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A Modification of Piron’s Axioms

by Roger J. Plymen?)
Mathematical Institute, University of Oxford, Oxford, England

(17. IX. 67)

Abstract. We show that the lattice L, of yes-no observables in classical statistical mechanics
fails to satisty Piron’s lattice-theoretical axioms for quantum mechanics. We weaken one of
Piron’s axioms, replacing completeness by g-completeness; L, satisfies the modified set of axioms.
Using C*-algebra techniques, we exhibit a large class of atomic lattices which satisfy the modified
set of axioms, and which do not satisfy Piron’s original axioms.

1. Introduction

PiroN [5] has introduced a set of axioms for the propositional structure of a
physical theory and has shown that quantum mechanics (with superselection rules)
and classical Newtonian mechanics are models satisfying these axioms. It can be
argued that a satisfactory axiom system would have classical statistical mechanics
as a model. We show that Piron’s axioms exclude such a model, but that a technical
modification of one axiom allows its inclusion. We also discuss the relation between the
modified axiom system and the C*-algebra approach to quantum mechanics.

The papers by DAviEs [1] and PLYMEN [6] have drawn attention to an important
class of operator algebras: the sequentially weakly closed C*-algebras of operators.
Such algebras may be characterized abstractly and are called 2*-algebras. The theory
of X*-algebras may be regarded as providing a basis for a non-commutative version of
probability theory. The author establishes in [6] that the theory of L*-algebras makes
it possible to relate the C*-algebra approach to quantum mechanics with the axiomatic
formulation of quantum mechanics due to MACKEY [4]. Given an abstract C*-algebra
A, Davigs [1] constructs a canonical X*-algebra A~ containing A4, called the
a-envelope of A ; and the relevance of the g-envelope in quantum mechanics is discus-
sed in [6].

Piron’s second axiom requires that the partially ordered set L of questions (yes-no
observables) should be a complete lattice (each subset of L has a least upper bound
and a greatest lower bound in ). We weaken this axiom by requiring that L should be
aag-complete lattice (each countable subset of L has a least upper bound and a greatest
lower bound in L). The resulting set of five axioms we call the essential axioms of
PiroN. The main result of this paper is

Theorem 1. Let A be a type I separable C*-algebra, and let A~ be the o-envelope
of A. Then the partially ordered set L(A ™) of all projectionsin 4 ~ satisfies the essential
axioms of PIRON.

Theorem 1 provides us with many atomic lattices excluded by Piron’s original
axioms. For example, let 4 be the C*-algebra of complex-valued continuous functions
on the unit interval [0,1]. Then L(4 ™) may be identified with the lattice L, of Borel
subsets of [0, 1]. L, satisfies the essential axioms of PiroN, but fails to satisfy the

1) Present address: Department of Mathematics, The University, Manchester 13, England.
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original axioms of PiroN. Theorem 1 may be regarded as relating the C*-algebra
approach to quantum mechanics with Piron’s axioms.

In Section 2 we discuss classical statistical mechanics and show that it is excluded
by Piron’s original axioms. We argue for 1ts inclusion as a model of a modified set of
axioms. In Section 3 we discuss 2*-algebras and the g-envelope. We remark upon the
relevance of X*-algebras in classical statistical mechanics (Remark 3.6). In Section 4
we state the essential axioms of PiroN and prove Theorem 1. We show that the
partially ordered set L(A4) of projections in an arbitrary X*-algebra 4 is a o-complete
orthocomplemented lattice.

We wish to thank J. T. LEwis and E. B. DaviEs for several very helpful discussions.
We should particularly like to thank E. B. DAviEs for showing us the unpublished
manuscript of [1].

' 2. Classical Statistical Mechanics

Consider the classical mechanics of a system of a very large number » of particles,
for example a macroscopic physical system composed of # very small ‘atoms’ moving
according to classical mechanical laws. The phase space of such a system may be
identified with 6#-dimensional Euclidean space RS". The physical states of such a
statistical mechanical system are represented by the probability measures on R6";
the observables are represented by the real-valued Borel functions on Ré". To each pair
consisting of an observable # and a state f we have associated the probability Borel
measure on the real line given by M — f(u~1(M)). The number p(u, f, M) = f(u"1(M)).
is the probability that a measurement of # will be in M when the system is in the state
f14, pp. 47, 61]. Let us call an observable a a question, if in every state f the measure
M — p(a, f, M) is concentrated in the points 0 and 1, that is, if p(a, f, {0, 1}) = 1 for
all f. It is easy to verify that the questions are precisely the characteristic functions of
Borel subsets of R8”. There is a natural partial ordering on the set L of questions as
follows: a < b if and only if p(a, f, {1}) < p(b, f, {1}) for all states f. The partially
ordered set L of questions may thus be identified with the set of Borel subsets of R®",
partially ordered by inclusion. Now the Borel structure underlying the metric
topology of R®# is standard, by definition. This standard Borel space is isomorphic,
as a Borel space, with the Borel structure underlying the metric topology of the unit
interval [0, 1]. This means that there exist 1—1 Borel mappings f: R¢* > [0, 1] and
g:[0,1] - R%” such that fg=1 and gf=1 [2, p. 357]. The Borel isomorphism
preserves the partial order structure. Hence the partially ordered set L of questions of
the classical statistical mechanical system may be identified with the set L, of Borel
subsets of [0, 1], partially ordered by inclusion.

Now L,is a o-complete lattice (each countable subset of L, has a least upper bound
and a greatest lower bound in L,). Of course L, is not a complete lattice (each subset of
L, has a least upper bound and a greatest lower bound in L,) because L, contains each
point of [0, 1]. There exists an orthocomplementation in L,, a = a’, which sends each
element of L, to its complement in [0, 1]. The atoms of the lattice L, are precisely the
points of the unit interval. Moreover L, is actually a Boolean algebra.

One of the cardinal achievements of MACKEY’s axiomatization of quantum
mechanics [4, pp. 61-85] is this: The formal mathematical structure of quantum
mechanics differs from the formal mathematical structure of classical statistical
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mechanics in one and only one respect, namely the structure of the partially ordered
set L of questions. On the one hand, L is isomorphic with the partially ordered set of
all closed subspaces of a separable infinite-dimensional Hilbert space; on the other
hand, L is isomorphic with the partially ordered set of all Borel subsets of phase space.
It may be argued that any axiomatic formulation of quantum mechanics should, in a
definite sense, include the case of classical statistical mechanics. In his lattice-
theoretical approach to quantum mechanics, PIrRoN [5] requires that the partially
ordered set L of questions should be a complete lattice. Thus Piron excludes the lattice
L,, hence excludes the case of classical statistical mechanics. In order to include this
important case, we propose to weaken Axiom II of PIroON, replacing completeness by
g-completeness. We leave the other four axioms unchanged. The resulting set of five
axioms we call the essential axioms of PIron.

Doubts concerning Piron’s second axiom were raised by GUENIN [3, p. 282], who
suggested replacing completeness by g-completeness. Note that the concept of o-state
is invariant under g-isomorphism of X*-algebras [cf. 3, p. 275].

3. On X*-Algebras

For the general theory and notation concerning C*-algebras we shall make
systematic use of DIXMIER’s book [2]. Since it is no restriction to assume that the
C*-algebra A has an identity, we shall always assume our C*-algebras have identities
denoted by 1. A state f of a C*-algebra 4 is a linear functional on A such that f(1) =1
and f(x) > 0 when x > 0. We denote by B(H) the C*-algebra of all bounded operators
on the Hilbert space H. We shall be concerned with the weak operator topology on
B(H), the weakest topology on B(H) such that the mappings x > (x &, &) are con-
tinuous for each & in H. If x, > x in the weak operator topology, we say %, > «
weakly. Now let 4 be a C*-algebra and denote by F the set of all ordered pairs
{x,, x} consisting of a sequence x,€ 4 and a point x€ 4. If G C F we denote by G°
the set of all states f on A such that for all {x,, x} € G we have f(x,) > f(x).

Definition 3.1. A X*-algebra A is a C*-algebra together with a subset G C F,
called the set of o-convergent sequences in A and denoted x, - #, such that the following
properties hold:

(i) if x, - x then there is a constant K such that for all » we have | x,| <K < o0;

(i) if x, > x and y€ 4 then %,y > x y;

(iii) if %, € A is a sequence such that f(x,) converges for all f€G° then there is

some x € A such that x, > x;

(iv) if 0 + x € 4 then there is some f € G” such that f(x) = 0.

G? is called the set of o-states of the Z*-algebra A.

Example 3.2. A set A of bounded operators on the Hilbert space H shall be called
o-closed if given any sequence x, € A which converges weakly to x € B(H), we then
have that x € 4. Given any set A there is a smallest o-closed set containing it, which
we call its o-closure and denote by o(4). If 4 is a sub-C*-algebra of B(H) theng(4)isa
C*-algebra. Let A be a sub-C*-algebra of B(H) such that 4 = ¢(A4). A becomes a
2*-algebra if we define the o-convergent sequences to be the weakly convergent
sequences. We call such algebras X*-algebras of operators; clearly B(H) is itself a
2*-algebra of operators. By a o-representation s of the X*-algebra 4 on the Hilbert
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space H we shall mean a representation such that if x, > x then n(x,) > 7(x). By a
faithful o-representation we shall mean a faithful representation such that z(A4) is
o-closed and x, > x if and only if n(x,) = 7 (x).

Lemma 3.3. Every 2*-algebra A has a faithful o-representation as a 2™*-algebra ot
operators on a Hilbert space.

The proof of this Lemma is in [1].

Example 3.4. Let X be a set with a given o-ring of subsets. The algebra B{X} of all
bounded measurable functions on X is a commutative C*-algebra in an obvious sense.
We say that a sequence u, € B{X} is o-convergent to u € B{X}if and only if | »,| < K
for some K and all #, and #,, also converges pointwise to #. Then B{X}is a 2'*-algebra;
and the family of g-states is exactly the set of probability measures on X. There is a
discussion of this example in [1]. Note that B{X} is in general not the dual of a
Banach space, hence not a W*-algebra [7].

Let Q denote the set of all positive linear functionals on 4, and let ¢ = @®,¢o 7,
where 7; is the canonical cyclic representation defined by f. Then ¢ is called the
unmiversal representation of A [2, p. 43].

Definition 3.5. The o-envelope A~ of the C*-algebra A is the o-closure of ¢(4),
where ¢ is the universal representation of 4.

Now A~ is a C*-algebra, hence a X*-algebra. We regard 4~ as a canonical
2*-algebra containing 4. There is a close analysis of the structure of the algebra
A7 in [1]. When 4 is a separable commutative C*-algebra, A~ may be identified with
the 2*-algebra B{AA} of all complex-valued bounded Borel functions on the spectrum
A of A 1],

Remark 3.6. Let R®" be phase space of a classical statistical mechanical system.
Consider the 2*-algebra B{R®"} of all complex-valued bounded Borel functions on
RS Eachreal function in B{R®"} represents a bounded observable, and each o-state of
B{RS"} represents a physical state. The partially ordered set of projections in the
C*-algebra B{R%"} may be identified with the partially ordered set of Borel subsets
of R8" hence with the lattice L,.

4. Piron’s Axioms

In this section we consider the lattice-theoretical approach to quantum mechanics,
as formulated by PIRON [5]. Among all possible observables of a physical system, we
shall consider those for which the result of measurement can be expressed by yes or no
and we shall call them guestions. For a given system, a question is said to be #rue if the
answer is yes with certainty. If this definition is to be meaningful, if a is true, it should

“be possible to measure a without perturbing the system. We shall admit this. If a and &
are two questions, it may happen that one implies the other, i.e., that every time a is
true then b is also true. We shall write this ¢ < b, and a = b means a << b and b < a.
On the set L of questions, we shall impose the following axioms.

Axiom I (i) a <aforallain L,

i)a <band b <c=a <ec.

Remark 4.7. Thus L is a partially ordered set. Let 4 be a C*-algebra, and let L(A4)
be the set of all projectionsin 4. Then I (A) has a natural partial ordering by positivity,
a < b if and only if b—a > 0.
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Axiom II (weakened) (i) There exists an element, denoted 0, in L such that 0 <a
for all @ in L.
(ii) Each sequence a, in L has a greatest lower bound, denoted 4 a,,.
Lemma 4.2. 1f A is a L*-algebra then L(4) satisfies Axiom II.

Proof. Pass to a faithful g-representation of A4 as a X*-algebra of operators on the
Hilbert space H. Let a, be a sequence in L(A4). The least upper bound of a,, ... , a

» “n
is the range projection a,, of @, + +** + a,, and a,, liesin A4 [1]. The increasing sequence
a,, of projections converges weakly to a projection a in B(H), a, - a. Since 4 is
sequentially weakly closed, a lies in 4. Now a is the least upper bound of the a,,;
hence a is the least upper bound V 4, of the a,. Then 1 — V (1 — a,) is the greatest

lower bound A a, of the a,.

Axiom I11. There exists an orthocomplementationin L, i.e. there is a mapping a > a’
of L into L such that

(1) (@) =a,

(i) a’ A a =0,

(i) a’ <b' =0 <a

Remark 4.3. The mapping a > 1 — a is an orthocomplementation in L(A4) where 4
is a 2*-algebra. It follows from Axioms II and III that there exists an element,
denoted 1, in L such that a <1 for all ¢ in L. It also follows from Axioms IT and III
that each sequence 4, in L has a least upper bound, denoted V a,, namely (A4 a;,)’.
Thus L i1s a o-complete orthocomplemented lattice.

An atom is, by definition, an element $ + Oin L such that 0 <<x <<p=x=0o0r

x = p.
Axiom IV (i) If ae L and a + O then there exists an atom p such that p <a

(ii) If p is an atom, thena <x <aVp=x=aorx=al p.

The representation s of the C*-algebra A is type I if the von Neumann algebra
generated by m(A4) is type I. The C*-algebra 4 is, by definition, type I if all its
representations are type I [2, p. 111]. A separable C*-algebra is type I if and only if
it is a G.C.R. algebra [2, p. 168].

Lemma 4.4. If Aisa type I separable C*-algebra then L(A ") satisfies Axiom IV.

Proof. Following [2], let A denote the spectrum of 4, and let A denote the set of
unitary equivalence classes of #-dimensional irreducible representatlons of A. The

Borel structure underlylng the topology of A is a standard Borel space [2, p. 95]
Therefore each pomt of 4 is a Borel subset of A. Now A is a Borel subspace of A,
hence each point of An 1s a Borel subset of An. Let H, denote an n-dimensional Hilbert
space, separable for # = co. We say a function u: 4, - B(H,) is a Borel function if
for each & ne H, the function (u(z) &, %) is a Borel function on /In. The space
B{/in, B(H,)} of all norm bounded Borel functions #: zi,, - B(H,) is a C*-algebra
in an obvious way. If K is the Hilbert space of all functions #: ffn - H, of countable

support such that
2/ < oo

nEAn
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then B{AAH, B(H,) is naturally identified with a X*-algebra of operators on K.
If u, u, e B{An, B(H,)} then u,, is o-convergent to « if and only if for some %, all m
andall = € A we have

|#nlm)| <k <oo
and forallme A . the sequence u,,(7) converges to #(x) in the weak operator topology.

By Theorem 4.5 of [1], each # = o0, 1, 2, ... defines a central projection e, in the
o-envelope A~ and so a ¢-ideal A, = ¢, A~ ¢, such that

~ H=00
A4"="g 4

n=

~

n

Each X*-algebra A4, has a faithful o‘-representatlon as B{An, B(H,)}, the 2'*-algebra

of all bounded Borel functlons from An to B(H,), where H, is an n-dimensional Hilbert
space, separable for n =

The prO]ectlons in B{A,,, B(H,} are precisely the projection-valued Borel

functions from An to B(H,). We first describe the minimal projections in 4~ , which
are precisely the atoms in L(4"). Let & be a natural number or co. Let 7, be a point
in 4 x» 4 a l-dimensional projection in B(H,). Define u,: AA,C - B(H,) as follows:
uy () = ay, ui(w) = 0 (7w + m,). Choose &, ne H,; then the function n - (u,(n) &, )
has two values, 0 and (a, &, %). Since each point of A ;18 a Borel subset of A, uy 1s a
Borel function, hence

u.€ B{d,, B(H,)}.

The sequence v, given by v, = u,, v, = 0 (n + &) is a minimal projection in 4, and
every minimal projection in 4" arises in this way. Clearly each nonzero projection
in A” contains a minimal projection, which proves (i). If a is a projection in
B{/Ik, B(H,)} then a <x <aVu,=>x=a or x=aVu,. Thus if a, aye L(A"),
a, minimal, then a <x <aV ay,= x=a or x = a I a,, which proves (ii).

Axitom V. If a < b then the sublattice of L generated by a and b is a Boolean
algebra.

Remark 4.5. Let A be a 2*-algebra, and pass to a faithful o-representation of 4
as a X*-algebra of operators on H. Now L(4) C L(B(H)) and L(B(H)) satisfies
Axiom V. Hence L(A4) satisfies Axiom V.

Theorem 1 is a consequence of the lemmas and remarks 4.1 to 4.5.
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