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Théorie de la résonance paramagnétique
d’impuretés dans les métaux

par B. Giovannini
Institut de Physique Expérimentale, Université Genéve

(7 X 67)

Résumé. La résonance paramagnétique d’impuretés dans les métaux est analysée & 1’'aide d'une

méthode de perturbation ad hoc. Les résultats sont interprétés par comparaison avec des modéles
simples.

Introduction

Le systéme considéré [1] est formé d’impuretés de spin (d'une seule espéce) dans un
réseau métallique, et le modeéle d’interaction entre les spins et le réseau est défini par
I’Hamiltonien d’échange [2]

W= = N1 X T(g) 9% (ST 01 (0) — 0, (@) + S} 0-(@) + % eul@)} (D)

ou la somme est a faire sur toutes les positions R, d’impuretés, N est le nombre
d’atomes par unité de volume, J(q) est le paramétre d’échange [3], S%,, sont les
opérateurs de spin pour la position R, et p4,|,+(q) sont les opérateurs de densité

électronique

01(g) = X (k — @) a.(® (2)
0.(g) = Yat (b~ g) (B 3)

ol a, (k) (af(k)) sont les opérateurs d’annihilation (création) d’un électron de spin up
et d’impulsion k [4]. L’Hamiltonien complet peut s’écrire schématiquement

‘#:7{54*‘#3—%'#“- (4)

H; est 'Hamiltonien pour les variables de spin seulement, et ¥, est I’'Hamiltonien
pour les variables électroniques et de réseau seulement. De plus H,; est choisi de telle
maniére qu’il ne contienne aucune interaction entre les spins. La seule interaction
entre les spins sera donc une interaction effective via W, ;.

Le modeéle présenté ci-dessus permet d’expliquer de facon satisfaisante de nom-
breuses propriétés des alliages dilués d’'impuretés magnétiques [2], en particulier les
propriétés de résonance paramagnétique [5]. Ce modele est devenu relativement
célébre au cours des deux derniéres années, car il a permis 4 J. Konpo [6] d’expliquer
un phénomeéne resté longtemps mystérieux: le minimum de résistance en fonction de
la température. Cette explication a soulevé a son tour de nombreux problémes
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théoriques [7] qui ont trait en particulier & la justification du modéle lui-méme. Nous
nous proposons de discuter dans ce travail les propriétés de résonance paramagnétique
du modele. L'influence de la condensation de KoNDO sur les propriétés de résonance
est trivial si on prend pour Hamiltonien celui qui est discuté habituellement dans ce
contexte (impureté magnétique + électrons libres + interaction d’échange). Ceci sera
discuté dans la partie I. Dans le cas général (avec interactions électron-électron et
électrons-réseau) le probléme est plus ardu et nous ne le discuterons pas [9]. Ceci est
parfaitement légitime si on considére un systéme pour lequel

JINO) L1

ot | = J(0) et N(0) est la densité d’états a la surface de Fermi. En effet la température
critique 7, de la condensation de KoNDO est de I'ordre de

T ~ D e~ YNOLI
[

ou D est la largeur de la bande.

On discute habituellement les expériences de résonance électronique d’impuretés
a l'aide de résultats théoriques obtenus pour la résonance nucléaire (déplacement de
KNIGHT, relaxation de KORRINGA), en tenant compte si c’est nécessaire d’effets de
goulots d’étranglement [10] (bottleneck effects). Il y a cependant une différence
fondamentale entre la résonance nucléaire et la résonance ionique: la fréquence de
résonance nucléaire est beaucoup plus petite que la fréquence de résonance des
¢lectrons de conduction, de sorte que ceux-ci sont pratiquement inertes, alors que la
résonance lonique est en fait la résonance de deux systémes de spins a fréquences de
résonance tres rapprochées: les impuretés et les électrons de conduction.

On ne peut négliger cet aspect que lorsque le temps de relaxation du spin des
électrons de conduction est infiniment rapide. Méme dans cette limite il se pose la
question [10] difficile de la direction dans laquelle les électrons de conduction relaxent.
Nous reviendrons sur ce point. |

Délimitons maintenant exactement le probléme étudié.

Si H, ne contient aucun terme dépendant du spin excepté I'énergie ZEEMAN et si
les facteurs gyromagnétiques des impuretés et des électrons de conduction sont
identiques, on n’observera aucun effet de 'interaction d’échange (1) sur les propriétés
de résonance uniforme. (Ceci sera démontré dans la partie 1.) Sil'une ou 'autre de ces
deux conditions n’est pas réalisée, le probléme devient extrémement complexe. Dans
le travail présenté ici, nous considérons le cas ol les spins des électrons de conduction
relaxent rapidement [11] (dans un sens qu'il reste & préciser) et nous présentons une
description microscopique du probléme a l'aide de diagrammes (analogues aux
diagrammes de FEYNMAN).

Il a été démontré apres coup [12] qu’une partie de ces résultats peuvent s’obtenir &
I'aide d'une théorie de champ moléculaire discutée pour la premiére fois par HASEGAWA
[10].

Dans la partie I le cadre formel du probléme est exposé. La partie II est consacrée
a la discussion de deux modéles simples.

Les résultats obtenus par la méthode de perturbation sont exposés et discutés la
partie III.



Vol. 41, 1968 Théorie de la résonance paramagnétique 153

PARTIE I

A) De maniere générale, on décrit une expérience de résonance par la réponse d'un
systéme de spins a un champ extérieur dépendant du temps en présence d’'un champ
statique. Dans notre modeéle, le champ statique est choisi dans la direction z (: H,)
et le champ H~(¢) dans le plan x — y et homogéne.

L’Hamiltonien peut s’écrire

U—U -+ W (5)

ol H; est I'Hamiltonien du systéme isolé dans le champ H, et W’ l'interaction avec
H~(¢).

H () =— M) H™ (). (6)

La grandeur mesurée est I'aimantation €M (f) > (oﬁ <€A > signifie Tr W A et W est

I'opérateur de densité) qui sera une fonctionnelle du champ magnétique H™(f); cette

fonctionnelle peut étre écrite sous la forme d’une série ordonnée selon les puissances
de H™(?)

> =3 fdtl % Gty 8 B () o HEZ () (7)

o

ou les a; sont les indices des composantes des vecteurs M et H.

L’approximation de réponse linéaire consiste a ne considérer de cette série que les
termes d’ordre zéro et un; la susceptibilité linéaire est donnée par la formule de
Kuso [13]

=3 [t = (¢ — 1) Hy®) ®

2%() = o <[M,(0), M, (0)]> 9) 9

ou #(¢) = 1 pour ¢ > 0 et #(¢) = 0 pour ¢ << 0. Le travail présenté dans cette thése est
tout entier basé sur I'approximation linéaire, et sur la formule de Kuso.
L’expression

gl = i [ <V (0), M, (0))> a (10)

est reliée par une transformation simple 4 la fonction
— (M, 0), M, (0)}> (11)
ou
{4, B}_ﬁ (AB+ BA).
En effet [13]
p*%i(w) = *2' coth ( ) ™ *%i(w (12)
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ou T est la température et
yreiti) = [ ety ie) dt

Cette formule signifie que la réponse linéaire d’un systéme a un champ extérieur
est reliée trés étroitement aux fluctuations spontanées du systéme mesurées par (11).
Cette phrase exprime I'essentiel du théoréme de fluctuation-dissipation [13]. On peut
retourner le théoréme et dire que la réponse d’un systéme peut étre décrite par une
théorie linéaire si la perturbation due au champ extérieur est comparable quantita-
tivement et qualitativement aux fluctuations spontanées du systéme. Ceci est une
condition restrictive qui n’est satisfaite dans le voisinage de la résonance que si les
temps de relaxation sont suffisamment courts.

B) A cause de la conservation du moment angulaire, on peut écrire les formules (8)
et (9) de la maniere suivante

<M, (0)> = 5 [ <ML O), Mo(t))> B (¢ — 1) H () (13)

et le probléme se réduit au calcul de la fonction

7o) = & <M _(t), M (0)]> 9 (14)
car la fonction _
1) = 5 <ML (1), M_(0)]> 9() (15)

est reliée & y_(¢) par des relations évidentes. Nous verrons par la suite que pour un
systéme de spins libres, la transformée de Fourier de y_(¢) a la forme

c
x-(w) = [

(16)

oll w, est la fréquence de LARMOR, ¢ est une constante et § = 0+. La partie réelle de
%—(w) donne la dispersion et la partie imaginaire I'absorption. La ligne d’absorption
que nous appellerons la ligne de résonance, est alors une fonction ¢ centrée sur w;.
Les interactions vont a la fois déplacer le centre de la ligne et la déformer. Les calculs
de perturbation faits par la suite conduisent a une forme du type

[%

Si
0X
T =0
c
-0 = 4w s (18)
la ligne de résonance est Lorentzienne:
Alw) = TR (19

(w—w;+ Re )24 (Im X2
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Dans ce cas Im X est & interpréter comme l'inverse d’un temps de vie (ou de relaxation)
et Re X comme un déplacement du centre de la ligne. On définit habituellement deux
temps de relaxation:

a) T, est le temps de relaxation qui décrit le retour de M, (f) a sa position d’équi-
libre lorsqu’on coupe le champ H™(f); cette relaxation est nécessairement due a une
interaction du systéme de spins avec un bain thermique (réseau).

b) T, est le temps de relaxation qui décrit la disparition des composantes M .(f)
lorsqu’on coupe le champ H™~(f); cette disparition peut étre due soit a une perte de
cohérence entre les différents spins, soit a une relaxation dans la direction z. Il s’en
suit que

L,<2T,

Il est clair d’aprés nos définitions que Im X = 1/T,. La meilleure maniére de
mettre en relief le sens physique de I’équation (18) est peut-étre de calculer I'aimanta-
tion pour un champ

HZ(t) = H (coswy ¢ + 7 sinwy ) §(— £) = H e=" §(— ¢) (20)
c’est-a-dire
H,(f) = H coswg t (— ?) H,(f) = H sinw, ¢ 9(— ¢). (21)
Dans ce cas
<M_()> = M_() = [ 52 M_w) "
7T
e (T R e 1) S
Pour £ << 0
M (t) = H (Re y_(w,) coswyt + Im y_(w,) sinw, f)
M (%) = H (Re y_(w,) sinwy t — Im y_(w,) cosw,?). (23)

La comparaison de cette équation avec (21) montre que Re y_(w) décrit la composante
de I'aimantation qui est en phase avec le champ et Im y_(w) décrit la composante qui
est déphasée de m/2.

C) I1 s’agit donc de calculer la fonction y_(¢) définie par

1) = 5 <M_{t), M (0)]> () (14)

M )= m, oW M =M M ML — g ek (g—=0) (24)

(o4 est défini par (3))
M= guZ S

g; et g, sont les facteurs g reliés aux facteurs magnétomécaniques y; par

Yi=8: U
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u est le magnéton de BoHR (u << 0)

H=3+H+ W, (25)

H,=w, 2 S’ (26)

W, =1+ W =X E(k) di(k) a(k) + 5 {oy (g=0) —¢, (g=0)} + H" (27)

N, ; est défini par (1), w, =g, |u| H, w, =g, |u| H, " contient toutes les inter-
actions électrons-électrons et électrons-réseau, E(k) est 1'énergie cinétique d'un
électron d’impulsion k.

Le calcul de la fonction de corrélation (14) est en général trés compliqué; il est
trés simple cependant dans la limite ou g; = g, et ol 3! ne contient aucun terme
dépendant du spin.

Considérons en effet 1'équation de mouvement de y_(f)

D) = - 8() <TM_(0), M(0)]> + - 9(0) < [TH0, M_(0, M.(0)]> .

Sa transformée de Fourrier s’écrit alors

( )_i <K[M (0), M_(0)]>  g*u® <X S,;>+g*u*2 <ot{g=0)—0| (g=0> (28)
X~ T2 w—wi+z’6 o W—w,+1 0

car dans ce cas [ + H,;, M_] = 0 et #,;n’a donc d’influence que sur 'amplitude
de la résonance, mais non sur la position de la raie ni sur sa largeur. En corollaire, on
voit que la condensation de KoNDO n’a aucune influence dramatique [9] sur les
propriétés de résonance. Le terme ¢ § (6 = 0F) est ajouté de maniere a satisfaire les
relations de dispersion. De (28) on peut tirer immédiatement la valeur de y_(w) pour
des ions et électrons libres.

PARTIE II

Pour fixer les idées on peut considérer deux modeles simples:

A) Considérons d’abord deux spins §¢ et §¢ couplés par une interaction d’échange.
A chaque spin on assigne un taux de relaxation introduit phénoménologiquement.
Ce probleme est facile a résoudre a température zéro: il s’agit de calculer la valeur
d’attente

M_(t) =p<p) | g S. +g S [pi)>

ol p(#) est la solution de 'équation d’onde

() = WO i)
H(iE) = H,+ V()
H, =w,; Si +w, S; — 2 ] 8" §° + dissipation
Vi) =—pH{@E S, +8S.)e "™ + (g S +¢g5) ¢},
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La dissipation est choisie de telle maniére que si on interrompt V(f), 8% et 8¢ relaxent
dans la direction z. H est 'amplitude du champ oscillant H~(f).
On trouve sans difficultés le terme linéaire en H

M_(w) = y_(w) He

1) = e W=+ 00+ 802+ P+ (G Bi= 802 (o= ) 217

nG
T s (@it we) [2— J+1 (8i+ 0e) [2— (J2+ (1 (05— 0e) [2— (wi—wg)[2)3)2 a

F et G sont des constantes indépendantes de w.
Dans la limite g; = g,, §; = , = 0+ on trouve

uF

G
2-(w) = ——y s “* e (30)

w—w,—2 J+i16 "

Ceci semble en contradiction avec la formule (28). En fait on peut montrer que
lgrp+ 0G = 0 suffisamment rapidement pour que la deuxié¢me partie de I’équation (30)

e

tende vers Zéro pour toute valeur de w. Ceci montre que si I'on ne s’'intéresse qu’'aux
poles de la fonction y_(w) on peut obtenir des résultats illusoires [11]. Le cas que nous
nous proposons de discuter est défini par les relations g, ~g, et 6, > 6; > |w; —w,|, J.
On obtient alors

nF pnG 1
w"wz'_f"‘i(si"']z/(wi_we“’iae) T w‘we“]‘*‘iae—]z/(wi_we—iae)' (3 )

x-(w) ~

La ligne de résonance est la superposition de deux lignes de résonance, I'une centrée
sur une fréquence proche de w; et relativement étroite et l'autres, beaucoup plus
large, centrée sur une fréquence proche de w,. En considérant la premiére partie de
I'équation (31), on peut prévoir les effets suivants:

a) un déplacement de premier ordre (— J) analogue au déplacement de KNIGHT.

b) un déplacement et un élargissement de deuxiéme ordre représentés par le terme
J?/(w; — w, — i 8,). L’élargissement de KORRINGA [24] est représenté par le terme ¢ 9.

B) On peut obtenir les mémes résultats en considérant un modele de champ
moléculaire: deux moments magnétiques classiques M? et M? évoluant dans leurs
champs moléculaires respectifs:

amMi

=y MUA(H £ AMe); & Mo =y, Me A (H+ 3 M) . (32)

En introduisant de nouveau une dissipation dans la direction z, on obtient:

%~ (@) =
pE
. j . T L . 2 . 1/2
- B S s {(BT s R sh i) +4 5D 5Dy
+ pG’ ) -
: s 5 % G z 2 5 e
_ wz‘gwe +1 61';69 +](<S;>+<S§>)_{(w12we_z‘ 6126e_](<5';>_<52>)) +412<S';> <Sz>}

(33)
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olt ¢Sty =Mug,, M est la valeur d’équilibre de M, (pour V() =0), J =
(#*g;8./2) A et F' et G’ sont des fonctions lentement variables de w. Les pdles de
I'expression (33) sont identiques a4 ceux de l'expression (29) pour

(Shy=<Str=—7-.

Nous avons choisi pour nos deux modéles le terme dissipatif le plus simple:
dissipation vers la position d’équilibre thermique. Le choix du terme de relaxation
est en fait un probléme délicat. PETER [12] a discuté les équations (32) en détail en
choisissant un terme de relaxation dans la direction du champ moléculaire instan-
tané [14]. Ce choix a le désavantage de ne pas tenir compte de la relaxation électrons-
ions, et par conséquent d’ignorer les effets de goulot d’étranglement [10]. Le choix
d’Hasecawa [10] a le désavantage de permettre dans certains cas des temps de
relaxation négatifs (voir son équation 5.2 pour Ay, << — 1). On peut combiner les
deux approches en écrivant

a 2 P 1 . 1
& My MUAHA M — L (M M) (Mo~ 20 M
1 :
— g, (M= 2 (H+ 4 MY))
a ; ; 1 ;
M=y MAH+LM) + - (M — %A M) — 7, (M- 2 A M)
1 :
— o (M 2 (H o+ 2 M), (34

Dans ces équations, 17, 17!, T;;' et T} sont les taux de relaxation des ions aux
électrons, des électrons aux ions, des ions au réseau et des électrons au réseau. Les
termes proportionnels & T;.! et 7' ! représentent une relaxation dans la direction du
champ moléculaire instantané, mais les termes en y° H disparaissent a cause de la
relation T, ,/T;, = yo/%;-

Les équations (34) sont en accord avec celles d’HASEGAwA lorsque I'aimantation

est négligeable, et aussi avec une analyse thermodynamique plus générale due a
G. V. SKROTSKII [14].

PARTIE III

La fonction y_(#) (équation (14)) est une somme de quatre fonctions de corrélation,
car M () est la somme de deux termes. Nous nous restreignons cependant au choix
de parametres

gi - ge’ 6e > ai' (35)

Dans cette situation, seule la résonance ionique est observable (voir équation (31))
et il suffit [15] de calculer la fonction

20 = S £ 3T1S" (1), SO 9(). (36)

nn’
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Pour calculer la fonction 4 (f) on dispose essentiellement de deux méthodes micros-
copiques: I'équation de mouvement et la théorie de perturbation. C’est la seconde
méthode que nous avons employée pour calculer y* (), d’abord & T = 0°K [16], puis &
température finie [17]. On commence habituellement par calculer & température zéro
les grandeurs que l'on veut connaitre, ceci afin de pouvoir distinguer les effets
dynamiques des effets statistiques.

La théorie de perturbation pour une fonction telle que y* (¢) bute sur une difficulté
majeure: le théoréme de Wick [18] n’est pas valable pour les opérateurs de spins,
car le commutateur de deux opérateurs de spins est un opérateur, non un nombre c;
de nombreuses méthodes ont été proposées pour pallier & cette difficulté, certaines
avant [19] celle proposée par 'auteur [20], d’autres apres [21]. Ces méthodes sont
toutes assez compliquées, et semblent adaptées surtout au probléme particulier pour
lesquelles elles ont été inventées.

La méthode proposée par I'auteur est la suivante:

En théorie de perturbation dépendant du temps on est amené a calculer des
grandeurs du type

O] T{A(ty) ... P(t,)} 0>

ou T est 'opérateur chronologique, A(¢,) ... P(¢,) sont des opérateurs écrits dans une
représentation d’interaction convenablement choisie

A(t) = 6t 4 o1t

et |0) est I'état fondamental de H,.

Le théoréme de Wick transforme le produit chronologique en une somme de
produits normaux, dont la valeur d’attente dans I'état fondamental est extrémement
simple a calculer.

~ Considérons un systéme de spins en interaction $%, §2... 8%; la maniére la plus
simple de définir un Hamiltonien ¥, est de placer le systéme dans un champ magné-
tique homogene dans la direction z. Alors

?‘l: ?‘lo+ '-'H'
Hy=w,2 S w; >0
W = F(S' ... 5%

' est linteraction spin-spin et est supposée étre un polyndéme en S;, S, SE. Le
produit normal est défini de la maniére suivante: les opérateurs S, a gauche, les
opérateurs S_ au milieu et les opérateurs S, 4 droite. La place attribuée aux
opérateurs S, est arbitraire mais doit étre fixée si 'on veut avoir des régles définies.
La contraction de deux opérateurs S, c’est-a-dire la différence entre leur produit
chronologique et leur produit normal est alors

St) SM ()= —2Spe 09 —1) 0
f

S1O) () = SE @) D —1) 0,

|

") SY({E)=—S"W) D[ —1)0,, (37)

nn'

i
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S, est indépendant du temps comme opérateur, mais la variable ¢ est nécessaire pour
indiquer la place de S, dans un produit chronologique. Si on essaie de transformer
explicitement un produit quelconque d’opérateurs S en un produit normal & 'aide des
régles de commutation, on s’apergoit qu'un opérateur donné peut subir de multiples
contractions. Pour formuler le théoréme de Wick généralisé, on doit définir des
opérateurs S dépendant de plusieurs «variables» de temps: S_(¢; ¢, ... ¢,) et S,(¢'; ).
Dans ces expressions, seul ¢ est une réelle variable de temps, les autres variables
sont simplement des indices.
La généralisation des équations (37)

S (2) S”'(t’ t)=—2S"tE)V9 ([ — )ty —1) ... 0, — ) e "0,

nn'!

(E12,...8,) S™ (F58") = —S" (t;4,...0,£) D (¢ — 1) 8
|

()Sl”'(t' =510 10

nn'

“(/) — Un
]

ainsl que les définitions

S.(t: 1) = S.()
S_(t) = S_(t;)

expliquent par elles-mémes comment les indices sont définis. De plus nous définissons
S_(t; ¢ ... ¢,) comme symétrique dans les indices 4 ... ¢,,; par contre S,(#'; ") n’est
pas symétrique. Pour formuler le théoréme, il faut supposer que toutes les variables
ty ... t, sont différentes.

Theoréme. Le produit chronologique d'une certaine suite d’opérateurs S est égal
a la somme des produits normaux de toutes les suites partielles d’opérateurs S
(y compris la suite initiale) que 'on peut construire en contractant la suite initiale de
toutes les maniéres possibles.

Ces produits normaux sont a multiplier par les facteurs scalaires définis par (37)
et qui dépendent des contractions effectuées. En général, il y a plusieurs facteurs
scalaires différents pour la méme suite partielle d’opérateurs, mais chaque facteur
différent ne doit étre compté qu’une seule fois, méme s’il correspond a plusieurs con-
tractions «topologiquement» différentes.

La démonstration de ce théoréme a été publiée [20] et il est inutile de la répéter ici.

L’existence d’un théoréme de Wick permet d’exprimer la série de perturbation
sous la forme de séries de diagrammes qui peuvent étre comptés et calculés
d’une maniere automatique, a I'aide des régles énoncées ci-dessous:

a) Graphologie.

(i) A chaque opérateur S on associe un point.

(1) A chaque contraction S, S_, S, S, et S_ S, on associe des lignes dessinées dans
la figure 1a,betc. L1 LI L

(iif) Chaque ordre d’interaction est représenté par une ligne ondulée (figure 1d).
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b) Reégles de calcul.

1) A chaque contraction S% (') S*'(¢; ¢, ... ¢,) (figure 1a) associer un facteur
|

— 26, ettt —t)... 9, —1).

2) A chaque contraction S*(¢;; #) S7 (¢') (figure 1b) associer un facteur
I I

0, 0" —1).
3) A chaque contraction S®'(¢;; ¢, ... ¢,) S»(¢; ; {) (figure 1c) associer un facteur
— 9t —1)6

4) Inclure la puissance correcte de S, en se rappelant que S, «disparait» quand il est
contracté.

nn'!

nn'"*

5) A chaque ligne d’interaction (figure 1d), associer un facteur
i N“1 J(q) &9
6) La partie électronique s’évalue comme dans la théorie habituelle.

7) Diviser par un facteur y, qui est défini par les nombres de contractions répétées
d’opérateurs S, ou S_ avec des opérateurs S,. Si ces nombres sont #,, #,, ... 7,
dans un diagramme donné, y = I/(n, !). Ceci correspond au nombre de permutations

7

entre les variables ¢; qui n’engendrent pas de termes différents dans 1'expression
donnée par le théoréme de WIck généralisé.

o> (@)
= (b)
>- (©

Figure 1

(a), (b) et (c): contractions lS " _SI'_, IS " .’T" . et \IS‘__ S| . (d): ligne d’interaction.

Aucune confusion ne peut exister entre les lignes S, S, et S_S,, car elles sont connectées de

L1 L

maniére différente dans les diagrammes.

11
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8) Sommer sur tous les %, q et directions de spins (pour les électrons) et intégrer sur

les variables £, ... ¢,.

L’auteur a utilisé cette méthode pour calculer y° () & température zéro [16]. Le
résultat peut s’écrire de la maniére suivante:

i . C
x- (w) = w—w, - Z(w) (17)

ol ¢ est indépendant de w et X(w) est une énergie propre qui déforme la ligne de
résonance (voir partie I).

2 @) = J(O) N7 <4 (0) + ¢, (0)>
gluzN22|] Q)2 (3% (w @) — 23w =0, q))

+ j\’fzj;a*ég 4:: | 7(q) 2 {z; (w — w;, q) — 2 (w, @)} 28)
S est la grandeur du spin des ions et les fonctions y¢ , 2, ¥° et y¢ sont définies par

10 Q) =21p2 <o (qt),0, (— q,0)]> ()

10 @ =ip <ler(g) —e {gd e1(= 40 — ey (= 901> ?)
g =20 <T{o (qt) o, (— qO)}> (1)

20t @) =i u? <T {(o4(gt) —e,(q1) (04 (= q0) — g (— q0)}> 9()

e, e,
—8—> —o—>
t F 2
—0-> 9>
Figure 2

Représentation diagrammatique de 1l'énergie propre de premier ordre J(0) N=1<{ot (g = 0)—
ol (g = 0)>. La ligne pointillée représente le propagateur électronique, la fleche donne la direction
du spin, la ligne ondulée I'interaction. Les autres symboles sont des propagateurs de spin.
Pour faire apparaitre une énergie propre au dénominateur de y¢ (w) il faut évidemment sommer
une série infinie de termes; les diagrammes ci-dessus sont le premier de ces termes. Pour plus de
détails voir réf. [16].
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A température zéro, la moyenne thermodynamique représentée par <€ > (ot €A >
signifie 77 e~ # (H-H,) A) est remplacée par la moyenne sur I'état fondamental
correspondant.

Ces fonctions sont relativement faciles A calculer dans I'approximation des électrons
libres [16] [22] (voir appendice).

On peut montrer [22] que le troisiéme terme de (38) est négligeable [25]. La sig-

rd

nification des deux premiers termes de 1'équation (36) est la suivante.

a) le terme
JO) N-*<o4(q=0)—¢,(qg=10)>. (39)

Ce terme est représenté diagrammatiquement dans la figure 2. Il correspond au
déplacement de KNIGHT: le ion précesse dans un champ effectif qui est la somme du
champ extérieur et de la polarisation statique des électrons de conduction.

b) Le deuxiéme terme provient de deux types de diagrammes différents (figure 3 et
figure 4). En prévision des résultats & température finie, nous décomposons le
deuxieme terme en deux parties:

() s 2 (2 (0, R) = 5w =0, R) (40)

avec 'approximation J(q) = J = constante.
On peut montrer que la partie réelle de (40) peut s’écrire

L [4S]N
FN- AL Re (3 (w0, g — 0) 2w = 0, ¢ = 0) @)
* 3
'::-._ PN __.-:: :-".__ I
///j.%¢w. ey
B -
<’t Y.

Figure 3

Représentation diagrammatique de 1’énergie propre de deuxiéme ordre: terme proportionnel a
xo(w, q). La série infinie est semblable & celle de la figure 1.
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ol NV, est le nombre d’impuretés par unité de volume. Ceci est di au fait que Re y; et

Re x° ne différent que pour ¢ ~ 2 m w [k, ~ 10% cm™, ce qui revient a dire que la
différence Re(y;(0, R) — % (w,;, R)) varie trés lentement a I'échelle atomique.

...‘- * ...‘.‘
.
o> 5

Figure 4

Représentation diagrammatique de I’énergie propre de deuxiéme ordre: terme proportionnel a
% (w, q). La série infinie est semblable a la série RPA pour la fonction diélectrique dans la théorie
du gaz d’électrons (série de diagrammes bulles).

Dans I'équation (41), le terme en y; s'interpréte immédiatement comme une
rénormalisation de <{g4 (0) — ¢ | (0)> dans (39): la polarisation uniforme des électrons
est due aussi au champ moléculaire des ions. Cette interprétation est évidente si I'on
compare les diagrammes des figures 2 et 3.

Ce terme seul donnerait le déplacement célébre de KITTEL et MICHELL [23]. Il est
compensé cependant par un deuxiéme terme Re y° (w, ¢ = 0). Pour fixer les idées on

peut remplacer y; et ¥% par leur valeur pour des électrons libres. On obtient (équation
A1)

SN —w,
Re "'zx{z'p%o_ yi(w =0, ¢ — 0) ( e 1) : (42)

On voit que la compensation est compléte lorsque w <€ w, (résonance nucléaire) et
nulle lorsque % > w, (résonance de ions dont le facteur g est beaucoup plus grand
que 2).

Physiquement, cela signifie qu’a trés basse fréquence (w < w,) les électrons suivent
parfaitement le champ moléculaire total, tandis qu'a haute fréquence (w > w,), ils
restent inertes dans la direction du champ H,; il est raisonable de penser que ces cas
limites sont valables aussi si on calcule y¢ et y¢ de facon plus réaliste. Un calcul
microscopique de yx¢ qui tienne compte de la relaxation rapide des électrons de
conduction n’a pas été entrepris dans ce travail, et il faut faire des hypothéses phéno-
ménologiques. Nous reviendrons sur ce point. Seul ¢ concourt a la partie imaginaire
de I'équation (40), car Im yi(w = 0, R) = 0. Dans l'approximation des électrons
libres Im y¢ (w, R) est une fonction qui varie rapidement sur des distances inter-
atomiques (équation A.2), ce qui rend 'approximation %’ 22 (w, R,) ~ Ny %° (w, g =0)

difficile a justifier du moins pour des électrons libres; il y a de bonnes raisons [22] de
penser que cette approximation est bien meilleure dans la limite de relaxation rapide.

(ii) T.a deuxiéme partie du deuxiéme terme est

45 J2 5 P
s (w0, R=0) = yiw =0, R = 0)) (43)

avec I'approximation J(q) = constante.
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On peut montrer que le déplacement di & ce terme est pratiquement nul
(Re x° (w;, R = 0) >~ Re y%(w =0, R = 0)). Ceci montre que le champ moléculaire d'un
ion isolé n’a aucun effet sur la résonance: il suit parfaitement le mouvement. Une
théorie RPA ou de champ moléculaire pour ce cas donnerait des résultats compléte-
ment erronés. Ceci n’a rien d’étonnant: on sait qu'une théorie RPA n’est valable que
pour des effets presque uniformes (q ~ 0).

L’élargissement di a (43) est proportionnel & Im y (w, R = 0) et correspond a
I'élargissement de KORRINGA [24].

D’aprés ce qui précéde, X(w) se compose de trois termes: on peut les rassembler
sous la forme

2@ =] N1 (g=0)—¢,(g=0)>

472s

+ ot Ny Re (32 (0, ¢ = 0) — 2w = 0, ¢ = 0)
+i2[mx"_(w,R} 2N22@Imx(w,R:O). (44)
R,=*0

Sion fait I'approximation X Im y* (w, R,) ~ N, Im y° (w, @ = 0) on peut écrire (44)
de la maniére suivante: *»*’ :

. " _ _ 4J*Ss _
Z(w)—]N 1<QT(qﬁ0)—gi(q—O)—{— 22 N2M2zlmz (w, R =0)
41S (nr e B i, o
TN INo%z(w——OJQ*O)(w_we_sz_lsﬂ-';;‘e 1)} (45)

avec la forme phénoménologique:

—weye (w =0, g = 0)

€

X w_w,—2 JN-1S5+i0, (46)

En remplagant dans I'équation (35), et en changeant quelque peu les notations, on

obtient

1 (w) = = C(w_we+2]N_lfSZ>ji 6? ————— (47)
(w—w;+2 JN-1LSHO+16;) (w—wi+2 JN-1(S)D+1i0,) —4 J2N-2(S5>(S)

; 1
ci (Spp=—S et (SpHp=-44lg=0)—0,(g=0)p>

ont la méme signification que dans 1'équation (33). Nous retrouvons les deux poles de
cette expression.

Nous voyons donc que dans une certaine approximation, notre calcul peut étre
comparé avec les modeéles simples présentés dans la partie II. Dans la forme (46),
il a été tenu compte, par raison de symmeétrie, du champ moléculaire des ions (figure 5),
et, phénoménologiquement, d’un processus de relaxation dans la direction du champ
H.. On pourrait calculer cette grandeur microscopiquement, en évaluant les dia-
grammes appropriés (en tenant compte par exemple de la relaxation spin-orbite),
mais il serait impossible d’obtenir une forme qualitativement plus réaliste (relaxation
dans la direction du champ moléculaire instantané) dans le cadre de la réponse
linéaire (formule de KuBo), car celle-ci s’exprime en fonction de valeurs d’attente de
certains opérateurs sur le systéme a 1'équilibre thermique.
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P
b 4
v
>
e
I

Figure 5

Diagrammes contribuant a la renormalisation de ¢ due au champ moléculaire des ions.

La méthode utilisée pour faire les calculs & température zéro n’est pas générali-
sable & température finie. On peut cependant calculer la série de perturbations terme
aprés terme.

Il est évidemment exclu de calculer une série infinie, mais la comparaison des
termes de premier et deuxieme ordre avec les termes correspondants a température
zéro permet d’identifier 2'(w, T) et 'on obtient [17]

Dlw, T) = J(0) N-1 <o, (g=0) —, (g =0)>
2
_ 4—5{2—§i> {No Re(y (0, @ = 0) — z%(w = 0, g = 0)
+i X Im g (w, R,,)} vi 2l R p o w, R=0) (48)
R, +0 ge VT U i
pour 2 T > w;.

La discussion de X(w, T') est complétement analogue a la discussion de X'(w); pour
pouvoir discuter les conséquences expérimentales de (48) il est nécessaire de faire
certaines approximations. Nous avons choisi pour % la forme phénoménologique

w

2w q=0)=gw=0¢=0 (1 " w—w,+2 J N1 <S§>+ide)

qui correspond a une relaxation dans la direction du champ moléculaire instantané.
La discussion de (48) a été publiée en détail (réf. [17]) et ne sera pas répétée. Elle a
permis de prédire certains effets observables dans la résonance ionique lorsque
certaines conditions sont réalisées, en particulier lorsqu’on s’approche de la tempéra-
ture de CURIE dans certains alliages. Ces effets ont été effectivement observés [12].

En résumé, I'analyse microscropique a permis de prédire certains effets et de
gagner une meilleure compréhension sur l'interaction effective entre les ions, qui est
anisotropique en présence d’'un champ statique H,; cette analyse a aussi permis de
justifier par avance le modéle de champ moléculaire, qui n’est valable que dans une
certaine approximation et ne permet pas de calculer les effets a courte portée, mais qui
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permet par contre de discuter beaucoup plus facilement le probléme de la relaxation
(voir équation (34)).
L’auteur tient a exprimer sa reconnaissance a Messieurs les professeurs S. KOIDE
et M. PETER qui ont montré un intérét constant dans le développement de ce travail.
Il tient aussi a remercier Messieurs les professeur G. J. BENE, C. ENz, J. M. JAUCH
et J. R. ScHRIEFFER et Messieurs H. CoTTET et J. DuPRAZ pour des discussions
précieuses sur certains aspects de cette recherche,

Appendice

Les fonctions de susceptibilité y¢ (w, q) et yé(w, g) que I'on écrit dans I'approxi-

mation des électrons libres »*(w, q) et ¥ (w, @) ont dans cette approximation les
propriétés suivantes.

a) e
2 (@, q) = {xz @, q) + x7, (@, @)}
ou
25w, q)

par exemple est donné par

e 2
Re o0 (w, @ = 5 {hyy + Ay, iw, @) — A(ky 5w, @)}

avec
k2 |
o (e 0y (1Ol iy |
Ai(ka,w: q) = 24 {1 (qka zka)} !1_(mw/qkf¢:tq/2kf1~)|
(ot g =1q])
et
0 pour2m1w|>qz+2qka
0 pourq>2ka2m|w]<g2“29ka
ImXS?(W,Q): 'uz:u' 2mfw] <1295y |

wErmogg q mw \2
> _ _ ,
g B U (ot — 7y ) |

<2m|w| <q>+2qk;

pour |g% —2qk;

1 | )

ou k,, est 'impulsion de Fermi pour les électrons de spin up.
ngil (w, q) est défini de maniére semblable; seul %, ) est remplacé par %,
Pour simplifier les notations, discutons 43w, q) pour le cas &, = ks L = k.
On voit que

lim Re 3% (w, q) = u2m kym=2 Ulx)

w—0

1 1—x42 1+x 9
U(x)f2{1+ = lnl_x}oux—Zkf
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D’ou

lim lim Re 4% (w, q) = p2 m kym2.

g—>0 w—0

On reconnait la susceptibilité de PauLi. Remarquons que

lim lim Re 3% (w, q) = 0.

w—0 ¢g—0

En effet, pour
Z+ag By
2Zm

w >

ou n est le nombre d’électrons par unité de volume.

b) 2% (w, q):

m Z2m (w—w,)
5 ki

2
Re 3*(w, q) = 'MTJ;“ (ka oy (R — Ay

+ 2A+(ka;w —w,, q) —2A_ (kfi ;W — w,, q)).
(i) Im x*(w, q) pour w — w, > 0.

1) Sig <k +ky,

K pouer(w—we)>q2+2kflq

wrwm? w

Zm g Pour 2m (w— w,) <2ka qg—q®

urm kfi 1 g  m(w—w,)\?
2x Zq { (Zkfl qkfl )}

Im " (w, q) =

pour 2kaq—gz<2m(w—we)<q2—}—2kf¢q.

2) Sig> ka +kfl:
0 pourq2—~2kflq>2m]w-—we[

et pour 2m |w — w,| > q2+2kf¢q
Im *(w, q) =

il ffi{l b( ¢ om(@-w) )2}

4n ¢ 2hry  akyy

pour ¢2 — 2k, q<2m]w—we|<q2—{—2!&5fJr q.

|
(ii) Im 4% (w, q) pour w — w, < 0.
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1) Siq<ka + &,

|
0 pour2m|w—we|>q2+2kf7q
”;’::241;—pour2m|w—wei<2kf¢q—g2
Im 3" (w, q) = s m BrY g m (w—1w,) \2
*477{ M(Zkf“r T )}
pourzkflq_qz<2m|w——wef<2kf¢q+q2.

2) Sig> kyy +ky,

Comme sous (i) 2).
On voit que lim % = ¥¢° comme il se doit.

we—ﬂ)
ka —kfl—>0
En outre:
T o X w=0,¢=0w,
gl_rﬂ) 1w, q) = w—w,+ 10
pour kaT — kf¢ | L &y (A.1)
Pour w € E;
2 2
[”—Zza—wpour q <2k
Im y% (w, q) ~
l 0 pour g > 2 k.
D’ou
5 o Em2Ey  sin?(kr#)
Im 3% (w, R) =~ F—s w (kff)s (A.2)
ou '
kea + &
|IR| =x et k= %
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