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Théorie de la résonance paramagnétique
d'impuretés dans les métaux

par B. Giovannini
Institut de Physique Expérimentale, Université Genève

(7 X 67)

Résumé. La résonance paramagnétique d'impuretés dans les métaux est analysée à l'aide d'une
méthode de perturbation ad hoc. Les résultats sont interprétés par comparaison avec des modèles
simples.

Introduction

Le système considéré [1] est formé d'impuretés de spin (d'une seule espèce) dans un
réseau métallique, et le modèle d'interaction entre les spins et le réseau est défini par
l'Hamiltonien d'échange [2]

%i - N-X£j(q) eiqRn {S: (et (q) - Q,(q)) + S» o_(q) + S"_ e+(q)} (1)
i«

où la somme est à faire sur toutes les positions Rn d'impuretés, N est le nombre
d'atomes par unité de volume, f(q) est le paramètre d'échange [3], S",z sont les

opérateurs de spin pour la position Rn et o f, i ,±(q) sont les opérateurs de densité

électronique

QX(q)=Eaî(k-<l)a±W (2)
ft

Q±(<i)=Eal (k- «)«*(*) (3)
k

où a+(k) (a+(k)) sont les opérateurs d'annihilation (création) d'un électron de spin up
et d'impulsion k [4]. L'Hamiltonien complet peut s'écrire schématiquement

•U =%+%+%< (4)

"Mi est l'Hamiltonien pour les variables de spin seulement, et %le est l'Hamiltonien
pour les variables électroniques et de réseau seulement. De plus "U{ est choisi de telle
manière qu'il ne contienne aucune interaction entre les spins. La seule interaction
entre les spins sera donc une interaction effective via 14e {.

Le modèle présenté ci-dessus permet d'expliquer de façon satisfaisante de
nombreuses propriétés des alliages dilués d'impuretés magnétiques [2], en particulier les

propriétés de résonance paramagnétique [5]. Ce modèle est devenu relativement
célèbre au cours des deux dernières années, car il a permis à J. Kondo [6] d'expliquer
un phénomène resté longtemps mystérieux : le minimum de résistance en fonction de

la température. Cette explication a soulevé à son tour de nombreux problèmes
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théoriques [7] qui ont trait en particulier à la justification du modèle lui-même. Nous
nous proposons de discuter dans ce travail les propriétés de résonance paramagnétique
du modèle. L'influence de la condensation de Kondo sur les propriétés de résonance
est trivial si on prend pour Hamiltonien celui qui est discuté habituellement dans ce

contexte (impureté magnétique + électrons libres + interaction d'échange). Ceci sera
discuté dans la partie I. Dans le cas général (avec interactions électron-électron et
électrons-réseau) le problème est plus ardu et nous ne le discuterons pas [9]. Ceci est

parfaitement légitime si on considère un système pour lequel

|/|tf(0)<l
où / /(0) et N(0) est la densité d'états à la surface de Fermi. En effet la température
critique Tc de la condensation de Kondo est de l'ordre de

où D est la largeur de la bande.
On discute habituellement les expériences de résonance électronique d'impuretés

à l'aide de résultats théoriques obtenus pour la résonance nucléaire (déplacement de

Knight, relaxation de Korringa), en tenant compte si c'est nécessaire d'effets de

goulots d'étranglement [10] (bottleneck effects). Il y a cependant une différence
fondamentale entre la résonance nucléaire et la résonance ionique: la fréquence de
résonance nucléaire est beaucoup plus petite que la fréquence de résonance des
électrons de conduction, de sorte que ceux-ci sont pratiquement inertes, alors que la
résonance ionique est en fait la résonance de deux systèmes de spins à fréquences de
résonance très rapprochées: les impuretés et les électrons de conduction.

On ne peut négliger cet aspect que lorsque le temps de relaxation du spin des
électrons de conduction est infiniment rapide. Même dans cette limite il se pose la
question [10] difficile de la direction dans laquelle les électrons de conduction relaxent.
Nous reviendrons sur ce point.

Délimitons maintenant exactement le problème étudié.
Si "Ue ne contient aucun terme dépendant du spin excepté l'énergie Zeeman et si

les facteurs gyromagnétiques des impuretés et des électrons de conduction sont
identiques, on n'observera aucun effet de l'interaction d'échange (1) sur les propriétés
de résonance uniforme. (Ceci sera démontré dans la partie I.) Si l'une ou l'autre de ces
deux conditions n'est pas réalisée, le problème devient extrêmement complexe. Dans
le travail présenté ici, nous considérons le cas où les spins des électrons de conduction
relaxent rapidement [11] (dans un sens qu'il reste à préciser) et nous présentons une
description microscopique du problème à l'aide de diagrammes (analogues aux
diagrammes de Feynman).

Il a été démontré après coup [12] qu'une partie de ces résultats peuvent s'obtenir à
l'aide d'une théorie de champ moléculaire discutée pour la première fois par Hasegawa
[10].

Dans la partie I le cadre formel du problème est exposé. La partie II est consacrée
à la discussion de deux modèles simples.

Les résultats obtenus par la méthode de perturbation sont exposés et discutés la
partie III.
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PARTIE I

A) De manière générale, on décrit une expérience de résonance par la réponse d'un
système de spins à un champ extérieur dépendant du temps en présence d'un champ
statique. Dans notre modèle, le champ statique est choisi dans la direction z (:HZ)
et le champ H~(t) dans le plan x — y et homogène.

L'Hamiltonien peut s'écrire

#=#, + #' (5)

où lis est l'Hamiltonien du système isolé dans le champ Hz et ?/' l'interaction avec
H~(t).

•U'(t) - M(t) H~(t). (6)

La grandeur mesurée est l'aimantation <^M(t) > (où <^A > signifie TrWAetW est

l'opérateur de densité) qui sera une fonctionnelle du champ magnétique H~(t) ; cette
fonctionnelle peut être écrite sous la forme d'une série ordonnée selon les puissances
de H~(t)

<Ma(t)> E [dti ¦ ¦ ¦dt* xHav"d" ('; *i ¦ ¦ ¦ O HZM ¦ ¦ ¦ H«~&) (y)
n a; •*

où les <X; sont les indices des composantes des vecteurs M et H.
L'approximation de réponse linéaire consiste à ne considérer de cette série que les

termes d'ordre zéro et un; la susceptibilité linéaire est donnée par la formule de

Kubo [13]

<Ma(t)> =E (dtx f*' (* - y *W (8)

«i
J

X««i(t)=i^[Ma(t),Ma.(0)]>ê(t) (9)

où §(t) 1 pour t > 0 et &(t) 0 pour t < 0. Le travail présenté dans cette thèse est

tout entier basé sur l'approximation linéaire, et sur la formule de Kubo.
L'expression

oo

<f>««i(t) ij <[Ma(t'), Ma.(0)] > dt' (10)

t

est reliée par une transformation simple à la fonction

f«*i(t) <{Ma(0, Ma.(0)}> (11)

où

{A, B} \ (A B + B A).

En effet [13]

f*"'M "f" COth (-^r) <f>«ai(w) (12)
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où T est la température et

y*a;(w) f eiwtf'xai(w) dt.

Cette formule signifie que la réponse linéaire d'un système à un champ extérieur
est reliée très étroitement aux fluctuations spontanées du système mesurées par (11).
Cette phrase exprime l'essentiel du théorème de fluctuation-dissipation [13]. On peut
retourner le théorème et dire que la réponse d'un système peut être décrite par une
théorie linéaire si la perturbation due au champ extérieur est comparable quantitativement

et qualitativement aux fluctuations spontanées du système. Ceci est une
condition restrictive qui n'est satisfaite dans le voisinage de la résonance que si les

temps de relaxation sont suffisamment courts.
B) A cause de la conservation du moment angulaire, on peut écrire les formules (8)

et (9) de la manière suivante

<M±(*)> ^fdt, <[M±(t), MT(tA]> ê(t- t,) H-(t,) (13)

et le problème se réduit au calcul de la fonction

x- M y <[M- W- M+(°)] > *W (14>

car la fonction

x+(t)=±-^[M+(t),M_(0)]>m (15)

est reliée à %-(f) par des relations évidentes. Nous verrons par la suite que pour un
système de spins libres, la transformée de Fourier de %-(t) a la forme

yjw) '—rji (16)

où wt est la fréquence de Larmor, c est une constante et ò 0+. La partie réelle de

%-[w) donne la dispersion et la partie imaginaire l'absorption. La ligne d'absorption
que nous appellerons la ligne de résonance, est alors une fonction <5 centrée sur wt.
Les interactions vont à la fois déplacer le centre de la ligne et la déformer. Les calculs
de perturbation faits par la suite conduisent à une forme du type

(17)

(18)

IL-V") -
w -wt + E(w)

Si

x-M

dZ
dm

0

c

w — ttij + 27

la ligne de résonance est Lorentzienne

- c Im 27

(w-w^ReZyt+^mZ)2 ' ' '
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Dans ce cas Im 27 est à interpréter comme l'inverse d'un temps de vie (ou de relaxation)
et Re Z comme un déplacement du centre de la ligne. On définit habituellement deux
temps de relaxation:

a) T1 est le temps de relaxation qui décrit le retour de Mz(t) à sa position d'équilibre

lorsqu'on coupe le champ H~(t) ; cette relaxation est nécessairement due à une
interaction du système de spins avec un bain thermique (réseau).

b) T2 est le temps de relaxation qui décrit la disparition des composantes M±(t)
lorsqu'on coupe le champ H~(t); cette disparition peut être due soit à une perte de
cohérence entre les différents spins, soit à une relaxation dans la direction z. Il s'en
suit que

E2 < 2 71

Il est clair d'après nos définitions que ImZ= l/T^. La meilleure manière de

mettre en relief le sens physique de l'équation (18) est peut-être de calculer l'aimantation

pour un champ

c'est-à-dire

Dans ce cas

H~(t) H (œsw01 ± i sinw01) 0(- t) H e±im>' û(- t) (20)

Hx(t) H œsw01 ê(- t) Hy(t) H sinw0 t &(- t). (21)

Pour t< 0

<M_(i)> ~ M_(t) f~ M_(w) e~imt

Mx(t) H (Re X-(wo) cosWq t + Im X-(wo) sinœ>01)

My(t) H (Re x_(w0) sinw0 t - Im xA\w0) cosw0 t). (23)

La comparaison de cette équation avec (21) montre que Re %_(w) décrit la composante
de l'aimantation qui est en phase avec le champ et Im x~(w) décrit la composante qui
est déphasée de jr/2.

C) Il s'agit donc de calculer la fonction x~(t) définie par

X-(t) i <[M_(t), M+(0)] > ê(t) (14)

où

M± (t) e^ M± e~ *%* M± M'± + AP± M'± ge pi o± (q 0) (24)

(ç>± est défini par (3))

M^^g^ESl
gi et ge sont les facteurs g reliés aux facteurs magnétomécaniques yi par

Yi iiP
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pi est le magneton de Bohr (ju, < 0)

%=%+%+%, (25)

•H,= i»tESt (26)

•U.= W+ %nt E E(k) ala(k) aa(k) + -^ fef 0) - 0; 0)} + #?" (27)

1lei est défini par (1), wi gt\fi\H, we ge\pi\ H, "W** contient toutes les
interactions électrons-électrons et électrons-réseau, E(k) est l'énergie cinétique d'un
électron d'impulsion k.

Le calcul de la fonction de corrélation (14) est en général très compliqué; il est
très simple cependant dans la limite où g{ ge et où 14,nt ne contient aucun terme
dépendant du spin.

Considérons en effet l'équation de mouvement de X-(t)

-dJ x-(t) y W <lM-(Q)> M+(0)]> + |m <* [[«,(*), M_(t)l M+(0)]>

Sa transformée de Fourrier s'écrit alors

y tw\ L <JM+(0),M_m> g2fi2<2Sz> + g2fi2l2<e-(q 0)-e' (g 0)> (2g)^~ * ' 2 w — wi + iô w—we+iô

car dans ce cas [llint + "Uei, M_] 0 et ~Uei n'a donc d'influence que sur l'amplitude
de la résonance, mais non sur la position de la raie ni sur sa largeur. En corollaire, on
voit que la condensation de Kondo n'a aucune influence dramatique [9] sur les

propriétés de résonance. Le terme i ô (ô 0+) est ajouté de manière à satisfaire les
relations de dispersion. De (28) on peut tirer immédiatement la valeur de X-(w) pour
des ions et électrons libres.

PARTIE II
Pour fixer les idées on peut considérer deux modèles simples :

A) Considérons d'abord deux spins S' et Se couplés par une interaction d'échange.
A chaque spin on assigne un taux de relaxation introduit phénoménologiquement.
Ce problème est facile à résoudre à température zéro: il s'agit de calculer la valeur
d'attente

M_(t)=pKW(t)\glS\ +geS<_ \w(t)y

où ip(t) est la solution de l'équation d'onde

i^W(t)> W)\v(t)>

m) ="u0AV(t)

#0 w. S\ + we Sez - 2 f S1 Se + dissipation

v(t) =-piH {(gi s'+ + ge s;) e-iat + (g,- Si + ge Si) é*'}.
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La dissipation est choisie de telle manière que si on interrompt V(t), S' et Se relaxent
dans la direction z. H est l'amplitude du champ oscillant H~(t).

On trouve sans difficultés le terme linéaire en H

M_(w) X-(w)He~imt

i x _ fi F
XA - -w_cw.+ We)j2-.j + i(St+ oe)/2 + (J2 + (i (Oi-oe)l2-(w{-we)l2)*)xß

pAa
"*" w-(wi+we)l2-J + i (Ôi+ôe)l2-(j2+(i (Oi-de)ß-(Wi-we)l2)2)^

F et G sont des constantes indépendantes de w.
Dans la limite gt ge, ô,- ôe 0+ on trouve

(29)

y_tw\ —t£ i £<* (30)
a. \ / w—we+iô w—we — 2J + io

Ceci semble en contradiction avec la formule (28). En fait on peut montrer que
lim G 0 suffisamment rapidement pour que la deuxième partie de l'équation (30)

tende vers Zéro pour toute valeur de w. Ceci montre que si l'on ne s'intéresse qu'aux
pôles de la fonction X-(w) on Peut obtenir des résultats illusoires [11]. Le cas que nous
nous proposons de discuter est défini par les relations g,- ~ ge et ôe > <5, > | wt — we\,J.
On obtient alors

y (W) ~ ^Z I tf± (31)A-\ I w-wt-J+iôi+pHwt-Wt-iô,)^ w-v>,-J+iò.-PI(wi-w,-id,)' K

La ligne de résonance est la superposition de deux lignes de résonance, l'une centrée
sur une fréquence proche de wi et relativement étroite et l'autres, beaucoup plus
large, centrée sur une fréquence proche de we. En considérant la première partie de

l'équation (31), on peut prévoir les effets suivants:

a) un déplacement de premier ordre (— /) analogue au déplacement de Knight.
b) un déplacement et un élargissement de deuxième ordre représentés par le terme

f2j(wi — we — i ôe). L'élargissement de Korringa [24] est représenté par le terme i ôt.

B) On peut obtenir les mêmes résultats en considérant un modèle de champ
moléculaire: deux moments magnétiques classiques M1 et M' évoluant dans leurs
champs moléculaires respectifs:

a™r y. M1 A(H+XM°); -J. M" ye M" A (H + X M') (32)

En introduisant de nouveau une dissipation dans la direction z, on obtient :

x - H
fi F'

ji G'

+ i~^ + J «si> + <s|» -{(i^i_îii^_/(<s»>-<^>))2 + 4p<s'z> <^>J
(33)
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où <S\> Miol/igi, Mi0 est la valeur d'équilibre de Mz (pour V(t) 0), /
(pi2 gi gJ2) X et F' et G' sont des fonctions lentement variables de w. Les pôles de

l'expression (33) sont identiques à ceux de l'expression (29) pour

<s;> <s:> -\.
Nous avons choisi pour nos deux modèles le terme dissipatif le plus simple:

dissipation vers la position d'équilibre thermique. Le choix du terme de relaxation
est en fait un problème délicat. Peter [12] a discuté les équations (32) en détail en
choisissant un terme de relaxation dans la direction du champ moléculaire instantané

[14]. Ce choix a le désavantage de ne pas tenir compte de la relaxation électrons-
ions, et par conséquent d'ignorer les effets de goulot d'étranglement [10]. Le choix
d'HASEGAWA [10] a le désavantage de permettre dans certains cas des temps de

relaxation négatifs (voir son équation 5.2 pour Xxd< ~~ !)• On pent combiner les
deux approches en écrivant

^ M Yi M'A(H + XM<)-~ (M' -Z^M«)+^ (M« - £XM>)

- *
(M»_jJ(JÏ + *M'))1 le

~M° ye M"A (H + X MA + ~ (M1 - xU M°) ~ ref (M* ~ XÏ*M')

--(M'-^H+IM')). (34)
J- ei

Dans ces équations, Tj1, T~V Tt,1 et T"} sont les taux de relaxation des ions auxt. ' ie e% iL. e 1.

électrons, des électrons aux ions, des ions au réseau et des électrons au réseau. Les
termes proportionnels à Tt1 et T ~} représentent une relaxation dans la direction du
champ moléculaire instantané, mais les termes en x° H disparaissent à cause de la
relation TJTie X°Jxl

Les équations (34) sont en accord avec celles d'HASEGAWA lorsque l'aimantation
est négligeable, et aussi avec une analyse thermodynamique plus générale due à
G. V. Skrotskii [14].

PARTIE Hl

La fonction X-(t) (équation (14)) est une somme de quatre fonctions de corrélation,
car M±(t) est la somme de deux termes. Nous nous restreignons cependant au choix
de paramètres

gl~ge> ôe>ô{. (35)

Dans cette situation, seule la résonance ionique est observable (voir équation (31))
et il suffit [15] de calculer la fonction

XÎ (t) ^f i <E [S- W' SX(0)] > m ¦ (36)
" nn'
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Pour calculer la fonction x1- (t) on dispose essentiellement de deux méthodes
microscopiques: l'équation de mouvement et la théorie de perturbation. C'est la seconde

méthode que nous avons employée pour calculer xL (t), d'abord à T 0°K [16], puis à

température finie [17]. On commence habituellement par calculer à température zéro
les grandeurs que l'on veut connaître, ceci afin de pouvoir distinguer les effets

dynamiques des effets statistiques.
La théorie de perturbation pour une fonction telle que %*_ (t) bute sur une difficulté

majeure: le théorème de Wick [18] n'est pas valable pour les opérateurs de spins,
car le commutateur de deux opérateurs de spins est un opérateur, non un nombre c ;

de nombreuses méthodes ont été proposées pour pallier à cette difficulté, certaines
avant [19] celle proposée par l'auteur [20], d'autres après [21]. Ces méthodes sont
toutes assez compliquées, et semblent adaptées surtout au problème particulier pour
lesquelles elles ont été inventées.

La méthode proposée par l'auteur est la suivante:
En théorie de perturbation dépendant du temps on est amené à calculer des

grandeurs du type
<0\T{A(tA...P(tm)}\0>

où T est l'opérateur chronologique, A (tA. P(tm) sont des opérateurs écrits dans une
représentation d'interaction convenablement choisie

A(t) ei'U°t A <r*"&'

et 10 > est l'état fondamental de "U0.

Ve théorème de Wick transforme le produit chronologique en une somme de

produits normaux, dont la valeur d'attente dans l'état fondamental est extrêmement
simple à calculer.

Considérons un système de spins en interaction S1, S2... SN; la manière la plus
simple de définir un Hamiltonien "U0 est de placer le système dans un champ magnétique

homogène dans la direction z. Alors

# T/«, + W
%> *>,£ s; wt>o

"U' F(S'... SN)

%l' est l'interaction spin-spin et est supposée être un polynôme en Slx, Sj,, S*. Le
produit normal est défini de la manière suivante: les opérateurs S+ à gauche, les

opérateurs S_ au milieu et les opérateurs Sz à droite. La place attribuée aux
opérateurs Sz est arbitraire mais doit être fixée si l'on veut avoir des règles définies.
La contraction de deux opérateurs S, c'est-à-dire la différence entre leur produit
chronologique et leur produit normal est alors

Sn+(t) Sn'(t') -2 S* «r"»««''-*>0 (*' - t) ônn,
I I

sn+(t)s:'(t') si(t)&(t'-t)önn,
i i

S! (t) S*'(f) - SI (t) ê (f - t) Ônn, (37)
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Sz est indépendant du temps comme opérateur, mais la variable t est nécessaire pour
indiquer la place de Sz dans un produit chronologique. Si on essaie de transformer
explicitement un produit quelconque d'opérateurs S en un produit normal à l'aide des

régies de commutation, on s'aperçoit qu'un opérateur donné peut subir de multiples
contractions. Pour formuler le théorème de Wick généralisé, on doit définir des

opérateurs S dépendant de plusieurs «variables» de temps: S_(t; tt... tm) et Sz(f; t").
Dans ces expressions, seul t est une réelle variable de temps, les autres variables
sont simplement des indices.

La généralisation des équations (37)

S"+(t) Snf(f; t,...tm) -2 S: (t; t') ê (t'-t)ê (t, - t) ...& (tm - t) «-<•»<"-*> ônn,

SI (t; t,... y Sf (f ; t") - S» (t; tx tm f) 0 (t" - t) ônn,
I |

S»+(t)S:'(t';t>') Sl(t)iì(t'-t)ònn,
1

ainsi que les définitions
Sz(t; t) Sz(t)

S_(t) s S_(t;)

expliquent par elles-mêmes comment les indices sont définis. De plus nous définissons

S_(£; tx... tm) comme symétrique dans les indices tx tm; par contre Sz(t'; t") n'est

pas symétrique. Pour formuler le théorème, il faut supposer que toutes les variables

tx...tm sont différentes.

Théorème. Le produit chronologique d'une certaine suite d'opérateurs S est égal
à la somme des produits normaux de toutes les suites partielles d'opérateurs S

(y compris la suite initiale) que l'on peut construire en contractant la suite initiale de

toutes les manières possibles.
Ces produits normaux sont à multiplier par les facteurs scalaires définis par (37)

et qui dépendent des contractions effectuées. En général, il y a plusieurs facteurs
scalaires différents pour la même suite partielle d'opérateurs, mais chaque facteur
différent ne doit être compté qu'une seule fois, même s'il correspond à plusieurs
contractions «topologiquement» différentes.

La démonstration de ce théorème a été publiée [20] et il est inutile de la répéter ici.
L'existence d'un théorème de Wick permet d'exprimer la série de perturbation

sous la forme de séries de diagrammes qui peuvent être comptés et calculés
d'une manière automatique, à l'aide des règles énoncées ci-dessous:

a) Graphologie.

(i) A chaque opérateur S on associe un point.

(ii) A chaque contraction S+ S_, S+ Sz et S_ Sz on associe des lignes dessinées dans
la figure 1 a, b et c. I—! I—1 I—I

(iii) Chaque ordre d'interaction est représenté par une ligne ondulée (figure ld).
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b) Règles de calcul.

1) A chaque contraction S* (f) Sl_'(t; tx... tm) (figure la) associer un facteur
I 1

-2ônn, «-*-!<•-")*(< - t') #&-*')...* (tm - t').
2) A chaque contraction Sn(t'l; t) Sn+(t') (figure lb) associer un facteur

ônnl&(t"-f).
3) A chaque contraction S*'(fî; tt... tm) S%(t" ; t) (figure le) associer un facteur

4) Inclure la puissance correcte de S, en se rappelant que Sz «disparaît» quand il est

contracté.

5) A chaque ligne d'interaction (figure ld), associer un facteur

iN-1 f(q)eiqRn

6) La partie électronique s'évalue comme dans la théorie habituelle.

7) Diviser par un facteur y, qui est défini par les nombres de contractions répétées
d'opérateurs S+ ou S_ avec des opérateurs Sz. Si ces nombres sont nlt n2, nn
dans un diagramme donné, y JJ[yii Ceci correspond au nombre de permutations

i
entre les variables tt qui n'engendrent pas de termes différents dans l'expression
donnée par le théorème de Wick généralisé.

-e-» (a)

(b)

(c)

(d)

Figure 1

(a), (b) et (c) : contractions S, S_, S. S et 5_ Sz; (d) : ligne d'interaction.

i|Aucune confusion ne peut exister entre les lignes S+ Sz et S_ Sz, car elles sont connectées de

manière différente dans les diagrammes.
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8) Sommer sur tous les n, q et directions de spins (pour les électrons) et intégrer sur
les variables tx... tn.

L'auteur a utilisé cette méthode pour calculer x1- (t) à température zéro [16]. Le
résultat peut s'écrire de la manière suivante :

(17)A \ I W—W- + 2l(w)

où c est indépendant de w et Z(w) est une énergie propre qui déforme la ligne de

résonance (voir partie I).

2,W /(0)^1<et(0) + ej(0)>

+
4S

\fi2N2

N2ß2

E I /(«) I2 «***» (Xe- (» Q) - X> 0, q))
In

E\J(<i)\2&(w-wi><i)- ~x~(w-v» (38)

S est la grandeur du spin des ions et les fonctions %*->%%, X- et Xl sont définies par

Xi (t, q) 2 i pi2 <[o_ (qt),e+(- q, 0)] > &(t)

Xl(t,q) =i^<[e^(qt)-Qi(qt),Q^(- q 0) - o;(- q0)]> 0«
~Xe_ (t, q) 2 »>» <J {0_ (q 0 e+(- q 0)}> 0(- t)

&(*. q) *>* <r {(ot (g o) - e; (« t)) (et (- g o) - Si(- q o))}> m.

•t

©->

.••<•..

•t

»-»

.-«x
•4-

e->

•4.

-©-»
Figure 2

Représentation diagrammatique de l'énergie propre de premier ordre J(0) W-1 <gf (<? 0) —

g | 0)>. La ligne pointillée représente le propagateur électronique, la flèche donne la direction
du spin, la ligne ondulée l'interaction. Les autres symboles sont des propagateurs de spin.

Pour faire apparaître une énergie propre au dénominateur de X-(w) u ^aut évidemment sommer
une série infinie de termes; les diagrammes ci-dessus sont le premier de ces termes. Pour plus de

détails voir réf. [16].
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A température zéro, la moyenne thermodynamique représentée par <3ç ^> (où -^Ap-
signifie Tr e~ß '" ~ ™« >' .4) est remplacée par la moyenne sur l'état fondamental
correspondant.

Ces fonctions sont relativement faciles à calculer dans l'approximation des électrons
libres [16] [22] (voir appendice).

On peut montrer [22] que le troisième terme de (38) est négligeable [25]. La
signification des deux premiers termes de l'équation (36) est la suivante.

a) le terme

J(0)N~x<ei(q 0)-ei(q O)>. (39)

Ce terme est représenté diagrammatiquement dans la figure 2. Il correspond au
déplacement de Knight : le ion précesse dans un champ effectif qui est la somme du
champ extérieur et de la polarisation statique des électrons de conduction.

b) Le deuxième terme provient de deux types de diagrammes différents (figure 3 et
figure 4). En prévision des résultats à température finie, nous décomposons le
deuxième terme en deux parties :

(i) 4SP
e2 „, NZ E (X- K Rn) - X> 0, Rn))
set* B 4=0

(40)

avec l'approximation J(q) / constante.
On peut montrer que la partie réelle de (40) peut s'écrire

1 N~" {l^T Re (X- K g 0) -X> 0, q 0))} (41)

fc->-

t
•<•

...>.
* ..••

....<••

••>••

e->

..••<-..

e->

...-<••

••••>

&*
Figure 3

Représentation diagrammatique de l'énergie propre de deuxième ordre: terme proportionnel à

%z[w, q). La série infinie est semblable à celle de la figure 1.
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où N0 est le nombre d'impuretés par unité de volume. Ceci est dû au fait que Re xl et
Re X- ne différent que pour j~2» wjkf <~ 103 cm-1, ce qui revient à dire que la
différence Re(x"z(0, R) — X- (wi> R)) varie très lentement à l'échelle atomique.

_e_) 1 i e-^
Figure 4

Représentation diagrammatique de l'énergie propre de deuxième ordre: terme proportionnel à

X-(w, q). La série infinie est semblable à la série RPA pour la fonction diélectrique dans la théorie
du gaz d'électrons (série de diagrammes bulles).

Dans l'équation (41), le terme en xl s'interprète immédiatement comme une
rénormalisation de <@ * (0) — q i (0) > dans (39) : la polarisation uniforme des électrons
est due aussi au champ moléculaire des ions. Cette interprétation est évidente si l'on
compare les diagrammes des figures 2 et 3.

Ce terme seul donnerait le déplacement célèbre de Kittel et Michell [23]. Il est

compensé cependant par un deuxième terme Re X-(w> 9 0). Pour fixer les idées on
peut remplacer xl et jr*- par leur valeur pour des électrons libres. On obtient (équation
A.l)

Rt \-C *- X> 0, q 0) —'- T - l). (42)
N2 fj,2 Asrv \w-we + io

On voit que la compensation est complète lorsque w <4 we (résonance nucléaire) et
nulle lorsque w j> we (résonance de ions dont le facteur g est beaucoup plus grand
que 2).

Physiquement, cela signifie qu'à très basse fréquence (w <^ we) les électrons suivent
parfaitement le champ moléculaire total, tandis qu'à haute fréquence (w > we), ils
restent inertes dans la direction du champ Hz ; il est raisonable de penser que ces cas
limites sont valables aussi si on calcule X- et xt ^e taÇ°n plus réaliste. Un calcul
microscopique de X- qui tienne compte de la relaxation rapide des électrons de

conduction n'a pas été entrepris dans ce travail, et il faut faire des hypothèses
phénoménologiques. Nous reviendrons sur ce point. Seul^l concourt à la partie imaginaire
de l'équation (40), car Im x"z(w 0, R) 0. Dans l'approximation des électrons
libres Im x"- (w, R) est une fonction qui varie rapidement sur des distances
interatomiques (équation A.2), ce qui rend l'approximation S x~ (w, Rn) ~ A^o %L (w, q 0)

difficile à justifier du moins pour des électrons libres; il y a de bonnes raisons [22] de

penser que cette approximation est bien meilleure dans la limite de relaxation rapide.

(ii) La deuxième partie du deuxième terme est

-^/^ (X- K R 0) - X> 0,R 0)) (43)

avec l'approximation f(q) constante.
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On peut montrer que le déplacement dû à ce terme est pratiquement nul
(Re X- (w{, R 0) ~ Re xl(w 0, R 0)). Ceci montre que le champ moléculaire d'un
ion isolé n'a aucun effet sur la résonance: il suit parfaitement le mouvement. Une
théorie RPA ou de champ moléculaire pour ce cas donnerait des résultats complètement

erronés. Ceci n'a rien d'étonnant: on sait qu'une théorie RPA n'est valable que
pour des effets presque uniformes (q ~ 0).

L'élargissement dû à (43) est proportionnel à Im x"- (w, R 0) et correspond à

l'élargissement de Korringa [24].
D'après ce qui précède, Z(w) se compose de trois termes: on peut les rassembler

sous la forme

2>) / N-1 <ot (q 0) - ei(q 0)>

+ ^Ç*-% {^o Re (x- K q o)- x> 0, q 0))

+ i£lm f- K Rn)\ + -*S * Em Xi (w, R 0). (44)
Rn + 0 > Se f*

Si on fait l'approximation Z Im %t (w, Rn) ~ N. Im Xe- (w, q 0) on peut écrire (44)
de la manière suivante : "

2» / A^1 <ot (q 0) - g j (q 0) + -£^ i 1m £ (w, R 0)

+ W h^(W °' « " 0) t-^-2}^5+T^ - !)} (45>

avec la forme phénoménologique:

e - we %z (w 0, g 0)
X- _ w-w,-2JN-xS+ iô, * '

En remplaçant dans l'équation (35), et en changeant quelque peu les notations, on
obtient

J lw)
c («>-«;,+ 2 /J/-'(S;) +U, (47)

(to-Wi-t- 2/ AT- i<S^> + iöi) (w-wi + 2JN-HSiz) + iôe)-4pN-2(S\y<:Sez>)

d <s;> -s et <s;>=.i-<et(?-o)-e;(? o)>

ont la même signification que dans l'équation (33). Nous retrouvons les deux pôles de

cette expression.
Nous voyons donc que dans une certaine approximation, notre calcul peut être

comparé avec les modèles simples présentés dans la partie II. Dans la forme (46),
il a été tenu compte, par raison de Symmetrie, du champ moléculaire des ions (figure 5),
et, phénoménologiquement, d'un processus de relaxation dans la direction du champ
Hz. On pourrait calculer cette grandeur microscopiquement, en évaluant les

diagrammes appropriés (en tenant compte par exemple de la relaxation spin-orbite),
mais il serait impossible d'obtenir une forme qualitativement plus réaliste (relaxation
dans la direction du champ moléculaire instantané) dans le cadre de la réponse
linéaire (formule de Kubo), car celle-ci s'exprime en fonction de valeurs d'attente de

certains opérateurs sur le système à l'équilibre thermique.
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-9-*-

*
.*.•-

....,* A
-»->-

-©¦»-

<—

'»•?. .?..->¦

-*-»-

Figure 5

Diagrammes contribuant à la renormalisation de %L due au champ moléculaire des ions.

La méthode utilisée pour faire les calculs à température zéro n'est pas générali-
sable à température finie. On peut cependant calculer la série de perturbations terme
après terme.

Il est évidemment exclu de calculer une série infinie, mais la comparaison des

termes de premier et deuxième ordre avec les termes correspondants à température
zéro permet d'identifier Z(w, T) et l'on obtient [17]

2>, T) ~ /(0) N~x <eT (q 0) - Q^q 0)>

2 P kT+ i 27 Imxt(w, R„)\ + i
g2 N2 /j,2 w

Xl(w 0, q 0))

Im xi (w, R 0) (48)

pour k T ^> w,-.
La discussion de Z(w, T) est complètement analogue à la discussion de Z(w) ; pour

pouvoir discuter les conséquences expérimentales de (48) il est nécessaire de faire
certaines approximations. Nous avons choisi pour xe- la forme phénoménologique

fjw, q 0) =£(w 0,9 0) (l ,-we+2jN-^(szy + iôe!

qui correspond à une relaxation dans la direction du champ moléculaire instantané.
La discussion de (48) a été publiée en détail (réf. [17]) et ne sera pas répétée. Elle a

permis de prédire certains effets observables dans la résonance ionique lorsque
certaines conditions sont réalisées, en particulier lorsqu'on s'approche de la température

de Curie dans certains alliages. Ces effets ont été effectivement observés [12].
En résumé, l'analyse microscropique a permis de prédire certains effets et de

gagner une meilleure compréhension sur l'interaction effective entre les ions, qui est

anisotropique en présence d'un champ statique Hz; cette analyse a aussi permis de

justifier par avance le modèle de champ moléculaire, qui n'est valable que dans une
certaine approximation et ne permet pas de calculer les effets à courte portée, mais qui
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permet par contre de discuter beaucoup plus facilement le problème de la relaxation
(voir équation (34)).

L'auteur tient à exprimer sa reconnaissance à Messieurs les professeurs S. Koide
et M. Peter qui ont montré un intérêt constant dans le développement de ce travail.

Il tient aussi à remercier Messieurs les professeur G. J. Bene, C. Enz, J. M. Jauch
et J. R. Schrieffer et Messieurs H. Cottet et J. Dupraz pour des discussions
précieuses sur certains aspects de cette recherche.

Appendice

Les fonctions de susceptibilité %e_ (w, q) et %ez(w, q) que l'on écrit dans l'approximation

des électrons libres x°-(w> <Z) et xT(w> q) ont dans cette approximation les

propriétés suivantes.

ou

par exemple est donné par

Re x% K q) f^ i^ + A^ ->w> «) ^ A-(kf* ;w> 9)}

avec

4±(*/t ;w- 9)
2q

1 - 1 kf-\ ^ 2k'/t
ln

A

l + (mwlqkf^ ± qfikf^)
1 - (m wjq Ä/| ± qj2 A/|

(ou q
et

Em x"z\ K q)

pour 2m\w\ > q2 + 2 q kf

pour q > 2 kf 2m\w\ < q2 — 2 q kf

2tz q
pour q < 2 kf 2m\w\ < j q2 — 2 q kff\

4nq f\
q m w y

2 kf». q Ä/t j
pour | q2 — 2 q k{ A < 2 m \ w | < q2 + 2 q kf

où kf. est l'impulsion de Fermi pour les électrons de spin up.

xf. (w, q) est défini de manière semblable; seul kf. est remplacé par kf.
Pour simplifier les notations, discutons x°z(w> q) pour le cas kf. kf.
On voit que

lim Re x°z (w, q) pi2 m kfn~2 U(x)

U(x) ^>A
l-x2
2x

ln
1 + x \

OU X
2kf-
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D'où

Bernard Giovannini

lim lim Re x°z (w> q) A*2 m kf7i~2.

On reconnaît la susceptibilité de Pauli. Remarquons que

lim lim Re y°"(œ>, q) 0.
w—>0 g—>-0

En effet, pour
co ;>

q2 + 2qkf
2 m

Re xî(w, q)^- ji2 q2 n

où n est le nombre d'électrons par unité de volume.

t>)/->, q)-

Re z°>, g) ^J- K + kfl +
2 m (w— we)

(^/| ^/j)

+ 2 A+(kf] ;w-we,q)-2A_ (kf[ ; w - we, g)).

(i) Im x°~(w> 1) pour w — we > 0.

1) Si q < fy. + Ay^

(0

7w ;/_ (w, q)

pour 2 w(w — we) > g2 + 2 kf q

/1» m2 w
2 71

il2 m M

pour 2«(f-»J < 2 &/+ q — q2

2n 2q
m {w— we) \2

H. P. A.

2 kfi q kf[

pour 2 kf q — q2 < 2 m (w — we) < q2 + 2 Ä/ ç.

2) Si g > Äy + k

Im x°_ (w, q)

'H

0 pour q2 — 2kf q> 2m\w — we\

et pour 2 w | w — we | > q2 + 2 kf q

f^m */j_ L _ / g

4 Ji | \ 2 k/.
m (w— we) \2

qkf

pour q2 — 2 kf q <2m \w — we\ < q2 A- 2 kf q.I i-

(ii) Im x°- (w, q) pour w — we < 0.
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1) Si q < kf + kf

169

Im x°-(w, q)

0 pour 2 m \ w — we | > g2 + 2 Ay g

W "Wv Vu

~ATtT~ 7 pour 2m\w~we\<2-kf^q-q2
yPrn kf\ L
4t% q

m {w— we)

2kn qkn
pour 2 kf q — q2 < 2 m \w — we\ < 2 kf q A- q2•

2) Siq> kf][ + kn

Comme sous (i) 2).

On voit que lim x°- — X? comme il se doit.

*/f "*/4^°
En outre:

Pour w <g. Ef

Im xi (w, q)

D'où

ou

XV (w — 0, q 0) z£»elim y0e(w, q) ~ —

pour |Â/t -i^K*,.
u" m" w _

T-7pour q<2kf

pour q > 2 kf.

t r i r.\ a2 m2 kr sin2 (£<•#)Im x_ (w, R) — ~ w

\R\ x et Ä

2jî3 {kfx)2

kfî+kf>

(A.1)

(A.2)

¦/¦
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