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Equilibre mécanique et de forme de petits cristaux1)

par R. Ghez
Laboratoire de Physique Technique

Ecole Polytechnique de l'Université de Lausanne, Lausanne, Suisse2)

(8 XI 67)

Abstract. The gibbsian model for surfaces is reformulated in order to account for stress and
strain within quasi-ideal crystals and on their surface. Tensor calculus, extensively used, leads to
an invariant formalism. The symbols appearing therein are given a physical interpretation. The
Second Principle, applied to the crystal-crystalline surface-vapour system, yields necessary
equilibrium conditions. Herring's formula for the chemical potential is derived as a special case.
The validity of the usual assumptions relating to shape equilibria are investigated.

1. Introduction

Il est depuis longtemps reconnu que des effets spécifiques sont entraînés par
l'existence, entre deux milieux, d'une surface de séparation douée de propriétés
intrinsèques ou interface et que ces effets, dits capillaires, jouent un grand rôle dans
certains processus physico-chimiques. En ce qui concerne les fluides, la théorie
thermodynamique en a été élaborée par Gibbs [1], qui a proposé son célèbre modèle-

surface. Gibbs a également étudié les effets d'adsorption provoqués par la surface de

solides, qui, par exemple, sont importants en catalyse et dans les problèmes d'ultra-
vide. Toutefois, les propriétés spécifiques du solide, en particulier sa structure cristalline

et la migration d'atomes dans le réseau cristallin, propriétés alors inconnues,
n'entraient pas dans ses considérations. De plus, le champ élastique possible, provoqué

par le présence d'une surface n'était pas envisagé.
Les mathématiciens ont construit un outil bien adapté à l'étude des surfaces, la

géométrie différentielle qui dans sa version tensorielle est d'une grande compacité.
Il paraît alors étonnant que l'on n'ait pas songé à appliquer ces méthodes aux surfaces

physiques, surtout dans l'étude des phénomènes élastiques où l'analyse tensorielle
joue un rôle central.

C'est précisément ces techniques que nous nous proposons d'appliquer au cas de

l'équilibre thermodynamique d'un cristal quasi-idéal dont la surface est munie de

propriétés physiques intrinsèques. Le modèle de Gibbs sera ainsi étendu à des matériaux

anisotropes. L'articulation de ce travail est la suivante. Les chapitres deux et
trois sont d'indispensables préliminaires d'analyse et d'élasticité et renferment beaucoup

de résultats classiques. Le quatrième aborde le problème des tensions; une
attention particulière y est dévolue aux couples qui pourraient résulter d'une distri-

1) Thèse de doctorat présentée à l'Ecole Polytechnique de l'Université de Lausanne le 14 juillet
1967.

2) Adresse actuelle : Departement of Physics, University of Virginia, Charlottesville, Va. U.S.A.
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bution de double couche. Le cinquième énonce les hypothèses physiques fondamentales

et le sixième en déduit les conditions d'équilibre. Un analyse partielle des résultats

est entreprise.
Quelques mots s'imposent au sujet des notations et conventions adoptées. Le

domaine des indices latins est {1, 2, 3}; celui des indices grecs est {1, 2} ; une virgule
désigne la dérivée covariante et la convention sommatone d'Einstein est partout
respectée. En général nous supposons bijectives et suffisamment régulières (en général
de classe C2) les applications qui interviennent, sauf sur un nombre fini de surfaces,
lignes ou points isolés. Une application constante sur un domaine est parfois appelée
un champ homogène. Le bord (frontière) d'un domaine est désigné par d et le signe
d'identité, exprime toujours une définition pour le nouveau symbole apparaissant à

sa droite. Enfin, pour un être mathématique à deux indices Tik, est employée la
décomposition en partie symétrique et antisymétrique :

Tik=Tm+Tm. (1.1)

2. Rappels d'analyse tensoriel

Le but de ce chapitre est de rappeler un certain nombre de résultats classiques [2, 3]
de l'analyse tensorielle et de la géométrie différentielle des surfaces plongées dans E3,
résultats dont il est fait un usage constant par la suite. En particulier, suivant le
lumineux exposé de Sedov [4], une large place est réservée aux vecteurs réciproques,
qui permettent de donner aux formules une forme symétrique bien commode.

Soit l'espace euclidien réel Ea, partout rapporté à un repère orthonormé, (repère
absolu du laboratoire), dont les vecteurs-lieu sont désignés par y. Considérons le

changement de coordonnées défini par les formules

y y(xx, x2, Xs) y(x) (2.1)

et les nouveaux vecteurs de base (repère du cristal)

m*=àty(x), (2.2)

auxquels est associée la métrique
&* &&¦ (2-3)

Si gtk est la matrice inverse de (2.3), on définit les vecteurs réciproques

r=g''*& (2-4)

qui satisfont aux relations

g*gh àl f \r?,h gfXg*. (2-5)

où, g étant le déterminant associé à la matrice (2.3) et eijk l'indicateur de la permuta-
!123.

tion I, le tenseur volume:ijkl rfik g"1'2 b"»¦. (2.6)

D'ailleurs, l'élément de volume s'écrit

dV d3y g1'2 dH. (2.7)
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Un champ vectoriel admet les décompositions

v vkgk=vkgk, (2.8)

dont les coefficients (composantes contravariantes et covariantes) sont donnés par

vh vg\ vk vgh. (2.9)

La dérivation des vecteurs de base (2.2) définit les symboles de Christoffel
(symétriques)

d.g^ria^r^g, (2.10)

que l'on sait évaluer. En particulier,

g-i'2òAgi'2 r;„ (2.12)

àki=-n^. (2.13)

Il en résulte que
dkv (dhv> + TU v>) g,- v\ h gj Vl, k gi. (2.14)

Une surface 27, variété à deux dimensions plongée dans E3, est définie par l'application

y y(xi(u\u2))^y(x(u)). (2.15)

Avec la notation habituelle

^=t (2-16)

les vecteurs de base induits sur 27 (repère de la superstructure cristalline de la surface)
s'écrivent

et la métrique induite

««/»=«« «/» &* 4 4- (2.18)

Si a et aaß sont le déterminant et la matrice inverse associés à la matrice (2.18), la
normale unitaire en un point régulier de 27 et l'élément d'aire orientée sont

n a-1'2 axxa2, dA a1'2 d2u n. (2.19)

La recherche des vecteurs réciproques du repère spatial (ax ,a2,n) montre [5] que n est

réciproque à lui-même et que les vecteurs

aa a"ßaß (2.20)
satisfont à la relation

a« r)aßaßxn, (2.21)
où

rjaß= a-112 eaß, (2.22)

1 2\
saß étant l'indicateur de la permutation ¦ ¦.
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Les relations suivantes sont encore vraies:

a*aß o%, (ioa=Bû"=0, nn l. (2.23)

Un champ vectoriel défini sur 27 admet la décomposition normale et tangentielle
suivante

v vx fla + v n va a" + v n, (2.24)

dont les coefficients sont donnés par

va vaa, i>a=vaa, v vn. (2.25)

Pour la suite il sera utile d'introduire les symboles

«" &=«"'&* *£ *?• (2-26)

La dérivation des vecteurs de base (2.17) définit les symboles de Christoffel de la
surface ainsi que la deuxième forme quadratique fondamentale (les vecteurs dérivés
ne sont généralement pas tangents à 27) :

àffla r}, axA-bßan rßXaaxA- bPa n. (2.27)

Il en découle que
a^aß-raßX + rßaX, (2.28)

a-WdiUV-rZt, (2.29)
et des formules (2.23) que

dßn -bßa a\ dp* -/>«, é + a«*b,ßn. (2.30)

Les formules (2.27) et (2.30) permettent de dériver un champ vectoriel du type (2.24) :

dßv (v\ß - v a^ bßft) ax + (bßa v« + dßv) n

vbßaJ+(bfixa**va+dfiv)n. (2.31)

Par ailleurs, grâce à un célèbre lemme dû à Hadamard (réf. [6], p. 492) relatif à la
dérivation de fonctions au voisinage d'une surface de discontinuité et sur laquelle les

fonctions ne sont peut-être même pas définies, les vecteurs (2.2), (2.4), (2.8) et la
métrique (2.3) peuvent être dérivés par rapport aux coordonnées de la surface; par
exemple :

àjMu) rU(x(u) x\(u) g,(x(u) (2.32)

Pour un champ vectoriel défini sur S,

dav (dy + /%- v> xkJ gi v\ B gi (2.33)

et si ce champ est défini ailleurs que sur 27,

d«v v\kxkxgi v\agi. (2.34)

Enfin, il faut noter le théorème de Ricci: les dérivées covariantes des tenseurs
métriques sont identiquement nulles.



Vol. 41, 1968 Equilibre mécanique et de forme de petits cristaux 291

3. Déplacements et déformations

Ce chapitre suit l'approche traditionnelle du problème de la déformation des

milieux continus en faisant usage d'un champ de vecteurs déplacement. Cette méthode
tend à être supplantée aujourd'hui [5-7] par celle des gradients de déformation,
approche avantageuse lorsqu'on désire étudier théoriquement le comportement de
matériaux divers (hypo- et hyper-élastiques, viscoélastiques, phénomènes de traînage
et d'hystérèse), mais elle peut masquer le contenu géométrique simple des phénomènes

élastiques qui sont étudiés ici. De plus, la formulation lagrangienne ou en
coordonnées immergées admet une interprétation physique simple et commode.

Suivant Sokolnikoff [3], considérons un domaine "D Œ E3 et une famille
monoparamétrique d'applications définies sur D et à valeurs dans E3 :

y y{x, d), (3.1)

où 0 0, respectivement 1, spécifient l'état non déformé, respectivement déformé
(d'ailleurs arbitraires). Il s'agit d'une description lagrangienne, les points de V portant
toujours la même étiquette (x) au cours de la déformation (3.1). Définissons l'opérateur

de variation [22]

à àB-lô, (3.2)

l'évaluation étant faite en ô 1. Celui-ci commute évidemment avec les variables
indépendantes. Définissons aussi le champ de vecteurs déplacement :

§(*, 0) y(x, 0) - y(x, 0), (3.3)
d'où

àil gt(x, B) - êi(x, 0), (3.4)

«g-«0-^-y #*(*) fc(*.i)- (3-5)

Les grandeurs géométriques introduites au chapitre précédent sont maintenant
fonction de 0 et sont susceptibles d'être variées selon la règle (3.2) :

a& - M-^-d,£ d« $£ <<&. (3-6)

kik ^kA-ôikJ, (3.7)

g-i/2 agil» ô^ div ô§ y gtk ôglk, (3.8)

#=¦-<***¦ (3-9)

L'interprétation des composantes du tenseur de déformation

2 eih(x, 0) gik(x, 6) - gik(x, 0) (3.10)

est connue, ainsi que son expression non-linéaire en fonction du vecteur déplacement
f. Mais, de (3.10) et (3.7) nous avons:

2&« a&* 2#ftJk). (3.11)
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Considérons maintenant une surface 27, frontière (ou une partie de celle-ci) du
domaine t). Nous exigeons que la famille d'applications (3.1) soient définies non
seulement dans T), mais aussi sur 27. De plus, nous exigeons qu'elles soient, sur D U 27,

de classe Cx au moins afin d'éviter que le champ de déplacements qui sera défini ne
soit discontinu sur 27. Le contraire signifierait que la surface se décolle du volume ; le

formalisme exclut donc la formation de cavités. Soit la famille d'applications définies
sur 27:

y y(x(u),6). (3.12)

Définissions aussi le champ de vecteurs déplacement:

§{x(u), 0) y(x(u), 0) - y(x(u), 0), (3.13)
d'où

dJ«a„(*(«).0)-aa(*(«),O). (3.14)

Il est maintenant essentiel de remarquer que

ôxi 0, (3.15)

car la fonction x(u) ne contient pas la variable variationnelle 0; nous en verrons une
interprétation physique. La variation des grandeurs géométriques définies sur 27 est
aisée. De (2.17), (3.15), (3.6) et (2.34)

*». <«&= MS- (3.16)
De (2.18), (2.31) et (3.15)

daaß aa dßo§ A- aß da ô§ x\ xßogik 2 (#(a>/S) - &„„#), (3.17)
d'où

«-MfcW 5|% - 2 Hol 1 a«ßoaaß, (3.18)

2H aaß baß étant la courbure moyenne [8, 9]. Des conditions (2.23), il est possible
de calculer

<5n - (n dœ <S§) aa, (3.19)

ôa« - (a* dß d§) a" + aa"(n dß dg) n. (3.20)

Définissons alors un tenseur des déformations induit sur 27:

2 *a/J(*(«), 6) ««,(*(«). Ô) - aaß(x(u), 0), (3.21)

qui, grâce à (2.18) et (3.21) obéit aux relations:

eaß=eikxi4- 20e«ß=oa*ß- i3-22)

En réalité, eaß pourrait ne pas être une spécification suffisante de la déformation de 27

étant donné qu'il ne décrit que la déformation dans le plan tangent. Or, il est possible
de calculer la variation de la seconde forme quadratique et des symboles de Christoffel.
Par exemple:

oKß=^^i,0Lß. (3.23)

Ces variations sont liées aux dérivées secondes du vecteur déplacement, et nous verrons
que ces dernières n'apparaîtront pas dans le travail virtuel des forces, car les équations



Vol. 41, 1968 Equilibre mécanique et de forme de petits cristaux 293

différentielles d'équilibre sont du premier ordre. Cette «justification» est analogue à

celles qui sont faites dans la théorie des coques et des membranes élastiques [5].
A part les déplacements virtuels <5|, la surface 27 peut se déplacer dans l'espace

indépendamment d'une pure déformation du cristal sous-jacent. Il s'agit là d'effets
cinétiques de croissance et de dissolution : diffusion de surface et de volume, evaporation

et condensation. La surface ne doit plus être considérée comme étant constituée
d'atomes marqués, mais comme une structure géométrique susceptible de se déplacer
dans l'espace, non seulement à cause des champs de déformation, mais aussi grâce aux
effets cinétiques mentionnés qui peuvent provoquer une variation de matière
contenue dans V- Ces considérations seront reprises au chapitre cinq et pour le moment
il suffit de considérer la famille d'applications

y y(x(u,Q)), (3.24)

le changement de coordonnées y(x), (formule 2.1), étant indépendant de 0. Ce n'est
rien d'autre qu'une description cinématique de 27 se déplaçant dans E3 rapporté à un
système de coordonnées curvilignes (x). Une telle description est depuis longtemps
courante dans l'étude des surfaces de discontinuité et ondes de choc [6, 10], le
paramètre 0 étant habituellement le temps. La description est aussi lagrangienne,
l'étiquette (u) étant invariable au cours du mouvement. Nous définissons le champ des

déplacements virtuels (que l'on pourrait appeler déplacements cinétiques) :

ôx(x(u) òd-^y oddiy-^ x{ òx\u) gi(x(u, 1) (3.25)

et nous apprécions la différence avec la définition (3.13) où

ôé^ôè(x(u)).

La variation des grandeurs géométriques se fait aisément :

àg, ru gj òx\ ôgij (rijk + rjik) ôx* etc. (3.26)

Mais, grâce à la définition (3.25)

«5< «50^-dy=da«k\ (3.27)

de sorte que
*»« ***« ft+ **«*&= M*- (3-28)

Cette formule a la même forme que (3.16), mais tandis qu'alors toute la variation
était portée par les vecteurs de base g{, nous avons ici une contribution due à x\.
Il en résulte que les formules (3.17-20) sont formellement les mêmes en y substituant
ôx pour ô§.

Enfin, le mouvement complet de 27 est représentable par la famille d'applications

y y{x(u, 0), 0), (3.29)
de sorte que

<5y <5g-f-ótf. (3.30)

Ce n'est rien d'autre qu'une loi de «composition de vitesses»; <5§ étant une «vitesse
d'entraînement» du réseau curviligne (x) et ôx une «vitesse relative» par rapport à
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celui-ci. A nouveau, les formules (3.17-20) se transcrivent formellement en y
remplaçant ô§ par (5§ + ôx. Les autres formules relatives aux grandeurs définies sur 7J) se

transcrivent en additionnant les diverses contributions déjà calculées.

4. Forces et énergie potentielle mécanique

Dorénavant, les régions D u 27 sont occupées par une matière possédant des

propriétés élastiques anisotropes. Les tensions mécaniques de contact en des points
intérieurs sont décrites par des tenseurs des tensions appropriés. Ceux-ci obéissent à des

équations différentielles d'équilibre et il est facile de trouver l'expression du travail
mécanique lors d'une déformation virtuelle. Cette expression est une généralisation du
résultat rapporté par Defay et Prigogine [12].

En tout point de T), les forces intérieures de contact par unité de surface sont
représentables par la forme linéaire [3, 4, 6]

f=fknk, (4.1)

où tdA est la force agissant sur l'élément de surface dA, orienté par sa normale
unitaire n, qui sera toujours extérieure si la surface est fermée. Par convention, t représente

l'action de la matière du côté n positif sur celle du côté n négatif. Si / est la
densité de force extérieure et c'* la densité de couple, les équations d'équilibre
sont [3,4, 6] :

f\k + f=0, (4.2)

2 fim cik. (4.3)

De façon analogue, dans 27, les forces intérieures de contact peuvent être
représentées par un tenseur [8, 9]. Les équations qui vont suivre sont formellement
analogues à celles qui apparaissent dans les théories, dites directes, des coques et
membranes élastiques (réf. [6], p. 556). Toutefois, l'interprétation physique en est
complètement différente. Soient une ligne arbitraire C tracée sur 27 et f le vecteur
unitaire tangent à 27, perpendiculaire à £, orienté vers l'extérieur si £ est fermée.
Soit ads la force (non nécessairement tangente à 27) agissant sur l'élément linéaire ds

de £. Par convention, a représente l'action de la matière (attribuée à 27) du côté v
positif sur celle du côté V négatif.
En exprimant l'équilibre d'un triangle curviligne infinitésimal sur 27, nous voyons

[6, 8, 9] que ces forces admettent la décomposition :

o-» {aßni + aaßx\) vß aißvß=aißx\vk aikvk. (4.4)

Si fA est la densité de force extérieure des éléments de masse de 27 et a£ la densité de

couple sur 27, nous savons aussi [6, 8, 9] que les équations d'équilibre sont :

aißiß + fi1 + [f] 0, (4.5)

2aim cik. (4.6)

Le crochet [q] désigne la discontinuité, q2 — qx, d'une grandeur q au travers de 27 et

par convention, les indices 1 et 2 désignent les deux côtés de 27, la normale n étant
dirigée du côté 1 vers le côté 2. Les équations (4.5-6) forment une partie des conditions
aux limites pour la résolution du système (4.2-3). Dans les théories directes de struc-
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tures élastiques à deux dimensions, il est possible d'inclure des «couples internes» par
unité de ligne [6] qui compliquent les formules (4.6). Ceci est nécessaire pour tenir
compte de la rigidité, effet qui ne sera pas considéré ici.

L'équation (4.3) montre que tik est symétrique si et seulement si ctk est nul. Un
résultat analogue peutêtredémontrépourletenseur aik. Spécifiquement, Paltenghi [13]
a montré que si cA désigne le vecteur adjoint [14] du tenseur antisymétrique âA, les

relations suivantes sont vraies :

2oVaßi=cAnrl'xß, (4.7)

<r cA aa rf (4.8)

Elles complètent un résultat partiel trouvé antérieurement [11] et permettent d'énoncer:

le tenseur alxß est symétrique et o n'a pas de composante normale si et seulement
si c'A est nul.

Considérons une surface 27 de séparation de deux milieux élastiques et isolons une
région arbitraire telle que celle représentée sur la figure 1.

Figure 1

Schéma des domaines et des forces.

Le travail virtuel des forces appliquées est par définition :

ÔW ftx dg dA A- ft2 <5g dA + S o d§ ds + f fx ÔÇ dV A- f f2 ô§ dV
S, S2 L D1 D2

+ [ÎA^dA + fcx dû) dV A- fc2 ÔO dV + f cA ÔO dA (4.9)

les où) étant les rotations infinitésimales nécessaires pour faire travailler les couples.
Grâce aux décompositions (4.1), (4.4), aux formules de la divergence à deux et trois
dimensions [2, 3] et aux équations d'équilibre (4.2), (4.5), nous obtenons:

ÔW J(t[k ôiiik A- cx ôo) dV A- J(t2k ôÇi}k + c2 da) dV + J(aiß ô£u+ cA ôa) dA

Or, d'après (3.11) et (4.3)
f>k xt — Ai li) £„ i i Jk ÂttikÔÇiik tMôeik + lcik<
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dont le deuxième terme du membre de droite compense exactement c • ôo (voir
l'appendice A.3). De même, d'après (3.17), (3.22)2, (4.7) et (4.8),

aiß ôiit ß (aß nl+aaß <) ô^ß=(oßn + o«ß aa) dß dg

«"Ä Kß+l (cA n) v"ß(o« dß dg) + (cA aa) rf«(n dß dg),

dont les deux derniers termes compensent exactement cA - ôo (voir A.5).
Ainsi :

ÔW t[ik)ôeîkdV + f4h) ôeik dV + [o^ß)oexßdA, (4.10)

D,

qui est une forme linéaire en les composantes des tenseurs de déformation, ce qui était
prévisible à priori étant donné que les équations d'équilibre expriment l'équilibre de

translation et de rotation. Cette formule est une généralisation directe de celles utilisées

en thermodynamique [1, 12] puisque, pour un régime homogène et isotrope de

forces
ti« -pr, VX/9. C« (p et a > 0)

et grâce aux relations (3.8), (3.18), il vient:

ÔW -px ÔVX - p2 ÔV2 + OÔA.

(4.11)

(4.12)

5. Hypothèses physiques fondamentales

Par souci de concision, considérons un cristal à un seul constituant ; la généralisation

à plusieurs ne modifierait pas l'argumentation. Celui-ci est supposé contenu dans

une enceinte de volume fini et de ce fait est entouré de sa vapeur. Il est aussi supposé
quasi-idéal, c'est à dire que les seuls défauts de structure envisagés sont des lacunes et
des interstitiels. Le but de ce chapitre est de formuler un ensemble d'hypothèses
permettant la description macroscopique de l'équilibre des trois phases en présence,
cristal, surface cristalline et vapeur.

Attachons-nous, tout d'abord, à l'interprétation physique des diverses formules
figurant dans les chapitres précédents. Les applications (3.1) et (3.29) sont schématisées

dans la figure 2, où nous considérons le cas d'une surface cristalline Z fermée, le
cristal occupant tout le domaine t)x ¦ La figure 1 représente le cas d'une partie ouverte
de 27 et les domaines X)x et D2 s'étendant dans le cristal et sa vapeur.

yWu^e)

y(x,0)x(u,G)

Figure 2

Schéma des applications.
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Le développement de Taylor des applications (3.1) et (3.29), arrêté au premier
ordre, fournit des applications linéaires, dites applications différentielles. Ces dernières

appliquent dx* 1 et dua 1 sur gj et aa. Nous choisissons maintenant les gt de sorte
qu'ils représentent les vecteurs de base primitifs du réseau de Bravais du cristal. C'est
ici que nous supposons un cristal libre de dislocations ou de plus graves défauts, car on
sait [15] que la description de ces derniers nécessite l'emploi de symboles de Christoffel
non-symétriques (connexions avec torsion). De même, les aa représentent la
superstructure [35] cristalline de la surface. Nous voyons ainsi que les points à coordonnées
entières de Dx, respectivement Du, ont pour image les nœuds du réseau de Bravais
de X)x, respectivement ceux de la superstructure cristalline de 27. Il suit que g1/2 et
«1/2 sont les volumes des mailles de Bravais et de surface, que le volume de Dx et
l'aire de Du sont des mesures du nombre de nœuds (ou de cellules primitives) de ces

réseaux. Nous voyons immédiatement que le nombre de nœuds de 27 est supposé
constant, (Du a un bord fixe), tandis que x (u, 6) peut entraîner une variation du
nombre de nœuds du réseau de Bravais. Ainsi, le formalisme peut décrire une variation
du nombre de sites et le déplacement concomitant de 27 grâce à des flux de matière
(ou lacunes), ce qui traduit une croissance ou une dissolution du cristal. L'état
non-déformé est arbitraire, mais l'interprétation précédente du système de coordonnées

(x), suggère que celui-ci soit tel, que les lignes coordonnées soient rectilignes et que
la métrique gik (x, 0), constante, soit celle du type cristallographique. Dans un réseau

rectiligne, l'orientation cristallographique est décrite par les indices de Miller. Il est
clair qu'il faut trouver une mesure de cette orientation, même si le réseau est déformé.
Or, d'après (3.15), les grandeurs x\, composantes contravariantes des vecteurs aa
dans la base g,- du réseau de Bravais sont invariantes par la déformation. Elles spécifient

entièrement les plans tangents et sont donc des mesures bien adaptées de l'orientation

cristallographique. Remarquons qu'elles sont du type des «gradients de
déformation».

La théorie thermodynamique des surfaces repose sur le modèle proposé par
Gibbs [1], dans lequel il est supposé que:

a) toute grandeur extensive, Q, (grandeur relative au système entier), peut être
décomposée en la somme de trois contributions :

Q=Qi+Q,A-QA, (5.1)

attribuées, respectivement, à "Ox (cristal), D2 (vapeur) et à 27 (surface cristalline). En
tant que grandeurs extensives, ces trois contributions sont exprimables comme
intégrales de densités.

b) les relations entre grandeurs intensives (champs définis sur T)x, E>2, 27), vraies

pour les phases isolées, restent vraies en tout point intérieur de ces domaines.
Cette formulation [11], légèrement différente de celle de Gibbs, évite la supposition

de phases homogènes à priori, ce qui serait particulièrement gênant dans une discussion
de phénomènes élastiques.

Il faut maintenant discuter la façon dont il convient d'exprimer les trois contributions

(5.1) ; cela revient à savoir quel est le système thermodynamique infinitésimal
qui est considéré [6]. La description du gaz dans sa phase hydrodynamique est régie

par l'équation de Boltzmann [16-18]. L'étude de cette équation montre que les
grandeurs macroscopiques sont représentables par des moyennes sur la fonction de distri-
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bution monoparticulaire/ (r, v, t). Il suit que si q2 est la densité numérique des particules,

il est raisonnable de considérer une représentation de Q2 de la forme :

Ç2= j*e.(y) q2(y) d3y (5.2)

Les grandeurs intensives q2 sont donc définies par particule, (ou par unité de masse),
qui joue le rôle de système thermodynamique élémentaire pour le gaz. Une telle
représentation est souvent utilisée pour les solides, mais alors elle masque complètement

la structure cristalline et les défauts de structure concomitants. Il semble préférable

de choisir la maille primitive comme système thermodynamique élémentaire.
Etant donné la signification de g1'2 et a1'2, leurs inverses sont les densités numériques
des nœuds (ou sites, pour des solides à un constituant) des réseaux. Ainsi, nous
écrirons :

Qi /g-1'2 d3y Jqx(x, 0) dH, (5.3)

D, Dx

QA I«"1'2 qA dA JqA (u, d) d*u (5.4)

Ce point de vue n'est pas entièrement nouveau, puisque Cabrera [19, 20] a utilisé
implicitement une représentation de ce type en coordonnées cartésiennes pour discuter
les propriétés de l'énergie de surface. Dans ce qui suit, les diverses grandeurs extensives

Q seront des scalaires. Or dV d3y et dA sont de vrais scalaires, mais les multi-
vecteurs d3x et d2u sont des capacités scalaires [32], de sorte que q2 est un vrai scalaire
et qx, qA ont le caractère tensoriel de densités scalaires.

Le système physique est supposé décrit par les grandeurs extensives suivantes:
énergies internes U (densités u), entropies S (densités s) et nombres de particules N
(densités o) de l'espèce chimique envisagée. Pour simplifier l'exposé, mais ce n'est pas
essentiel, nous supposons le système dans un champ extérieur nul et au repos dans le

repère absolu du laboratoire. De simples modifications des calculs qui vont suivre
permettent de lever ces restrictions. En effet, il est connu [23] qu'à l'équilibre, les seuls
mouvements d'ensemble possibles sont des mouvements hélicoïdaux uniformes et que
le champ extérieur modifie les équations mécaniques d'équilibre et le potentiel chimique
par l'adjonction d'un second membre. Quant aux mouvements de diffusion, il s'agit de

phénomènes irréversibles donnant lieu à une source d'entropie et qui ne seront pas
discutés ici (voir réf. [18] et [11]. Ainsi le système total est bien caractérisé par une
énergie interne, puisqu'il ne possède, ni énergies cinétiques, ni énergie potentielle.
Contrairement à la plupart des exposés de la mécanique du continu, nous spécifions le
nombre de particules au lieu de la masse. Ceci a l'avantage de permettre une description

des lacunes, quasi-particules sans masse et de rapprocher l'exposé de ceux de la
mécanique statistique où la même image discrète est utilisée. Pour le cristal et sa
surface, is est évident que le nombre de sites moins le nombre d'atomes est une mesure du
nombre de défauts. Les densités (par nœud du réseau) de ces défauts, Qxd) et Q(f,
positives s'il s'agit de lacunes, négatives dans le cas des interstitiels, obéissent aux
relations :

9i + QÌd)=x> Qa+Q^=x- (5-5)
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Nous voyons encore ici l'avantage du choix de la cellule primitive en tant que système
thermodynamique élémentaire.

Le Second Principe exprime que l'état d'équilibre thermodynamique réalise un
maximum de l'entropie totale du système sous les contraintes suivantes: l'énergie E
totale et le nombre TV total de particules est constant. Les conditions suffisantes font
partie de l'étude de la stabilité de l'équilibre, étude qui dépasse le cadre de ce travail;
nous nous restreignons aux conditions nécessaires livrées par l'exigence de la stationärste.

Alors, si T et /j. sont deux multiplicateurs de Lagrange (indépendants du lieu),
le principe variationnel s'écrit :

ÔE - T ÔS - fi ON 0. (5.6)

L'équation précédente montre la nécessité de trouver des formules de variation
pour les intégrales (5.2-4). Tout d'abord, pour le solide, puisque le bord dDx est

variable, la variation de Qx peut être déduite du résultat classique [21, 22] :

àQi
dd

D
yü-*+^,/(y^)A,

où / est le jacobien de la transformation x (u, d). En calculant le produit mixte
(ax, a2, ôx), il est facile de voir que Jôd («/g)1'2 n ¦ ôx et nous obtenons alors:

ÔQX /g-«2 ôqx d3y + £ g"1'2 qx ôx dA (5.7)

Dl E

Le cas de la surface est plus simple puisque ÒDU était supposé fixe :

ôQa fàqA dzu (L"1'2 ôqA dA (5.8)

Enfin, pour la vapeur, nous transformons les variables eulériennes y en des variables
lagrangiennes par l'introduction d'une famille d'applications y' y' (y, 6), avec la
condition initiale y' (y, 1) y. La formule (5.2) obtenue en y remplaçant y par y' est
alors fonction de 0. Avec la notation

nous obtenons [22] :

<5Ç2 y fea àq3 A- ?2 (ôq2 A- o2 div ôy)} d3y. (5.9)

D,

Nous allons maintenant appliquer le principe variationnel (5.6) à une région telle

que celle représentée sur la figure 1, où la ligne £ entoure un petit domaine 27. Ceci

traduit le postulat souvent discuté [24-26] de l'équilibre local de la surface, l'équilibre
total n'étant pas nécessairement réalisé. Chaque élément de surface est en équilibre
avec les phases adjacentes, la région Vx U D2 U 27 étant isolée au sens de la
thermodynamique. Ainsi, pour ce sous-système isolé, ÔE contient les d U et en outre les travaux
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virtuels de forces de liaison tx, t2, o, nécessaires pour l'isoler mécaniquement. Grâce à

(5.1-4) et (5.7-9), la condition (5.6) s'écrit:

0 / {q2 (ôu2 - T ôs2) + (ôq2 A- g2 div ôy) (u2 - T s2 — /u)} d3y

A- j g-1'2 (ôux -Tôsx- fi ôqx) d3y + / g-1'2 (ux~-Tsx-fj, qx) ôx dA

A- / a-1'2 (ôuA — T ôsA — fi ôqa) dA
s

tx ÔÇ dA A- ft2 ôy dA + <£> a ôy ds. (5.10)

Il est généralement reconnu que la thermodynamique ne livre des résultats que si

nous sommes en mesure de formuler des hypothèses physiques décrivant le comportement

de la substance envisagée. D'après l'hypothèse fondamentale b), il s'agit de

chercher les relations qui peuvent exister entre les champs définis jusqu'ici.
Le cas du gaz est le plus facile à justifier, car nous savons que dans la «première

approximation d'Enskog» [17, 18], la thermodynamique dans la phase hydrodynamique

est justifiée. En particulier, on montre qu'il existe une relation fonctionnelle

u2 u2(s2,lJQ2), (5.11)

dont la différentielle définit la température T2 et la pression p dans le gaz :

ôu2 T2ôs2 — p ô 1/og. (5.12)

Le potentiel chimique n'apparaît pas car u2 est défini par particule. (Voir toutefois
l'appendice B).

Pour le solide cristallin, nous nous inspirons de l'expression (4.10) du travail
mécanique et postulons une relation fonctionnelle de la forme:

ux ux(sx,eik,Qx), (5.13)

de sorte que ux ne dépend de (x) qu'à travers l'argument de (5.13). La différentielle
définit la température Tx, tensions &k\ potentiel chimique/^:

ôux Tx ôsx + g1'2 *<"> ôeik A- px ôQx. (5.14)

Puisque ux est une densité scalaire, l'adjonction du facteur g1/2 est nécessaire pour que
fi'k) soit un tenseur vrai. Nous constatons que seul un tenseur symétrique est défini par
(5.14), fait bien connu en thermodynamique [6, 7]. Enfin, on appréciera, qu'étant
donné la relation (5.5), /xx est le potentiel chimique (x,sllhstance~ ^défauts-

Le cas de la surface est plus complexe, car, les expériences et les calculs montrent
[30, 31] que l'orientation cristalline est un paramètre crucial. Donc, outre les champs
figurant dans (5.13), (qa étant l'adsorption), il faut considérer la variable d'orientation

x\ :

UA=UA(SA'eaß-QA'<)> i5-15)
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dont la différentielle définit les grandeurs TA o-(otffl, fiA au sujet desquelles nous pou
vons faire les mêmes remarques que précédemment. Elle définit aussi la grandeur
conjuguée à x\ :

Xf Jt04- (5.16)
dx'a sA,eaß,eA

dont il est facile de vérifier le caractère de densité tensorielle, contravariante en les
variables de surface, covariante en celles d'espace. Nous avons alors:

ôuA TA ôsA + a1'* cr>« oeaß + ptA ÔQa + Xf ôx\. (5.17)

Les relations (5.11), (5.13) et (5.15) ne sont rien d'autre que des hypothèses
d'équilibre local. Elles expriment le Premier Principe appliqué aux systèmes élémentaires:

les différentielles totales (5.12), (5.14) et (5.17) sont intégrables.
Des relations (5.14) et (5.17) nous pouvons déduire les relations habituelles

tensions-densités d'énergie. Si, par une lettre surlignée nous désignons une densité,
c'est à dire un champ défini par unité de volume ou de surface, les densités d'énergie
sont:

ux g-1'2 ux, uA a-1'2 uA (5.18)

et sont de vrais scalaires. En vertu de (5.14), (3.10) et de la règle de dérivation d'un
déterminant par rapport à ses éléments, nous pouvons écrire la suite d'égalités :

dui _ „-i/a dg - „1/2 dv,
2 -^- g-v* _i£_ Ü, + eil2 ^L gi/2 (ûx g«* + -P-)

Ainsi
*<•**> ux gu

De façon analogue, nous trouvons aussi :

o-«*« uA

dux

òua

Si, 6i

deaß <eA'''-a

(5.19)

(5.20)

Ces formules ont été déjà rapportées dans la littérature [20, 24, 25] (du moins en
coordonnées cartésiennes) et montrent que les densités d'énergie sont de nature
fondamentalement différente des tensions, même dans un régime isotrope de celles-ci.

6. Les conditions nécessaires d'équilibre thermodynamique

Nous insérons les relations (5.12), (5.14) et (5.17) dans la condition (5.10). Les
conditions nécessaires d'équilibre sont alors obtenues en annulant les coefficients des

variations indépendantes. Nous allons esquisser les réductions successives. Coefficients
des ôs :

TA TX=T2=T sur 27, dans Vx et Vx ¦ (6.1)

Coefficients de ôqx et ôqa :

/h ^a P- dans £>i et sur 2?- (6-2)
Coefficient de ôq2 :

u2 — T s2 — fi A- PIqî dans £)2 ¦ (6.3)
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L'expression résiduelle peut être transformée par parties comme au chapitre 4.

Rappelons que sur 27 nous avons la relation (3.30) et que la normale y est orientée de
la phase (1) vers la phase (2). En annulant les coefficients de ôy dans D2 U S2 et ceux de

ô§ ailleurs, il vient :

t2 p n sur S2, (6.4)

t[ -tmnk sur Sx, (6.5)

a*'= -or«««** ^sur £, (6.6)

grad p 0 dans D2, (6.7)

^^Odanst»!, (6.8)

(a{aß) 4);j3 -pn*- t{ih) nk 0 sur 27. (6.9)

L'expression résiduelle s'écrit alors :

0 I pôxdAA- /g"1'2 (ux- T sx- n Qx) ôx dA + fa-1'2 Xf ôx\ dA + S a ôx ds

La troisième intégrale va nous fournir une «équation d'Euler» non dégénérée
puisqu'elle contient effectivement la variation d'une dérivée première. Ainsi qu'il est
facile de s'en convaincre, a~112 Xa ôx* est un vecteur contravariant de surface, de sorte
qu'en utilisant (3.27) et (2.29) nous pouvons écrire:

a "1/2 Xf ôxi (a.-112 Xf ôx{) - a"1/2

L'expression résiduelle s'intègre par parties et les coefficients des composantes
normales et tangentielles de ôx sont :

a '1/2 X? va 0 sur £, (6.10)

i/2 tu. _ T c \ _ „-i/21-Ts1-pqA- or11* n* daX« 0 sur 27, (6.11)

a-ll2x\daXf 0snrZ. (6.12)

Les équations (6.1) expriment l'équilibre thermique: Les températures ont même
valeur dans les trois phases et leurs gradients sont nuls. Il en est de même des équations

(6.2) (B. 7), qui expriment l'équilibre chimique. La condition (6.3) est analysée
dans l'appendice B ; elle apparaît comme une condition d'homogénéité locale. Nous
apprécions le fait qu'il n'y a pas de relation analogue pour T)x ou Z, qui eux, peuvent
être inhomogènes, ce qui est conforme à ce que l'on sait, par exemple, de la densité
d'énergie dans un solide élastique déformé.

Les équations (6.4-6) expriment la troisième loi de Nowton et que les membres de
droite se comportent comme des forces. Nous constatons que t2 est une pression et que
a est tangent à 27. Cette dernière constatation n'a rien d'étonnant, puisque nous
avons vu que les couples n'entraient pas dans le schéma du chapitre 5. Quant aux
équations (6.7-9), il est facile de vérifier qu'elles sont les équations différentielles
d'équilibre à champ extérieur nul (comparer à (4.2) et (4.5)). Elles expriment donc
Véq
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Les trois dernières relations (6.10-12), coefficients de ôx, expriment l'équilibre de

croissance et de dissolution. Afin de les analyser, il est commode d'introduire les grands
potentiels qui interviennent dans la fonction de partition des grands ensembles

canoniques :

y>x ux - Tx sx -/uxqx, (6.13)

y>2 u2 - T2 s2 - fi2, (6.14)

Va ua - ta sa -PaQa> (6-15)

dont les différentielles sont :

ôVx =-sxÔTx-9x ôMx A- g112*<"> ôeîk, (6.16)

ôip2= —s2ôT2 — ô(j,2 — pôlJQ2, (6.17)

ôfA =-saÔTa-qa ôpA + a1'2 or««« Oeaß + Xf ôx\. (6.18)

D'après (B.6) nous voyons que:
q2tp2=-p. (6.19)

Afin de retrouver certaines relations usuelles, nous définissons le grand potentiel par
unité de surface, noté y [25] :

Va =-. a1'2 yA a112 y (6.20)

et constatons qu'à température, potentiel chimique et orientation constantes, les
formules (5.19-20) s'expriment formellement de la même façon en y substituant y>x et y
pour ux et uA.

Nous allons maintenant esquisser quelques calculs intermédiaires. Tout d'abord,
en vertu de (6.19), (6.13), (6.1-2), les deux premiers termes de (6.11) ne sont autre que
la discontinuité ipx — \p2 des grands potentiels volumiques au travers de 27. Ensuite,
de (2.18) et (2.26) nous avons:

A „1/2
xf, (6.21)

da1®
-1/2 0a

de sorte que de (6.20) :

'¦aß

X* _ "VA
* '

dxi
U/2/....a dy

TA,t*A,exß \ ~

Grâce à (2.30)2 et (2.10), nous évaluons:

d«xf -ri, xî+2Hnl + rU x\ xf, (6.23)
d'où:

a-"2 d„Xf rßßa -X- + xf day + da -g - + y (2 H n, + PU A xf) (6.24)

En insérant (6.22) et (6.24) dans (6.10-12) il vient:

- o y V A- -X- va g* sur £, (6.25)
dx\

-[y] y2H + ni(y Tk\ xf x\ + /fa -£- + <,*) dans 27, (6.26)
\ Oxa Oxa j

àff + 4 (Y rkl xf 4 + /*, -^r+àa -|U 0 dans Z. (6.27)
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Nous sommes maintenant en mesure d'analyser les trois dernières relations. La
première, (6.25), montre que le membre de droite se comporte comme une force sur £.
Le problème est généralisable à plusieurs arêtes, par exemple à l'intersection de joints
de grains et livre une formule due à Herring [24] qui a relevé que le deuxième terme
du membre de droite agit comme un couple. Les deux autres, (6.26-27), sont des
généralisations de formules du type de «Gibbs-Thomson», c'est à dire l'influence de la
courbure et de l'orientation sur les potentiels chimiques, pressions de vapeur, chaleurs
de vaporisation, etc. Nous constatons que la déformation est couplée à des effets
d'orientation au travers les symboles de Christoffel, non-nuls lorsque gik, donc eik ne
sont pas des champs constants. Comme cas particulier, nous allons retrouver une
deuxième formule due à Herring [24] pour le potentiel chimique. Les hypothèses
nécessaires à sa déduction sont les suivantes :

a) considérons des processus d qui varient l'orientation, sans pour autant induire
une déformation ni une variation de température. Le choix du système de coordonnées
étant alors indifférent, nous imposons P\h 0.

b) la densité qx est constante dans ce processus.
c) toutes choses étant égales par ailleurs, le potentiel y ne dépend explicitement

que de l'orientation et non du point courant (u). En d'autres termes, pour une orientation

donnée, y est un champ constant.
Des hypothèses a), b) et de (6.16), il découle que

fi= -Qi(Pi~Po). (6-28)

où [i0 est une constante d'intégration, représentant la valeur de fix pour un interface
plan. Les relations (6.26-27) deviennent alors:

g-112 ei (Pi -p0) -y2H-n* (rßßa -^- + da -jjL) + P - (6-29)

dY d4 ¦ J(rf*-2r + a.-K-ï-o. (6.30)
dx\ du* "\ •"* dx\ " dx\.

Afin d'en donner une interprétation géométrique, il convient d'introduire un repère
local placé au point courant M e 27. Celui-ci est choisi orthonormé, les deux premiers
vecteurs de base, ex, e2, sont tangents aux lignes de courbure en M, le troisième est
naturellement la normale n. Nous appelons (x, y, z) les coordonnées d'un point
quelconque de E3 et nous donnons une représentation de 27, au voisinage de M, sous la
forme cartésienne, z z (x, y).

Avec les notations usuelles :

_
dz

_
dz

_
d2z

_
â*z

_
à*z* ~ AVx~ • % ~ ly~ ' r ~ dx2 • s ~~ AWdy ' ~ Iff '

les formules du chapitre 2 permettent de calculer les grandeurs :

ax (1, 0, p), a2= (0, l,q), n a~^(- p, -q,l),
AA-p2 pq\ „_-u.fr s\

Pq lA-q2)' Kß~a 1!\s I

rL a-x(pr + qs,ps + qt).
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En M, nous avons évidemment : p q bX2 — 0. Aussi, les coubures principales,
valeurs propres de baß par rapport à aaß, y sont données par: l/i?a (r, t). D'après
l'hypothèse c), y ne dépend, dans ce système de coordonnées, que des pentes indépendantes

x\ — p et x\ q. En remplaçant les dérivations par rapport k p et q par des

dérivations selon les angles 0a, formés par n(M) et les normales le long des sections
principales, x 0 et y 0, la condition (6.29) devient:

-1'2 gx (:ux - /i0) -JT — (y 4- -Api + (6.31)

C'est la formule de Herring, car qx ljQ, où Q est le volume atomique. Les signes du
membre de droite proviennent de la convention généralement admise en géométrie
différentielle : les courbures sont négatives pour des indicatrices elliptiques du tenseur
baß. La condition (6.30) se réduit à:

dy 1

~dpA^ 0, dy 1

A)fAf2 0. (6.32)

Ceci est conforme à ce que nous savons du diagramme polaire de y : lorsque l'élément
de surface en M est plan, (les courbures sont alors nulles), la dérivée de y par rapport à

l'orientation est indéterminée (cusp), tandis que pour des courbures non-nulles, y est
stationnaire par rapport aux variations de l'orientation.

Figure 3

Système de coordonnées locales.

Au cas où un calcul, tenant compte des effets élastiques de la surface, était
réalisable, il faudrait prévoir une complication certaine des formules (6.31-32), car y
entreraient les valeurs des symboles de Christoffel ainsi que les premières dérivées de y par
rapport à l'orientation. Aussi, l'hypothèse c) serait insoutenable, car les effets
élastiques rendraient y non-constant. Toutefois la formule de Herring semble être en
accord avec les expériences de frittage et de-thermal etch. [26].

Jusqu'ici, seul l'équilibre local du système a été envisagé. Dans l'hypothèse de

l'équilibre total de tout le cristal avec sa vapeur, t)x est occupé par le cristal entier, £)2

par toute sa vapeur, (t)x c D2) et 27 dX)x est une surface fermée. Les conditions
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d'équilibre précédentes sont alors partout valables. En particulier, ytx est constant et

(6.31) est une équation aux dérivées partielles donnant informe d'équilibre du cristal
lorsque les effets élastiques sont négligés. Cette forme, dite forme de Wulff, est construite à

partir du diagramme polaire de y [23, 25]. Réciproquement, la forme d'équilibre offre
des renseignements utiles sur la dépendance en orientation de y [33]. Chernov [27] et
Johnson [28] ont montré que (6.31) est équivalente à la construction de Wulff. La
stabilité de l'équilibre a été étudiée par Johnson et al [29]. Des calculs détaillés pour la
dépendance en orientation de y ont été entrepris, entre autres, par Landau [30],
Herring [31] et Mackenzie et al [34].

7. Conclusions

Résumons brièvement les points essentiels de cette analyse. Nous avons reformulé
le modèle-surface de Gibbs afin de tenir compte des déformations et des tensions, ce

que Cabrera [20] a appelé le problème de Véquilibre microscopique. Cette formulation
est essentiellement invariante puisque l'analyse tensorielle y joue le rôle qui lui revient.
Nous apprécions le fait qu'aucune hypothèse d'homogénéité n'a été nécessaire et que
le choix de la cellule primitive en tant que système thermodynamique permettait de

décrire les lacunes et interstitiels de façon naturelle. Le Second Principe, sous une
forme variationnelle, appliqué au système cristal-surface-vapeur, livrait alors les
conditions nécessaires d'équilibre auxquelles on pouvait s'attendre. Des relations connues
ont été retrouvées et le dernier chapitre explicitait les hypothèses nécessaires à la
déduction de la formule de Herring pour le potentiel d'un élément de surface et dont
découle la construction de Wulff pour la forme d'équilibre. Il a été signalé qu'un
raffinement de cette formule nécessite la résolution simultanée du problème élastique.

Il n'est peut-être pas inutile de revenir sur l'hypothèse d'autonomie locale [12] de la
phase superficielle. Celle-ci s'exprimait analytiquement par le postulat (5.15), où uA ne
dépendait que de variables définies sur 27. Cette hypothèse exclut évidemment les

potentiels chimiques latéraux [12], mais il est facile de se convaincre que la non-autonomie

est liée à des phénomènes irréversibles. Par exemple, ces potentiels chimiques
latéraux disparaissent lors d'une réaction d'adsorption d'équilibre et sont, par
conséquent, parties intégrantes d'une thermodynamique des processus irréversibles de la

phase superficielle. Dans un précédent article [11], nous avions signalé que le bilan de

masse faisait intervenir une source due, précisément, à cette réaction d'adsorption.
Cette dernière apparaissait aussi dans la source d'entropie de la phase superficielle.
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Appendice A

Rotations infinitésimales induites par le champ des déplacements ô^
Sous l'action d'une rotation infinitésimale ôo, un vecteur arbitraire v subit la

variation
ôv ôoxv. (AA)

En particulier, grâce à (3.6)

ôg^ôoxg^dtôÇ, (A.2)
ce qui entraîne les relations

ogik oalxß og oa 0,

ainsi que les équations de Killing, comme il se doit.
Multipliant scalairement la deuxième égalité de (A.2) par gj, et utilisant (2.5)2, il
vient

ôo \rfjkôèhi gk | rot Ô§, (A.3)

qui est donc l'opposé du vecteur adjoint au tenseur antisymétrique d|[7j^.
De façon analogue sur 27,

ôaa ôoxaa dJ$. (A.4)

En décomposant ôo en partie normale et tangentiale (2.24) et utilisant la relation
(2.21), il vient:

o(o \r,aßdaLo§aß, ôo/^rj^d^ô^n. (A.5)

Appendice B

Discussion de l'équilibre du fluide.
Résumons les relations postulées et déduites aux chapitres 5 et 6. Dans T)2 nous

avons :

u2 u2(s2,lJQ2), (B.l)

ôu2 T2ôs2-pô IJQ2, (B.2)

T2(s2, lle_-T, (B.3)

grades,, l/eî) 0, (B.4)

u2 - Ts2 + PIq2 - (i 0. (B.5)

Nous définissons alors le potentiel chimique par particule

H2 u2- T2 s2 A- PIq2 [*2(s2, l/02), (B.6)

qui n'est rien d'autre que l'énergie libre de Gibbs par particule.
Grâce à (B.5) et (B.3) nous obtenons la condition d'équilibre:

/j,2(s2, 1JQ2) fi (B.7)
et la condition d'homogénéité:

u2 T2s2- pJQ2 A- fiz. (B.8)

En variant (B.8) et comparant à (B.2), nous obtenons la relation de Gibbs-Duhem:

s2ÔT2-lle2ôp + ôf,2 0. (B.9)
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Puisque T2, p, /j,2, sont des champs constants sur £)2, nous pouvons intégrer (B. 8-9) :

S2ÔT2-V2ôp + N2ôp2 0, (B.IO)

U2=T2S2~pV2A-fi2N2, (B.ll)

dont nous tirons la relation thermodynamique usuelle :

ÔU2 772 ÔS2 -pôV2+ H ÔN2. (B.12)

Puisque l'énergie est définie à une constante près, deux quelconques des relations
(B.2), (B.8-9) entraînent la troisième. La même remarque vaut pour les relations
(B. 10-12).

Dans ce contexte il faut remarquer qu'aucun usage d'une hypothèse d'homogénéité

de u2, s2, q2, n'a été faite (par exemple, les relations d'Euler sur les fonctions
homogènes) et que les relations (B. 10-12) sont fausses dans des systèmes soumis à un
champ extérieur ou à une accélération puisqu'alors, ni la pression, ni le potentiel
chimique ne sont des champs constants. Toutefois, si nous supposons que chaque élément
thermodynamique est en équilibre stable, c'est à dire que u2 réalise un minimum de

l'énergie totale, il est possible de montrer que u2,s2, g2, sont effectivement homogènes.
En effet, il suffit alors que la forme quadratique

Ä s » o d2u s s -i / dHi „ 2

-W ôs + 2
AAidïJQ Ôsôll? + Wtfa W

soit définie positive [23]. Afin de ne pas alourdir l'écriture, nous avons supprimé
l'indice (2). Le discriminant

d2« d2u
__

/ d2« \2
AAs^ ~dïuj \ ds òlle J '

doit alors être strictement positif. Or, grâce à (B.3-4) et (B.7):

grad T 0 -^-- grad s + -^ grad 1/g

grad p Q=-îj- grad s + -^y grad 1/g

grad p, 0 -£- grad s + -^~- grad 1/g

(B.14)

système dont la troisième équation est linéairement dépendante des deux premières en

vertu de (B.9). Ces deux équations forment un système linéaire et homogène en grad s

et grad 1/g, dont le déterminant est de signe inverse de (B. 13) et donc non-nul.
Ainsi :

grad s2 grad l/g2 0 (B.15)

et puisque les variations d peuvent être du type ôy • grad, il résulte de (B.2) que

gradw2 0. (B.16)

A nouveau, ces résultats ne sont plus vrais pour des systèmes au voisinage d'un point
critique (u2 réalise seulement un extremum), ni pour des systèmes soumis à un champ
extérieur ou à une accélération.
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