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Dependence of the Superconducting Energy Gap on the Phonon
Spectrum and Order-Disorder Effects?)

by C. P. Enz and A. Quattropani
Institut de Physique Théorique, Université de Genéve

(14. IX. 67)

Abstract, The superconducting gap equation is solved for a general phonon spectrum in the
weak coupling limit and at 7" = 0. The result is expressed by a limiting phonon momentum g,

which reduces the energy gap if ¢;; << 2 k. An application to ordered and disordered alloys is
discussed. :

I. Introduction

In this note [1] we discuss the influence of the phonon spectrum on the energy gap
of a superconductor. The basic physical remark is that in the absence of Umklapp
processes [2], the existence of a limiting phonon momentum ¢,, may lead to a reduction
of the phase space available for the scattering of the Cooper pairs and, as a consequence
reduce the energy gap. To obtain a quantitative result we solve the gap equation
proposed by BoGoLiuBov et al. [3] at 7 = 0 in the weak coupling limit and for a
spherical Fermi surface. The solution, which is given in Section II and in an appendix
generalizes somewhat the result of BocoL1uBov et al. [3] and exhibits the reduction
of the phase space in the simple form of a cut-off factor. In Section III we discuss the
consequence of this effect for ordered and disordered alloys where one expects a
variation of the transition temperature with concentration.

II. The Super Conducting Gap Equation

We start from the gap equation proposed by BocoLiuBov et al. [3],

B) — " f s 0 (R—FK) g% (kR—F) C(k) )
2(2 m)* o (R—Fk)+|&(k) |+ | E(R) | (CP(R) + £3(R"))12
where C(k) is the energy gap, 4 g%(q) is the coupling constant, w(q) the phonon
frequency and &(k) the excitation energy measured from the Fermi surface. The
kernel of (1) is only important in the neighbourhood of the Fermi surface which we
take to be spherical. Then one can set k| = |k’| = k; in the phonon frequency
and in the coupling constant. Defining ¢ = k k’/k} (1) can be written as

Clg; &) = Zf ag" A(&; &) C(&'; A) [C3(&"; A) + &2 (2)
0
with
1
Cen 1 w (kg [2 (1-2)1"2) g (kr [2 (1—1)]1"%) N(&)
A(S’E)“E fdt w (kg [2 (L=913) +| &+ & ) (3)

1) Work supported by Fonds National Suisse de la Recherche Scientifique.
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Here

[(ga/op)® — 2] for g, <2 kF
(3a)

]
1 for gy > 2k

and N (&) is the density of states. To solve (2) we notice that C(£; 4) is non-analytic in 4
as 4 - 0 so that an Ansatz which factorizes this singularity is appropriate:

C(&;2) = w(&; A) a(). (4)

The analytic w(&; A) can be chose such that w(&; A= 0) + 0 while on physical
grounds o(A = 0) = 0. Deferring the details of the derivation to an appendix the
solution in this weak coupling limit is given by

C(&: ) = exp(— 1A A(0; 0)) 4555 0(0; 0) (5)
where
In w(0; 0) = A-2(0; O)f d&' In (;/—"fs) % A(E';0) A(0; &Y. (6)

The function 4(&; &) is defined by (3), (3a); for im = 1 one has 4(0; 0) = 1. In
this case we recover essentially the solution given by BocoLIuBoOV et al. [3].

By introducing a mean coupling constant # in the interval 1 > ¢ > — ¢M the
energy gap at the Fermi surface is given by:

C(0) = exp (— 1/ N(0) P) (0; 0) (7)
where P is the cut-off factor,

158, =g h
P M F )
(7212 k)% qar < 2 k.

For gy << 2 kyp the reduction of the energy gap due to P and, as a consequence, the
reduction of the transition temperature 7, can be very important.

ITI. Order-Disorder Effect on the Transition Temperature

For a superconducting alloy A-B, which can be prepared in an ordered and a
disordered phase [5], the cut-off factor P gives rise to a concentration dependence of
the ratio of 7, in the two phases.

Consider first the delute case. In the disordered phase the periodic A-lattice
(lattice constant a) is only slightly perturbed by the B-atoms (mean separation b),
which scatter the phonons defined in the A-lattice. Thus the self-energy of these
phonons due the B-atoms is small, implying a small change of the Debye frequency
wp and sound velocity ¢. Thus the limiting phonon momentum in the disordered
phase ¢4, ~ w%/c is expected to be of the same order of magnitude as ¢, defined in
the absence of the B-atoms, ¢4, & ¢j;. In the ordered phase on the other hand the
lattice constant is given bv the distance b (> a) between the B-atoms, which now
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form a superlattice. One expects then?) ¢ = ¢, /b, or combined with the relation
for the disordered case,
Torldar = b2 > 1 (9)
and thus by (7) and (8)
T 2= &, (10)

Next consider an alloy composition such that @ < 6. In the disordered phase, the
eigenmodes of the system are not true phonons any more; we shall call these ‘pseudo-
phonons’ and label them by an index o (frequency w,). It is easy to see that these
pseudophonons interact with electrons in the same way as ordinary phonons.

Writing the Fourier component of the pseudophonon field as?)

= 3'v,(q) a, + v,(q) a, (11)

this interaction has the same form as for true phonons (see e.g. SCHRIEFFER, Ref. [7]).
Eliminating the pseudophonons by a canonical transformation in the usual way one
obtains an effective reduced interaction between electrons

= 3 |gle ko @) 200 ) g o€ O (12)
Iqls
with |
q, w)
ok, q) fd (Ep— §k q)2— w? - (13)
where -
= 9@ 26 (0 — ,) (14)

is a spectral function.
For ordered alloys the pseudophonons coincide with the true longitudinal phonons,

ZQPGL(q) 0 (wa - wq) Ay = aq and
« .

a’(q, w) =6 (w — W) - (15)

Equation (15) is not valid for a disordered alloy, but we expect that for sufficient
small ¢ the average of o(q, w) (on an ensemble of homogenous distribution [9] to be
defined below) will have a threshold frequency £, > 0 such that o(q, w) = 0 for
w < £2,. Then (12) still gives rise to an attractive electron-electron interaction as is
seen from Figure 1, where d(k, q) is plotted as a function of A, = |§, — &_4].
The function ¢k, ¢) has a cut along the A ,-axis for 4, > Q.

Let us now discuss the ensemble of homogenous dlstrlbutlon In any sohd (ordered
or disordered) the translational symmetry is broken by the self consistent (Hartree)
potentials [8] g, (r;, — R,;) which bind the atoms 7 to their equilibrium position R;.
Clearly the range 7, of the g, is of the order of the mean separation between nearest

%) The degrees of freedom of both phases being the same, optical branches must appear in the
ordered phase. If the mass ratio M ,/Mp > 1 or € 1 and b/a is not too big one expects a large
separation between optical and acoustical modes, and the optical modes can be disregarded in
the superconducting mechanism.

3) Unfortunately, the literature concerned with disordered lattices does not give any information
about the wavefunction ¢ (q) but only about the density of states (see e.g. Ref. [6]). See,
however the second paper by PavyToN and VisscHER which contains computer calculations of
normal modes of disordered lattices.
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neighbours d = #~13 where n = a=3 4+ b=3 is the mean particle density (as before a
and b are the mean separation between nearest A—A pairs and B-B pairs respectively).

ek

Figure

Now consider the ensemble in which the equilibrium positions are uniformly
distributed over a volume v(R?) <C V centered at the most probable values R} of R,;.
Since 7, & d < a <C b the ensemble average of the @, has the property [9]

@i{r)> = e | ®Riw, (r;—R) = const. (16)
" urY)
if o(RY) > b2
Thus in this ensemble translational invariance is restored, so that its low lying
excitations are again plane waves which we call ‘hydrodynamical phonons’.
From the condition v(RY?) > b3 in Equation (16) it follows that these hydro-
dynamical phonons exist up to a limiting wave number*)?)

<3 <= (17)

To complete the discussion we also give an explicite expression for the average of the
spectral function ¢(q, w). Since the pseudophonons depend parametrically on the
equilibrium positions R;, w, = w,(R;, Ry, ... Ry), v,(q) = v,(q; Ry, R,, ... Ry)
we obtain the spectral function for the ensemble by taking the average (16) of
Equation (14),

\

o(q, ) = Q) |9.(q) |20 (0 — ) > (18)

4) For q <€ q‘h the hydrodynamical phonons obey the wave equation of elasticity theory with
velocity ¢ = (ufg)*/2, where u is the average bulk modulus and g the average mass density;
their frequency is given by £4 = ¢ g.

%) The ensemble as described by Equation (16) is a continum, thus only the low frequency modes
of the individual (descrete) disordered system can be obtained by the average procedure. At
wave numbers ¢ > ¢4, for which the description by hydrodynamical phonons is no longer valid,
wave modes may still be eigenmodes of the individual disordered system, but the latter being
not periodical in space the wave number of this modes is still smaller than 7/b.
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Since hydrodynamical phonons exist in any normal system we expect indeed that this
0%(q, w) has a finite threshold value 2, for ¢ < ¢4, and hence according to Figure,
that an attractive electro-electron interaction exists for ¢ << ¢%,.

Combining (17) with the condition of the ordered phase, ¢4, = n/b, obtained by an
analogous consideration as in the dilute case we find

Onlgn <1. (19)
From (7) and (8) we then expect$)
T¢ < 1. (20)

The main conclusion expressed by (10) and (20) is that 7% T? decreases from
values > 1 to values <C 1 is the alloy concentration increases from 0 to !/, (a/b
increases from 0 to 1).

SADAGOPAN et al. [5] have measured such order-disordered effect on super-
conducting Mo-Ir (with 1:1 atom composition). They found 79 = 8.8°K and 7% =
1.85°K in qualitative accord with our relation (20). Unfortunately no measurement of
the electronic specific heat and no concentration dependence are reported in this
reference.

Acknowledgements

The authors wish the thank Professor JEaN MULLER and Dr. F. HEINIGER for
discussions.

Appendix
Solution of the gap equation. Inserting the Ansatz (4) in the gap Equation (2) we
have after division by 4 o(4)

SEN _ [ AE & 0ED
S8 _ (4 < : Al
A / : [02(h) wR(€, A) + &1L =
It is now convenient to introduce the following functions:
Fle,dwd) = [ @@, 2 + e S8 g (A2)
g &)
and 0 _
G 4,9) Ef A, &) w(E, 2) [6*(A) W', A) + &2 L. (A3)
The gap Equation (Al) then reads
w(&d 1 0
O = s (o P LT 9) 4+ GELD). (A4)
Choosing ¢ such that "
(&, ) —w(&, )
a) ‘160(51 7)) ‘ <1 for 0 < (&, and &) <o
b) i 515412 ?;5 ) | €1 for all fand 0 < (¢ and &) <0
c) G(A <£1

%) More precisely one should compare n N(0) P in both phases since the electronic density of
states may depend on the ordering.
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and making use of the analiticity of w(§, 4) in the limit 2 > 0 we find

- /]
. ’ f

w(0, 4) 4
1 0
~ (L% YV AE 0)2o(0;2
2(0)(0,1):) SLARS
Ly (29 BT
+ 5 1n(5(0’1) 1r) A(E,0) 2 0(0; ). (A5)

The function G(&, 4, d) is regular for 4 = 0 and we shall consider it only in this limit.
Inserting (A5) in (A4) one has:

@& 2) = —A( 0) @(0, ) A In o(A)
+ 2 A 0)0(0,2) [m25 - LK} In (0, )|

+7tf AL E) BE, A (A6)

or after one iteration

E"_(’L% — —A(%0)Alno(d) — A A(&, 0) In »(0, A)
+2A(E,0) [n28 - ;-]
_ 221n o(A) 6f ff;i A(E, &) A, 0)

+ 0(%) + 0(3% In o(4). (A7)
By assumption B(Z, 4) is analytic and B(£, 0) + 0 thus
lim 410 o(2) = — 4(0, 0)

or
Ino(d) = —1/4 A(0, 0). (A8)

Inserting (A8) in (A7) and keeping only the leading terms in A one has

((é? g) _ A 0; — A A(£,0) In »(0; 0)

+ 2 A0, O)fln ;/“; s AE &) AE, & aE . (A9)
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In this last equation we used the fact that the third and fourth term of (A7) can
be written as follows:

/- ch’

A@mhmamq+Aﬁ0m/ AE &) A, 0) = A 0) [m 26— 3]
(EIAN

+ A0, [ d&' — jfdgfl
Lo

x> A, 0) [In28 — 5] + 410, O)fm
0

& o5 [AE &) AE, 0] aF

— 40, 0) [In 5']3 + A7Y0,0) In & A, &) A&, 0)]°

oojl e DA, AE, 0 de.

This last expression appears in (A9) and is independent of d. Setting & = 0 in (A9)
we determine the constant w(0, 0):

In »(0, 0) = A-2(0, 0) / ¢’ In ‘2/2 0‘; [A(0, &) A€, 0)]. (A10)

0

Finally, using (A8) and (A10) the energy gap is found to be

C(& 2) = exp(— 1/A 4(0, 0)) {j(‘gg)) (0, 0)

+ A A(E 0) (0, 0) In @(0, 0)

0, f In 5 5z [A(E &) AE, 0)] df’}. (A11)

Only the leading term in this expression is kept in (5).
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