pour l'isoler mécaniquement. Grice a
(5.1-4) et (5.7-9), la condition (5.6) s’écrit:

0= [ oo (61 — T 05) + (dga + 02 div 8y) (s — T 55— )}
D,
[ g7 Gy — Tos, — ooy iy + [g7 (uy — T, — oy) ox dA
T P>,
+ fa—liz (Ouy — T ds, — udo,) dA
=

+ ftl S& dA + ftz Sy dA + 95 o 6y ds . (5.10)
Si 5, L

Il est généralement reconnu que la thermodynamique ne livre des résultats que si
nous sommes en mesure de formuler des hypothéses physiques décrivant le comporte-
ment de la substance envisagée. D’aprés I'hypothese fondamentale b), il s’agit de
chercher les relations qui peuvent exister entre les champs définis jusqu’ici.

Le cas du gaz est le plus facile 4 justifier, car nous savons que dans la «premiere
approximation d’Enskog» [17, 18], la thermodynamique dans la phase hydrodyna-
mique est justifiée. En particulier, on montre qu’il existe une relation fonctionnelle

tg = Uy(Sz, 1/00) , (5.11)

dont la différentielle définit la température 7T, et la pression p dans le gaz:

Le potentiel chimique n’apparait pas car u, est défini par particule. (Voir toutefois
I'appendice B).

Pour le solide cristallin, nous nous inspirons de 'expression (4.10) du travail me-
canique et postulons une relation fonctionnelle de la forme:

Uy = uy(Sy, €1, 01) » (3.13)

de sorte que #; ne dépend de (x) qu'a travers I'argument de (5.13). La différentielle
définit la température T, tensions £##), potentiel chimique y;,:

duy = T, Os; + g2 1% e, + u, Op; - (5.14)

Puisque #, est une densité scalaire, I’adjonction du facteur g!/? est nécessaire pour que
t"% soit un tenseur vrai. Nous constatons que seul un tenseur symétrique est défini par
(5.14), fait bien connu en thermodynamique [6, 7]. Enfin, on appréciera, qu’étant
donné la relation (5.5), u, est le potentiel chimique p,psiance — Basrants -

Le cas de la surface est plus complexe, car, les expériences et les calculs montrent
[30, 31] que 'orientation cristalline est un parameétre crucial. Donc, outre les champs
figurant dans (5.13), (o, étant 'adsorption), il faut considérer la variable d’orienta-
tion % :

Uy =1y (Sy, €upr Q4> X) » (5.15)
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dont la différentielle définit les grandeurs T, ¢'*#, u,, au sujet desquelles nous pou

vons faire les mémes remarques que précédemment. Elle définit aussi la grandeur

conjuguée d x%:

g Y (5.16)
0/".7'& SA: ga ‘31 24

dont il est facile de vérifier le caractére de densité tensorielle, contravariante en les

variables de surface, covariante en celles d’espace. Nous avons alors:

duy =T, s, + a6"“P de,p+ u, do, + X7 64, (5.17)

Les relations (5.11), (5.13) et (5.15) ne sont rien d’autre que des hypothéses
d’équilibre local. Elles expriment le Premier Principe appliqué aux systémes élémen-
taires: les différentielles totales (5.12), (5.14) et (5.17) sont intégrables.

Des relations (5.14) et (5.17) nous pouvons déduire les relations habituelles
tensions-densités d'énergie. Si, par une lettre surlignée nous désignons une densité,
c’est a dire un champ défini par unité de volume ou de surface, les densités d’énergie
sont:

uy =g W2y, wu,=a"12y, (5.18)

et sont de vrais scalaires. En vertu de (5.14), (3.10) et de la régle de dérivation d'un
déterminant par rapport a ses éléments, nous pouvons écrire la suite d’égalités:

Oy Ouy 12 0g - 12 0u, 12 (— ik 0ty )
== — == R — U - = = u S A i)
. Oe;p, o, & 0gip © T8 D, 8 18 0¢; 1
Ainsi
; 0%
t0R) =, g** L 5.19
18 o ogik Si 01 ( )
De facon analogue, nous trouvons aussi:
(@B) _ 75 q2B 4 94 .
o u, a*’ 4 Do |5 0405 (5.20)

Ces formules ont été déja rapportées dans la littérature [20, 24, 25] (du moins en coor-
données cartésiennes) et montrent que les densités d’énergie sont de nature fonda-
mentalement différente des tensions, méme dans un régime isotrope de celles-ci.

6. Les conditions nécessaires d’équilibre thermodynamique

Nous insérons les relations (5.12), (5.14) et (5.17) dans la condition (5.10). Les con-
ditions nécessaires d’équilibre sont alors obtenues en annulant les coefficients des

variations indépendantes. Nous allons esquisser les réductions successives. Coefficients
des ds:

T, = I, =T, = T sur %, dans. ), et 1), . (6.1)

Coefficients de dp, et o, :

py = py = p dans D, et sur 2. (6.2)
Coefficient de dp,:

uy — T sy — 1 + pJoy dans D,. (6.3)
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L’expression résiduelle peut étre transformée par parties comme au chapitre 4.
Rappelons que sur 2 nous avons la relation (3.30) et que la normale y est orientée de
la phase (1) vers la phase (2). En annulant les coefficients de y dans D, U S, et ceux de
0§ ailleurs, il vient:

t,=pnsur S,, (6.4)

i = — 08 g, sur S, (6.5)

o' = —o'* & vgsur L, (6.6)

grad ¢ = 0 dans D,, (6.7)

t® = 0 dans Dy, (6.8)

(0P x) g — pn* — 1% m, = 0 sur X (6.9)

L’expression résiduelle s’écrit alors:

Oﬁfﬁédi+fg‘”2(u1—Tsl—ﬂel)édi+fa—1f2X3‘axgdA+§5aaxds.
& a > L

La troisiéme intégrale va nous fournir une «équation d’Euler» non dégénérée puis-
qu'elle contient effectivement la variation d’'une dérivée premieére. Ainsi qu’il est
facile de s’en convaincre, a=%2 X* §x* est un vecteur contravariant de surface, de sorte
qu’en utilisant (3.27) et (2.29) nous pouvons écrire:

—a ot 0 X2

oL

a P X2 ond, = (a7 X7 0x)

L’expression résiduelle s’'intégre par parties et les coefficients des composantes nor-
males et tangentielles de dx sont:

o;+a X%y =0sur L, (6.10)
P+ u, —Tsy,—po) —aV2u 0 X*=0sur X, (6.11)
aV?xi0, X% =0sur X. (6.12)

Les équations (6.1) expriment [’équilibre thermique: Les températures ont méme
valeur dans les trois phases et leurs gradients sont nuls. Il en est de méme des équa-
tions (6.2) (B. 7), qui expriment I’équilibre chimique. La condition (6.3) est analysée
dans 'appendice B; elle apparait comme une condition d’homogénéité locale. Nous
apprécions le fait qu'il n'y a pas de relation analogue pour D, ou 2, qui eux, peuvent
étre inhomogenes, ce qui est conforme a ce que 'on sait, par exemple, de la densité
d’énergie dans un solide élastique déformé.

Les équations (6.4-6) expriment la troisieme loi de Nowton et que les membres de
droite se comportent comme des forces. Nous constatons que ¢, est une pression et que
o est tangent a 2. Cette dernitére constatation n’a rien d’étonnant, puisque nous
avons vu que les couples n’entraient pas dans le schéma du chapitre 5. Quant aux
équations (6.7-9), il est facile de vérifier qu’elles sont les équations différentielles
d’équilibre a champ extérieur nul (comparer a (4.2) et (4.5)). Elles expriment donc

Véquilibre mécanique.
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Les trois dernieres relations (6.10-12), coefficients de dw, expriment I’équilibre de
croissance et de dissolution. Afin de les analyser, il est commode d’introduire les grands
potentiels qui interviennent dans la fonction de partition des grands ensembles
canoniques:

Y= — 1151 — 01, (6.13)
Yo =ty — T5 S5 — Ug, (6.14)
Ya=tg — TSy — 04, (6.15)
dont les différentielles sont :
Oy = — ;0T — 0y Oy + g 1% de,y,, (6.16)
Oy, = — 55015 — O — P 0 10, (6.17)
Oy = —5, 0T — 04 0p, + a'® 6*P deyp+ X7 01t (6.18)

D’apres (B.6) nous voyons que:
022 = —1P. (6.19)

Afin de retrouver certaines relations usuelles, nous définissons le grand potentiel par
unité de surface, noté y [25]:

po=a*yp, =a’?y (6.20)

et constatons qu’a température, potentiel chimique et orientation constantes, les for-
mules (5.19-20) s’expriment formellement de la méme fagon en y substituant p, et y
pour u, et u,.

Nous allons maintenant esquisser quelques calculs intermédiaires. Tout d’abord,
en vertu de (6.19), (6.13), (6.1-2), les deux premiers termes de (6.11) ne sont autre que
la discontinuité ¥, — 9, des grands potentiels volumiques au travers de 2. Ensuite,
de (2.18) et (2.26) nous avons:

~12 Oal’.2 — 2, (6.21)
0% |2ap
de sorte que de (6.20):
oy 1/2 ( o oy )

X = "4 = : —1. 6.22
Y 04k [Ta,ng,eqp ol Ul 04, (6.2

Grace a (2.30), et (2.10), nous évaluons:
0 4F = —I'§, «} + 2H m, + I'}, 2, %7, (6.23)

d’ol:

a9 X% — I, w;%_ a0y + 0, 4y @Hn + T2 x%)  (6.24)

En insérant (6.22) et (6.24) dans (6.10-12) il vient:

—o=yv+ c)yi v, g sur C, (6.25)
xa
—[pl=y2H+ %i(y Iixr«h+ T8, w 4+ 9 d ) dans 2, (6.26)
0%, & Oxl
0y + 4 (y I« ok + T, ::7: + 0, %—) = 0 dans 2. (6.27)
xct x{l
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Nous sommes maintenant en mesure d’analyser les trois derniéres relations. La
premiere, (6.25), montre que le membre de droite se comporte comme une force sur L.
Le probleme est généralisable & plusieurs arétes, par exemple a l'intersection de joints
de grains et livre une formule due &8 HERRING [24] qui a relevé que le deuxiéme terme
du membre de droite agit comme un couple. Les deux autres, (6.26-27), sont des géné-
ralisations de formules du type de «Gibbs-Thomson», c’est & dire l'influence de la
courbure et de I'orientation sur les potentiels chimiques, pressions de vapeur, chaleurs
de vaporisation, etc. Nous constatons que la déformation est couplée a des effets
d’orientation au travers les symboles de Christoffel, non-nuls lorsque g;;, donc ¢;; ne
sont pas des champs constants. Comme cas particulier, nous allons retrouver une
deuxiéme formule due & HERRING [24] pour le potentiel chimique. Les hypothéses
nécessaires a sa déduction sont les suivantes:

a) considérons des processus d qui varient l'orientation, sans pour autant induire
une déformation ni une variation de température. Le choix du systéme de coordonnées
étant alors indifférent, nous imposons I, = 0.

b) la densité p, est constante dans ce processus.

c) toutes choses étant égales par ailleurs, le potentiel  ne dépend explicitement
que de l'orientation et non du point courant (#). En d’autres termes, pour une orienta-
tion donnée, y est un champ constant.

Des hypothéses a), b) et de (6.16), il découle que

Y= —01 (1 — o), (6.28)

ol u, est une constante d’intégration, représentant la valeur de g, pour un interface
plan. Les relations (6.26-27) deviennent alors:

; 0 ov
g0y (— o) =—y2H —n' (Fﬂﬁa y@ + 0, —}z) + 2, (6.29)
Oxy 0%y
dy oAl - oy oy
¥ e o (D9, -2 ) =0. 6.30
0" ouﬂ+x"*( “ox;+ “ax;) el

Afin d’en donner une interprétation géométrique, il convient d’introduire un repére
local placé au point courant M € 2. Celui-ci est choisi orthonormé, les deux premiers
vecteurs de base, e,, e,, sont tangents aux lignes de courbure en M, le troisiéme est
naturellement la normale n. Nous appelons (%, y, z) les coordonnées d'un point quel-
conque de E? et nous donnons une représentation de 2, au voisinage de M, sous la
forme cartésienne, z = z (¥, y).

Avec les notations usuelles:

0z 02z 0%z 02z

. 0z _ 0z y = 0% s : 0%z
P=ges T="p» F=pgan B= g =55,

les formules du chapitre 2 permettent de calculer les grandeurs:

‘11:(1»0'?)’ 02:(0, I’Q)’ n:a_lm(_P»_q’ 1)’

_(1+P* Py (TS
a“r( pg 1) P T o)

I'g,=a1(pr+qs,ps+qt).
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En M, nous avons évidemment: p = ¢ = b;, = 0. Aussi, les coubures principales,
valeurs propres de b, par rapport a 4,4, y sont données par: 1/R, = (7, t). D’apres
l’hypothése c), v ne dépend, dans ce systéme de coordonnées, que des pentes indépen-
dantes x = p et x3 = ¢. En remplacant les dérivations par rapport & 4 et ¢ par des
dérivations selon les angles 0, formés par n(}M) et les normales le long des sections
principales, x = 0 et ¥ = 0, la condition (6.29) devient:

e 0y (o —p) = =3 7 v+ g;’é) +p. (6.31)

=12

C’est la formule de Herring, car p; = 1/£, ot Q est le volume atomique. Les signes du
membre de droite proviennent de la convention généralement admise en géométrie
différentielle: les courbures sont négatives pour des indicatrices elliptiques du tenseur
b,p. La condition (6.30) se réduit a:

oy 1 gy 1

—Jp—TlﬁO, o F == [ (6.32)
Ceci est conforme a ce que nous savons du diagramme polaire de y: lorsque 1'élément
de surface en M est plan, (les courbures sont alors nulles), la dérivée de ¢ par rapport a
I'orientation est indéterminée (cusp), tandis que pour des courbures non-nulles, y est
stationnaire par rapport aux variations de I'orientation.

Figure 3

Systéme de coordonnées locales.

Au cas ou un calcul, tenant compte des effets élastiques de la surface, était réali-
sable, il faudrait prévoir une complication certaine des formules (6.31-32), car y entre-
raient les valeurs des symboles de Christoffel ainsi que les premieres dérivées de y par
rapport a l'orientation. Aussi, I'hypothése c) serait insoutenable, car les effets élas-
tiques rendraient y non-constant. Toutefois la formule de Herring semble étre en
accord avec les expériences de frittage et de-thermal eich. [26].

Jusqu'ici, seul I'équilibre local du systéme a été envisagé. Dans I’hypothése de
I’équilibre total de fout le cristal avec sa vapeur, D; est occupé par le cristal entier, D,
par toute sa vapeur, (D; < D,) et 2 = 0D, est une surface fermée. Les conditions

20
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d’équilibre précédentes sont alors partout valables. En particulier, g, est constant et
(6.31) est une équation aux dérivées partielles donnant la forme d’équilibre du cristal
lorsque les effets élastiques sont négligés. Cette forme, dite forme de Wulff, est construite a
partir du diagramme polaire de y [23, 25]. Réciproquement, la forme d’équilibre offre
des renseignements utiles sur la dépendance en orientation de y [33]. CHERNOV [27] et
JoHNsoN [28] ont montré que (6.31) est équivalente a la construction de Wulff. La
stabilité de ’équilibre a été étudiée par JOHNSON et al [29]. Des calculs détailléspourla
dépendance en orientation de y ont été entrepris, entre autres, par Lanpauv [30],
HERRING [31] et MACKENZIE et al [34].

7. Conclusions

Résumons brievement les points essentiels de cette analyse. Nous avons reformulé
le modéle-surface de Gibbs afin de tenir compte des déformations et des tensions, ce
que CABRERA [20] a appelé le probleme de I’équilibre microscopique. Cette formulation
est essentiellement invariante puisque I’analyse tensorielle y joue le réle qui lui revient.
Nous apprécions le fait qu'aucune hypothése d’homogénéité n’a été nécessaire et que
le choix de la cellule primitive en tant que systéme thermodynamique permettait de
décrire les lacunes et interstitiels de facon naturelle. Le Second Principe, sous une
forme variationnelle, appliqué au systéeme cristal-surface-vapeur, livrait alors les con-
ditions nécessaires d’équilibre auxquelles on pouvait s’attendre. Des relations connues
ont été retrouvées et le dernier chapitre explicitait les hypotheses nécessaires a la
déduction de la formule de HERRING pour le potentiel d’un élément de surface et dont
découle la construction de Wulff pour la forme d’équilibre. 11 a été signalé qu’'un
raffinement de cette formule nécessite la résolution simultanée du probleme €lastique.

Il n’est peut-étre pas inutile de revenir sur I'hypotheése d’autonomie locale [12] de la
phase superficielle. Celle-ci s’exprimait analytiquement par le postulat (5.15), ot #4 ne
dépendait que de variables définies sur 2. Cette hypothése exclut évidemment les
potentiels chimiques latéraux [12], mais il est facile de se convaincre que la non-auto-
nomie est liée 4 des phénomeénes irréversibles. Par exemple, ces potentiels chimiques
latéraux disparaissent lors d’une réaction d’adsorption d’équilibre et sont, par consé-
quent, parties intégrantes d’une thermodynamique des processus irréversibles de la
phase superficielle. Dans un précédent article [11], nous avions signalé que le bilan de
masse faisait intervenir une source due, précisément, a cette réaction d’adsorption.
Cette derniére apparaissait aussi dans la source d’entropie de la phase superficielle.
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Appendice A

Rotations infinitésimales induites par le champ des déplacements 6§
Sous l'action d’une rotation infinitésimale dw, un vecteur arbitraire v subit la
variation

dv = dw Xv. (A.1)
En particulier, grace a (3.6)
ce qui entraine les relations |
ag:k: 5“0&,8: 6g: (361 = 0,
ainsi que les équations de Killing, comme il se doit.
Multipliant scalairement la deuxiéme égalité de (A.2) par g;, et utilisant (2.5),, il

vient

dow =1 n* 0¢; ; g, = 3 rot 6§, (A.3)

qui est donc [’ opposé du vecteur adjoint au tenseur antisymétrique 6&;; ;-
De fagon analogue sur 2, ,
da, =dwxa, = 0,0§. (A.4)

En décomposant dw en partie normale et tangentielle (2.24) et utilisant la relation
(2.21), il vient:
b = 23*7 0,08 a,, dof = nP*0,0En. (A.5)

Appendice B

Discussion de I'équilibre du fluide.
Résumons les relations postulées et déduites aux chapitres 5 et 6. Dans D, nous
avons:

Uy = Uy(Sy, 1/0s) , (B.1)

duy = T, 055 — p 6 1/0,, (B.2)

Ty(sg, 1jog) = T, (B.3)

grad p(s,, 1/0,) = 0, (B.4)

g — T 85+ plog —u=0. (B.5)
Nous définissons alors le potentiel chimique par particule

po =ty — Ty sy + Plos = palse, 1/02) (B.6)

qui n’est rien d’autre que I'énergie libre de Gibbs par particule.
Grace a (B.5) et (B.3) nous obtenons la condition d’équilibre:

Pa(sa, 1]09) = u (B.7)
et la condition d’homogénéité:

Uy = Ty 83 — plog + Y- (B.8)
En variant (B.8) et comparant a (B.2), nous obtenons la relation de Gibbs-Duhem:

53T, — 1/g5 8 + Oy = 0. (B.9)
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Puisque Ty, #, uy, sont des champs constants sur D,, nous pouvons intégrer (B.8-9):
Sp0T; — Vydp + Nyduy, =0, (B.10)
Uy=T,5, —pVy+ s Ny, (B.11)

dont nous tirons la relation thermodynamique usuelle:
0Uy= 1,65, — p 0Vy + s 8N, . (B.12)

Puisque 1'énergie est définie & une constante pres, deux gquelconques des relations
(B.2), (B.8-9) entrainent la troisiéme. La méme remarque vaut pour les relations
(B.10-12). ‘
Dans ce contexte il faut remarquer qu’aucun usage d’'une hypothése d’homogé-
néité de u,, Sy, 05, n'a été faite (par exemple, les relations d’Euler sur les fonctions
homogenes) et que les relations (B.10-12) sont fausses dans des systémes soumis & un
champ extérieur ou a une accélération puisqu’alors, ni la pression, ni le potentiel chi-
mique ne sont des champs constants. Toutefois, si nous supposons que chaque élément
thermodynamique est en équilibre stable, c’est a dire que u, réalise un minimum de
I’énergie totale, il est possible de montrer que u,, s,, 05, sont effectivement homogeénes.

En effet, il suffit alors que la forme quadratique
0%u 0%u 0%u

2 "
5e2 0s? + 2 35 01l dso 1o + /gt

6 1/o?

soit définie positive [23]. Afin de ne pas alourdir I'écriture, nous avons supprimé
I'indice (2). Le discriminant

0%u 0% 0%u \2
0s? 012 (Os 01/9) (B.13)
doit alors étre strictement positif. Or, grace a (B.3—4) et (B.7):
oT oT
grad T =0 = T grad s + e grad 1/o
op 0p
grad p =0 = .S grad s + o grad 1/p (B.14)
rad =0:ﬂ rads—i——%— rad 1/
grad g e A da1jg Srac He

systeme dont la troisiéme équation est linéairement dépendante des deux premieres en
vertu de (B.9). Ces deux équations forment un systéme linéaire et homogéne en grad s
et grad 1/p, dont le déterminant est de signe inverse de (B.13) et donc non-nul.
Ainsi:

grad s, = grad 1/g, = 0 (B.15)

et puisque les variations d peuvent étre du type dy - grad, il résulte de (B.2) que
grad u, = 0. (B.16)

A nouveau, ces résultats ne sont plus vrais pour des systémes au voisinage d’un point
critique (u, réalise seulement un extremum), ni pour des systémes soumis a un champ
extérieur ou a une accélération.
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