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A New Method for the Analysis of Unitary Representations of SL(n, C)

by H. Leutwyler and V. Gorgé
Institut für theoretische Physik der Universität Bern, Bern (Switzerland)

(4. X. 67)

Abstract. It is shown that homogeneous variables may be used in a covariant fashion to analyze
unitary as well as finite dimensional representations of the group SL(n, C). In particular the
reduction of these representations with respect to the maximal compact subgroup SU(») is carried
out in an explicitly covariant manner. The method is particularly useful for degenerate representations.

1. Introduction

Recently, in connection with infinite sequences of resonances [1], with strong-
coupling theory [2], with dynamical symmetry groups [3], with current algebras [4]
and with Regge poles [4], unitary representations of noncompact groups have come
to play an interesting role in elementary particle physics. In particular unitary
representations of the group of complex unimodular nxn matrices, SL(w, C), have
been used in a number of applications. In a remarkable early investigation on field
equations with infinitely many components, Majorana [5] had made use of unitary
representations of the covering group SL(2, C) of the homogeneous Lorentz group.
More recent applications of unitary representations of the groups SL(2, C) and SL(6, C)

can be found in the bibliography of Ref. [6].
The mathematical theory of unitary representations of the classical groups

SL(«, C), SO(n, C) and Sp(w, C) has been developed by Gelfand and Naimark [7, 8].
We shall briefly review their theory for the case of SV(n, C) below. Unfortunately,
their elegant method is not suitable for practical applications, because it does not
display explicitly the covariance of the results. The purpose of this paper is to show
that a modification of the technique of Gelfand and Naimark restores the full
symmetry in cases of practical interest. In particular it is shown that the reduction
of the representations with respect to the maximal compact subgroup, which
constitutes an important step in the applications, can be handled in an explicitly covariant
fashion.

A quite different technique, based on the analytic continuation of matrix elements
of finite dimensional representations, has been proposed by Fronsdal [10]. In the
case of SL(2, C) still another method dealing directly with the elements of the
canonical basis associated with the reduction SL(2, C) D SU(2) has proved to be
useful [11]. Each of these methods has its advantages and may be more convenient
for a specific type of problems than the others.

To present the main features of our techniques in as simple a manner as possible
we shall first deal with unitary representations of the group SL(2, C). We demonstrate
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the usefulness of the method by means of simple examples in Sections 4 and 5. The
extension of the technique to SL(w, C) is given in Sections 6-8.

We shall not try to give a rigorous treatment of our method, but shall rather
emphasize in a heuristic fashion those aspects which are useful in practical applications.

Rather elaborate applications of the method to SL(2, C) and to SL(6, C) have been

given by Zulauf [12] and by Gorgé and Leutwyler [6].

2. Principal Series of Unitary Representations of the Group SL(2, G)

According to Naimark [13] there are two types of unitary representations of
SL(2, C), the representations of the so-called principal series and those of the
supplementary series. We shall in the following restrict ourselves to the principal series

although the results can be extended to the supplementary series in a straightforward
fashion. The representations of the principal series are constructed as follows. One
considers the subgroups Z and K of SL(2, C) consisting of elements of the form

These subgroups are complementary in the sense that almost all elements 5 e SL(2, C)

can be decomposed as

s k z (2.2)

and this decomposition is unique1).
The representations of the principal series are then defined on a Hilbert space of

complex functions f(z) on the subgroup Z with the scalar product

(f,g)=Jdz*f(z)g(z). (2.3)

The integration extends over real and imaginary parts of the complex number z

z x 4- i y dz dx dy

The action of the group on these functions is defined as follows :

t^r u(g)f

f'(z) x(k')f(z') (2.4)
where k' and z' are defined by

k'z' zg. (2.5)

If we write

we have explicitly
*' ÎSt; k' ßz + o; l' ß. (2.6)

1) The decomposition fails if s| 0.
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Consistency of this definition of the representation U(g) with the group structure
requires

a(fex) a(fe2) a(fcx k2)

This implies
x(k) a(k) ka+k*r (2.7)

where k is the lower element on the diagonal of the matrix k.
The requirement that the representation be unitary fixes the absolute value of

a(k), i.e. the sum of the real parts of the exponents a+ and ar. On the other hand the
phase of x(k) is only subject to the condition that a.(k) be a one-valued function on the
subgroup K as otherwise U(g) is not a global but only a local representation of SL(2, C).
These requirements lead to the following expressions for a+ and a~

«± y (=F m + io) - 1 (2.8)

where m is an integer, and q is an arbitrary real parameter2). These two parameters
are invariants of the representation ; in fact they fix the representation defined above

completely. Furthermore the following theorem is proved in Ref. [13] : Two representations

characterized by (mlt qx) and (m2, o2) respectively are equivalent if and only if

mx m2; qx q2 or m1 — m2; ot= — q2.

The representations of the principal series may therefore be denoted by UOT) s, labelled

by an integer m 0, Az 1. ± 2,... and an arbitrary real parameter q. These representations

are mutually inequivalent, except for Ume ~ £/_„,_ _e.

3. Homogeneous Variables

It is evident that the explicit transformation law for the variable z given in (2.6)
is rather clumsy for practical applications. In particular, if the element g e SL(2, C)

represents a Lorentz transformation, the transformation law for z contains a rather
strange combination of the conventional parameters, i. e. angles of rotation and relative
velocities of the reference frames connected by this transformation. A much more
transparent form is obtained if one makes use of homogeneous variables. These
variables may be introduced as follows. Associate with every complex number z

a family of spinors £ by means of the definition

C=(Ci,C2)= X(z,l) (3.1)

where X is an arbitrary complex parameter. Accordingly we define a function F(Ç)
associated with the element/(z) of the representation space by

F(C) a(A)/(*) (3.2)

Since a(X) is a homogeneous function so is F(Ç) :

F(ji C) *[ft) F(C) A|ift<-»+«»)-iA,*W (+-+'«)-! F(C) - (3-3)

2) We adhere to the notation used in Ref. [7]. Note that the conventions used in Ref. [13] differ
from those used here in the sign of m.
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It is easy to verify that the transformation law for the elements f(z) implies the
following transformation law for the homogeneous functions F(Q 3)

F -+ F' U(g) F
F'(C) F(Cg); (C*)B C,g£. (3.4)

In other words, the quantity £ does indeed transform like a spinor under SL(2, C).
The degree of homogeneity of F(Ç) characterizes the representation, whereas the
transformation law is the same for all representations.

Generators

The infinitesimal elements of SL(2, C) may be parametrized by means of the
conventional antisymmetric quantity co1"'

g(co) l + ±rm»"oßV+--- (3.5)

where the generators a^v are defined by3)

<V \(à»ov-òvo) (3.6)

It is straightforward to verify that the corresponding hermitean generators JßV of
the representation in terms of homogeneous functions are given by

(3.7)

(3.8)

(3.9)

C2^^H(H + 2)-^H(H+2). (3.10)

The values of the operators H and H in an irreducible representation are determined
by the degree of homogeneity of F(Ç) given in (3.3). The resulting expressions for the
Casimir operators are

Ci=4K-e2)-i c2 + {»e. (3.11)

tftë) l-Y«»"/„,+ ¦¦•

JßV ^Tp^^ + f <V —Ì
Tlle Casimir operatiDrs

Ci _ tv t ¦ r — Jl pf
2 J Jpv °2 — 4

fc IVQO J J
JfiV Jq

can be rewritten in terms of the operators

d

as follows

Ci ±H(H + 2) + \-H (HA-2)

Notation: a, ß — 1, 2; fx,v 0,1,2, 3. Metric g^p diag(l, — 1, — 1, — 1). Antisymmetric
tensors in two dimensions eaß, eaP; e12 A2 1 and in four dimensions E^vgo. e'""*": £0123

- £0123 — 1. The generalized Pauli matrices are defined by a? a" + S" af 2 gl" 1.
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Finite Dimensional Representations

The connection of these homogeneous functions with the theory of finite dimensional

representations of SL(2, C) is obvious. The finite dimensional representation
E(ji, jì), (/i, /a 0» ± 1/2, ± !»•••). can be defined on tensors of the type

A«i-«*hh-hh (3<12)

symmetric in at... a.2Ji and in ß1... ß2ji. The conventional transformation law for
these tensors reads

A -> A' 0(g) 4

^••^^'•••SVVV (3-13)

With each tensor of this type we may associate a homogeneous function

F(C) ^-a2^-^Cai...Ca2,a-a,- (3-14)

The degree of homogeneity is in this case

*{/*) f/hpi* 2/2. (3.15)

This is of the form (3.3) only if j\ j2 0, reflecting the fact that the only finite
dimensional unitary representation of SL(2, C) is the trivial one.

The finite dimensional representations and the unitary representations can thus
be treated in the same framework. This observation is at the basis of Fronsdal's
theory of representations 'with continuous number of indices' [10]. In this connection
the reader is referred to the more detailed discussion at the end of Section 4.

Scalar Product

The scalar product (2.3) now takes the form

(F, G) =Jdpi(C) E*(C) G(0 (3.16)

The measure dfj,(Ç) is given by

dfi(Ç)=dÇÔ(Ç2-l)

where dt, stands for the product of the differentials of real and imaginary parts of d
and f2. It is obvious that the measure d/u(Ç) is not explicitly covariant. In fact the
above expression for the scalar product (F, G) is not invariant with respect to
transformations under SL(2, C) defined in (3.4) unless the product F* G is a homogeneous
function of the type

F*G(lxÇ)=\,Ji\-*F*G(l:).
This relation is satisfied if the functions F, G are elements of the representation space
and therefore obey (3.3).

In the applications of the unitary representations of SL(2, C) one of the central
problems concerns the reduction of a given representation with respect to the so-
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called canonical basis associated with the maximal compact subgroup SU(2). If use
is made of homogeneous functions the elements of the canonical basis can be written
down in a very simple fashion. However, the reduction requires not only knowledge
of the elements of the canonical basis, but also the evaluation of scalar products of
these elements with an arbitrary vector of the representation space, and the non-
covariant form of the measure which defines this scalar product is a serious drawback.

Fortunately, it turns out that the integral defining the scalar product of an arbitrary
element with an element of the canonical basis can be rewritten in such a fashion as

to make it explicitly covariant. The advantages of this rearrangement are quite
remarkable. The situation somewhat resembles the relationship between the covariant
form of perturbation theory and the old-fashioned, non-covariant method. In fact the
integration technique we shall employ is a variant of the method used by Bogoliubov
and Shirkov in their book on the theory of quantized fields [14].

4. The Reduction SL(2, C) o SU(2)

Let us define the subgroup SU(2)M by

gMg+ M geSU(2)M (4.1)

where M is a positive definite, hermitean matrix, the metric of the group SU(2)M.
For convenience, let us normalize this metric by

det M 1 (4.2)

(Note that if instead a metric M is chosen with det M — 1 then the resulting
subgroup is the noncompact group SU(1, 1), locally isomorphic to the Lorentz group
SO(2, 1) in 3 dimensions [15].)

Canonical Basis

We first want to show that the representation Um Q
contains a subspace, the

elements of which transform irreducibly according to the representation D(\m\j2) of
SU(2)M. In fact consider the set of functions

^1...km(C;M) ^i...^(CMC+)1/2(-"+ieH1 if ™>o

^,..>|(^) CIi...C>|(fMff21"+i8-1 if m<0. (4.3)

We shall refer to these quantities as generating functions.
Clearly these functions are homogeneous of the required degree. Furthermore,

under the action of the elements of SU(2)M the quantity (f M f+) is invariant,
whereas the monomials El tl and t„ £„, do indeed transform according to

al m ai a|»»| °
D(\m\[2). What must be shown in addition is that these functions actually belong
to the Hilbert space of Umg, i.e. that their norm, defined by the scalar product (3.16)
is finite. We shall compute this norm explicitly as a byproduct of the more general
calculation carried out below. Before we turn to this calculation let us note the
transformation properties of the generating functions under the full group SL(2, C).

Restricting ourselves to the case «>Owe obtain

F'^.AjC: M) Fßi_ßm(£; g Mg+) g*\ g*\ (4.4)
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Infinitesimal transformations therefore generate linear combinations of functions
of the type

Fa „ s g (C; M) 1 • • -. F» i (C; M) (4.5)
dMlPm+1 dM}Pm+>

The traceless parts of these quantities transform according to D(mj2 + j) under
SU(2)M and we shall refer to these traceless parts as elements of the canonical basis.
We have just verified that the elements of the canonical basis can be obtained from
the generating functions by means of differentiation with respect to the metric M.
The action of SL(2, C) thus generates the following ladder of representations of SU(2) :

D(m\2), D(mj2 + 1), D(m/2 + 2), The proof that this ladder actually exhausts
the representation space can be found in Ref. [13].

Scalar Product of an Arbitrary Element with an Element of the Canonical Basis

We now turn to the problem of computing the norm of an element of the canonical
basis. As a first step we investigate the more general problem of the inner product of
an arbitrary element with an element of the canonical basis. To simplify the argument
let us restrict ourselves to the particular representations with m 0 and consider the
generating function

F(C; M) (ÇM £+)<«'e/2)-i (4.6)

which in this case is associated with the trivial representation D(0) of SU(2)M.
Let G(C) be an arbitrary element of the representation space and consider the scalar
product

(F, G) =fdp(Q (t MC+)-(*^)-1 G(t) =jdz(U MC+)-C^)-i G(C„) (4.7)

where f0 stands for the spinor
Co (*, 1) • (4-8)

We now transform this integral by inserting the Gaussian representation

oo

(Co M tfj-e««-! r(1+2.e/2) JdX X1+i* «-»«."W (4.9)
o

The form of the exponent invites us to introduce instead of Co the spinor

I X C0; S1 Xz; fa X

The integration over X and z is equivalent to an integration over all complex values
of £j and an integration over the real variable |2 from 0 to infinity. In order to treat
f1 and £2 on completely equal footing we consider instead of f the spinor f defined by

C Ae'(6C0; Ci Xe^z; t.2 Xei'1' (4.10)

with an arbitrary phase (f>. Making use of the homogeneity of G(t) we have
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The integrand is independent of <f>. We are therefore allowed to replace the integral
by its average over ^

<F- G> »r*\i9mJ*p *+ dz *~?Mf+ (;(C) •
' (4-12)

The integration over X, <f> and z is equivalent to an integration over the 2 complex
variables £1 and f2. It is straightforward to compute the Jacobian of this transformation

with the result
dE. dXXzd<t>dz (4.13)

where d£, denotes the product of the differentials of real and imaginary parts of fi
and C2- Therefore

(F,G) ~^^/^-^+G(C) (4.14)

and we have managed to express the scalar product in a manifestly covariant form.
The same method applies in the case of a representation i7m_ e with arbitrary m.

The scalar product of the generating function F-a -a (f ; M) of the representation
Um e with an arbitrary element G(t) is given by (we restrict ourselves to m > 0)

(^...ow G) - inwWf/^"{,^4s G(0 • (4.15)

The analogous scalar products involving elements of higher representations
X) (w/2 + /) are obtained through differentiation with respect to the metric.

An Example

To evaluate the integral for a particular choice of the function G(t) let us again
consider the representations with m 0 and let us compute the expectation value of
U(g) in the state F(C; M) defined in (4.6). This expectation value is closely related
to the so-called elementary spherical functions of SL(2, C), which can be found in
Ref. [13].

G(t) U(g) F F(t; N)

N=gMg+. (4.16)

The matrix N is again positive definite, hermitean and unimodular. In the particular
case g e SU(2)M this expectation value represents the norm of F.

We make use of an exponential representation for the function G(t) to rewrite the
scalar product as

(F, U(g) F)
1

71 r(l + Ìf)
2'

jdptpr^Ute-W*-»^. (4.17)

The integration over the homogeneous variable f can be carried out by means of the
well-known formula

[<% e~iAC+ jî2(det A)-1 (4.18)
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with the result
oo

(F, U(g), F) n\r(A-A-^-)~2 [dpi pi~^ D~l; D det(M + /uN). (4.19)
o

This integral converges for all positive definite hermitean matrices M and N. Let us
represent these matrices by3)

M m''a N n"ö ; m" mß n^ n^ 1. (4.20)

Furthermore denote the hyperbolic angle between the vectors rnA and n1* by x
mß n cosily (4.21)

In terms of this angle we have

D=- l + 2/acoshz + (a2. (4.22)

The remaining definite integral over /u has the value4)

(E, U(g) F) N* IgglL ; N> n2 | r (l + If) f ^J—^ (4.23)

where N denotes the norm of F. If the element g e SL(2, C) represents a Lorentz
transformation, then the angle x introduced above is related to the relative velocity
of the two reference frames connected by this transformation by

tgh* ^. (4.24)

The final expression (4.23) can readily be generalized to arbitrary elements of the
canonical basis of an arbitrary representation Um^ e. The corresponding integrals are
of the general form5)

fdCe-^+^...CaLJl-..:Ì(CNC^

(- 1)" d—-. -^-j- fdC e~iMi+ (C Nt+)P

and can therefore be evaluated by means of the same technique.

Finite Dimensional Representations

The methods used in this section can be applied to finite dimensional representations

as well. We first demonstrate that an expression analogous to (4.15) can be given
for the scalar product in the case of finite dimensional representations. In fact,
consider the representation D(j1, j2) with e.g. j1 > j2, which is defined on tensors of

the type A 1l '2. The invariant scalar product of two tensors of this type is

given by

<^> ^...^..J S*1"-^---^ (4-25)

4) The expression for the elementary spherical function given in Ref. [13] contains a misprint.
6) In expressions involving differentiations with respect to the metric M the constraint det M 1

is to be imposed after the differentiations have been carried out.



180 H. Leutwyler and V. Gorgé H. P. A.

where in the first factor we have lowered the indices by means of the invariant
symbol3) exg. Now let B be an arbitrary element of the representation space and let
Ayx

_

• (A 2 /j — 2 /8), denote the elements of the smallest subspace in the reduction

SL(2, C) D SU(2)M. This subspace transforms according to D(A\2) under SU(2)M-
and we have explicitly

^...^^...^lA.../4fc-§^v1---^^A^w1---^ii^ (4-26)

where the operator 5 projects out that part of the right hand side which is totally
(a)

symmetric with respect to permutations of a.x a2j (Note that we have assumed

h 5* li)- We are interested in the scalar product (A-_-y By and we want to show

that this quantity can be expressed in terms of the homogeneous function G(Ç}
associated with the element B

Gtö-^--^-^^...^^...^ (4-27)

in a manner completely analogous to (4.15) as follows

<[An... •

a B} yJdC e^Mi+ £ CyA G(C) • (4.28)

The proof is very simple. We merely have to evaluate the integral over f which is
of the form

fd^-'m+^-^-A-ch-
This evaluation is straightforward and the result reads

7i\2jM SMI"* ...Mr1 a
(a)

We have thus verified (4.28) with

y-nm-r (4-29)

It is instructive to investigate the finite dimensional analog of the expectation value
(F, U(g) F) considered above for the particular case of the unitary representations
with m 0. The finite dimensional analogs of these representations are the representations

with /j j2 /, since only these contain the trivial representation D(0) in the
reduction SL(2, C) D SU(2). Let A denote the tensor belonging to the representation
D(0) contained in D(jlt j2)

Aa.x...i2iß\...ß2i g yfik __ frfn^i (4 3Q\
(«)

The expectation value of the operator D(g) is then given by

(,A,D(g)Ay=yJdCe-^M^G(C)

G(0 (C N C+)2> (- 1)" (2j) A- £ -^ e~°^ (4.31)
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Here N is the matrjx defined above and the integral extends over a closed path in the
complex 2-plane around the origin. The integral over E can be evaluated with the result

(A, D(g) Ay (- ip -A— j>-^ D-\ D l + 2z cosh^ + z2 (4.32)

Apart from the singularity at z 0 the integrand possesses two simple poles at

*=-«±Jt. (4.33)

The path of integration can therefore be deformed into two circles around these two
poles and a circle at infinity which does not contribute. Evaluating the residues of the
two poles we obtain

<A,D(g)Ay^ Sinh^1)X ¦ (4-34)

This result closely resembles the corresponding expression given above for infinite
dimensional unitary representations. In fact the two results are connected through
analytic continuation6) in the group invariant ; from positive half-integer / to

2/+l=4f. (4.35)

This is a special case of a more general relation between matrix elements of finite
dimensional representations and those of unitary representations, a relation extensively

used by Fronsdal [10] : The matrix elements of the unitary representation
(7OT| s

of the principal series in the canonical basis are obtained from those of the finite
dimensional representation D(]\, j2) by continuing analytically in j1 and j2 to the points

2 h + 1 y (- m + i q) 2 j2 + 1 y (+ m + l è ¦ (4-36)

This connection is made plausible by a comparison of the homogeneity conditions
(3.15) for finite dimensional representations and (3.3) for unitary representations.

5. Clebsch-Gordan-Kernels

Before we proceed to an analysis of the more involved groups SL(», C) let us
briefly consider the reduction of direct product representations in the framework of
SL(2, C), which again takes a particularly transparent form in terms of homogeneous
variables.

The reduction of direct products of unitary representations of SL(2, C) has been
solved by Naimark [16]. As far as the principal series is concerned, Naimark's main
result is the statement that the direct product of two representations characterized by
(mi • 6i) and by (m2, q2) respectively contains the representation (m3, q3) if and only if
mx + m2 + ms is even in which case the representation (ma, q3) occurs exactly once7).
The generalization of the well-known Clebsch-Gordan-coefficients associated with the
reduction of representations of the rotation group is a Clebsch-Gordan-kernel with
the following property. Let f^Zj) and f2(z2) be two elements of the representation

This statement concerns the normalized expectation values.
For a more precise statement of this theorem see Ref. [16].
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spaces of the representations Um 6i and Um ea respectively. The Clebsch-Gordan-kernel
k(z3 | zx, z2) accomplishes the coupling of f\ and/2 to a function / which transforms
according to Umi>e

f(zs) 1 dzx dz2 k(z3 | zx, z2) r1(z1) f2(z2) (5.1)

An explicit expression for the kernel k can be found in Ref. [16]. This explicit
expression can easily be obtained making use of homogeneous variables by means of the
following heuristic procedure.

Let us associate with k(z? | zx, z2) the homogeneous kernel K(Ç3 \ C2, Ci)

K(C3 I C2> Ci) «1(^1) a.2(X2) a.3(X3) k(z3 | zx, z2)

C,=^,l). (5.2)

By definition the degree of homogeneity of K is

K(f*3 C3 | Mi Ci, H C2) a*(ft) «2C"2) «3(^3) K(E3 I Ci, C2) • (5-3)

The transformation properties of k imply in the usual way the transformation
properties of K. In fact, K must simply be an invariant function

K(i;3g\Ç.1g,Ç2g) K(Ç3\Ç1,Ç2). (5.4)

It is a simple matter to solve this invariance condition. There are only 6 algebraically
independent invariants that can be formed out of 3 spinors: rx, r2, r3, r*, r*, r*B

rx C2 e C3 C2a eaß Ezß (cycl.) (5.5)

where ea^ is the antisymmetric tensor. The homogeneity condition can be satisfied
with the ansatz

c+ Ç + c+ c— ç— c-¦
Ts-/y I 5- j. \ 1 2 3 * 1 * 2 * 3K(CS I Ci, C2) =rx r22 r33 rx

1
r2

2
r3

ó

1 ilSf ± 4- (- m1 + m2- m3) + — (Ql - q2 + o3) - y
1 i 1

Sf ± y (»»x - w2 - m3) + -4- (- pi + g2 + g3) - y
S? ± y (mi + w2 + W3) + y (- gl - o2 - 03) - y (5.6)

If this kernel is reexpressed in terms of the variables zx, z2, z3 one does indeed recover
the expression given by Naimark. Note, however, that the kernel K(£s | f1, £2) may
be used directly to carry out the reduction of direct products of elements of the
canonical basis. Let us restrict ourselves to the case mx m2 m3 0 and let
FX(EX; Mx) and F2(E2; M2) denote the generating functions of Umußi and U„tigt.
The homogeneous function jF(C3) belonging to the representation UmaiÇa in the direct
product is then given by

F(Q NjdCx dt2 fh^ì-h^ì K{Cs 1 Ci_ Q _ (57)

This procedure can easily be extended to representations of SL(w, C). For applications
of this method the reader is referred to Refs. [6, 17].
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6. Principal Series of Unitary Representations of SL(n, C)

We now take up the generalization of the method explained in the previous
sections to the more general and more involved case of the group SV(n, C). Let us
briefly review the Gelfand-Naimark theory [7] of the principal series of unitary
representations of SL(«, C). The group SL(w, C) admits of several pairs of subgroups
of the type Z and K considered in the case of SL(2, C). In fact let (nx,n2, nr) be
some partition of the number n such that

nx A- n2 + ¦ ¦ ¦ + nr n; 1 < r < n; np positive integers.

Given this partition, divide each nxn matrix s into r2 blocks

* «}; Mal '
where the block sp is a rectangular matrix with np rows and nq columns. The subgroup
Z belonging to the given partition then consists of elements of the form

z {zpq}) zp 0 if p < q; zpp unit matrix

and the elements of the complementary group K are characterized by

k {kpq}; kpq=0iip>q.
Almost all elements of the group SV(n, C) can again be decomposed uniquely8) as a
product of elements of K and Z

s k z

As an illustration consider the partition (n — 1, 1), i.e. r 2, nx n — 1, n2= 1.

In this case the elements of the subgroups Z and K are of the form

s;
\z-A ; 1 ft-I ¦ I. (6.1)

0
1

0

zx. ¦• Zn-1 1 0...0
To each of the possible partitions of n there belongs a class of unitary representations.
These representations are defined on functions/(z) on the subgroup Z as in the case of
SL(2, C) and the definition of the representation U(g) reads

f^f'=U(g)f /'(z) a(ft')/(*') (6.2)

where the elements k' and z' are again the unique resolution of the matrix z g

k'z' zg. (6.3)

The above definition of U(g) furnishes a representation of SL(«, C) provided a(fc}
is of the form

oi(k)=Kx1 ...x/ x*1 ...x*r (6.4)

8) For a characterization of the set of measure zero of matrices s for which this decomposition is
not possible see Ref. [7].
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where the quantities xp are the determinants of the blocks of the matrix ft situated
along the diagonal

xp det fc£ (6.5)
and satisfy

xx x2 xr 1 (6.6)

In the example considered above

xx det ft; x2 knn (6.7)

The representation is required to be unitary in the scalar product

(f,g)^fdzf*(z)g(z). (6.8)

Here dz stands for the product of the differentials of real and imaginary parts of all
nontrivial elements of z.

This requirement fixes the absolute value of oc(fc) whereas the phase is restricted
only by the requirement that the function a (ft) be one-valued on K. This leads to the
expression

l il A
af T y ™P + y Qp + y (nP + ni) ~ Z,ni (6-9)

q-l
where (mx ,m2, mr) are integers and (qx,q2, Qr) are arbitrary real parameters.
Clearly these parameters are redundant since the transformation

¦mp^mp + m0; Qp->QpA- g0 (6-l°)

leaves the function <x(fc) and hence the representation U(g) unchanged. This ambiguity
in the choice of the variables mp and qp can be removed by the normalization

mx qx 0 (6.11)

With this normalization the exponents of vanish such that oc(ft) does not involve xx,
or x*. We shall in the following adhere to this normalization. The representations of
the principal series associated with the partition (nx, nr) - referred to as the
degeneracy type of the representations belonging to this class - are therefore labelled
by r — 1 integers, (m2,..., mr) and r — 1 real parameters (q2, ,Qr). In the particular
case of the partition (n — 1, 1) considered above the representations are labelled by
one integer m and one real parameter q and the multiplier oc(fe) takes the form

<x(ft) (£M)(1/2)(-",+I'e-»») /£*»>.(i/2)(+»+*e-»)
_ (6.12)

To conclude this short review we mention the following equivalence theorem [7] :

Two representations characterized by the degeneracy types (nx, nr) and
(nx, n~) and the parameters (m2, mr), (q2, gr) and (m2,..., m~), (q2, q~)

are equivalent if and only if

(1) r r
(2) there exists a permutation 1, r —> ix, ,ir such that np nt ;

«*p mip + m0; ~gp
Qip + q0 (6.13)

In the case of SL(2, C) this theorem reduces to the statement mentioned in Section 2.



Vol. 41, 1968 A New Method for the Analysis of Unitary Representations of SL(», C) 185

7. Representations of SL(n, C) in Terms of Homogeneous Functions
As in the case of SL(2, C) the representations of the groups SL(», C) can

alternatively be described in terms of homogeneous functions which we introduce as

follows. Let s be a unimodular nxn matrix, i.e. 5 6 SV(n, C), and let s^ denote its
matrix elements (A, B 1, n). We define the homogeneous function F(s)
associated with the element f(z) of the Gelfand-Naimark representation by

F(s) oc(fe) f(z); ä fez. (7.1)

The transformation law for the element f(z) implies a simple transformation law for
the homogeneous function

F^F'= U(g) F F'(s) F {s g) (7.2)

Furthermore from the fact that K is a subgroup we conclude that

F(kos)=x(k0)F(s); k0eK. (7.3)

This is the generalized homogeneity condition. The explicit solution of this condition
will be given below. To get some feeling for the meaning of this constraint we consider
the two following special cases. First, suppose that ft0 vanishes below the diagonal
and that its diagonal elements are unity, whereas the elements above the diagonal
are arbitrary. In this case a(ft0) 1 and the constraint implies that the function F(s)
is unchanged if to the Ath row vector of 5 an arbitrary linear combination of the row
vectors below it are added. The function F(s) therefore depends on s only through
those combinations which are independent under such a transformation, i. e. through
the determinants A(j)

A(J)A....A. tet
-n—jA-1 cn~/-fl\ ¦¦¦Saj j 1, n - 1 (7.4)

which are antisymmetric with respect to permutations of Ax, Aj. In particular
we note that F(s) is independent of the first row of 5. Clearly under the transformations

(7.2) these determinants transform according to the finite dimensional
antisymmetric tensor representation of rank /.

Next consider a diagonal matrix fe0. In this case the row vectors of the matrix
ft0 5 are multiples of the corresponding row vectors of s and therefore the generalized
homogeneity condition (7.3) implies that F(s) is a homogeneous function of these
vectors with a degree of homogeneity given by the multiplier a(ft0). - These two
special cases do not exhaust the full subgroup K except in the case r n, %
n2 nr 1, the so-called non-degenerate representations. For the so-called

degenerate representations, for which at least one of the elements np of the partition
is different from 1, the homogeneity condition is stronger. The homogeneous functions
are then allowed to depend only on those particular determinants whose rank
corresponds in a specific way to the partition of the representation. In this general
case the solution of the homogeneity condition reads explicitly

F(s) F[A(l1),...,A(lr_x)}
F[XxA(l1),...,Xr_xA(lr_xy\

X**... kS*-1 Jp ¦ ¦ ¦ K-i7'X E[A (h), ...,A (lr_x)] (7-5)
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where we have used the notation

lp nr + nr_xA- ¦¦¦ + nr_p+1; p l,...,r (7.6)

for the rank of the tensors appearing in F. The degrees of homogeneity are given by

<*P T Y (mr-p + l - mr-p) + y (Qr-p+1 ~ Qr-p) ~ ~Z K-/.+1 + nr-p) - C7"7)

To summarize this discussion we note the following features of the homogeneous
functions

1) The independent variables of the homogeneous functions are the row vectors
of the matrix * :

F= F(s2,ss, ,s"); sA (sf, sA)

2) Under the action of SV(n, C) these row vectors are transformed according to

sA -> sA g; F(s2, s») -> F(s2 g,...,sng). (7.8)

This transformation law is independent of the particular representation under
consideration.

3) The homogeneous functions depend on the row vectors of s only through the
particular combinations occuring in the antisymmetric tensors A(j) defined in (7.4).
Furthermore, if the representation is degenerate, only those tensors occur whose rank
is related to the partition of the representation by (7.6).

4) The function F(s) is a homogeneous function of the tensors A(j) and, therefore a

homogeneous function of the row vectors s2, s" with a degree of homogeneity
specified by the parameters (m2, mr) and (q2, or) characterizing the representation.

5) Finally we note that the relation between the homogeneous function F(s) and
the corresponding element in the Gelfand-Naimark representation is specified by (7.1).
This relation is based on the resolution of the implicit definition of the variables ft
and z in terms of s

s kz. (7.9)

As we know that F(s) depends on the matrix * only through the tensors A (j) it must
be possible to express both the matrix z as well as the quantities xx, xr appearing
in the multiplier a (ft) through these tensors. Such an expression can indeed be found
in the book by Gelfand and Naimark [7]. It reads as follows. Let

jp nx+--- + np_x. (7.10)

Then the nontrivial elements of the matrix z are given by

j,**. (_ !).+i ^-M;w ¦
(7.11)^ ' A (n-1p)jp+i,jp+2,...n
v '

where in the numerator the index jp + a is omitted. For fixed p the indices a and b

cover the range
1 < a < np; 1 < b < jp + np

and p runs from 2 to r.



Vol. 41, 1968 A New Method for the Analysis of Unitary Representations of SL(», C) 187

On the other hand the determinants xx, ,xr are given by
A {n-ip)j„+i,...,n

Examples

As a first example consider again the representations belonging to the partition
{n — 1, 1). The form of the matrices z and ft has been given in (6.1). According to (7.5)
the corresponding homogeneous variables reduce to one single «-component vector

A(l)A=s»; F=F[A(1)} (7.13)

and we note that the explicit expressions (7.11) and (7.12) reduce to

> A(l)n sl. (7.14)
A(1)A s1

A A(l)n sn '

As another iUustration consider the partition (1, n — 2, 1). In this case there are
two sets of homogeneous variables

A(x)a=s]

A (n~x)A,...A. det
n-1

¦ •. o

(7.15)

It is convenient to use instead of the antisymmetric symbol A (n —- 1)A A the

dual quantity

A(n-l)A=-^—reAA'---A"^A(n-l)A A
eAAx-A-i s2 _s» y716)v ' (M-l)! v IAyAn-i Al An-i v '

We again state the explicit expressions for the Gelfand-Naimark variables

A(1)a n A(n-1)B^i -^A~&- W)A A(l)n ' x A (n-1)1

Note that the tensors A (1) and A (n — 1) satisfy the identity

A(n-1)AA(1)A 0. (7.18)

This reflects the fact that the tensors A(j) are in general redundant. They are not
suitable as independent variables, since their definition (7.4) implies a number of
constraints of the type (7.18). Of course these constraints are identically satisfied if
one considers not the tensors A (j) but the row vectors of the matrix s as independent
variables and this is the reason why we shall use the elements of the matrix 5 rather
than the tensors A (j) as variables of integration in the following sections.

Finite Dimensional Representations

It is again instructive to investigate the role of the homogeneous functions for
finite dimensional representations. The general irreducible finite dimensional repre-
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sentation of SL(w, C) can be characterized by a Young tableau [18]. In order to
simplify the notation let us restrict ourselves to the simplest group which possesses
nontrivial Young tableaus, SL(3, C). The irreducible finite dimensional representations

of SL(3, C) are associated with tensors of the type

TA1...AhB1C1...BlClD1...DmÈ1F1...ÈnFn^ ^
This tensor is antisymmetric in each of the pairs B{ C{ and Ek Fk whereas it is

symmetric with respect to permutations of the indices Ax, Ak,or Dx,... ,Dm and with
respect to permutations of the pairs BXCX, BiCl or Ex Fx, ,En Fn. Furthermore

it satisfies the mixed symmetry condition

TAv..BlCl... +TB1...C1A1... + rCr...4A...=(K (720)

and a similar relation for the dotted indices.
These symmetry conditions are automatically taken into account by associating

with this tensor a homogeneous function .F[Zl(l), A(2)~] as follows

F[A(1),A(2)]

^1'-BlCr-Br--ÌlFr-^(l)^..^(2)Bici..^*(l)i,i..^*(2)Éi/>i.... (7.21)

The polynomial in the homogeneous variables automatically projects out the
symmetric parts and furthermore takes care of the mixed symmetry conditions due to the
fact that A (1) and A (2) are not independent but satisfy

A(1)A A(2)BC + A(l)BA(2)CA +A(1)CA(2)AB 0 (7.22)

The degree of homogeneity of F[A(1), A(2)] again specifies the representation
completely. For the particular finite dimensional representations for which the tensor T
happens to contain no antisymmetric pairs, the associated homogeneous function is

independent of A (2). This corresponds to representations associated with the partition
(2,1). Alternatively if single indices are absent, F is independent of zl(l) and the
representation corresponds to the partition (1,2).

We note that in the case of SL(2, C) the only allowed nontrivial partition is (1, 1)
and the homogeneous functions are always functions of only one spinor variable f.
This corresponds of course to the fact that the tensor representations of SL(2, C) do
not contain antisymmetric pairs, simply because an object Ta'5 antisymmetric in a.

and ß is proportional to e01'5 and hence is an invariant with respect to SL(2, C). The
same reason excludes triples of antisymmetric pairs in the case of SL(3, C).

The generalization of these homogeneous functions to the finite dimensional
representations of SV(n, C) is obvious; we shall omit it to avoid crowding of indices.
Instead we now turn to the generalization of the covariant technique to the reduction
of representations of SL(«, C).

8. The Reduction SL(n, C) d SU(n)
In this section we want to show that the covariant technique used in the case of

SL(2, C) for the reduction with respect to SU(2) can be generalized to SV(n, C).
Before we deal with the general case let us illustrate the method by means of the
simplest example, the degeneracy type (n — 1, 1).
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Representations of Degeneracy Type (« — 1,1)

This case presents the closest analogy with SL(2, C). We have seen in Section 7

that this degeneracy type corresponds to homogeneous functions P[Zl(l)] of a single
«-vector A (1)A and we have noted in Section 6 that the representations associated
with this degeneracy type can be labelled by one integer m and one real parameter q.
To simplify the writing we use the symbol f instead of A (1)

ÇA=A(l)A s«.

Furthermore we denote the metric characterizing the subgroup SU(«)M by the «X«
positive definite, hermitean, unimodular matrix MAB such that

gMg+=M, geSU(«)M.

Using the same arguments as in the case of SL(2, C) we conclude that the generating
function, i.e. the element associated with the smallest representation of SU(«)M is of
the form (we assume m > 0)

FAv..Aß;M) cìì ••• ClßmC+)ll2{-m+ie-n) - (8.1)

The scalar product of this element of the canonical basis with an arbitrary element
of the representation space can be treated in complete analogy with the corresponding
procedure in the case of SL(2, C) and one arrives at a result analogous to (4.15)

Here the integration extends over real and imaginary parts of all « components of f.

The General Case

We now consider an arbitrary partition. The homogeneous functions associated
with the given representation are of the type

F(s)==F[A(lx),...,A(lr_1)] (8.3)

and the degree of homogeneity of F is given by (7.5). In particular the generating
function of the canonical basis of the representation is of the form

F(s; M) P(s) Dxai... D^-1. (8.4)

Here we have suppressed the tensor indices of F which are carried on the right hand
side by the polynomial P. This polynomial is the generalization of the monomial
CA ...£* appearing in the special case of the partition (« — 1, 1). The general

expression reads

(8.5)

P(S) Pjmm ...Pr.-iWh -i)]
(A*% ..A] ¦¦

p
¦A*^A{P. ..As/'p

sp>0

Pp[A(lp)] - \
\A(l>),i

Ax... 'p
Wp)A[spL aIM

'p
,sp<0.



190 H. Leutwyler and V. Gorgé H. P. A.

The integer sp generalizes the parameter m occuring in Equation (8.1) ; the value of sp

can be read off from (7.5)

sp mr_p + 1-mr_p. (8.6)

The 'unitarizing factors' Dp in the above definition of the generating function
generalize the quantity (Ç M Ç+) which appears in the generating function (8.1)
associated with the partition (« — 1, 1) :

l a_,b_, a, b,
'p-ÌjWp)a1...a1 M11... M 'p '*„ ^,Dt=-^-A(lt)A_, Mll...M'> lpA*(lAk...é, ¦ (8.7)

'p

The exponents a.p can again be read off from (7.5) :

(8.8)
|a+ if sp>0
la" if sp < 0

The generalization of our method to arbitrary representations is contained in the
statement that the scalar product of the generating function F(s, M) with an arbitrary
element G of the representation space is given by the covariant formula

(F, G) rfds e-f^sMs+1 P*(s) G(s) (8.9)

Here G(s) is the homogeneous function representing the element G. The integration
extends over real and imaginary parts of the elements of the matrix 5 except those

belonging to the top row
n n

ds= [J [J d(Re sA) d(Im sA) (8.10)
A=2 B-l

Note that since the integration does not include the first row of s the restriction
det 5 1 is immaterial. Analogously the symbol Tr indicates

Tr(s M s+) 27 (sA M sA+) (8.11)
A-2

where the quantity sA stands for the row vector

sA (sA,...,sAn). (8.12)

A proof of the above general formula together with an explicit expression for the
constant F is given in the appendix.

Clearly, in the case of SL(2, C) the formula reduces to the result given in Section 4.
For the degenerate representations of SL(«, C) belonging to the partition (« — 1, 1)

we recover (8.2), since in this case both G and P depend only on the bottom row of s;
the integrations over the n — 2 other rows can be carried out in a trivial fashion.

9. Summary
We have shown that the problems associated with the reduction of the representations

of SL(«, C) with respect to its maximal compact subgroup can be treated in
terms of homogeneous variables. In particular we have expressed the scalar product



Vol. 41, 1968 A New Method for the Analysis of Unitary Representations of SL(», C) 191

of an arbitrary element of the representation with the generating function of the
canonical basis (cf. 8.9). This expression explicitly displays the transformation
properties under the group SL(«, C). The heuristic value of this reformulation of the
theory of Gelfand and Naimark lies in the fact that the computations involved can
be carried out explicitly if the representations are highly degenerate. The method is

particularly useful in the framwork of the theory of infinite multiplets as proposed by
Budini and Fronsdal [1], on the one hand because the method automatically
produces covariant results, on the other hand, because the representations involved
in the theory of Budini and Fronsdal are indeed highly degenerate. In this context
rather elaborate applications of the method can be found in Ref. [6].

Appendix

To prove the formula (8.9) we decompose the variables of integration, s, in the
canonical way

s ft z

and demonstrate that the integration over the variables ft can be carried out explicitly.
Let

ds y dk dz (A.l)

where dz denotes the product of the differentials of real and imaginary parts of the

nontrivial elements of the matrix z, whereas dk stands for the analogous product
involving the variables ft, excluding the elements of the first row of ft. The Jacobian y
may be computed in a straightforward fashion with the result

y y(k)=n\*p\*jp (A-2)

where xp denotes the determinants (6.5) associated with the matrix ft, and the
exponents jp are defined in (7.10). We now carry out the transformation of variables
s -> ft, z in the integrand of (8.9), recalling the connection between the homogeneous
functions and the Gelfand-Naimark representation

G(s) a(fc) G(z) P(s) ß(k) P(z) (A.3)

The degree of homogeneity ß(ft) of the polynomial P(s) can be read off from (8.5).
The result of the above substitution therefore reads

(F, G) fdz I(z M z+) P*(z) G(z)

1(A) rfdk ô(k) e-fr(kAkt). (A.4)

The function «5 (ft) is given by

o(k) x(k)ß*(k)y(k) fj\xp\2at
q-2

1
P ilôP ^zE\m<i~ mi-i\ + y Qp + y K - np) ¦ (A-5)

q-2.
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We are left with the task of evaluating the integral 1(A) over the subgroup K. Above
all we are interested in the dependence of 1(A) on the matrix A. Information on the
function 1(A) can be obtained without evaluating the integral explicitly. In fact,
consider the transformation ft -> ft ft0 with ft0 some fixed element of the subgroup K.
The Jacobian of this transformation is given by

d(k k0) e(k0) dk

B(k)=n\xpxp + X...xrfnp. (A.6)
p-2

The integral therefore possesses the invariance property

1(A) <5(fc0) s(k0) I(k0 A ft0) (A.7)

This property determines the function 1(A) up to a constant, because every hermitean
positive definite and unimodular matrix A can be represented in the form

A kx k+ kxeK.

It therefore suffices to write down one particular solution of this relation. Such a
solution is given by

I(s M s+) D*1... Dr_xr-X ¦ (A-8)

In this expression we have for convenience represented the matrix A in the form
* M s+. The functions Dp(s; M) and the exponents a.p are defined in (8.7) and (8.8).
In (A.8) we have chosen the normalization 1(1) 1. This normalization fixes the
constant P. We have thus verified (8.9).

Finally we evaluate the constant P, which is given by the integral

r-l=fdkò(k)e~f,kk\ (A.9)

The function ò(k) involves only the determinants xp (p 2, r). The integration
over the elements of the matrix ft that do not belong to the blocks kpp (p 2,..., r)
can therefore be carried out in a trivial fashion. There are co of these elements

ft) y
(n2 - £n\\ - n + nx (A.10)

each giving rise to a factor n. The remaining integral then factorizes as follows

r-x na]Jj(np>òp). (A.ll)
p-2

Here, the symbol /(«, ô) stands for

/(«, Ô) fdg | detg |2d e~Trgg+ (A.12)
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In this expression the integration extends over all complex « X « matrices g. For the
special case n 1 this integral is essentially the P-function

j(i,ô)=7ir(ô + i).
In fact, even for » > 1, /(«, ò) has properties very similar to those of the P-function
and we shall exploit these to determine the integral. First of all we note that /(«, ô)

is analytic in Reô> — 1. Furthermore, it follows from Schwartz' inequality that
/(», ô) is logarithmically convex for real ô

J(n, ôx) J(n, ô2) > J («, \ (ôx + ò2)) (A.13)

Finally we note the recurrence relation

J(n, ô + 1) (ò A- «) (ò + n - 1) (Ò + 1) /(«, ô) (A.14)

This relation can be obtained by considering instead of /(«, ô) the analogous integral
with Tr g g+ replaced by Tr g N g+\ differenting the new integral « times with respect
to N one arrives at (A.14).

We now recall a well-known theorem by H. Bohr [19]. This theorem states that
up to a constant the P-function is the only logarithmically convex solution of the
recurrence relation (A.14) for « 1. Bohr's proof can be generalized without any
essential modifications to the general case « > 1 with the result that up to a factor
there is only one logarithmically convex solution of (A.14). The dependence of /(«, ô)

on ô is therefore given by

/(«, ò) P(<5 + n) P(<5 + n - 1) F(ö +l)kn. (A.15)

The constant kn can be evaluated by choosing ô 0. The integral /(«, 0) has the
value 7in%. The final result therefore reads

_
d/2)M(«-2)+(i/2)«2 * (1/2)»| r(ôp+np)...r(âp+i) 1fi.~n jl2n "' r(np)...r(i) ¦ [A-10>

One verifies that this expression indeed reproduces the normalization constant given
for the partition (« — 1, 1) in (8.2).
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