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Observables d’une particule libre
et changements de représentations spectrales w

par J. C. Guillot!)
Institut de Physique Théorique de Genéve et Faculté des Sciences de Brest

(7 VIII 67)
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Abstract. In this paper, we study, in the first part, the mathematical definition of the usual
observables of a free particle by essentially self-adjoint operators defined on different domains of
definition, as the G&rding domain or the ) and § spaces of the theory of distributions. The rela-
tivistic and the galilean case are considered.

In the second part, we study the general theory of change of spectral representations. The
theory of nuclear spaces and rigged hilbert spaces is used and a mathematical definition of the
coefficient of Clebsch-Gordan for the Poincaré and Galilée groups is given.

Introduction

Cet article a pour but de jeter les bases d'un exposé rigoureux de certaines questions
dont dépend le développement de la cinématique relativiste ou non relativiste.

Ce travail est divisé en deux parties. La premiére est consacrée a la définition,
correcte du point de vue mathématique, des observables d'une particule libre intéres-
santes pour la cinématique, particulié¢rement celles qui composent les systémes
complets d’observables commutantes ou bases. La seconde est consacrée a 1'étude des
changements de représentations spectrales c’est-a-dire au passage d’une base a une
autre. L’étude est ici trés générale. Comme cas particuliers on considére les change-
ments de bases dans I'ensemble des observables d'une particule libre et la définition
correcte des coefficients de Clebsch Gordan des groupes de Poincaré et de Galilée.
Ce concept est en effet fondamental dans I'analyse phénoménologique des expériences
de diffusion.

Les techniques mathématiques employées sont différentes d’une partie a I'autre.
La premiére repose sur la théorie de la représentation de ’algeébre enveloppante de
I'algébre de Lie d'un groupe de Lie par des opérateurs symétriques ou essentiellement
auto-adjoints, associée a une représentation unitaire du groupe. La seconde partie
utilise la théorie des distributions et plus particuliérement les espaces nucléaires.

C’est ainsi que nous montrons que I'on peut définir les principales observables par
des opérateurs essentiellement auto-adjoints définis sur le domaine de Garding associé
a la représentation unitaire irréductible du groupe de Poincaré ou de Galilée. Nous
étudions ensuite la possibilité d’autres définitions en considérant d’autres domaines de
fonctions différentiables.

Ensuite nous précisons 1'isométrie entre deux représentations spectrales et nous
justifions l'expression «développement sur les vecteurs propres d’'une base». La
solution est due a I’existence d'un domaine dense D qui peut étre muni d'une structure
d’espace nucléaire.

Un premier appendice rappelle les principaux résultats concernant les représenta-
tions unitaires irréductibles des groupes de Poincaré et de Galilée. Un second rapelle
les principales notions concernant les espaces nucléaires.
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Premiére partie

OBSERVABLES D’UNE PARTICULE LIBRE

I. Définition formelle des observables d’une particule libre. Problémes.

Les définitions que nous allons donner sont connues et élémentaires. En fait les

physiciens définissent les observables, d’'une particule libre, dans une représentation
donnée, en se donnant une forme analytique de 'opérateur formellement auto-adjoint
qui la représente et en supposant que l'opérateur a le spectre désiré, sans se préoccuper
de savoir s’il existe en fait un opérateur auto-adjoint qui admette le spectre en question
et qui par restriction sur un domaine convenablement choisi redonne bien I'expression
analytique initiale.

Considérons d’abord le cas d’une particule libre relativiste de masse m et de spin ¢

et plagons-nous dans le formalisme canonique (appendice I).

%)

L’énergie est alors représentée par 'opérateur de multiplication par la variable
p° = |/p?+m??), de spectre [m, + oo] c'est-d-dire I'opérateur représentant P?
générateur des translations du temps.

La tri-impulsion est représentée par les 3 opérateurs p générateurs des translations
spatiales; chacune des composantes p¢ a toute la droite réelle pour spectre.

La masse est ici un simple scalaire m = (p°2 — p?)1/2,

De méme le spin 7 est un scalaire tel que W2 = — m?7 (7 + 1).

Le moment angulaire total est représenté par les trois opérateursJ=—ip A 0/0p+S;
en fait seuls les opérateurs J2 et J3 sont importants pour les applications. Le spectre
de J2, déterminé par réduction sur le groupe SU(2), est de la forme [ (J + 1) ou
J parcourt I’ensemble des entiers si 7 est entier ou des demi-entiers si § est demi-
entier. Le spectre de J3 est alors I’ensemble des entiers ou des demi-entiers suivant
le cas et de signe quelconque.

Les opérateurs de spin S; sont représentés par les 3 opérateurs §. Le spin §; est
proprement défini par I'intégrale directe

@
S = [ 8,(8) du(p)

ot le champ p — §;(p) est un champ constant car §;(p) = §, pour presque tout .
Ils sont tels que 87 =7 (j + 1) et le spectre de chacun des opérateurs S¢ est
simplement I'ensemble des entiers ou demi-entiers tels que — 7 < s < + 7.

Par convention nous appellerons %élicité les opérateurs unitairement équivalents
au spin §; suivants:

®
H; = [ D7 (457" 42 5,(p) D7 (447 45) du(p)

on réserve le nom de polarisation longitudinale A la troisitme composante H} =
P-Jj|P|. On a donc H? = j (j + 1) et le spectre de chacune des composantes H:
est le méme que celui de I'opérateur Si.

Cette identification directe n’est possible que si nous sommes dans le systéme d’unité i=c=1,
ce que nous supposerons toujours par la suite.
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—  Lemoment angulaire ovbital est défini par 'ensemble des 3 opérateurs —ip A 0/0p =
J —§;. Seuls L? et L3 sont intéressants pour les applications. Le spectre de L2
est de la forme / (I + 1) ou / parcourt I'ensemble des entiers.

- Signalons aussi l'opérateur P? = p? qui intervient comme élément de cer-
taines bases.

Ce sont les principales observables qui interviennent constamment dans l'analyse

phénomenologique des expériences de diffusion, notamment dans la constitution des

bases ou systémes complets d’observables qui commutent sur lesquelles reposent

I'analyse en ondes partielles relativistes.

— Signalons enfin opérateur de position dont I'importance théorique n’est plus a
faire (WicHTMAN 1962, CHAKRABARTI 1965)3) soit

.0 i p
=0~ 2

L’opérateur de position a été complétement étudié du point de vue qui nous
intéresse par WIGHTMAN (1962). Il est donc inutile d’y revenir.

Ce cas galiléen ne présente pas de différence essentielle dans l'interprétation,
notons quand méme quelques particularités (LEvy LEBLOND 1965). La masse ici est
toujours un scalaire mais caractérise le groupe et non pas une représentation
irréductible et unitaire du groupe (ce n’est plus un invariant): L'un des invariants est
ici I'énergie interne U et I'observable correspondante est une simple multiplication par
un scalaire, 4 savoir U= E — p2/2 m.

Le moment orbital peut alors se représenter a 'aide des opérateurs infinitésimaux
L=1/mPAN K= —1ip/\ 0p de méme en ce qui concerne le spin §; car §; =
J—1/m PA K. 8 =7 (] + 1) correspond au second invariant.

Ici Iopérateur de position est simplement

) G :_7;}1_
ne

Ces quelques particularités favorisent I'étude du cas non relativiste et le simplifie. Les
spectres des observables restent les mémes que dans le cas relativiste.

Les définitions précédentes se transportent par isomorphisme dans toute autre
représentation.

Par la suite nous chercherons a obtenir une définition de chacune des observables
par un opérateur essentiellement auto-adjoint défini sur un domaine dense, et ayant
le spectre désiré; I'extension auto-adjointe unique définit complétement 1’observable
du point de vue physique. Mais les exigences de la seconde partie nous contraignent
a rechercher un méme domaine de définition pour I’ensemble des observables qui nous
intéressent. De plus ce domaine doit étre stable pour ces opérateurs si I'on veut
diagonaliser les opérateurs dans un espace de distributions, et si possible par la
représentation unitaire du groupe considéré. Enfin les opérateurs auto-adjoints
doivent par restriction 4 un sous domaine convenable redonner les expressions
précédentes des observables, ce dernier point devant justifier le calcul plus ou moins
heuristique des opérateurs infinitésimaux par les physiciens.

%) () renvoie & la bibliographie située & la fin de I'article. Elle est classée par ordre alphabétique
des auteurs et (1962) renvoie a I'année de la parution de la référence.
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Nous verrons par la suite que ces exigences pourront étre satisfaites a quelques
rares exceptions pres.

Comme de nombreuses observables sont les images d’éléments de I'algébre de Lie
et de l'algébre enveloppante de I'algébre de Lie la premiere idée qui vient a I'esprit
est de considérer le domaine des vecteurs différentiables pour la représentation et plus
particuliérement le domaine de Garding, ou bien le domaine des vecteurs analytiques.
Néanmoins les expressions particuliéres obtenues par un calcul explicite font plus ou
moins intervenir des domaines de fonctions différentiables évidemment plus liés a la
nature particuliére de la représentation considérée.

Nous allons considérer en détail ces deux possibilités et par 1& méme résoudre les
problémes que nous nous sommes posés.

II. Premiére définition des observables utilisant le domaine de Garding
associé a la représentation

A. Définition du domaine de Garding

Rappelons que I'algébre de Lie £ d’un groupe de Lie G est I'algebre de Lie de tous
les champs vectoriels invariants a droite et que 'algébre enveloppante &£ de 'algébre
de Lie de G est l'algébre des opérateurs sur C®(G) (I'ensemble des fonctions indéfini-
ment differentiables sur G) engendrée par tous les champs vectoriels invariants a
droite sur G.

Notons que £ est aussi 'algébre de tous les opérateurs différentiels invariants a
droite sur G, en vertu du théoréme de L. SCHWARTZ et de HARISH-CHANDRA.

Soit donc G un groupe de Lie et g - U(g) une représentation unitaire continue
de G dans un espace d’Hilbert H; un élément s e H est un vecteur indéfiniment
différentiable ou régulier pour Y si Uapplication g - U(g) # de G dans H est de classe
C™, c’est-a-dire indéfiniment différentiable. Dorénavant nous comprendrons toujours
par différentiable, indéfiniment différentiable.

L’ensemble des vecteurs différentiables est dense dans . En fait, GARDING (1947
et 1960) a montré que si la fonction ¢ sur G est différentiable et a support compact et
si I'opérateur U(gp) est défini sur Y par:

Ulp) h = [ UE) ple) h dg*) ®
G

(ol1 dg est la mesure de Haar sur G, invariante & gauche) alors pour tout 2 e H, U(p) &
est un vecteur différentiable et 'ensemble de tels vecteurs est total dans H. On
appelle alors le domaine de Garding, 'ensemble de toutes les combinaisons linéaires
finies de vecteurs de la forme précédente.

La représentation de 1'algébre de Lie sur ce domaine est alors tres simple. Soit X
un élément de I'algébre de Lie; a tout X on fait correspondre un opérateur noté AU(X)
défini sur le domaine de Garding de la maniére suivante. Soit y = U(ep) 4.

Le vecteur '

xpt X)—-1
_uh_(gpt ),73}

4) Pour le seus precis & donner a cette integrale, voir par exemple (HILLE et PHILLIPS 1957) et
(DUNFORD et SCHWARTZ, tome I).
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est encore un élément du domaine de Garding. Si on effectue le passage a la limite
t > 0, on obtient encore un vecteur dans le domaine de Garding, puisque
JU(X) y = lim WXRI0 =T fu (Xo) @hdg=UXPh (1)

t—0

ou X est considéré comme opérateur différentiel invariant a droite; ’expression (1)
définit I'opérateur dU(X) pour tout élément du domaine de Garding.
Les opérateurs H, définis par:

dUX) = —i H

sont des opérateurs symétriques; on démontre aussi qu’ils sont essentiellement auto-
adjoints. Cela résultera du théoréme 1 ci-dessous dans le cas des groupes de Poincaré
et de Galilée.

La fermeture de H, soit H, = H;* est le générateur auto-adjoint défini directe-
ment par le théoréme de Stone, 'application X - 7 dU(X) est une représentation de
I'algebre de Lie par des opérateurs essentiellement auto-adjoints (SEGAL 1951) et le
domaine de Garding est invariant aussi bien par la représentation du groupe que par
celle de I'algebre de Lie.

La représentation se prolonge a l'algébre enveloppante £ de l'algébre de Lie.
En effet puisque le domaine de Garding est invariant par tous les opérateurs infinitési-
maux, tout produit fini dU(X,) dU(X,) ... dU(X,) est défini sur le domaine de
Garding et 'on a pour tout X € £ dU(X) (“Ll((p) h) = UX @) h ot X est l'opérateur
différentiel invariant a droite sur G correspondant. Le prolongement de dU & £ est un
homomorphisme d’algébre associative.

Considérons un élément X € £ symétrique, c’est-a-dire invariant par la trans-
formation qui associe a tout monéme o X; X, ... X,lemonéme a(— 1)* X, X, ;... X, X,
(x € C et X, € £); l'opérateur 7 dU(X) est un opérateur symétrique sur le domaine de
Gérding.

Mais on ne peut pas affirmer en général que ’opérateur soit essentiellement auto-
adjoint. NELSON et STINESPRING (1959) en ont donné de nombreux contre-exemples
et il suffira de se reporter a leur article pour de plus amples informations. Néanmoins
pour certaines catégories d’opérateurs on peut conclure; en effet un théoréme de
SEGAL affirme:

Théoréme (SEGAL 1952)

Si p est un polyndéme symétrique appartenant au cenfre de 1'algébre &, alors
lopérateur 7 dlU(p) est essentiellement auto-adjoint sur le domaine de Géarding.

Un résultat plus général et contenant celui de Ségal a été obtenu par Nelson et
Stinespring: ¢ 4U(X) est aussi essentiellement auto-adjoint lorsque X est un opérateur
ellyptique, ou commute avec un opérateur elliptique.

Les résultats qui précédent ont beaucoup d’importance pour les problémes qui
nous concernent. En effet on peut diviser les observables d’une particule libre en 3
catégories.

— Celles qu'on peut identifier aux opérateurs représentant des éléments de I'algébre
de Lie, comme par exemple P, P, J, 1/m K, ... etc. pour qui en vertu de ce qui
précede la conclusion sera immédiate.
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Celles qu’on peut identifier aux opérateurs représentants des éléments de I'algébre
enveloppante & comme P2, W2, P-J, J?, E— P?2m, (J—1/m K N\ P),
1/m K A\ P, ...etc. pour qui le caractére essentiellement auto-adjoint n’est pas
automatique et nécessite une démonstration,

Enfin toutes les autres observables dont on peut affirmer qu’en général elles font
partie du corps enveloppant. If faut dans cette derniére catégorie examiner tous
les cas particuliers car il n’est méme pas question que les opérateurs soient définis
sur le domaine de Garding et le laissent stables. Néanmoins on peut conclure
immédiatement pour les observables qui appartiennent aux deux premiéres
catégories et les opérateurs essentiellement auto-adjoints qu’on obtient sont de
notre point de vue les définitions des observables en question.

On peut résumer les résultats dans le théoréme 1 suivant. Notons que ces résultats

sont indépendants de la représentation unitaire considérée.

B. Théoréme 1

A Quelle que soit la représentation unitaire du groupe de Poincaré considérée
g > U(g) dans un espace d’Hilbert H, les opérateurs P°, P, J, N, (P%2? — P2
(WO — W2, P-J, P? J? sont des opérateurs essentiellement auto-adjoints sur le
domaine de Garding associé a cette représentation.

B Quelle que soit la représentation unitaire du groupe de Galilée considérée
g > U(g) dans un espace d'Hilbert ¥, les opérateurs E, P, J, K, P - J, P?, J*
sont des opérateurs essentiellement auto-adjoints sur le domaine de Garding
associé¢ a cette représentation.

Si de plus la représentation considérée est une représentation projective de masse
m, c’est-a-dire une vraie représentation de 'extension indexée par #, en plus des
opérateurs précités dans B on peut affirmer que:

B (J—i-K/\P)2
m

2m

sont aussi essentiellement auto-adjoints sur le domaine de Garding de la représen-
tation.

La démonstration repose sur un theoreme de NELSON et STINESPRING (1959) dont

nous avons explicité la demonstration et sur le fait que tous ces opérateurs sont
des invariants soit du groupe lui-méme, soit de 'un des sous-groupes fermés.

On notera D(G) I'ensemble des fonctions définies sur un groupe de Lie G a valeurs

dans C différentiables et dont le support est compact.

Théoreme 2 (NELSON ef STINESPRING)

Soit U une représentation unitaire continue d’un groupe de Lie G dans un espace
d’Hilbert 3. Soit X un élément de 1'algébre enveloppante de 'algébre de Lie de G.
Soit A un opérateur symétrique tel que

(1) A ait un domaine dense, invariant par tous les opérateurs U(p) = [ @(g) Ulg) dg
avee p(g) € D(G). G
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(2) A (Ul) h) = dUX) (Ul) ) = UKX @) h  heD,.
Alors dU(X) C A** et si dU(X) est essentiellement auto-adjoint, A I'est aussi et
AU(X)** = A**,

Démonstration du théovéme 2

On doit d’abord démontrer que dU(X) C A**:
Soitye D dU(X), on doit pour cela montrer que y € D 4u et que A** y = dU(X) y. Pour
démontrer la derniére égalité, il faut pour tout y € D AU construire une suite #, telle

que u, € D, pour tout #n, telle que les deux suites », et 4 u, soient simultanément
convergentes et que de plus

=Y
Awu,—dUX) y.

Il suffit de le démontrer pour tout élément y de la forme U(g) A, car ce sera vrai alors
pour toute combinaison linéaire finie. Soit % un élément quelconque de H, alors pour
@(g) € D(G), Ulp) he D dU(X); comme D, — N, il existe une suite %,, avec h, € D,
pour tout #, telle que 4, - k. Considérons la suite U(¢) %,; comme les opérateurs U(gp)
sont bornés, U(p) %, - U(p) ~. Cest la suite cherchée; en effet en vertu de la premiére
condition U(p) h,€ D, et en vertu de la seconde condition on a A(U(g) &,) = U(X ¢) &,
qui tend vers U(X @) & c’est-a-dire vers dU(X) (U(g) &).

Donc dU(X) C A**, par suite A* C dU(X)* car A*** = A* et JU(X)** C A**.
Comme dU(X)* = dU(X)** par hypothése, on a compte tenu de A** C A* par
hypothése, A** = A* = dU(X)*. A 6N AT

Remarque

NAIMARK (1962; p. 276) a démontré que le domaine linéaire U(p) D, lorsque ¢
parcourt D(G) est dense W, car D, Test.

Si 4 est I'élément de I'algébre enveloppante de I'algeébre de Lie calculé directement,
et, sila condition 1 du théoréme est vérifiée, par définition la condition 2 l'est auto-
matiquement. Aussi pour appliquer ce théoréme a ce cas, il suffira de vérifier la
premiére condition.

Demonstration du théoreme 1.

Pour la partie A:
Les opérateurs P°, P, J, N sont les images des générateurs de sous-groupes a un para-
metre et par suite ce sont les images des invariants de chacun de ces sous-groupes.
P2= (P% — P? et W2= (W2 — W?2 sont les images de deux générateurs du
centre de I'algébre enveloppante de I’algébre de Lie du groupe de Poincaré; P-J et P2
sont les images des deux générateurs du centre de I'algebre enveloppante de I'algebre

de Lie de E5 et enfin J? est I'image du générateur du centre de 1'algébre enveloppante
de I'algebre de Lie de SU(2). Chacun de ces opérateurs est défini sur le domaine de
Géarding du groupe de Poincaré mais aussi sur le domaine de Garding du sous groupe
correspondant I (a I'exception évidemment de P2 et de WW?) pour la représentation
g = U(g) restreinte au méme sous groupe 1.

Aussi doit-on distinguer entre les opérateurs P°, P, J, N, P-J, P2, J? Jorsqu’on les
considére comme définis sur le domaine de Garding associé 4 la représentation du
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groupe de Poincaré considérée et les opérateurs qu'on notera °, p, j, n, p-j, p? j2
définis respectivement sur le domaine de Garding associé a la restriction au sous
groupe correspondant de la représentation du groupe de Poincaré considérée. Le
domaine de Géarding du groupe de Poincaré est invariant par les operateurs U(gp) our ¢
est une fonction definie sur un sous groupe fermé /', differentiable et & support com-
pact; de plus, puisque la condition (1) du théoréme 2 en verifieé, la seconde condition
I'est automatiquement en vertu de I’egalité (1T, 1) lorsque A est egal, respectivement a
PO P, J. . ete. et dU(X), respectivement & $° p, §, ... etc. Donc en vertu du théoréme
2, 1l suffit de démontrer que $°, p, ... etc. sont essentiellement autoadjoints pour que

les opérateurs P9, P, ... le soient sur le domaine de Garding associé & la représen-
tation ¢ > U(g) du groupe de Poincaré. Or, en vertu du théoréme de Ségal les
opérateurs p°, p, ... etc. sont bien essentiellement auto-adjoints respectivement sur

chacun des domaines de Garding associé a la représentation du sous groupe dont
ils sont les images des invariants, ainsi que P2 et W2 sur le domaine de Garding
associé a la représentation g - U(g) du groupe de Poincaré.

Pour la partie B:

La démonstration reste absolument la méme a ceci prés que dans le cas de I'extension
H, P?%et W2 doivent étre remplacés par les deux invariants '

Pz 1 2
B e el (J — B T g P) C.Q.F.D.
2m m
Notons que si la représentation g - U(g) du groupe de Poincaré est irréductible on
montre aisément (BARGMAN 1947) en appliquant le lemme de Schur a la transformée
de Cayley de I'opérateur P? (resp. W2) que P2 — p2xs (resp. W?) est défini sur tout
I'espace d’Hilbert # et qu’il se réduit & la multiplication par un scalaire.

L’'intérét de définir la représentation de I'algébre enveloppante de I'algébre de Lie
sur le domaine de Garding tient au caractére général du résultat obtenu, ce qu’on
perd si on a recours aux expressions obtenues directement a partir de la forme
particuliere de la représentation. De plus du point de vue ott nous nous plagons, le
domaine de Garding présente l'avantage de se transformer en lui méme lorsqu’on
passe d’'une représentation unitaire a une autre représentation unitairement équi-
valente, ce quin’est pas généralement le cas lorsqu’on considére un domaine particulier
lié a la forme particuliére de la représentation, comme nous le ferons un peu plus loin.

Malheureusement notre démonstration ne recouvre pas I’ensemble des observables.
En effet, il faut bien s’attendre 4 ce que généralement toutes les observables ne soient
pas définies indépendamment de la représentation car quel sens donner exactement
au spin d'une masse nulle ? Ainsi dans le formalisme relativiste, le spin dans sa formula-
tion trivectorielle, I'hélicité, le moment angulaire orbital, 'opérateur de position ne
sont pas les images d’éléments de I'algébre enveloppante de 'algébre de Lie. I1 suffit
par exemple de se reporter aux expressions des opérateurs de spin et des opérateurs de
position obtenus par BERrG (1965), en fonction des opérateurs infinitésimaux, pour
s’en convraincre. Le cas non relativiste est plus favorisé car I'opérateur de position
X =1/m N le moment angulaire L =1/m N AP, ainsi que § = J — L sont des
images d’éléments de I’algébre enveloppante de I’algebre de Lie mais L et § échappent
néanmoins a l'analyse précédente. Aussi sommes-nous contraints de recourir aux
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formes particuliéres des représentations. Nous considérerons les représentations
unitaires irréductibles dans le formalisme canonique et dans le formalisme hélicité
(appendice I); nous distinguerons le cas relativiste du cas non relativiste.

C. Cas relativiste: masse positive et spin |
a) Formalisme canonique

Dans le cadre du formalisme canonique, on définira le trivecteur spin 7: 8, par

I'intégrale directe:
@
. ap

Su= [ So (8) dulp) ot dutp) = % (11)

et ou le champ p - §(;)(p) est un champ constant: S,(p) est en effet égal aux

3 générateurs S1, S2%, S? de la représentation irréductible de SU(2) indexée par j.

Les 3 opérateurs S' sont évidemment bornés. Le champ p — §;(p) est donc u-essen-

tiellement borné par 7. Les 3 opérateurs §; sont définis sur tout l'espace d’hilbert,

ils sont bornés (de borne ) et de plus symétriques. Ils sont donc auto-adjoints.
Le lemme 1 rappelle un résultat bien connu mais généralement mal formulé.

Lemme 1
On a:

2]
Ua, A)7 8, Ula, 4) = [ Re(p, 4) ,(p) dulp) @

ou R¢(p, A) désigne la rotation 3 x 3 engendrée par la matrice 2 x 2.

AS Al)P A A,eSU(2) soit R(p, A) = R(Aﬁl(‘Al)p A A3) .
Démonstration
En effet, soit:
(U(a, 4) f) = 3“”’21) (A3~ 14 Aj ¥ o) fsr (/I(A)_1 P) .
La représentation [m, 7] considérée.
On a:
(U(a, A)~! S; WUla, 4) 1), = eﬁ“”"ZD (A5~ 14— Aj,(A)p) [(S?. U(a, 4)) f1,
(A(A4) p)
- Z D Aﬁl(Al):b 4 A ) ( (A(A) p))-‘hsz Dszs (AC 1 A A;) f&(?b)

or
2 DT (A 4 45) 54, Dl (Alicdp A A7) = R7Hp, 4) S

5183

cette derniere formule n’est rien d’autre que la relation générale

U(B) J* U(B)™ = R}(B) ],
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ou B - U(B) est une représentation de SU(2) et les opérateurs J¢ les opérateurs

infinitésimaux habituels dans la représentation considérée, écrite dans la représen-

tation irréductible D;. En conclusion: U(a, 4)~* 8;(p) U(a, A) est I'opérateur dé-

composable engendré par le champ p - Re(p, 4) S;(p) p-essentiellement borné.
Nous avons néanmoins le résultat négatif suivant:

Le domaine de Garding w'est pas stable par les opérateurs de spin S,

Soit en effet, # un élément du domaine de Garding:

u(p) = [ pla, 4) (Ua, 4) ) (p) da dA..

Considérons §; #. Comme chacun des opérateurs S} est borné, il commute avec
I'intégrale forte et 'on peut écrire:

S; u :fcp(a, A) S,(U(a, A) ) da dA

sl on note

®
S; = [ Relp, 4) S,(p) du(p)
on a en vertu du lemme 2
S; Ua, 4) = Ula, A) S;-
et

S u zf(p(a, A) Ula, 4) (S| f) da dA.

Or un simple examen des éléments de matrice de la rotation R°(p, A) nous montre
qu’ils ne peuvent étre absorbés a la fois par la fonction ¢(a, 4) et par la fonction f de
facon qu'on retrouve la forme habituelle d'un élément du domaine de Garding.
D’otl la conclusion.

Néanmoins l'opérateur S!, restreint au domaine de Garding est un opérateur
essentiellement auto-adjoint.

On peut, pour étudier la polarisation longitudinale, partir de I'expression H? =
(P2~ P-J. On sait cn effet que P- J est essentiellement auto-adjoint sur le domaine
de Gérding.

Néanmoins les propriétés mathématiques de H} n’apparaissent pas simplement
sur cette expression et il est préférable de partir de 'expression du spin. L’Aélicité H;
est en effet un opérateur unitairement équivalent au spin. C'est 'opérateur

@D
H, — [ D5~ A2) S,(p) D/ (457 45) duip)
or
Di(A5™* A% Si(p) DI (AH- A5) = R (w > k) S;(p)

ouw = (p)/| p| et k le vecteur unitaire de I'axe 0 z et R (w = k) est la rotation dans
le plan (w, k) d’axe w /A k qui applique w sur k. '
L’étude de cette rotation est grandement facilitée si on I'écrit sous la forme d'un
produit de deux symétries (MicHEL 1963/64, Bacry 1963). Elle est le produit de la
symétrie par rapport au plan orthogonal & w, et de celle par rapport au plan orthogonal
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aw + k. Orla matrice correspondante a une symétrie par rapport a un plan orthogonal
a un vecteur b s’écrit
1. 2e2b
b2
En effet sia-b=0ona

(1—Lb®b)a:a et (1—W)b:—b.

La rotation de Jacob et Wick s’écrit alors:

—1 . @ le-+w)
Rw—k)=1—> i +2k®@w. (14)
Remarque
Notons que cette rotation n’est pas définie dans deux cas, celui ot p =0 et celui ol
w = — k. Dans le premier cas, la premiere symétrie n’est pas définie car w ne l'est
pas et dans le second cas c’est la seconde symétrie qui n’est pas définie.

L’'hélicité est donc représentée par l'opérateur suivant:

@
H, — [ R (w— k) S,(3) du(p)

comme H; est unitairement équivalent & §; il est borné, (de borne 7), défini sur tout
I'espace d'Hilbert et auto-adjoint; le champ

p— R (w— k) §;(p) = Hy(p)

est u-essentiellement borné par j.
A la place du lemme 1 nous avons maintenant la relation suivante:

@
Ula, A)7 H, Ula, A) = | R¥(p, 4) H(p) du(p)

R(p, 4) = R(AT1, 4 AF) .

Pour démontrer cette égalité, il suffit de partir de la définition de H;. On en déduit
aussi que le domaine de Garding n’est pas invariant par les opérateurs H;.

Chacun des opérateurs H} est essentiellement auto-adjoint lorsqu’on restreint son
domaine de définition au domaine de Garding.

On a:

2 2 . W2 - . .
Sj=Hi=—-5=7G+1).

On définit les opérateurs de moment angulairve L par
L'=J'— S
Ils sont définis sur le domaine de Garding associé a la représentation [, 7].

Proposition 1

Chacun des L7 est essentiellement auto-adjoint sur le domaine de Géarding.
La démonstration est basée sur le lemme suivant.
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Lemme 3 (cf. DUNFORD et SCHWARTZ 1963, p. 1189)

Comme S} est un opérateur auto-adjoint et défini partout on a Li* = Ji* — Si.
En effet, comme S¢ est défini partout, Dyi = Dji pour tout 4. De plus, comme

(J'=Shhe)=1g— (519
et que S} est continu il suit immédiatement des définitions que

Diyi_sie =Py

et pour tout élément fe D;iet g€ Djix on a
(J'=S) fe)=(f T =S)e)= (1, T'e) — (1. S;¢)
= (It — (5%t e =(J"— 5" f.g)
d’ou le résultat. Mais comme [ est essentiellement auto-adjoint on a en itérant le lemme
Li** — ]i** _ S; — ]i* _ S; _ L’i* CQFD.

L’opérateur L? échappe a l'analyse précédente.
Evidemment le domaine de Girding n’est stable ni par chacun des opérateurs L¢,
ni par L? puisque il ne I'est pas par les opérateurs §;.

B) Formalisme hélicité

L’isomorphisme entre les deux formalismes est engendré par 1'opérateur unitaire 7°
suivant:

@
fi(8) = XDy, (A 45) fip) ot T = [ DIAS™ A7) du(p) .

C’est I'isométrie entre les deux représentations spectrales associées aux deux bases
(P, S?) et (P, H}). Les deux domaines de Garding engendrés par chacune des représen-
tations sont en correspondance biunivoque par 'isomorphisme précédent. En effet si
on note g - U¢(g) la représentation canonique et g - U (g) celle correspondant au
formalisme hélicité, U(¢p) /¢ un élément du domaine de Gérding de la premiére et
U (@) f un élément du méme domaine pour la seconde, alors on a:

T(Wp) 1) = W) (T 1)
et réciproquement:
T=H U ) 1) = Wip) (T /) .

S1 O est une observable dans le formalisme canonique, dans le formalisme d’hélicité la
nouvelle observable est T O T-1. On voit donc que toutes les conclusions précédentes
concernant les observables établies dans le cadre du formalisme canonique sont
valables ici a condition de se rapporter au domaine de Garding associ¢ a la nouvelle
représentation. C'est ce qui fait notamment l'intérét de considérer le domaine de
Garding alors que la remarque précédente risque d’étre fausse pour un autre domaine,
comme nous le verrons. Seule la représentation change. Ainsi c’est I’hélicité qui est
représentée par l'intégrale directe:

@
Hj=deM(;’>)
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alors que le spin, lui est représenté par le champ:

@
S, sz (k — w) H;(p) du(p) on w = F{)l

ou R (k - w) est la rotation:

_ (k+w) @ (R+w)
Rk—-w =1-— —IrEw T 2w®k.
Les mémes conclusions en ce qui concerne toutes les observables sont valables dans ce

cas puisque T est un opérateur unitaire.

D. Cas relativiste masse m = 0 et spin |

Les observables physiquement intéressantes sont P°, P, J, J2, P?, P-J ainsi que
W# qui ici est simplement W# = j P*. P2 et W2 sont tous deux nuls. On voit donc
que toutes ces observables sont essentiellement auto-adjointes sur le domaine de
Garding.

Il ne peut étre question de spin au sens strict pour une masse nulle et le moment
angulaire L n’est pas une observable intéressante puisqu’elle ne peut pas étre définie
canoniquement par manque de définition du spin.

E. Cas non relativiste masse positive et spin |

Ce cas est strictement identique au cas relativiste & quelque changement preés.
Néanmoins le cas est plus favorable car nombreuses sont les observables qui sont les
images d’éléments de l'algébre enveloppante de l'algébre de Lie si bien que les
résultats obtenus sont plus généraux.

Nous avons démontré que les opérateurs E, P, J, K, P-J, P2, J? ainsi que les
invariants £ — P2[2m et (J— 1/m K /\ P)®2 sont des opérateurs essentiellement
auto-adjoints sur le domaine de Garding.

Signalons que contrairement au cas relativiste 1/m K s’interpréte comme I'opéra-
teur de position du systéme de masse m. L’ opérateur de spin est I'image d’'un élément
de I'algébre enveloppante de 'algébre de Lie puisque

S=J— - KAP
m
c’est-a-dire que le moment angulaire orbital est ic1
L=—KAP.
w

Contrairement au cas relativiste, c’est aussi 'image d’un élément de I'algeébre envelop-
pante de l'algébre de Lie.
Le comportement du spin non relativiste dans une transformation de Galilée
quelconque est tres simple puisque I'on a:
U-'(b,a,v, B)S; UMb, a, v, B)= R(B) S, .

J
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Le spin est invariant dans une transformation de Galilée pure et I'opérateur borné §;
est essentiellement auto-adjoint, sur le domaine de Garding; contrairement au cas
relativiste le domaine de Géarding est stable par les opérateurs §;.

De méme en ce qui concerne 'hélicité dont la définition est strictement identique
au cas relativiste, a savoir:

)
H, =/R (w—> k) S,(p) &°p.

H; est donc aussi essentiellement auto-adjoint sur le domaine de Garding. Notons la
relation importante suivante:

@
U-'(b, a,v, B) H, U, a, v, B) =fR(B;(lB)p+M B B,) H/(p) dp

ol B, est la rotation [appendice I; (1)].

Cette relation a pour conséquence que le domaine de Garding n’est pas invariant
par les opérateurs H;, suivant un argument strictement identique au cas relativiste
du spin §;.

Les 3 opérateurs L = J — §; sont aussi essentiellement auto-adjoints sur le
domaine de Girding.

III. Seconde définition des observables utilisant les espaces P et §

A. Prologue

Nous avons défini 'ensemble des observables d'une particule libre sur un domaine
commun dense, associé a la représentation considérée. Ce domaine présente 'avantage
d’étre invariant a la fois par la représentation de l'algébre enveloppante de 'algébre
de Lie et par la représentation globale. Les observables sont en général essentiellement
auto-adjointes sur ce domaine et ce sont évidemment les extensions auto-adjointes qui
les caractérisent ; on ne fera pas la distinction entre les deux par la suite. La considéra-
tion du domaine de Garding est intéressante par le caractére général des résultats
obtenus, indépendants notamment de la forme particuliére de la représentation
considérée. Néanmoins le domaine de Garding ne peut pas étre stable par certaines
observables comme le spin, le moment orbital et 'hélicité dans le cas d’une particule
relativiste de masse m et de spin 7 et par I'hélicité dans le cas non relativiste.

Ce n’est pas la seule définition possible des observables et cela peut avoir quelque
importance. Le domaine de Garding n’est qu'un sous domaine de l'ensemble des
vecteurs différentiables et il peut y en avoir d’autres qui possédent, vis-a-vis de I'en-
semble des observables, les mémes propriétés que le domaine de Géarding. Que le choix
ne soit pas unique est particuliérement important lorsque, dans la seconde partie, nous
diagonaliserons une sous algébre abélienne maximale car le développement sur les
vecteurs propres fait intervenir un domaine particulier muni d’une topologie con-
venable. De plus pratiquement on fait toujours intervenir un domaine différent de
celui de Gérding lorsqu’on calcule et exprime, de la maniére habituelle, les opérateurs
infinitésimaux des groupes de Poincaré et de Galilée.

En effet si 'on considére le formalisme canonigue pour une particule de masse m et
de spin 7, le calcul des opérateurs infinitésimaux donne pour ceux ci des expressions
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qui s’expriment a 'aide des opérateurs aux dérivées partielles et aux opérateurs de
multiplication par les variables considérées.

A priori ces opérateurs sont définis sur des domaines de fonctions ayant de bonnes
propriétés de différentiation et deux domaines particuliérement pratiques sont
D(H,; 1) et S(H;;.1). Rappelons bri¢vement la définition de ces ensembles. D(Hy;, 1)
est ici 'ensemble des fonctions définies sur I'hyperboloide de masse 2, (p% = m;
po > 0), différentiables, & support compact sur 2,,, et & valeurs dans Hy;, ;. S(Hsj41)
est I'espace des fonctions f différentiables sur £2,,, 4 valeurs dans H,;.,, telles que,
pour tout # > 0 et tout indice de differentiation ¢, la fonction (1 + p?)*'2 D9 f soit
bornée sur 2,

(@)
e D(Ha; 1) C S(Haj1a) -

Rappelons, puisque H,;,; est de dimension finie, qu'une condition nécessaire et
suffisante pour que fe D(H,,, ) (resp. $(H,;,1)) est que pour tout he H,;,, on ait
h-feD(R,) (resp. §(82,,)) ot 4-f est le produit scalaire dans H,; ;.

Le choix de D(H,;,,) et de S(Hy;,,) est pratiquement imposé par les considéra-
tions de la seconde partie. De plus D(Hyjrq) = D(2,) ® Hyjiq et S(Wyjq) =
S(Qm) ® ?'l2j+1'

On peut alors se poser un certain nombre de problémes. A savoir

1) Quel est le rapport entre la nouvelle définition des observables et celle obtenue en
utilisant le domaine de Garding?

2) Les nouveaux opérateurs définissant les observables sont-ils essentiellement auto-
adjoints sur D(Hy,4+,) et sur S(H,, ).

La solution du premier probléme permet de résoudre le second. Elle repose sur le
théoréme 2, comme au second paragraphe. La, encore, A sera un opérateur symétrique
représentant un élément de I’algébre enveloppante de I'algebre de Lie, calculé directe-
ment et definie sur D(Hy; 1) et sur $(H,; ). Par suite, si la condition (1) du théoréme
2 est vérifiée, la seconde sera automatiquement verifiée.

B. Cas relativiste: masse positive et spin . Formalisme canonique.

1° On considére d’abord les opérateurs représentant les éléments de l'algébre
enveloppante de I'algébre de Lie.

Comme on peut le voir en considérant les expressions explicites (appendice I)
le domaine de définition de ces opérateurs est D(H,; ., ; et ceci les définit complete-
ment. D(H,;,,) est stable par ces opérateurs. Ils sont aussi définis sur §(H,;, ;) mais
en vertu du lemme 2 ci-dessous, et de I'inclusion D(#y;.,) C §(Hy; ;) il suffira de con-
sidérer le premier domaine, sur lequel chacun des opérateurs précédents est symétrique.

Avant de parvenir aux résultats essentiels (théorémes 3 et 4) nous aurons besoin
de démontrer un certain nombre de résultats préliminaires.

Lemme 2

Soient H, et H, deux opérateurs symétriques tels que H, C H,. Si H, est essen-
tiellement auto-adjoint, alors H, U'est aussi et H, = H} = H}* = H, = H; = H}*.
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Démonstration

SiH, CH,onaH;C HJ est aussi Hy* C H;*. Comme H,* C H; on a donc
H* C H** C H* C H* Comme H = H**, on en déduit le résultat. C.Q.F.D.

Proposition 2

Soient G un groupe de Lie analytique; I" un sous-groupe fermé de G. On suppose
G/I" muni de la structure de variété analytique unique telle que l'application
(8, p) >gp ol geG et peG/I" soit différentiable. De plus soit # un espace
d’Hilbert de dimension finie et (p, g) = T(p, g) une application de G/I" X G dans
I'ensemble des opérateurs unitaires définis sur H. On suppose que pour tout g
et pour tout € # 'application p > T'(p, g) & est différentiable.

Soient ¢ € D(G) et fe D(H). Alors la fonction ¥': G/I" - H définie par

/cp fe= ) dg

ol dg est la mesure de Haar invariante 4 gauche sur G, appartient a D(H).

Démonstration
Soit A(p, g) 1a fonction de G/I" x G dans Y suivante

AMp, g =olg) T, g flg=*p) .

La démonstration de I'intégrabilité pour tout p de la fonction g > A(g, p) et celle de la
différentiabilité de la fonction ¥ ne présentent aucune difficulté. Aussi nous porterons
notre attention sur la propriété du support de .

Soient supp ¢ le support de la fonction ¢ et supp f celui de la fonction f. Le support
de la fonction A(g, $) est compact. En effet puisque 7(p, g) est toujours = 0, A(g, )
est nulle pour tout g, située dans le complémentaire de supp ¢ et pour tout p situé

dans le complémentaire de |J g - supp f et seulement pour ces éléments.
g€supp ¢

or |J g-suppf={g-pef,;gesuppd et pecsuppf}.
gEsupp ¢ .

C’est une partie de {2, compacte car c’est l’image par I'application continue (g, ) >

g-p de I'ensemble compact supp ¢ X supp f. Donc

suppd =suppé x |J g -suppf.
gEsupp ¢
Comme I'’ensemble produit de deux parties compactes est compact, supp A est compact.
Donc il est clair que ¥(p) = 0 pour tout p situé dans le complémentaire de
U g supp/ par suite supp P C |J g - supp f; comme le support d’une fonction

gesupp ¢ o g€supp ¢
est fermé par définition, supp ¥ est compact. ‘ 5 0 R

Corollavre 1
Soit U(a, A) la représentation de G:

1(5) X% der Di (451 4 A5,) ((AH(4) p).
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Alors si f(p) € D(Hy;,1) et ¢ € D(G), la fonction U(g) f définie par:

p— (Ulp) 1) (#) =fcp(a, A) &P DA™ A Afy) f(A7Y(A) p) dadA
G

est un élément de D(H,;.,); en particulier U(a, A) D(Hy;.1) C D(Hy; 4 1)-
Démonstration

Ce corollaire n’est que I'application de la proposition 2 au groupe de Poincaré et &
G[I'=SL(2,C)/SU(2) = Q2,,.

Seul le cas de la différentiabilité mérite un examen par suite de la présence du
terme ¢*? DI(A571 A Ajp) f(A7Y(A) ). Or quelque soit ke Wy, ,; I'application
B — D'(B) h est différentiable car la représentation est de dimension finie. 11 suffira
donc que I'application

p—> ATV A A5, eSUQ2)

L]
soit aussi différentiable pour tout A.
L’application p - A1 p est, pour tout 4, un difféomorphisme de 22, sur lui-méme
donc différentiable quelque soit 4; de plus le choix fait pour la transformation

p > 4, (appendice I) est tel que I'application p - A4 est elle-méme différentiable.
On en déduit que 'application

p—> DA A A5,)

est une application différentiable de Q,. dans ,;,, et qu’il en est de méme de
I'application
p—> P DAY A AG,) F(AYA) p) .

On a bien donc U(a, A) D(Hy;1) C D(Hy;41)- C.O.F.D.

Nous pouvons donc conclure en vertu du théoréme 2 que les opérateurs P, P, N, J,
P2, W2, P J, P?et J? sont essentiellement auto-adjoints sur D(Hy;,,) et par suite sur
S(Hq;.41) et que leurs fermetures coincident avec celles précédemment définies par
I'intermédiaire du domaine de Gérding.

2° Autres observables

Les opérateurs de spin §; sont définis sur D(Hy;, ) et de plus §; D(Hy;,1) C
D(Hy;.1). Sur ce domaine ils sont essentiellement auto-adjoints.

Méme conclusion pour L = J — §; puisque la démonstration faite précédemment
(lemme 3) reste la méme. De plus sa fermeture L est identique a celle définie par
l'intermédiaire du domaine de Garding soit J* — S,

Proposition 2

L’opérateur L? est essentiellement auto-adjoint sur D(H,;.,) et sur S(H,;,,).
Exiger que L? soit un opérateur essentiellement auto-adjoint, ¢’est exiger en vertu du
critére de NELSON (1959, Th. 5, p. 602), que la représentation de l'algébre de Lie de
SU(2) engendrée par L est la représentation infinitésimale associée a une représenta-
tion unitaire du groupe. Ce critére affirme en effet qu’il suffit pour cela que L? soit
aussi un opérateur essentiellement auto-adjoint. Or, pour le démontrer, il suffit alors
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de montrer 'existence d’une représentation de SU(2) qui admette les opérateurs L
comme générateurs infinitésimaux, donc L? comme invariant.
Or il est évident que la représentation en question est la suivante:

1(6)——> {(R(B) $) .

L? est un opérateur défini sur D(H,; ;) et symétrique. L’argument pour démontrer
qu’il est essentiellement auto-adjoint est le méme que celui que nous venons d’employer
pour le groupe de Poincaré. Il repose sur le théoréme 2 et il suffit de démontrer que
D(Hs;, 1) est invariant par les opérateurs T(@) associés 4 la représentation 7'(B) et a
une fonction ¢ définie sur le groupe SU(2) et différentiable.

La démonstration est, en tous points, identique & celle du corollaire 1 et nous
permet d’affirmer que L? est essentiellement auto-adjoint sur D(#,;,,). C.Q.F.D.

Néanmoins, les mémes méthodes ne nous permettent pas d’affirmer que I'opérateur
L2, en tant qu’opérateur symétrique défini sur le domaine de Garding, et qu'on notera
L%, soit essentiellement auto-adjoint sur ce domaine.

En fait, la restriction de la représentation du groupe de Poincaré a SU(2) a dans
le formalisme canonique, la structure trés simple suivante:

us ) )
J(B) ——> D'(B) f(R=}(B) p) pour fe L,(82,, a1 -

Or on sait que L%(£2,, H#,,,) est isomorphe & L%(Q,) ® Hy;,, (DIXMIER 1957).
Dans ce dernier espace, la représentation U(B) est simplement le produit tensoriel
de la représentation suivante de SU(2) dans L%(R2,,):

[(#)— [(R}(B) p) ot fe L (£2,) (3)
et de la représentation irréductible indexée par j:
h—>DiB)h ot he Hy; . (4)

Ce que nous avons appelé L n’est rien d’autre que les 3 générateurs de la représentation
(3) et les 3 opérateurs de spin 7: S, les 3 générateurs de la représentation (4).

En conclusion nous pouvons énoncer le théoréme suivant:

Théoréme 3

Les opérateurs Py, P, J, N, P2, W2 P-J, P2, J? L2 L, Sf Hf, S;, H; sont essen-
tiellement auto-adjoints sur D(Hy; , ) et sur S(H,; ;). Leurs fermetures coincident
avec celles précédemment par l'intermédiaire du domaine de Garding. De plus
toutes ces observables, a l'exception de H, stabilisent D(Hy;,,) et S(Hsji)-

C. Cas de I'hélicité

Il'y a une difficulté en ce qui concerne I'hélicité H;; de par définition méme les
opérateurs sont définis sur D(H,,, ;) mais on ne peut plus affirmer que H; D(H,;.,) C
D(Hs;,1) par suite des deux indéterminations dans la rotation R(w — k). Chacun
des H; est néanmoins essentiellement auto-adjoint sur D(Hy;4).

On peut chercher néanmoins a palier cette difficulté en considérant d’autres
domaines que D(Hy;,,) ou $(Hy;,,). En effet seules les observables H? = P-S§/| P| et
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H? = j (j + 1) ont un intérét pratique car elle entrent dans la constitution des systémes
complets d’observables qui commutent (cf. paragraphe IV). La forme méme de
I'opérateur représentant la polarisation longitudinale nous invite a considérer les
domaines suivants: tout d’abord Dy(H,;,,). C'est le sous espace vectoriel fermé de
D(Hy;.,) formé des fonctions dont le support compact est contenu dans 2, =
£2,, — {(m, 0)} ot (m, 0) est le point stabilis¢ de la variété Q, -Do(Hy;.,) est dense
dans L3(2,,, ¥z 11)-

On peut aussi considérer I'espace Sy(Hy;.;) (cf. ANTOINE 1966). C'est le sous
espace vectoriel fermé de §(F,;,,) formé des fonctions appartenant & S(Hy;,,) qui
s’annulent au point (m, 0) ainsi que toutes leurs dérivées. C’est un sous espace dense
de 22 (an l'”z;+1) puisque DO(#2_74 ) CS (“uzfu)

Le probléme est de savoir si ces domaines sont acceptables pour les observables,
tout au moins pour un certain nombre d’entre elles.

Toutes les observables que nous avons considérées jusqu’ici sont définies sur
Do(;"lzf'ﬂ) et sur So('uzjﬂ)-

Do(Haj11) et So(Hy; 1) sont stables par I'ensemble des observables a I'exception
de H} et de H}. De plus elles sont symétriques sur chacun de ces domaines. Le
probléme se pose maintenant de savoir si elles sont essentiellement auto-adjointes.
Il suffit de considérer le cas de Dy(H,; ) car elles le seront automatiquement sur
So(Hs;41). La méthode de démonstration reste la méme que pour 'espace D(H, 1)
Néanmoins elle est plus limitée car, si elle repose toujours sur le théoréme 2, on ne
peut plus affirmer un résultat analogue, pour Dy(#Hs; 1), & celui valable pour D(Hs; 1)
exprimé dans le corollaire 1. La raison en est trés simple. La présence des transforma-
tions de Lorentz pures ne nous permet pas d’affirmer que le support de la fonction

p— (U@) 1) (p) = [ pla, 4) &0 DIAGT A A5,)  H(AN(A) p) dadA

pour fe Dy(H,,.,) ne contient pas le point exceptionnel {(m, 0)} que nous voulons
justement éviter. Par contre un simple examen nous montre que le corollaire 1 reste
valable lorsqu’on restreint la représentation du groupe de Poincaré aux sous groupes

suivants 53, SU(2), les translations dans le temps et dans I'espace, ainsi que par la
représentation 7°(B) de SU(2). Plus précisément Do(H,;.4), ainsi que $,(H,; ;) sont
stables par la restriction de la représentation a chacun de ces sous groupes et par la
représentation T(B). On en conclut donc d’une maniére strictement analogue au cas
de D(H,;, 1) que les opérateurs P°, P, P2, P-J, J?, J, L?, L sont essentiellement auto-
adjoints sur Do(Hy;,,) donc aussi sur §3(Hy;,,); & ces opérateurs il faut évidemment
ajouter les opérateurs P%, W2, §7, H? qui sont des simples scalaires, ainsi que S; et H;
puisqu’ils sont bornés. Leurs fermetures coincident avec celles définies précédemment
par l'intermédiaire de D(H,;, ;) et par suite par I'intermédiaire du domaine de Garding.
Echappent a cette analyse les opérateurs N, ce qui est moins grave puisque ces
opérateurs n’'ont pas d’interprétation en termes d’observables d’'une particule
libre.

Nous pouvons alors énoncer le théoréme suivant qui résume l'ensemble des
résultats obtenus.
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Théoréme 4

Les opérateurs Py, P, J, P2, W2, P-J, P2, J?, L2 L, 8}, H?, S;, H; sont essentielle-
ment auto-adjoints sur Do(Hy;,,) et sur $o(Hy;,,). Leurs fermetures coincident
avec celles définies précédemment par 'intermédiaire de S(Hy;. ;) et de D(Hs;41)
et par 'intermédiaire du domaine de Garding. De plus toutes ces observables,
a I'exception de H} et de H?, stabilisent Dy(Hy; 1) et So(Hajr1)-

D. Cas non relativiste m = 0 spin §; formalisme canonique

La situation est strictement identique au cas relativiste et la démonstration du
corollaire 1 est encore plus simple puisque ici la forme de la rotation (Appendice I;
(2)) est trés simple car elle ne dépend pas de 2.

Les conclusions des théorémes 3 et 4 restent les mémes, a condition de substituer
a P? et W2, les deux invariants du groupe de Galilée, a N, le générateur des trans-
formations de Galilée pures K, & Q,,, 'espace R3, et & Q,, , I'espace R} = R? — {0}.

E. Cas velativiste et non relativiste: formalisme hélicité; m = 0

Ces trois cas présentent tous la méme particularité, a savoir de ne pas pouvoir
s’analyser par la méthode précédente pour la raison simple que la transformation
p - A, n’est pas définie pour tout . Il faudrait alors exclure des supports des fonctions
considérées l'ensemble de mesure nulle ou la transformation n’est pas définie.
Malheureusement le domaine ne serait plus invariant par les opérateurs U(p) car on ne
pourrait pas assurer que le support de U(p) f ne contienne pas I'ensemble d’intermina-
tion. Néanmoins dans le cas d'une particule de masse m + 0 et de spin 7, et dans le
cas du formalisme hélicité on peut trés bien considérer comme domaine de définition
des observables I'image de Dy(Hs; 1) ou de So(H,;,,) par I'isomorphisme T entre le
formalisme canonique et le formalisme hélicité. L’ensemble des conclusions du
théoréme 4 restent valables si I'on considére T Dy(Hs;.q) et T So(Hgji1) et les
opérateurs unitairement équivalents & ceux du formalisme canonique. Ceci est valable
aussi bien dans le cas relativiste que dans le cas non relativiste.

IV. Commutativité et systémes complets d’observables qui commutent

Le dernier probléme a résoudre est celui qui concerne la commutativité des
résolutions spectrales des opérateurs représentant certaines observables. On ne fera
qu’esquisser une démonstration.

Ce qu’on peut vérifier trés aisément, c’est une égalité du type S3 P° = P? S3sur le
domaine de Gédrding ou sur D(H,,,,). Ceci n’entraine pas, comme I'a montré NELSON
(1959), la commutativité de leurs familles spectrales respectives. Nelson a effective-
ment montré I'existence de deux opérateurs essentiellement auto-adjoints 4 et B tels
qu’ils aient un domaine commun dense et invariant D et telsque 4 B x = B A x pour
tout x € D mais tels que les résolutions spectrales de 4 et de B ne commutent pas.
En fait I'existence d'un tel contre exemple est lié 4 I'existence de représentations
locales d’algebre de Lie, c’est-a-dire de représentations qui ne soient pas les représenta-
tions infinitésimales associées & une représentation unitaire du groupe. Mais dans
notre cas, les observables qui nous intéressent de ce point de vue sont ou bien les
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générateurs infinitésimaux d'un groupe, ou bien l'invariant d’un groupe, ou bien des
opérateurs bornés définis partout ; aussi suffit-il de vérifier que les opérateurs unitaires
correspondants commutent au sens ordinaire, ou bien qu’ils commutent avec un
opérateur essentiellement auto-adjoint représentant un invariant ou un opérateur
borné: ce qui se fait beaucoup plus facilement, pour assurer la commutativité des
résolutions spectrales (SEcaL 1952, corollaire). Tout ceci afin de constituer des
systémes complets d’observables qui commutent ou bases (JaucH 1960) et d’en
obtenir leurs représentations spectrales (JAucH et MIsrA 1965).

Nous étudierons dans un article ultérieur cinq bases cinématiquement importantes
que ce soit dans le cas relativiste ou dans le cas non relativiste. Ce sont:

(P, ), (P, HY), (P°, J2, J3 HY),
P B2 B P, (P LS A Sf) "

Chacun de ces systémes est un systéme complet. Par définition méme, puisqu’'on
constate que la théorie de Wigner-Mackey fournit bien une représentation spectrale
des deux premiers systémes et pour les autres on le montrera dans un article ultérieur
en construisant explicitement 1'isomorphisme avec les deux premiéres représentations
spectrales.

V. Conclusion de la premiére partie

Nous avons montré, aussi bien dans le cas relativiste que dans le cas non relativiste
que l'ensemble des observables d'une particule libre [m, 7] (m %+ 0 ou m = 0) peut
étre défini par des opérateurs symétriques sur le domaine de Garding associés a la
représentation irréductible considérée. Nous avons démontré, a 'exception de L2,
qu’ils étaient en outre tous essentiellement auto-adjoints sur ce domaine.

Nous avons étudié ensuite une autre définition des observables pour une particule
[m, j] m + 0 faisant intervenir des domaines différents soient D(Hy; 1), S(Heji1),
Do(Hsj+1) et So(Hy;+1). Dans le cas du formalisme canonique, nous avons démontré
que toutes les observables sont définies sur ces domaines par des opérateurs essentielle-
ment auto-adjoints dont la fermeture auto-adjointe coincident avec celle des opéra-
teurs de la représentation sur le domaine de Garding. Donc du point de vue physique,
les deux définitions sont strictement équivalentes.

Enfin nous avons envisagé le probléme de la commutativité forte de certaines
observables.

Seconde partie

CHANGEMENT DE REPRESENTATIONS SPECTRALES

VI. Prologue

Nous avons dans la premiére partie défini les observables cinématiquement
intéressantes d'une particule libre, par des opérateurs essentiellement auto-adjoints,
tous définis sur un méme domaine. En fait, nous avons poursuivi deux buts. Le
premier est la définition des observables par des opérateurs auto-adjoints. Le second
correspond au troisieme volet du tryptique formé par I’ensemble de la formulation
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de la mécanique quantique par Dirac. Ce premier volet est associé & la notion de
systeme complet d’observables qui commutent (Jaucu 1960) et le second a la notion
de représentation spectrale d’un tel systéme (JAucH et Misra 1965). Le troisiéme
correspond au probléme du passage d’une représentation spectrale d’'un systéme a
celle d'un autre, en particulier 4 la détermination de 1'isométrie entre les deux et au
développement suivant les «vecteurs propres» d’un systéme.

Si les deux premiers cas ont pu bénéficier d'un exposé rigoureux et suffisamment
général pour recouvrir les besoins de la mécanique quantique, comme on peut le voir
en se reportant aux travaux précités, il ne peut en étre de méme du troisiéme cas.

Dans certaines conditions et pour un opérateur seulement on peut préciser la forme
de I'isométrie linéaire entre ’espace de définition de 'opérateur et l'espace d'Hilbert
associé a sa représentation spectrale (DUNFORD et SCHWARTZ, p. 1213, th. 11)
(GERLACH 1965). De toutes maniéres, le théoréme précédent ne concerne pas un
ensemble dénombrable d’opérateurs et de plus les conditions supplémentaires imposées
semblent difficilement justifiables du point de vue physique. Les difficultés provien-
nent évidemment de l'existence du spectre continu et on peut on opposition aux
théories plus intrinséques opposer les méthodes modernes de I'analyse fonctionnelle.

La solution est alors plus simple; elle est toujours liée & I'apparition d'un espace
nucléaire; on montrera en effet que le domaine de définition des observables d’une
particule libre, que ce soit le domaine de Garding, D(Hy;.1), S(Hs;1) ou Dyo(Hy;. 1)
et So(Hy;.1) selon les cas, peut toujours étre muni d’une topologie qui en fait un
espace nucléaire, topologie strictement plus fine que la topologie hilbertienne initiale.
Les observables qui n’étaient pas continues, le deviennent pour cette nouvelle topo-
logie. Les vecteurs propres sont tous dans le dual de 'espace nucléaire; un théoréme
de Guelfand-Kostyuchenko nous permettra d’écrire le «développement suivant les
vecteurs propres d'une base diagonalisée» et de lui donner un sens mathématique
précis.

Depuis quelques temps des travaux (GROSSMANN 1964, 1965; MAYER 1965;
ROBERTS 1966; ANTOINE 1966) employant ces nouvelles méthodes ont été consacrés
a la justification des notions de bras et de kets. Rappelons qu’ici nous poursuivons
un but légerement différent car nous sommes uniquement intéressés par la structure
de l'isométrie entre deux représentations isomorphes, c’est-a-dire par ce que les
mathématiciens nomment formules de Plancherel et les physiciens coefficients de
Clebsch-Gordan. Nous insistons aussi sur le fait que nous sommes intéressés unique-
ment par des problémes explicites et non généraux car nous sommes persuadés que,
dans la cinématique, les physiciens n’utilisent en fait qu’un petit nombre de forma-
lismes. Nous bénéficions de la situation favorable d’utiliser les représentations unitaires
d’un groupe car comme nous le verrons les topologies utilisées sont les topologies
habituelles et bien étudiées des espaces § et D. La nucléarité sera toujours assurée.
Alors que dans le cas général, il faut introduire comme 1’a fait RoBERTS (1966) une
topologie plus liée a I’ensemble des observables du systéme et dont la nucléarité n’est
pas automatiquement assurée.

Un cas particulier important du probléme précédent est celui de la décomposition
du produit tensoriel de deux représentations irréductibles du groupe de Poincaré ou de
Galilée en représentations irréductibles et de la définition du coefficient de Clebsch-
Gordan. En fait la décomposition est équivalente a un nouveau choix d’'une base pour



28 J. C. Guillot H. P. A.

les états des deux particules et le coefficient de Clebsch-Gordan apparait alors comme
un vecteur propre commun et donc comme une distribution.

Nousrappelons dans ’appendice I1 un certain nombre de définitions et de théorémes
qui se trouvent tous dans le tome IV des Distributions de GUELFAND et VILENKIN
(1964). On peut aussi les trouver dans GROTHENDIECK (1955) et L. ScHWARTZ (1953/54)
mais il est incontestable que la lecture de la premiére référence est plus facile pour un
physicien. Néanmoins les définitions y sont données dans un sens trop restreint pour
recouvrir I'ensemble des cas dont nous avons besoin et il sera nécessaire dans ce cas de
recourir au séminaire de L. ScHWARTZ (1953/54). Ensuite nous étudierons, a l'aide
de la théorie précédemment exposée le passage d’'un systéme complet d’observables
qui commutent a un autre. Enfin nous considérerons des exemples physiques caracté-
ristiques, comme la définition des coefficients de Clebsch-Gordan du groupe de
Poincaré et du groupe de Galilée. Notons qu’indépendamment de nous RIDEAU s’est
intéressé A la définition des coefficients de Clebsch-Gordan (RIDEAU 1966).

VII. Représentation spectrale d’un systéme complet
d’observables qui commutent

A l'aide des concepts et résultats exposés dans I'appendice 11 nous sommes en
mesure de préciser la théorie de la représentation spectrale des opérateurs auto-
adjoints définis dans un espace d’Hilbert équipé H. Plus précisément nous supposerons
qu'une suite au plus dénombrable d’opérateurs auto-adjoints est définie sur un
domaine dense et qui soit un espace nucléaire et tel que I'application identique de ce
domaine dans H soit continue, donc nucléaire. On peut supposer tous les opérateurs
continus pour cette topologie, car tel sera le cas dans les applications que nous visons.
Nous nous intéressons uniquement au cas ou tous les opérateurs commutent; nous
entendons par la que leurs familles spectrales respectives commutent et on se restreint
aussi au cas ol ce systeme est «complet». Les opérateurs en question définissent des
observables et un systéme d’observables qui commutent est complet s’il engendre une
algébre abélienne maximale de I'algébre de von Neumann engendré par 'ensemble des
observables du systéme étudié. 11 suffit d’ailleurs de se reporter 4 (JaAucH 1960) pour
de plus amples développements.

Le théoreme de JAucH et MisraA (1965) affirme qu’il existe une représentation
spectrale d'un systéme complet d’observables qui commutent. Plus précisément:

Théoréeme 5 (JAUCH et MISRA)

Soit § = {A4,};en un systéme complet d’opérateurs auto-adjoints et soient /A; le

spectre de 'opérateur 4; et P, la mesure spectrale associée a l'opérateur 4;: il

existe alors une classe unique C de mesures équivalentes définies sur les boréliens

de I'ensemble produit JJA;. Pour chaque élément g € C de la classe il existe une
1

correspondance isométrique bijective:
fe>u(dy, Ay, ..., 4;,...) avec 4, €4,
entre H et L (HAZ-, C) telle que si:

Feruld, g, cee, Aiy 004)
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on ait

PAM) > 130, (A o, Doy ooy By ) (G=1,25..0)

ou M, est un sous ensemble borélien de A; et x; (4,) est la fonction caractéristique
de M,.
Soit ¥, la mesure définie sur les boréliens de A, par

”

v(M) — [do
o

(M; =4, pour § &+ ¢ et M; =4 pour j=1).

Sila mesure p est absolument continue par rapport a la mesure produit des mesures
v;, alors I'isométrie a la propriété supplémentaire que:

A fes A uldy, Aoy o) A))

Nous supposerons que nous sommes toujours dans la situation ot les opérateurs 4;
se raménent a des opérateurs de multiplication par la variable 4;. C’est le cas dans les
applications physiques. En fait, l'isométrie entre H et L2 (H/li) s'interpréte,

comme nous le verrons, comme la décomposition en sous espaces propres de I'espace
d’Hilbert H puisque

'-}l:Lg(HAi)_-—_ﬁdgC

ol C est le corps des complexes. Sil'une des observables a un spectre discret, la mesure
C, lorsqu’on la restreint A ce spectre, est supposée discrete. L intégrale directe est
alors une somme directe d’intégrales directes.

Le fait que chacun des sous espaces propres isomorphes & C soit unidimensionnel
traduit la propriété du systéme d’'étre complet.

Soit maintenant un autre systéme complet d’observables qui commutent §' =
{B;}icn de la méme algébre d’observables. Soit f <= v (uy, 4, --- #;, ...) la représenta-
tion spectrale associée telle que:

B f <> ps v(pns phoys -ov s phis -2
pour une mesure ¢ définie sur les produits des spectres H{M } des opérateurs auto-
adjoints B;. {u;} est le spectre de I'observable B,.
Le theoreme 5 nous assure qu'il y a une isométrie w# (A, Ay, ... 4;,...) &>
U(ty, Ua, --- My, ...) entre les deux représentations spectrales. Ce que nous voulons
préciser c’est la structure de cette isométrie lorsqu’on la restreint a certains sous

espaces denses et nucléaires de L2 (H/lz) ou de L} (H {Mz})
i i
Supposons donc les opérateurs B,5) définis sur un domaine dense de L2 (HAi) :D

invariant par ces opérateurs. De plus D est supposé étre muni d’une structure d’espace
nucléaire telle que l'injection canonique D - L2 (H/li) soit continue.
: i

8) Nous conservons la méme notation pour 'observable B; auto-adjointe et pour sarestrictiona D,
essentiellement auto-adjointe. Lorsque nous devons les distinguer, on emploie la notation
evidente B} (fermeture auto-adjointe de B,) pour ’observable,
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Supposons aussi ces mémes opérateurs continus pour cette nouvelle topologie.
L’ensemble D C L (H/L-) C D’ forme bien un triplet de Guelfand. On peut alors

définir une fonctionelle propre d’un opérateur B;.
L’opérateur B; induit dans D’ 'opérateur transposé 7B;, continu puisque B; I'est
et défini par I'égalité:
B, F,@>= (I, Bip>

ou FeD', peD et (F, ¢ est la valeur de la fonctionelle I pour ¢ notée suivant
SCHWARTZ.
Une fonctionelle F, € D’ est une fonctionnelle propre de B; pour la valeur propre
w; sl et seulement si on a:
B, FM@ = F‘ui
ou
B, F,ui’ P> = <Fuz.: B; p> = d;ﬁi» @

on définit ainsi un sous espace propre D;i C D' qui est 'espace vectoriel engendré
par les fonctionnelles F, pour une valeur u; déterminée. On définit ensuite une
décomposition spectrale de ¢ comme une application de D x {u;} dans Dli soit:

(@ 1) = @, €D,
définie par
Pu B> =<F, ., p>

ol {u,} est le spectre de B;.

On dira que l'ensemble des fonctionnelles propres généralisées est complet is
Pu; = 0 pour tout y; = ¢ = 0.

Soit maintenant U I'isométrie de L2 ( I7 /li) sur L2 (H {Mz}) et U-! l'isométrie

inverse. Supposons la déterminée. Un théoréme de Guelfand et Kostyuchenko permet
d’en préciser la structure.

Théoreme 6 (GUELFAND et VILENKIN 1964)

Soit D C # C D’ un espace d’'Hilbert équipé isomorphe 4 un espace d’Hilbert
L%(X) ou X est un espace localement compact et ¢ une mesure positive sur X.
Soit U l'isométrie qui applique # sur L2(X). Alors pour chaque valeur de x,
on peut associer une fonctionnelle I, e D’ telle que pour toute fonction (U ¢) on
pe D, on ait

(U @) (x) = <F,, > pour presque tout x . (6)

Pour la démonstration, il suffit de se reporter au tome IV des distributions
(GUELFAND et VILENKIN 1964) dans le cas d’un espace nucléaire qui soit en méme
temps un espace dénombrablement normé. Dans le cas ou la topologie de 1'espace
nucléaire n’est pas nécessairement métrisable on peut se reporter a la démonstration
de MAURIN (1959; Lemme).

Notons qu’on peut toujours modifier la fonction (U ¢) de sorte que I'égalité (5)
ait lieu pour tout x et c’est en ce sens que nous la comprendrons dorénavant. Si
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maintenant nous appliquons ce théoréme 4 I'isométrie U entre les deux représentations
spectrales, on voit que, si pour ¢ € D on note ¥ la fonction U g, il existe pour tout
(u) € [T {u;} une fonctionnelle I, € D’ telle que

i

<F(,u):99>:W(Mlxﬂz:---’ﬂi;---) (7)

avec
() = Ly fhos mws o fly s wvs) s
Montrons que I'application (u) > F,, est une application de [J{u;} dans D),

c’est-a-dire dans le sous espace propre correspondant 4 I’ensemble des valeurs propres
(u). En effet par définition de la représentation spectrale U(B; ¢) = p; ¥ avec
|B; @ = i [] < oo.

Donc
<TBiE,u)’ 99(21:/12; e ’j‘i! ...)> = <‘F(_u)-‘ Bi(p(ﬂ.l, p— ,)&i, ...)>
= U(B, ¢) () = 1 ¥t ras - s i ) C.Q.F.D.

Ainsi 'expression (6) n’est rien d’autre que linterprétation mathématiquement
correcte de celle qu’on écrit, apres Dirac, habituellement sous la forme heuristique:

> = [do@) A > 4| $>

|¢> étant I'état du systéme, {u|¢> est la fonction d’onde correspondant a cet état
dans la représentation (u) et <i|@> celle dans la représentation (A); ainsi & <u|¢>
correspond bien Y(uy, po, ..., t;, ...) et & LA S, @Ay, Aoy - 0u Ay, -00).

La distribution F_, n’est rien d’autre que I'élément de matrice généralisé du
systeme §' ou noyau <{4|u>, c’est-a-dire la fonction propre indexée par (u) exprimée
dans la représentation (4).

En fait la formule de Dirac a été écrite en parfaite analogie avec le cas de la
dimension finie. Elle est encore valable dans le cas de la dimension infinie a condition
qu’on ait affaire & des fonctions propres qui appartiennent elles-mémes a l'espace
d’Hilbert L2 ( Il A,.) et conformément a l'esprit de la théorie des distributions, on

(]

doit vérifier que la formule (6) redonne bien celle de Dirac lorsque la fonctionnelle
propre Fj, est un élément de I'espace d'Hilbert soit f,. La présence du complexe
conjugué du noyau <A|u> s’explique alors trés bien. Si 7' désigne I'application
canonique antilinéaire de L}, (HA,.) dans D', il suffit de connaitre la fonctionnelle

T’ f,y pour f,, € Lf, ( II A,-). Or en vertu du théoréme de Riesz et de 'antilinéarité
de 77, on a pour tout ¢ € D

T oo @ :ff;) (Ags Agy e s Agy o) @Ry Agy ey Agy onn) do
IT4;

ce qui n’est rien d’autre que I'expression de Dirac. On voit d’ailleurs tout de suite sur
cette expression que la correspondance f,, - 7" f, est antilinéaire.
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De plus si B} f,) = p; fiy on a bien TB(T" f)) = p:(T" fi,0)-
En effet:

IBAT fi), 9> = <T’ fip, B;@> :ff(ﬂ) B, @ do = (fi0, Bi @) = (B fi, 9)
114,

= tilfo, @) car y; € R

= p; <T" fip, @>

= <{p; T f,», @> pour tout p € D
d’ou la conclusion.

Par contre la réciproque n’est pas nécessairement vraie méme si u; € R. En effet le
spectre de B, peut étre beaucoup plus grand que celui de B; (DUNFORD et SCHWARTZ
1963, p. 1399; RoBERTS 1966). Mais en fait ce que nous avons montré c’est que le
développement ne faisait intervenir que les fonctions propres associées uniquement au
spectre de 'observable physique soit B; .

Enfin, on voit immédiatement que, puisque les sous espaces propres D, sont
unidimensionnels, on a bien obtenu une décomposition spectrale au sens précédent
de la fonction ¢ puisque

Py, thas oo s i ) = @lW0) -

La fonction ¥(u) coincide sur I'espace D,y des fonctionnelles propres F,, avec ¢, .
Par suite si g,, = 0 alors ¥((u)) = 0 et comme la correspondance entre L3 (ITA,)
et L2 ( I {Mi}) est isométrique on en déduit que

i

P=0= @@, A, ..., 4,..)=0=>¢9=0

c’est-a-dire que I'ensemble des fonctionnelles propres est complet au sens olt nous
I’'avons défini précédemment.

VIII. Exemples; Notion de coefficient de Clebsch-Gordan

Ils sont évidemment fort nombreux mais ce qui est en général sous estimé c’est
I'importance des conditions mathématiques imposées pour pouvoir rendre compte du
schéma de Dirac. Rappelons qu'il est nécessaire que le domaine D soit invariant par
chaque opérateur B, et qu’il puisse étre muni d'une topologie strictement plus fine
que la topologie initiale. De plus, condition presque unanimement oubliée, B; doit
étre essentiellement auto-adjoint sur ce domaine de sorte que B, représente 1’obser-
vable physique.

Signalons encore que le probléme suppose résolue la détermination de I'isométrie
entre les deux représentations.

1° Base . — S

Les changements de base dans ’ensemble des états d’une particule libre relativiste
ou non sont trés simples. Le passage de la représentation spectrale associée a la base
(P, S?) a celle correspondant a la base ((P%)'/? L?, L3, S}) dans le cas d’'une particule
de masse m + 0 et de spin 7 quelconque, relativiste ou non est bien connu. L’isométrie
s’écrit simplement

F(lpl, 1 15,9) = [ do ¥, f0) (1P| )
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@ est un point de la sphére unité S, de R3, extrémité du vecteur unité w = p/|p|
d’origine 0. dw est la mesure sur S, habituelle, invariante par SU(2). Les fonctions (ou
mieux les classes de fonctions presque partout égales) F(|p|, /, /5, s) forment un espace
d’Hilbert muni du produit scalaire suivant

(F, G) = ipPaip|

]/ph—m2 —i<s<+] 1=0,1,2,... —I<L<+I

F( L1, s) .

pl. L1, s) G(|p

Or I'on sait que la représentation spectrale associée a la base (P, S?) est celle associée
au formalisme canonique ; dans ce cas les observables sont toutes définies sur D(Hy; . ,)
ou sur §(y;.4) et elles sont essentiellement auto-adjointes. On sait, de plus que
D(H,;.1) (resp. S(H,;,;)) est un espace nucléaire et que l'application canonique
D(:sz+1) (l’eSP- S(?‘[gj+1)) = Lf,, (Qm, ?—lzj+1) est continue,.

On peut donc appliquer les résultats généraux précédents. Néanmoins la structure
méme de I'isométrie nous invite, par suite du changement de variables p - (|p|, )
a considérer un domaine de définition des observables légérement différent de
D(Hy;,,) et de S§(H,;,,). Précisons le changement de variables précédent. Soient donc
£, S, la sphére unité de R?, 2, =, — {(m, 0)}, R* la droite réelle positive. Tout
point de £, peut s’écrire uniquement sous la forme |p|w ou [p|e Rt et we S, et
I'application (|p|, w) > |p| @ est un homéomorphisme de R+ X S sur £,. On doit
alors, comme dans le cas de I'hélicité, considérer les domaines Dy(Hzj.1) et So(Hzjiq)
sur lesquels les observables qui constituent le systéme complet sont essentiellement
auto-adjointes, comme nous I'avons vu; Dy(Hy;.1) et So(Ha;41) sont tous les deux
denses dans L% (2,,, #,,,,). De plus, comme ils sont des sous espaces vectoriels fermés
respectivement de D(H,;,,) et de S(H,;, ) ce sont des espaces nucléaires complets.
L’application canonique Dy(Hy;4,) (resp. So(Hojs1)) > Lh(82,,, Hajyq) est continue.
L’ensemble DO(#&H—I) (resp. SO(:H2]'+1))J Li(Qm: w2j+1) D;]("n2j+1) (resp. S;(w2j+1))
forme un triplet de Guelfand.

On peut donc appliquer les resultats généraux précédents et écrire 'isométrie sous
la forme habituelle aux physiciens. '

,5,13:3)=§f|1)’

oll nous avons adopté la notation intégrale pour noter la distribution. Le prdduit
direct de distributions Y, ,(w) ® 6(|p'| — |p]) ® 6, I, ou I est la matrice identité

Im
de Wz, est la fonctionnelle propre, élément de S;(Hy;.,), du systéme ((P2)12,
L2, 13, S?) pour l'ensemble des valeurs propres (|p|, /, Is, s). Par le théoréme de
Hahn Banach, cette fonctionnelle propre se prolonge & §'(H,;.,). Néanmoins cette
extension n’est pas unique, deux d’entre elles différant d’'une distribution de support
le point {(m, 0)}. S;(Hy,,1) s'identifie au quotient de §'(Hs,,,) par le sous espace
vectoriel fermé des distributions de support {(#, 0)} (ANTOINE 1966). Ce résultat
nous permet d’apprécier la perturbation apportée a la structure de la fonctionnelle

propre lorsqu’on substitue Sq(Hy; 1) & S(Hy;4q)-

24 |p'|do Yy, (@) 8 ([P’ — |P]) s fol

E(lp p'| )

3
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2° Coefficient de Clebsch-Gordan du groupe de Poincaré et du groupe de Galilée®)

L’exemple précédent est trés élémentaire; ceux qui suivent le sont beaucoup moins
car ils débouchent sur la théorie de la décomposition en représentations irréductibles
des représentations unitaires des groupes de Lie.

Dans ce qui suit, on considérera une somme directe d’espace d’Hilbert comme le
cas particulier de l'intégrale hilbertienne correspondant a une mesure discrete.
Néanmoins rappelons qu'il existe une différence fondamentale entre ces deux notions.
En effet le caractere discret de la mesure permet d'identifier canoniquement chacun
des espaces #, & un sous espace hilbertien de la somme directe alors que dans le cas
de l'intégrale directe ceci n’est plus possible car la valeur d’un champ de vecteurs n’a
plus de sens.

Soit g - U(g) une représentation unitaire d’un groupe G qui opére sur un espace

d’Hilbert H séparable. Décomposer cette représentation irréductibles, c’est établir
@

une isométrie de H avec une intégrale hilbertienne [ H, du(x) telle que:
X

@®

U~ f‘u dpu(x)

o/

X

ot X est un espace localement compact et ou U, est une représentation unitaire
irréductible de G qui opére dans l'espace d’Hilbert séparable H,. En particulier,
I'algébre faiblement fermée engendrée par les opérateurs g — U, (g) est un facteur.
Ce qui est intrinséque au probléme c’est la classe de la mesure u et non pas la mesure
elle-méme, ainsi évidemment que le champ x - U, ; choisir une mesure v équivalente
a la mesure y revient a faire une nouvelle isométrie qui ne change pas le résultat
obtenu. Il importe de remarquer que I'isométrie entre les deux espaces hilbertiens
ne sera bien déterminée que lorsque le choix de la mesure sera fixé ainsi que la forme
de la représentation U, et I'espace d’Hilbert .. Se pose alors le probléme de 1'unicité
de la décomposition précédente. Ce probléme a été résolu favorablement dans les cas
qui nous intéressent (groupes du type I) et il suffit de se rapporter a MACKEY (1952)
pour avoir toutes les informations nécessaires.

L’exemple du produit tensoriel de deux représentations unitaires irréductibles
d’'un groupe de Lie est un exemple particulierement important de représentation
unitaire dont on se propose de connaitre la structure en fonction des représentations
unitaires irréductibles.

Le probléme se pose de la maniere suivante dans le cas du groupe de Poincaré,
considérons le produit tensoriel de deux représentations unitaires irréductibles
indexées par [m,, 7,] et par [m,, 15]. Le résultat de la décomposition de ce produit
tensoriel est bien connu (WIcTMAN 1961). La décomposition peut étre faite de plusieurs
manieres (MAC FARLANE 1962; 1963 et les références qui s’y trouvent) parmi lesquelles
I'application du théoréme d’induction-réduction de MacyeEk (1952) semble étre la
méthode la plus adaptée a la structure de représentations induites des représentations
(Moussa et STORA 1964; RipEAU 1966).

6) L’auteur est particulierement reconnaissant au Dr R. Stora de lui avoir suggéré ce probléme,
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On a (Mac FARLANE 1962; 1963)
®
[y, 1 © [y o] = [ o) dm @ m, ],

M-y

ol ¢(m) dm est une mesure positive sur R.

Chaque représentation [m, /] peut intervenir un certain nombre de fois dans la
décomposition, au plus dénombrable dans le cas général et fini dans ce cas particulier;
la dégénérescence est alors levée par les parameétres 7. Ce résultat est intrinséque, a la
levée de la dégénérescence pres qui ne l'est pas et a condition de ne considérer que la
classe des mesures équivalentes a o(m) dm.

On peut désirer étre plus précis et vouloir déterminer 'isométrie entre

Lil(le, y2j1+1) ® Li,(gmgs y2j2+1) = Lilwz(le X -ng» l'uzjlﬂ ® 7'£2j3+1)

I'espace d’Hilbert de base du produit tensoriel [m,, ;] ® [m,, 5] avec

@
[atm) am ® L2(Q,,, Ha; )

ot L2(2,,, Hy;4q) est I'espace de base de la représentation [, 7] qui intervient dans la
décomposition. Mais pour que ce probléme ait un sens il est nécessaire de préciser un
certain nombre de conventions a savoir

(1) La forme des représentations initiales et celle des représentations finales.

(2) Le choix d’une mesure o(m)dm dans la classe canoniquement associée i la
décomposition.

(3) La levée de la dégénérescence.

On voit donc qu’on a un trés grand choix; les physiciens se sont limités & un certain
nombre déterminés uniquement par des raisons physiques.

D’une maniére générale, les deux représentations du départ [m,, 7;] et [m,, 7,] sont
choisies simultanément soit dans le formalisme canonique soit dans le formalisme
hélicité; les représentations spectrales associées sont particuliérement adaptées a la
description de l'état d’une particule d’un faisceau; on fait souvent le méme choix
pour la représentation d’arrivée.

Mais comme la décomposition est utilisée pour obtenir une décomposition d’élé-
ments de la matrice S en ondes partielles relativistes (MAC FARLANE 1962) il se peut
que la représentation spectrale qu'on obtient finalement soit particuliérement mal
adaptée a la dynamique de la réaction étudiée. 11 est alors préférable de considérer une
base de moment angulaire totale dans la représentation finale comme l'ont fait
Jacos et Wick (1959), ou bien des développements multipolaires généraux (STORA
1962) ; la théorie des poles de Regge est venue renforcer cette opinion.

Le fait important pour un physicien est de reconnaitre que la décomposition du
produit tensoriel n’est rien d’autre qu'un changement de représentation spectrale
dans I'ensemble des observables de deux particules libres. D’'une maniére générale
I'étude des produits tensoriels de représentations unitaires irréductibles du groupe de
Poincaré n’est qu'un moyen d’étudier le probléme a #n-corps relativiste, qui n’est pas
encore entierement résolu. On connait la représentation de 'algébre de Lie associée
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a la représentation [m,, 7;] ® [m,, 75]. Si X! est I'opérateur infinitésimal associé & un
sous groupe a un parametre dans la représentation [m,, j;], X?1'opérateur infinitésimal
du méme sous groupe dans la représentation [m,, 7,], alors X1 ® [ + I ® X? est
I'opérateur infinitésimal associé au méme sous groupe dans la représentation
(my, 71] ® [m,y, 15). Les deux invariants P2 et W2 ne sont plus de simples scalaires et
en décomposant la représentation unitaire on obtient une représentation spectrale
des deux invariants ct ceci dans tous les cas, c’est-a-dire indépendamment de toutes
les conditions qui déterminent 'isométrie. P? et W2 seront donc toujours membres de
la nouvelle sous algébre abélienne maximale. En précisant les conditions pour lesquelles
I'isométrie est définie, on définit automatiquement les autres membres. Parmi tous
les cas, celui ou 'on s’est fixé le formalisme canonique aussi bien pour les représenta-
tions initiales que pour les représentations finales est trés important; ce qu'on appelle
le couplage (/, s) permet de lever la dégénérescence. Il a été trés étudié (MAac FARLANE
1962; 1963; Moussa et STOrRA 1964). Nous suivons les notations de (MAC FARLANE
1963). Ainsi, par hypotheése, la représentation spectrale du départ est celle de la sous
algébre abélienne maximale constituée par (P, S?) (Py, S?).

On considérera deux cas

Dans ce cas

[my, 0] ® [mz,()]:j o(m)dm D [m,1].

Il n'y a pas de dégénérescence.

I’isométrie entre
@

12, (2, % Q,) et [ olm) dm @ L2(2,, Wy )

My My

s’écrit alors simplement (MAC FARLANE 1963)

oo (py, pa) = mH2 314 (m) 4: Y, (@) g™ (p) (7)
avec '
p =101+ P m? = 2=:(P1+P2)2 -1y <

Am) = m* — 2 m? (m> + md) + (md — m)?
g =m A7'2(m) (?51 — g — m%ﬂ-%;@% (1 + 752))

c’est 'équivalent relativiste de I'impulsion relative.

(0, ¢) = A=1(45) ¢ out (45)

est la transformation de Lorentz pure le long de p telle que p = (4%) (m, 0).
En particulier

g TP
€ = q [m+ (m2 +p2)1,121j
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Il importe de ramarquer que lorsque p; = (m,,0), p,= (m,,0), g=p=e=0
et le changement de variables précédent n’est défini que lorsque p, = (m,, 0) et
Py = (my, 0). Aussi comme dans le cas d’une seule particule on considérera par la suite
Q,.et 2, alaplace de R, etdef, .

Ce choix, suivant les conventions habituelles, caractérise le formalisme canonique
pour la représentation finale. De plus son sens a la fois physique et géométrique est

clair: A=1(A4%) est la transformation qui fait passer au systéme du centre de masse.
a(m) dm = m=1 AV2(m) dm .

L’isométrie peut formellement se mettre sous la forme suivante pour une fonction

f(p1, py) élément de §y(2,, x 2,,) ou de D,(2,, x £2,.)

$im(p) — [ LR PP e j s p06(p — py — py)

2
3 (m — [(py + po)211) Y, (€) /(Py, P) - (8)
On définit alors le coefficient de Clebsch-Gordan, soit la distribution
w2 A=14(m) p06 (p — py — Pa) & (1 — [(py + $2)2] 1) Y (e) - (9)

On justifie entiérement I'existence d'une telle distribution et sa forme a I'aide des
résultats précédents. En effet, comme nous I'avons déja signalé cette décomposition
est équivalente a un changement de représentation spectrale dans I'ensemble des états
des deux particules libres sans spin. La représentation du départ est associée au
systeme (P, P,) - P* = (P, + P,)? fait automatiquement partie du nouveau systéme.
Imposer le formalisme canonique c’est obtenir la représentation spectrale de P =
P, | P,, de la 3éme composante du spin S}, ainsi que 87; or le spin du systéme réduit
n’est rien d’autre que «le moment angulaire dans le systéme du centre de masse», soit
I'opérateur — 7 e A 0joe = L7).

En résumé, I'isométrie (7) est 'isométrie entre les deux représentations spectrales

associées aux deux systémes complets d’observables suivants:
g 0 2 ; 0\3
(P, P,) et P?= (P,+ P2 P—=P, + P,, [—ze/\ﬁ] , (_ fze/\fd—g)
I'exposant (2) indique que l'opérateur este levé au carré; 'exposant (3) indique que
c’est la 3¢me composante.

En fait tous ces opérateurs sont définis sur le domaine dense $,(2, x£2,)
(resp. Dy(82,,, x 2,,)). Ces domaines sont stables par ces deux systémes. Ce sont des
espaces nucléaires; I'application canonique: §, (resp. D,) = L7 . . (82, X 8,,) est
continue. Avec §’ (resp. D’), 'ensemble forme un triplet de GUELFAND. Les opérateurs
sont continus pour la topologie de §, (resp. de D,).

L’expression (8) n’est qu'une replique de la formule (6) et la distribution (9)
s'interpréte alors comme la fonctionnelle propre du nouveau systéme complet associé
a I'ensemble (m, p, [, ;) des valeurs propres et (8) exprime bien le développement
d'une fonction suivant les fonctionnelles propres du nouveau systéme.

") C’est l'expression de l'opérateur cherché, aprés qu'on ait effectué le changement de variables
(P1» P9) = (m, P, ) (Mac FARLANE 1963).
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B) Le cas général de deux représentations quelconques [y, j;] et [m,, 7] est
évidemment plus complexe mais 1'esprit reste le méme. L’isométrie entre

Loy 2m, X 2,0, Wi 1 ® W, 1)

et
)
/U(m) dm i =l+® Li(Qm’ “7‘{2] +1)[z, s]
My 7' =11+7.
1-01,2,...
s’écrit

fs,,(B1s o) = mi2 214 (m) 3] 2 2 Py D Dy (Ry) Dizy(Ry)

s s'1,8%,8", 13

C(A", o a3 8 51, 80) CG LT3 8,0, 8) Yy (e) S
St on note R(p, A) la rotation € SU(2): 4571 4 AA_lp, alors
R, = R(py, A3") Ry = R(py, 43) -

Les coefficients C(1', 7y, 7a; §', 57, 83) et C(7,1,1'; s, Iy, {') sont les coefficients de
Clebsch-Gordan de SU(2) habituels. Nous suivons a leur sujet les conventions de
RoskE (1957). On peut alors écrire formellement

Hipp) = 0[5 St mA0n) 0 (n — [(py + p7T

0(p—pL—Py) 2 D?ls (Ry) Diis'!(Rz) CU' Fun a3 &1 51, 55

7 Fi
81,847, 1s, s

C(, 0,158, b5, 8") Y (@) £, o (P1, D) -
On définit le coefficient de Clebsch-Gordan:

w2 A-1m) p° 6 (p — p1 — Ps) O (m — [(p1 + $2)°1'7)
I)T;S’I(Rl) D_js-ﬂzs'g(Rz) C(f", 1. 85 5'» 51, S’z)

S’, IB) S,I) S’g

Cl, L "5 5,1, ) Yy le) -

L’existence de ce coefficient et ses propriétés sont démontrées toujours suivant le
méme principe. La encore cette décomposition est équivalente a un changement de
représentations spectrales. Le nouveau systéme complet auquel on aboutit contient
nécessairement les deux invariants P? et W2, ainsi que P = P, + P,, et la 3éme
composante du spin final. Dire qu’il y a dégénérescence c’est affirmer que ces
observables ne forment pas une sous algébre abélienne maximale, on leve cette
dégénérescence en considérant de plus pres la définition du spin du systéme final.
Heuristiquement la démarche est bien connue. Elle consiste a se placer dans le systéme
du centre de masse, puis & construire le spin du systéme par addition du moment
orbital relatif des deux particules et des deux spins de chacun des deux particules.

8) Les sommes j = I+j’, j' = j;+J, doivent étre comprises comme des couplages de moments
angulaires et chacune des sommations }' 3 ... etc. doit étre compatible avec les régles d’addi-
tion des moments angulaires. Ly
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On leve la dégénérescence en choisissant la maniére dont on couple les trois moments
angulaires. Le couplage (/s) (ici (, {')) est alors le couplage du moment orbital avec la
somme des deux spins. Plus précisément, le spin §;(p) doit étre la somme des trois
moments angulaires

Sip) = —ie N+ 8, (p) + 8, () = L+ S,(p1) + 8, (ps) -

Cette équation n’est valable que si 'on se place dans le systéme du centre de masse,
c’est-a-dire si p = (m, 0): on peut & partir de 14 donner les expressions analytiques de
ces différents opérateurs (STora 1962). Nous ne le ferons pas ici. En résumé le nouveau
systéme complet est constitué des éléments suivants: (P2, W2, P, S¥(p), L2, (8] + 85)%).

Le coefficient de Clebsch-Gordan n’est alors que la fonctionnelle propre de ce
systéme, associée a I'ensemble (m, 7, p, s, 1, 7’) des valeurs propres. Ceci se justifie
d’une maniére strictement identique a condition de substituer & §,0u D, qui précédent,
les espaces nucléaires So(Hpj 11 ® Haj,1) et Do(Haj 1 @ My, 1) sur lesquels les
opérateurs précédents sont définis et continus.

Nous n’avons considéré ici que le cas de deux particules de masses positives et nous
n’avons utilisé que le formalisme canonique. On peut aussi substituer le formalisme
hélicité au formalisme canonique, a la fois pour les représentations du départ et pour
la représentation finale. On définit alors (MoussA et STOrRA 1964; WERLE 1966) un
coefficient de Clebsch-Gordan qui suivant le méme principe, s’interpréte comme la
fonctionnelle propre de la nouvelle base; dans ce cas elle est constituée des éléments
suivants (WERLE 1966):

P.-J W, P W,-P

(P W% B3 (o e (e )
Les deux derni¢res observables sont égales aux polarisations longitudinales indivi-
duelles dans le systéme du centre de masse. Elle est souvent préférée a la précédente:
en effet la levée de la dégénérescence est plus simple que dans le cas précédent puis-
qu’elle se fait par I'intermédiaire des deux polarisations longitudinales dans le systéme
du centre de masse; on évite le couplage des trois moments angulaires; Sil’on part du
formalisme canonique on peut encore utiliser dans ce cas les espaces Do(Hgj 11 ®
:uzj,ﬂ) et So(:”lzjln ® w2j5+1)'

On doit considérer aussi le cas des masses nulles et des couplages multipolaires,
ainsi que le cas d’un nombre quelconque de particules (Wick 1962; WERLE 1966;
STORA 1962). Comme l'ont montré VoIsiN (1964) et LEvy-LEBLOND (1965), le cas du
groupe de Galilée est strictement analogue au cas du groupe de Poincaré et n’exige
aucune mention particuliére. _

Dans tous les cas la justification mathématique est la méme. Le coefficient de
Clebsch-Gordan est alors une distribution caractéristique de I'isométrie entre 'espace
d’Hilbert, base de la représentation unitaire et l'intégrale hilbertienne, base de la
décomposition en représentations irréductibles. De plus cette distribution est toujours
la fonctionnelle propre d'un systéme complet d’observables qui commutent, différent
de celui du départ. D'un point de vue strictement mathématique il importe d’insister
sur I'existence d'un espace nucléaire, dense et sur lequel tous les opérateurs sont
définis. Seules les modalités de la démonstration varient d’un cas & I'autre suivant la
complexité de I"’exemple particulier considéré.
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APPENDICE I

Représentations unitaires et irréductibles des groupes
de Poincaré et de Galilée

1° Définition des différents groupes rencontrés

Conformément a la théorie des représentations projectives (BARGMAN 1954) nous
entendons par groupe de Poincaré, le groupe de recouvrement universel du groupe de
Lorentz inhomogéne.

Le groupe de Lorventz L est I'ensemble des transformations linéaires, laissant
invariante la forme bilinéaire définie sur R4: X-Y — X° Y° — X-¥Y?) qu'on notera
y =A% ouy* = A, x”, de déterminant égal 4 1 et telles que A > 1.

Le groupe de Lorventz inhomogéne est formé des transformations de R* dans lui-
meéme suivantes y* = A x” + a*, il est muni de la loi de composition suivante:

(a,A) (@', A")=(a+Ada", AN .

Le groupe de recouvrement universel ou groupe de Poincaré est un produit semi
direct du groupe des translations d’espace temps par SL(2, C). C’est un revétement
d’ordre 2 du groupe de Poincaré 4+ A € SL(2, C) déterminent la méme transformation
de Lorentz /(A) définie par la formule

Ax.o) AT =A(A) x .6 ou X.0=12x,0"=%

f

et ou o* = (09, 0) sont les matrices de Pauli habituelles

£

0 1 0 — 4 10
g = , 0%= .
10 i 0 0 —1
1 0
o :

Si on note (a, A) un élément du groupe de Poincaré la loi de groupe s’écrit alors:

et

(a1, 4,) (ag, 4p) = (a3 + A(Ay) ay, A, 4,) .

Toute représentation projective unitaire du groupe de Poincaré provient d'une
représentation continue unitaire de son revétement universel (WIGNER 1939 ; BARGMAN
1954).

Le groupe de Galilée est 'ensemble des transformations de 1'espace et du temps
comprenant les rotations spatiales R, les accélérations v ou encore transformations de
Galilée pures, les translations d’espace a et de temps . On note I'un de ses éléments

g=(b;a;v; R)

9 Ou X-¥Y = X1. Y14 X2. Y24 X3. Y3 est le produit scalaire habituel dans R3. X note le
vecteur de R® de composantes (X1, X2, X3). et X le quadrivecteur de R* de composantes
(X9, X1, X2, X3). De plus R* est toujours suppose muni du produit scalaire X + ¥ = X0- Y0
—Xt-Yl-X2.Y2_X%. Y3 = X0. Y'_ XY Enfin X? = | X |2 = (X!)24 (X?%)24 (X?)2.
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avec par définition
¥ =Rx+vi+a

' =t+0b
la lo1 de groupe est donc

(b1 ay; 015 Ry) (by; @y; 055 Ry) = (by + by; @y + Ry @y + byvy; v, + Ryw, Ry Ry) .

Le groupe de recouvrement universel est alors simplement le groupe obtenu en
substituant au sous groupe des rotations son recouvrement universel SU(2). Les
matrices 4 B € SU(2) déterminent la méme rotation R(B) donnée par la formule.

Bx.oBP=R(B)x.o

davec
x.0=2xo' + x2 g% + 2% 0®
si on note g = (b, @; v; B) I'élément générique, la loi de groupe s’écrit
(015 @15 015 By) (by; @y vy; By) = (by + by, @y + R(By) a5 + byvy; v, + R(By) vy By By) .

BarRGMAN (1954) a démontré que la dimension de I'espace vectoriel réel des classes
d’équivalence d’exposants locaux est I'unité. Il existe donc des extensions non
triviales du groupe de Galilée. Ainsi tous les exposants inéquivalents sont obtenus a
partir d'un exposant et lui sont tous proportionnels la constance de proportionnalité
notée m s'interpréte comme la masse.

Le choix de I'exposant de base sera

~ o~ ) 1
§o(81, 82) = (U1 . R(B,) a; + 7 by "’?) .

C’est le choix habituel (WicHTMAN 1962; LEVY-LEBLOND 1965).

On est donc amené a étudier les représentations unitaires et continues du groupe
H,, dont on notera 1'élément générique

h=(0,g)

et dont la loi de groupe est simplement

hl hz - (Bp g’1) (02: éz) = (61 <+ 62 + ’M§0(é1, z‘}z): él éz) .

Comme on se limite aux représentations irréductibles, toute représentation irréductible
de H,, restreinte au recouvrement universel du groupe de Galilée, qu'on appellera
dorénavant sans crainte de confusion encore groupe de Galilée, sera une représentation
projective irréductible du groupe de Galilée. Dans tous les cas en effet, le centre
isomorphe a Z, s’applique bien sur le rayon unité.

Lorsque m — 0 on obtient évidemment les «vraies» représentations du groupe de
Galilée. Notons enfin que toutes les extensions H , sont isomorphes comme I’a montré
Bargman.

Enfin rappelons que le groupe euclidien de I’espace tridimensionnel E4 est défini par
I'ensemble des couples (a, R) ol1 @ est un trivecteur et R un élément de S O(3) muni
de la loi de groupe suivante:

(@, R,) (a5, Ry) = (8, + Ry ay, Ry Ry) .
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Le recouvrement universel E3 est I’ensemble des couples (a, B) ou B e SU(2) muni
de la loi de groupe

(a, By) (ay, By) = (@, + R(B,) a,, By By) .
Le groupe E, est formé de 'ensemble des transformations du plan suivantes:
¥ =R,x+ a

ol &, &' et a sont des vecteurs du plan et Ry la rotation d’angle ¢ autour de l'origine.
Elles forment un groupe de Lie pour la loi suivante:

(ali R¢1) (a2’ R¢2) = (al + R¢1 az’ R¢’1+¢.’) :

Le groupe de recouvrement universel a une infinité de «feuillets» mais la théorie des

représentations induites n’utilise que le groupe dit spinoriel qu’on note E, qui est le
recouvrement «a deux feuillets» de E,. Le groupe spinoriel est le groupe des matrices

2 % 2 suivantes
e 0
(z; ) =
5 gi¢'

$eR
2e€C

muni de la loi de composition suivante
(@) (73 4) = e 4 7 L Gt )
L’homomorphisme de E~‘2 sur E, est le suivant:
(2; §) — (@ (1 27, RY)

ol a(i z e'??) désigne le vecteur (R, (i z €'#/2), Im (i z ¢'??)).

2° Algébres de Lie correspondantes

En reportant ici les relations de commutation habituelles entre les différents
générateurs, nous ferons la remarque suivante: on peut y voir apparaitre en effet le
nombre complexe 4 = |/ — 1. Nous avons ainsi sacrifi¢ & I'habitude des physiciens qui
pensent surtout plus en termes de représentations qu’en termes d’algeébre de Lie elle-
méme ct il faut considérer ces expressions comme une représentation fidéle des
algébres de Lie telles que les obtient BARGMAN (1954) par des opérateurs hermitiens
dans le cas d’une représentation de dimension finie, et essentiellement auto-adjoints
dans le cas de la dimension infinie.
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Notations

On notera
Jt (=1, 2, 3) les générateurs des rotations spatiales.
P, le générateur des translations du temps dans le cas du groupe de Poincaré.
E, le générateur des translations du temps dans le cas du groupe de Galilée.
Pt (1 =1, 2, 3) ceux des translations d’espace.
Ni (i =1, 2, 3) ceux des transformations de Lorentz pures.
K¢ (1 =1, 2, 3) ceux des transformations de Galilée pures.

A celui du sous groupe des phases (0, 1) de 'extension H,, du groupe de Galilée.

Dans une représentation donnée, ¢~#%"7 est alors une rotation de paramétres
(n; 6); e **™N (resp. e~i*™ K) une transformation de Lorentz pure (resp. de Galilée

pure) de paramétres (y, m); ¢ # P* une translation de vecteur a,.

Relations de commutation

a) cas du groupe de Poincaré

[P¥, P =4 [Jk, P =0 [Jk, PY] = i gim pm
[Nk, PO = — ¢ Pk [Nk Pt = — 4 §kt PO

[Tk, J1] =i gkim Jm

[J*, N1 = i gkim Nm

[N%, NY| = § gtim Jm

générateurs du centre de 'algébre enveloppante de 1'algébre de Lie:
P, Ptet WEW, ou (Wo=P.J et W=P'J—P/AN).

Les indices sont levés et abaissés 4 I'aide du tenseur métrique habituel

Euv (goo = 1,g;=— aij) .

b) cas de H,, |
[Ji, J/l=d7k Jk [N, E] =1 P
[Ji, Ni]=14¢gik Ntk [Pi Pi]=0
[Ni, Ni]=0 [P, E]=0
LIY P =g gtd k P&
[Ni, Pil =146 "m A
[J5, E]=0.
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Les relations de commutation du groupe de Galilée proprement dit se déduisent des
précédentes en faisant m = 0.
Générateurs du centre de l'algébre enveloppante de l'algeébre de Lie:
P2

2
2m )

E— , et(J— - KAP)
m
c) Cas de E,
Comme les relations de commutation sont déja contenues dans les précédentes
n’indiquons que les générateurs du centre de 'algébre enveloppante de 1'algeébre de Lie
solent P2 et P-J.

3° Représentations unitaives et irréductibles
L’application de la théorie de Wigner-Mackey fournit les résultats suivants.

A. Cas du groupe de Poincaré

o) masse m > 0 et spin |

Soient £  T'hyperboloide de masse m c’est-a-dire la sous variété R* défini par
Q. ={p2=m?p*> 0} ou p*=prp,. p*e R du(p) = d®p/p°® est la mesure
habituelle définie sur £,, et invariante par SL(2, C) et #,;,, un espace d'Hilbert de
dimension 2 7 4+ 1 (7 entier ou demi-entier) espace de base de la représentation D/ de
SU(2) qu'on induit. La représentation est alors définie dans l'espace d’Hilbert
L3(2,, Hyj,1) cest-a-dire Pespace d’Hilbert des classes de fonctions F définies sur
Q,, a valeurs dans H,; , telles que si (, ) note le produit scalaire dans Hs; 4

[(F@®), F) 53 < + o0

La représentation (a, A) > U™ (a, A) est alors
{U™a, ) F} (p) = &P DA, A Ayoig)p) F(A7YA) P)

L’écriture de la représentation dépend de la donnée d’un champ de transformations
de Lorentz p - 4, tel que pour presque tout p on ait

A, p=1p ot p=(m,0,0,0).

Ce choix est important car, si deux choix différents conduisent a deux représentations
unitairement équivalentes, d'un point de vue strictement physique il n'y aura pas
nécessairement équivalence. En effet a la donnée du champ p - 4, correspond la
«diagonalisation» d’une sous algébre abélienne maximale de I’algébre des observables
d’une particule de masse # et de spin 7; aussi & deux choix différents correspondent
deux représentations spectrales différentes (JAUCH et MISRA 1965).

Il existe deux choix physiquement intéressants.

a) A(A,) est la transformation de Lorentz pure le long de .
Elle s’écrit, en matrice 2 x 2:

¢ _ m+2
A= @
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le formalisme associé au choix de ce champ est dit «canonigue» (FoLpY 1956; WIGHT-
MAN 1961; Mac FARLANE 1962, 1963 ; CHAKRABARTI 1965).

b) A(A,) est le produit d’une transformation de Lorentz pure amenant p sur
(0, 0,0, [p|), suivie d'une rotation RY dans le plan (0 z; p) d’angle (k, p/|p|) ou k
est le vecteur unitaire de I'axe 0 z. En matrice 2 X 2

. 0 ;
1 cos 0 (m — po— |p|); —sin 5 €7 (m + po + [P))
AH s - -
P [2 m (m+ py)t/?] L0 0
° sin —Zre“’(m-i-;bg—‘PD:COS?(mﬂLP(ﬁ‘IPD

Le formalisme associé est le formalisme kélicité (MICHEL et WIGHTMAN 1955; BOUCHIAT
et MicHEL 1958; JacoB et Wick 1959; Wick 1962).
Notons que dans le cas du formalisme canonique on a

A;' B A, 5, = B pour tout BeSU(2).

C’est la propriété fondamentale qui caractérise le formalisme car elle nous assure que
la 3¢éme composante du spin est automatiquement diagonalisée.
Cette propriété disparait évidemment dans le formalisme hélicité puisque 'on a
- H _ p-1
Ay B A4y =By B Brpyp
ot B, est la matrice

ou O et @ sont les angles polaires de p.
Donnons la forme des opérateurs infinitésimaux, uniquement dans le formalisme
canonique

B B ={(—ipA 55 +S) F @

(NE) () ={(— i#0 55 — 522 Bl

Les opérateurs S sont les générateurs des transformations infinitésimales de la
représentation D/ de SU(2). Par définition DJ (RF) =1 — 16 S* o R* est une
rotation infinitésimale d’angle 0 autour du £*™¢-axe.

f) Cas m = 0 spin discret

Soient {2 le cone de lumiére: 2 = {p% = 0; p° > 0} et Lilareprésentation, indexée
par 7 entier ou demi-entier de E, suivante: (z; ¢) = e~"%.

Soit enfin un champ de transformations de Lorentz p -~ A, telles que pour

presque tout p on ait
A,p=p ot $=(1,0,0,1).
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La représentation (a, 4) - U (a, A) est définie dans I'espace d’Hilbert L%(£2) par
(UMa; 4) F} (p) = 67 (A5 A Agai) F (A71A) 9)
Il y a deux choix essentiels pour la fonction p - 4,.

a) celul fait paf WIGHTMAN (1961)

l/ 2. p-ipY
PI+#" Y2 (p|+Y

. 1pi+7°
0; e

n _
Ay =

b) le choix correspondant au formalisme hélicité (LoMoNT et Moses 1962; GuiLLOT
et PETIT 1966)
o .0 _i
o | 2 [p|7R; —sin o [piRem™
i sin a2 |p |2 e cos b |p|v2
2 ? 2

ou 0 et @ sont les angles polaires de p.

B. Cas du groupe de Galilée m + 0

Soit £ la sous variété de R* définie par

Qm’vz{(E,p)eR“; B }

2m

La mesure sur Qm’v invariante par le groupe, est égale 2 8 (E — p?/2 m — V) dE d3p.
Comme dans le cas relativiste H,;,; est 'espace de base de la représentation DJ
de SU(2) qu'on induit. Le point de £2 19 stabilisé est ici simplement (¥, 0). On doit

considérer un champ (E, p) > Az, de transformations de Galilée telle que
A (U, 0) = (E, p) pour presque tout (E, p).
Deux choix

a) Az p est la transformation de Galilée pure le long de p:
At 5y = (0,0, p/m, 1). Le formalisme correspondant est le formalisme canonigue.

b) Le formalz’snée hélicité correspond au choix

ou B, est la matrice 2 X 2 [appendice I; (1)].
L’espace d"Hilbert de la représentation est L3(Q 29 ;) c’est-a-direl’ensemble

des classes de fonctions définies sur .Qm 9 a valeurs dans ¥, ,, telles que

J(HE P 1E )8 (E— P —B) dEdp < + o0,
Qm"v
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Dans cet espace la représentation (b, a; v, B) - Ul .l (b, a, v, B) s’écrit simplement
U7 (b, 0,0, B) } (E, p) = 529 DG, (0, B) Ay 5y 5, )
/ (E + 5 mv?—p -v; R(B) (p — mv)) :

On peut écrire cette représentation sous une forme légérement différente en tenant
compte que £ 79 ©st difféomorphe & R3; I’espace de Hilbert de la représentation est
alors L}(R®, Hy;,,), » est la mesure de Lebesgue sur R3.

On montre alors facilement que la représentation s’écrit alors

(1) dans le cas du formalisme canonique
U7 (5, 0,0, B) ) (p) = #2¥em = Ve=ier DiB) {(R1(B) (p — mv)) (2
(2) dans le cas du formalisme hélicité
(U1 (s, a, v, B)f)(p)
_ giwtem + Wo—iap DB BB ) {(R-Y(B) (p — mv)) .

Représentation de I'algebre de Lie dans le formalisme canonique.

—z—iP/\(fp—i—S K:mim0%~.

APPENDICE II1

Espaces nucléaires et triplets de Guelfand

Les espaces d'Hilbert considérés seront tous supposés séparables.

1° Opérateurs nucléaires

La notion d’opérateur nucléaire est une particularisation de la notion d’opérateur
compact ou complétement continu et de celle d’opérateur du type d’Hilbert-Schmidt.

Un opérateur linéaire 4 défini dans un espace d’Hilbert #; 4 valeurs dans un
espace d’'Hilbert 3, est un opérateur compact s’il transforme tout borné en un en-
semble relativement compact (c’est-a-dire 4 fermeture compacte).

On peut préciser la structure d’un opérateur compact en considérant sa dé-
composition polaire (DIXMIER 1957). Soit en effet 4 = U T, une telle décomposi-
tion, on sait que T = (4* A)V2e L(H,) (ot L(H,) est I'ensemble des opérateurs
continus de H; dans lui-méme) et que U est un opérateur partiellement isométrique
de H, dans H, dont le support est 7(H,). On montre que T est un opérateur défini
positif compact et auto-adjoint. Son spectre est ponctuel et il existe une base totale
orthonormée de ¥, : '

{}nen telleque T e, =4,¢, avec 4, >0 et lim 4,=0

Hn—>00
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sidonc f= }(e,, f) e, est un élément de H,, ona:
Af=D'2,Uele, ) =D Afen. [) b, avec 4, >0 et b, =Ue,.

Les vecteurs %, forment un systéme orthonormé.
Réciproquement tout opérateur de cette forme est un opérateur compact.
Un opérateur compact 4 = U T est du type d Hilbert-Schimidt si de

(o0}
plus 37 A2 << oo ol les A, sont les valeurs propres de I'opérateur 7.

n=1 00
Un opérateur compact est appelé nucléaire si 3 A, << co. Comme }'A, << o0 =
n=1 n=1

Z A% << + oo. Tout opérateur nucléaire est du type d’Hilbert-Schmidt. Pour des
#=1
opérateurs définis positifs, le concept d'un opérateur nucléaire coincide avec

celui d’un opérateur ayant une trace finie, c’est-a-dire un opérateur 4 tel que
oo
(A f,, f,) converge pour toute base totale orthonormée dans .

n=1

2° Espaces dénombrablement hilbertiens

Un espace dénombrablement hilbertien /' est un espace vectoriel topologique
séparé dont la topologie est définie par une suite dénombrable de produits scalaires
définis sur F et qu’on notera ( , ),. On notera | . |, la norme associée a ( , ),.

Les normes sont supposées toutes ordonnées c’est-a-dire || . |, < | . [s < ...

< || . |, < ... et elles doivent vérifier la condition de compatibilité suivante:
sila suite x; € F tend vers O pour la norme | . |, et si ¢’est une suite de Cauchy pour
la norme | . |, (n > m), alors elle tend aussi vers 0 pour la norme || . |[,.

La topologie est alors définie en considérant pour systeme fondamental de
voisinages de 'origine I’ensemble des boules U, . = < €} pour tout
et pour tout €.

Cette topologie est métrisable (c’est-a-dire qu’elle est identique a la topologie
sous-jacente définie par une métrique) et 1'espace est complet.

On dit alors que c’est un espace de Frechet. Ce n’est pas un espace normé sauf si
toutes les normes sont identiques & partir d’un certain rang.

Soit F, le complété de F pour le produit scalaire ( , ),; pour # < » notons T, ,,
I'application identique de F munide ( , ), sur F munide ( , ),; 7,, ,, Se prolonge en
une application linéaire continue de F, dans F,, qu’on notera encore 7, ,; comme les
produits scalaires vérifient la condition de compatibilité, 7, ,. est injective et si I'on
identifie I, & une partie de F,, on peut écrire: '

FC..CFEC..CEF

comme l'espace est complet, on a F = [] F,.
"

Précisions la structure du dual F’ de F, c¢’est-a-dire I’ensemble des formes linéaires
et continues de F dans C. Pour tout » notons F,, le sous espace de F’ formé des formes
linéaires sur F continues pour ( , ),; F, est un espace hilbertien dont le produit
scalaire sera noté ( , ),. Et 'on a:

F,C..CF,C...CF
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De plus F' = |J F,, puisque tout élément de F’ est borné sur un voisinage de 0 dans F,

donc continu pour un certain ( , ),.
Les espaces dénombrablement hilbertiens sont des espaces de Frechet réflexifs
(cC’est-a-dire F" = F).

3° Espaces nucléaires

Un espace dénombrablement hilbertien F est dit nucléaire si pour tout m, il existe
un # > m tel que 'application 7, ,(F, > F,) soit nucléaire, c’est-a-dire si elle est
de la forme:

00
]—,‘i’meZ‘}.i(xi, x)nyi ol XGE
=1

olt {«,} et {v,} sont des bases orthonormées de F, et F,, et A; des nombres positifs tels
que 4; > 0 et 3’ A, < co. Remarquons qu’au lieu d’exiger que 77 soit nucléaire, il

3
suffit d’exiger que cet opérateur soit du type d'Hilbert-Schmidt. En effet T2 = T% T?
sim < n <p etle produit de deux opérateurs d’Hilbert-Schmidt est un opérateur
nucléaire.

Tout sous espace vectoriel d'un espace nucléaire est un espace nucléaire. Le
quotient d'un espace nucléaire par un sous espace fermé est encore un espace nucléaire.
Tout produit d’espace nucléaire est nucléaire. Toute somme directe topologique
dénombrable d’espaces nucléaires est nucléaire. Signalons une propriété importante:
les espaces nucléaires sont des espaces de Montel: tout ensemble borné (tout ensemble
sur lequel chaque norme est borné séparément) est relativement compact. Sur un
espace nucléaire et sur son dual, la topologie faible (pour cette topologie une suite
@, € F est convergente si et seulement si < f, ¢,> = 0 pour tout f e F’) et la topologie
coincident. Un espace nucléaire est complet relativement & la convergence faible.

Néanmoins la définition précédente d’'un espace nucléaire est beaucoup trop
restrictive pour convenir a I'ensemble de nos besoins, car on ne peut se limiter aux
espaces dénombrablement normés ou hilbertiens; il faut considérer les limites
inductives de tels espaces. Il faut alors généraliser la définition précédente aux
espaces vectoriels topologiques localement convexes et on dira que dans ce cas E est
un espace nucléaire si et seulement si toute application linéaire continue de E dans un
Banach est nucléaire. La notion d’opérateur nucléaire doit étre aussi convenablement
généralisée (SCHWARTz 1953/54, exp. n° 12); avec cette nouvelle définition I'essentiel
des propriétés précédentes est conservé.

Quelques exemples d’espaces nucléaires

Un espace vectoriel de dimension finie est nucléaire, alors qu'un espace d’Hilbert
ou un espace de Banach de dimension infinie puisque la boule unité fermée, qui est
bornée, n’est pas compacte.

L’espace §, par définition est formé de toutes les fonctions ¢(x) = @(x;, ..., x,)
définies sur R* & valeurs dans C, indéfiniment différentiables et pour lesquelles les
produits:

1+ [#[3)? [D* p(x) |
avec 1 <<p <<oo,0<Ch<p
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° |k|=k+...+k, <n etkeN
01kl
Dt = o N - T
* i Wxi :;:]xi‘

sont bornés et continus.
La topologie de § est alors définie par ’ensemble dénombrable des normes

= max sup |(1+ |#|2)? D*(x) | .

|oll, = max  sup [+ |# [ D* () |

Muni de cet ensemble de normes, § est un espace dénombrablement normé et un

espace nucléaire. Il est plus pratique de faire apparaitre un systeme de produits

scalaires équivalents au précédent qui en fera un espace dénombrablement hilbertien.
Soit x4 une mesure positive sur R"; s’il existe un entier p > 0 tel que:

1+ |%[3)~*

soit une fonction u-sommable, alors le systéme de normes | @], est équivalent au
systeme de normes associées aux produits scalaires suivants:

(9, ), = [ (1 + ]2 (X Dy D) duts)
0<g<p
R‘-"l

Un autre exemple important car nous le rencontrerons dans les applications est
S(#H). Cest I'ensemble des fonctions définies sur R", & valeurs dans un espace d’Hilbert
H de dimension finie, 4 décroissance rapide et indéfiniment différentiable. C’est un
espace dénombrablement normé pour l’ensemble des normes | . ||, suivantes
(SCHWARTZ 1955).

l#ll, = max sup|(1+ [#[?)*D*eplx)|
0< [RI<p
ol | . | est la norme associée au produit scalaire dans I'espace d’Hilbert # qu’on notera
( ). De plus, c’est un espace nucléaire.

Ceci résulte du théoréme 1 de 'exposé n° 10 et de la proposition 8 de I'exposé du
séminaire SCHWARTZ (1953/54). En effet le premier théoréme affirme que S(H) =
S & H (les topologies € et z coincident car § est nucléaire) et la proposition 18 affirme
que § @ H est un espace nucléaire puisque $ et H le sont.

Le systéme de norme est équivalent au systéme de normes associées aux produits
scalaires suivants

n

. W), = [ @+ |apye 2 (D0 ple), Do W) du(e)

C’est un espace dénombrablement hilbertien.

L’espace D

Soit K un compact de R”, on désignera par Dk l'espace vectoriel des fonctions
@(%,, ..., %,) a valeurs complexes, indéfiniment différentiables et dont le support est
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contenu dans K. C'est un espace dénombrablement normé pour l'ensemble des

normes | . |, suivantes:

= Dt gl .
Iel. = sz, {s2p 0o}

C’est aussi un espace nucléaire (voir SCHWARTZ 1953/54, exposé 18). On définit D
comme la réunion de tous les ensembles Dy lorsque le compact K devient infiniment
grand et on introduit une notion de convergence sur D. On dira que les ¢; convergent
vers 0 dans si elles gardent leurs supports dans un compact K fixe et si elles convergent
vers 0 dans Dg. D est alors la limite inductive des espaces Dx (voir par exemple
GARsOUX 1963). Par suite (voir SCHWARTZ 1953/54, exposé 18) c’est aussi un espace
nucléaire.

4° Espace d’Hilbert équipé (ou triplet de Guelfand ou Sainte Trinité)

Soit F un sous espace dense d’un espace d’Hilbert #; supposons que F soit un
espace nucléaire et que de plus, 'application T: FF - H soit continue. En particulier
c’est toujours le cas lorsque la topologie de F est strictement plus fine que celle de H.
Alors I'application T est nucléaire. Considérons le dual F’ de F; T’ I'adjoint de T est
un opérateur appliquant #' (le dual de H#) dans F': il est défini par I'égalité suivante:

T'W,p>=<H To>heW et peF. (1)

Mais on sait d’apres le théoréme de Riesz que 4'(h) = (h,, ) ce qui nous permet
d’identifier # & H (H' est anti isomorphe 4 H) et T’ a une application de ¥ dans F’
mais alors 7’ est un opérateur antilinéaire injectif.

On appellera un triplet d’espaces tels que F, ¥, F' (F C #C F’) ayant les
propriétés ci-dessus, un espace d’Hilbert équipé; on trouve aussi la terminologie
suivante: triplet de Guelfand ou Sainte Trinité.

Cette situation générale peut se particulariser de la maniére suivante lorsque I'on a
affaire a un espace dénombrablement hilbertien et nucléaire.

Soit donc F un espace dénombrablement hilbertien et nucléaire; sa topologie est
définie par un systéme dénombrable de produits scalaires ( , ),. Supposons que sur F
on puisse définir un produit scalaire supplémentaire qu'on notera sans indice ( , ),

défini positif et tel qu’il soit continu vis a vis de la topologie d’espace dénombrablement
hilbertien c’est-a-dire si :

lim ¢, = @ dans F alors lim (¢,, v) = (@, p) .

n—>00

De cette condition, il résulte que le produit scalaire est continu par rapport a une
norme |} . |, ¢’est-a-dire que 'on peut trouver des nombres m € N et M > 0 tels que:

@y | <M o] | vl

car toute forme linéaire et continue sur un espace dénombrablement hilbertien F est
bornée pour une certaine norme || . |, et réciproquement toute forme linéaire f sur F
bornée pour une certaine norme de F est continue. ( , ) fait de F un préhilbertien
séparé et on notera H le complété de F vis a vis de ce produit scalaire. Les éléments
de F forment une partie partout dense de H ce qui définit une application continue T
bijective de F dans H. On identifiera dans la suite F a cette partie dense de H. T est
continue pour une des normes | .||, qui définissent la topologie dans dé I’espace nombra-
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blement hilbertien. Il se prolonge donc sur F, # > men un opérateur qu'on notera 7, et
on sait qu’il existe une valeur # pour laquelle 7, soit un opérateur nucléaire. L’opérateur
T, est aussi nucléaire.

On peut montrer qu’on a les inclusions suivantes, aprés avoir effectué les identifi-
cations nécessaires.

F3..0F3..HEO#D3::.3E3 .., F.
Exemples ‘

1° Considérons I'espace S que nous avons défini au paragraphe précédent. On peut
le munir du produit scalaire supplémentaire suivant:

— [ 9l y(o) duie)
RTI

Ce produit scalaire sépare les éléments de § et de plus il est continu pour la topologie §

car lel <lel, v2>1

Comme on peut le voir par simple inspection des produits scalaires, le complété de cet
espace vis 4 vis de ce produit scalaire est L%(R") et nous avons bien un triplet de

Guelfand s C Li (R", C) C Sr ) N

De méme en ce qui concerne $(H), il suffit de le munir du produit scalaire supplémen-

taire ((p,t_p)zf(gp(x), W (x)) du(x)
on a bien: lel <|el,-

Le complété de §(H) par rapport A ce nouveau produit scalaire est L% (R", H)etona
bien le triplet de Guelfand suivant

SH)C Ly (R, H)C S .

Remarques

1° Nous savons trés bien que par rapport a la topologie de L%(R") les opérateurs
de multiplication par les variables x;, les opérateurs de dérivations partielles 0/0x7
et d’'une maniére générale les opérateurs de dérivations d’ordre fini ne sont pas des
opérateurs continus. Par contre en tant qu’opérateurs définis sur § et pour la topologie
d’espace nucléaire, ce sont tous des opérateurs continus; c’est ce qui fait l'intérét
d’introduire une topologie plus fine que la topologie initiale, car les opérateurs qui
n’étaient pas continus le deviennent. Par contre la nouvelle topologie n’est pas celle
d'un espace normé, elle est seulement métrisable.

2° L’exemple suivant est trés important: Soient G un groupe de Lie, g - U(g) une
représentation unitaire de ce groupe dans un espace d’Hilbert ¥ séparable. MAURIN
(1959) a montré qu’a partir du domaine de Garding, on peut construire un domaine
dense D, stable a la fois par la représentation globale du groupe et par la représenta-
tion de l'algébre de Lie enveloppante; de plus ce domaine peut étre muni d’une
topologie strictement plus fine que la topologie initiale, pour laquelle c’est un espace
nucléaire. De plus I'application identique de D est continue si bien que ’ensemble
D C # C D’ forme bien un triplet de Guelfand.
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