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Observables d'une particule libre
et changements de représentations spectrales
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Abstract. In this paper, we study, in the first part, the mathematical definition of the usual
observables of a free particle by essentially self-adjoint operators defined on different domains of
definition, as the Gârding domain or the "Q and J spaces of the theory of distributions. The rela-
tivistic and the galilean case are considered.

In the second part, we study the general theory of change of spectral representations. The
theory of nuclear spaces and rigged hilbert spaces is used and a mathematical definition of the
coefficient of Clebsch-Gordan for the Poincaré and Galilée groups is given.

Introduction
Cet article a pour but de jeter les bases d'un exposé rigoureux de certaines questions

dont dépend le développement de la cinématique relativiste ou non relativiste.
Ce travail est divisé en deux parties. La première est consacrée à la définition,

correcte du point de vue mathématique, des observables d'une particule libre intéressantes

pour la cinématique, particulièrement celles qui composent les systèmes
complets d'observables commutantes ou bases. La seconde est consacrée à l'étude des

changements de représentations spectrales c'est-à-dire au passage d'une base à une
autre. L'étude est ici très générale. Comme cas particuliers on considère les changements

de bases dans l'ensemble des observables d'une particule libre et la définition
correcte des coefficients de Clebsch Gordan des groupes de Poincaré et de Galilée.
Ce concept est en effet fondamental dans l'analyse phénoménologique des expériences
de diffusion.

Les techniques mathématiques employées sont différentes d'une partie à l'autre.
La première repose sur la théorie de la représentation de l'algèbre enveloppante de

l'algèbre de Lie d'un groupe de Lie par des opérateurs symétriques ou essentiellement
auto-adjoints, associée à une représentation unitaire du groupe. La seconde partie
utilise la théorie des distributions et plus particulièrement les espaces nucléaires.

C'est ainsi que nous montrons que l'on peut définir les principales observables par
des opérateurs essentiellement auto-adjoints définis sur le domaine de Gârding associé

à la représentation unitaire irréductible du groupe de Poincaré ou de Galilée. Nous
étudions ensuite la possibilité d'autres définitions en considérant d'autres domaines de

fonctions différentiables.
Ensuite nous précisons l'isométrie entre deux représentations spectrales et nous

justifions l'expression «développement sur les vecteurs propres d'une base». La
solution est due à l'existence d'un domaine dense D qui peut être muni d'une structure
d'espace nucléaire.

Un premier appendice rappelle les principaux résultats concernant les représentations

unitaires irréductibles des groupes de Poincaré et de Galilée. Un second rapelle
les principales notions concernant les espaces nucléaires.
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Première partie

OBSERVABLES D'UNE PARTICULE LIBRE

I. Définition formelle des observables d'une particule libre. Problèmes.

Les définitions que nous allons donner sont connues et élémentaires. En fait les

physiciens définissent les observables, d'une particule libre, dans une représentation
donnée, en se donnant une forme analytique de l'opérateur formellement auto-adjoint
qui la représente et en supposant que l'opérateur a le spectre désiré, sans se préoccuper
de savoir s'il existe en fait un opérateur auto-adjoint qui admette le spectre en question
et qui par restriction sur un domaine convenablement choisi redonne bien l'expression
analytique initiale.

Considérons d'abord le cas d'une particule libre relativiste de masse m et de spin ;
et plaçons-nous dans le formalisme canonique (appendice I).
- L'énergie est alors représentée par l'opérateur de multiplication par la variable

p° \/p2 + m22), de spectre [m, + oo] c'est-à-dire l'opérateur représentant P°
générateur des translations du temps.

- La tri-impulsion est représentée par les 3 opérateurs p générateurs des translations
spatiales; chacune des composantes p' a toute la droite réelle pour spectre.

- La masse est ici un simple scalaire m (p02 — p2)1'2.

- De même le spin / est un scalaire tel que W2 — m2 j [j + 1).

- Le moment angulaire total est représenté par les trois opérateurs J=—ip/\ djdp + S ;

en fait seuls les opérateurs J2 et /3 sont importants pour les applications. Le spectre
de J2, déterminé par réduction sur le groupe SU(2), est de la forme / (/ 4- 1) où

/ parcourt l'ensemble des entiers si j est entier ou des demi-entiers si j est demi-
entier. Le spectre de /3 est alors l'ensemble des entiers ou des demi-entiers suivant
le cas et de signe quelconque.

- Les opérateurs de spin S, sont représentés par les 3 opérateurs S. Le spin Sj est

proprement défini par l'intégrale directe

e
Sj=JSj(p)d/u(p)

où le champ p —>¦ Sj(p) est un champ constant car Sj(p) S, pour presque tout p.
Ils sont tels que Sf / (/ + 1) et le spectre de chacun des opérateurs S' est

simplement l'ensemble des entiers ou demi-entiers tels que — j < s < + /.
- Par convention nous appellerons hélicité les opérateurs unitairement équivalents

au spin Sj suivants :

e

Hj =JdJ [Acp~* A«) Sj(p) DJ (Af-1 Acp) dfx{p)

on réserve le nom de polarisation longitudinale à la troisième composante Hf
P-Jj\P\. On a donc Hf j (j + 1) et le spectre de chacune des composantes /z]
est le même que celui de l'opérateur Sj.

'¦) Cette identification directe n'est possible que si nous sommes dans le système d'unité % c -

ce que nous supposerons toujours par la suite.



8 J.C. Guillot H. P. A.

- Le moment angulaire orbital est défini par l'ensemble des 3 opérateurs — ip A Ò/dp
J — Sj. Seuls L2 et L3 sont intéressants pour les applications. Le spectre de L2
est de la forme l (l + 1) où / parcourt l'ensemble des entiers.

- Signalons aussi l'opérateur P2 p2 qui intervient comme élément de cer¬
taines bases.

Ce sont les principales observables qui interviennent constamment dans l'analyse
phénoménologique des expériences de diffusion, notamment dans la constitution des
bases ou systèmes complets d'observables qui commutent sur lesquelles reposent
l'analyse en ondes partielles relativistes.

- Signalons enfin l'opérateur de position dont l'importance théorique n'est plus à

faire (Wightman 1962, Chakrabarti 1965)3) soit

X ' -d ip
1

dp z{py •

L'opérateur de position a été complètement étudié du point de vue qui nous
intéresse par Wightman (1962). Il est donc inutile d'y revenir.

Ce cas galiléen ne présente pas de différence essentielle dans l'interprétation,
notons quand même quelques particularités (Levy Leblond 1965). La masse ici est

toujours un scalaire mais caractérise le groupe et non pas une représentation
irréductible et unitaire du groupe (ce n'est plus un invariant) : L'un des invariants est
ici l'énergie interne V et l'observable correspondante est une simple multiplication par
un scalaire, à savoir 19 E — p2/2 m.

Le moment orbital peut alors se représenter à l'aide des opérateurs infinitésimaux
L \\m P A K — i p A dp de même en ce qui concerne le spin Sj car Sj
J — 1 jm P A K. Sf j (j + 1) correspond au second invariant.

Ici l'opérateur de position est simplement

m dp

Ces quelques particularités favorisent l'étude du cas non relativiste et le simplifie. Les

spectres des observables restent les mêmes que dans le cas relativiste.
Les définitions précédentes se transportent par isomorphisme dans toute autre

représentation.
Par la suite nous chercherons à obtenir une définition de chacune des observables

par un opérateur essentiellement auto-adjoint défini sur un domaine dense, et ayant
le spectre désiré; l'extension auto-adjointe unique définit complètement l'observable
du point de vue physique. Mais les exigences de la seconde partie nous contraignent
à rechercher un même domaine de définition pour l'ensemble des observables qui nous
intéressent. De plus ce domaine doit être stable pour ces opérateurs si l'on veut
diagonaliser les opérateurs dans un espace de distributions, et si possible par la
représentation unitaire du groupe considéré. Enfin les opérateurs auto-adjoints
doivent par restriction à un sous domaine convenable redonner les expressions
précédentes des observables, ce dernier point devant justifier le calcul plus ou moins
heuristique des opérateurs infinitésimaux par les physiciens.

3) renvoie à la bibliographie située à la fin de l'article. Elle est classée par ordre alphabétique
des auteurs et (1962) renvoie à l'année de la parution de la référence.
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Nous verrons par la suite que ces exigences pourront être satisfaites à quelques
rares exceptions près.

Comme de nombreuses observables sont les images d'éléments de l'algèbre de Lie
et de l'algèbre enveloppante de l'algèbre de Lie la première idée qui vient à l'esprit
est de considérer le domaine des vecteurs différentiables pour la représentation et plus
particulièrement le domaine de Gârding, ou bien le domaine des vecteurs analytiques.
Néanmoins les expressions particulières obtenues par un calcul explicite font plus ou
moins intervenir des domaines de fonctions différentiables évidemment plus liés à la

nature particulière de la représentation considérée.
Nous allons considérer en détail ces deux possibilités et par là même résoudre les

problèmes que nous nous sommes posés.

II. Première définition des observables utilisant le domaine de Gârding
associé à la représentation

A. Définition du domaine de Gârding

Rappelons que l'algèbre de Lie £ d'un groupe de Lie G est l'algèbre de Lie de tous
les champs vectoriels invariants à droite et que l'algèbre enveloppante £ de l'algèbre
de Lie de G est l'algèbre des opérateurs sur C°°(G) (l'ensemble des fonctions indéfiniment

différentiables sur G) engendrée par tous les champs vectoriels invariants à

droite sur G.

Notons que £ est aussi l'algèbre de tous les opérateurs différentiels invariants à

droite sur G, en vertu du théorème de L. Schwartz et de Harish-Chandra.
Soit donc G un groupe de Lie et g -> 11(g) une représentation unitaire continue

de G dans un espace d'Hilbert ?/; un élément h e 7/ est un vecteur indéfiniment
différentiable ou régulier pour H si l'application g -> 11(g) h de G dans "H est de classe

C°°, c'est-à-dire indéfiniment différentiable. Dorénavant nous comprendrons toujours
par différentiable, indéfiniment différentiable.

L'ensemble des vecteurs différentiables est dense dans 11. En fait, Gârding (1947
et 1960) a montré que si la fonction <p sur G est différentiable et à support compact et
si l'opérateur H(<p) est défini sur ?/ par:

U(<p)h=JU(g)<p(g)hdg*) (8)

G

(où dg est la mesure de Haar sur G, invariante à gauche) alors pour tout h e 7/, Xl(<p) h

est un vecteur différentiable et l'ensemble de tels vecteurs est total dans ?/. On

appelle alors le domaine de Gârding, l'ensemble de toutes les combinaisons linéaires
finies de vecteurs de la forme précédente.

La représentation de l'algèbre de Lie sur ce domaine est alors très simple. Soit X
un élément de l'algèbre de Lie; à tout X on fait correspondre un opérateur noté dH(X)
défini sur le domaine de Gârding de la manière suivante. Soit y H(cp) h.

Le vecteur
tf(exp<X)-J

t y

4) Pour le seus precis à donner à cette integrale, voir par exemple (Hille et Phillips 1957) et
(Dunford et Schwartz, tome I).
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est encore un élément du domaine de Gârding. Si on effectue le passage à la limite
t -> 0, on obtient encore un vecteur dans le domaine de Gârding, puisque

dU(X) y lim U^l V--L y =fu(g) (X <p) (g) h dg U(X <p) h (1)

G

où X est considéré comme opérateur différentiel invariant à droite; l'expression (1)
définit l'opérateur d%l(X) pour tout élément du domaine de Gârding.

Les opérateurs Hx définis par :

dll(X) -iH
sont des opérateurs symétriques ; on démontre aussi qu'ils sont essentiellement
autoadjoints. Cela résultera du théorème 1 ci-dessous dans le cas des groupes de Poincaré
et de Galilée.

La fermeture de Hx soit Hx H** est le générateur auto-adjoint défini directement

par le théorème de Stone, l'application X -> i d1X(X) est une représentation de

l'algèbre de Lie par des opérateurs essentiellement auto-adjoints (Segal 1951) et le
domaine de Gârding est invariant aussi bien par la représentation du groupe que par
celle de l'algèbre de Lie.

La représentation se prolonge à l'algèbre enveloppante £ de l'algèbre de Lie.
En effet puisque le domaine de Gârding est invariant par tous les opérateurs infinitésimaux,

tout produit fini dH(X^ dU(X2) dU(Xn) est défini sur le domaine de

Gârding et l'on a pour tout X e £ dU(X) (1i(<f>) h) H(X (p) h où X est l'opérateur
différentiel invariant à droite sur G correspondant. Le prolongement de dli à £ est un
homomorphisme d'algèbre associative.

Considérons un élément X e £ symétrique, c'est-à-dire invariant par la
transformation qui associe à tout monôme a X1X2... Xn le monôme a(— 1)" Xn Xn-1 ...X%X1
(a e C et Xt e C) ; l'opérateur i d1l(X) est un opérateur symétrique sur le domaine de

Gârding.
Mais on ne peut pas affirmer en général que l'opérateur soit essentiellement

autoadjoint. Nelson et Stinespring (1959) en ont donné de nombreux contre-exemples
et il suffira de se reporter à leur article pour de plus amples informations. Néanmoins

pour certaines catégories d'opérateurs on peut conclure; en effet un théorème de

Ségal affirme:

Théorème (Ségal 1952)

Si p est un polynôme symétrique appartenant au centre de l'algèbre £, alors
l'opérateur i dU(p) est essentiellement auto-adjoint sur le domaine de Gârding.

Un résultat plus général et contenant celui de Ségal a été obtenu par Nelson et
Stinespring: i dU(X) est aussi essentiellement auto-adjoint lorsque X est un opérateur
elliptique, ou commute avec un opérateur elliptique.

Les résultats qui précèdent ont beaucoup d'importance pour les problèmes qui
nous concernent. En effet on peut diviser les observables d'une particule libre en 3

catégories.

- Celles qu'on peut identifier aux opérateurs représentant des éléments de l'algèbre
de Lie, comme par exemple P°, P, J, \\m K, etc. pour qui en vertu de ce qui
précède la conclusion sera immédiate.



Vol. 41, 1968 Observables d'une particule libre 11

- Celles qu'on peut identifier aux opérateurs représentants des éléments de l'algèbre
enveloppante £ comme P2, W2, PJ, J2, E-P2ßm, (J-l/m K AP),
\\m KAP, etc. pour qui le caractère essentiellement auto-adjoint n'est pas
automatique et nécessite une démonstration.

- Enfin toutes les autres observables dont on peut affirmer qu'en général elles font
partie du corps enveloppant. If faut dans cette dernière catégorie examiner tous
les cas particuliers car il n'est même pas question que les opérateurs soient définis
sur le domaine de Gârding et le laissent stables. Néanmoins on peut conclure
immédiatement pour les observables qui appartiennent aux deux premières
catégories et les opérateurs essentiellement auto-adjoints qu'on obtient sont de

notre point de vue les définitions des observables en question.
On peut résumer les résultats dans le théorème 1 suivant. Notons que ces résultats

sont indépendants de la représentation unitaire considérée.

B. Théorème 1

A Quelle que soit la représentation unitaire du groupe de Poincaré considérée

g -> 11(g) dans un espace d'Hilbert 11, les opérateurs P", P, J, N, (P0)2 — P2,

(W0)2 — W2, P • J, P2, J2 sont des opérateurs essentiellement auto-adjoints sur le
domaine de Gârding associé à cette représentation.
B Quelle que soit la représentation unitaire du groupe de Galilée considérée

g -> 11(g) dans un espace d'Hilbert "M, les opérateurs E, P, J, K, P ¦ J, P2, J2

sont des opérateurs essentiellement auto-adjoints sur le domaine de Gârding
associé à cette représentation.
Si de plus la représentation considérée est une représentation projective de masse

m, c'est-à-dire une vraie représentation de l'extension indexée par m, en plus des

opérateurs précités dans B on peut affirmer que :

P2

2 m
(J-^KAP)2\ m J

sont aussi essentiellement auto-adjoints sur le domaine de Gârding de la représentation.

La démonstration repose sur un théorème de Nelson et Stinespring (1959) dont
nous avons explicité la demonstration et sur le fait que tous ces opérateurs sont
des invariants soit du groupe lui-même, soit de l'un des sous-groupes fermés.

On notera T>(G) l'ensemble des fonctions définies sur un groupe de Lie G à valeurs
dans C différentiables et dont le support est compact.

Théorème 2 (Nelson et Stinespring)

Soit H une représentation unitaire continue d'un groupe de Lie G dans un espace
d'Hilbert 7/. Soit X un élément de l'algèbre enveloppante de l'algèbre de Lie de G.

Soit A un opérateur symétrique tel que
(1) A ait un domaine dense, invariant par tous les opérateurs H(<p) J" y(g) U(g) dg
avec cp(g) et)(G). G
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(2) A (U(<p) h) dU(X) (U(<p) h) =U(Xcp)h heDA.
Alors dH(X) CA** et si dH(X) est essentiellement auto-adjoint, A l'est aussi et
dU(X)** A**.

Démonstration du théorème 2

On doit d'abord démontrer que d1l(X) C A**:
SoityeDd%l(X), on doit pour cela montrer que y e ^»»et que A** y d%l(X) y. Pour
démontrer la dernière égalité, il faut pour tout y eDm.,X) construire une suite un telle

que un e DA pour tout n, telle que les deux suites un et A un soient simultanément
convergentes et que de plus

[Aun^dU(X)y.
Il suffit de le démontrer pour tout élément y de la forme 1l(q>) h, car ce sera vrai alors

pour toute combinaison linéaire finie. Soit h un élément quelconque de 7/, alors pour
<p(g) e V(G), H(cp) he D dll(X) ; comme DA ?/, il existe une suite hn, avec hn e DA

pour tout n, telle que hn -> h. Considérons la suite H(q>) hn; comme les opérateurs H(q>)

sont bornés, H(qj) hn -> U(<p) h. C'est la suite cherchée ; en effet en vertu de la première
condition H(qj) hneDA et en vertu de la seconde condition on a A(H(<p) hn) H(X<p) hn

qui tend vers Xl(X qj) h c'est-à-dire vers dU(X) (U((p) h).
Donc dU(X) C A**, par suite A* C d%l(X)* car A*** A* et dU(X)** C A**.

Comme dU(X)* d\l(X)** par hypothèse, on a compte tenu de A** C A* par
hypothèse, A** A* d1l(X)*.

"

C.Q.F.D.

Remarque

Naïmark (1962; p. 276) a démontré que le domaine linéaire 1i((p) DA lorsque cp

parcourt T)(G) est dense li, car DA l'est.
Si A est l'élément de l'algèbre enveloppante de l'algèbre de Lie calculé directement,

et, si la condition 1 du théorème est vérifiée, par définition la condition 2 l'est
automatiquement. Aussi pour appliquer ce théorème à ce cas, il suffira de vérifier la
première condition.

Demonstration du théorème 1.

Pour la partie A :

Les opérateurs P°, P, J, N sont les images des générateurs de sous-groupes à un
paramètre et par suite ce sont les images des invariants de chacun de ces sous-groupes.
P2 (P0)2 — P2 et W2 (W)2 — W2 sont les images de deux générateurs du
centre de l'algèbre enveloppante de l'algèbre de Lie du groupe de Poincaré; P- J et P2

sont les images des deux générateurs du centre de l'algèbre enveloppante de l'algèbre
de Lie de E3 et enfin J2 est l'image du générateur du centre de l'algèbre enveloppante
de l'algèbre de Lie de SU(2). Chacun de ces opérateurs est défini sur le domaine de

Gârding du groupe de Poincaré mais aussi sur le domaine de Gârding du sous groupe
correspondant r (à l'exception évidemment de P2 et de W2) pour la représentation
g -> H(g) restreinte au même sous groupe P.

Aussi doit-on distinguer entre les opérateurs P°, P, J, N, P- J, P2, J2 lorsqu'on les
considère comme définis sur le domaine de Gârding associé à la représentation du



Vol. 41, 1968 Observables d'une particule libre 13

groupe de Poincaré considérée et les opérateurs qu'on notera p°, p, j, n, p -j, p2, j2
définis respectivement sur le domaine de Gârding associé à la restriction au sous

groupe correspondant de la représentation du groupe de Poincaré considérée. Le
domaine de Gârding du groupe de Poincaré est invariant par les operateurs U(<p) où <p

est une fonction définie sur un sous groupe fermé T, différentiable et à support
compact; de plus, puisque la condition (1) du théorème 2 en vérifiée, la seconde condition
l'est automatiquement en vertu de l'égalité (II, 1) lorsque A est egal, respectivement a
P°, P, J... etc. et dH(X), respectivement à pa, p,j, etc. Donc en vertu du théorème
2, il suffit de démontrer que p°, p, etc. sont essentiellement autoadjoints pour que
les opérateurs P°, P, le soient sur le domaine de Gârding associé à la représentation

g -> 11(g) du groupe de Poincaré. Or, en vertu du théorème de Ségal les

opérateurs p°, p, etc. sont bien essentiellement auto-adjoints respectivement sur
chacun des domaines de Gârding associé à la représentation du sous groupe dont
ils sont les images des invariants, ainsi que P2 et W2 sur le domaine de Gârding
associé à la représentation g -> 11(g) du groupe de Poincaré.

Pour la partie B :

La démonstration reste absolument la même à ceci près que dans le cas de l'extension
Hm P2 et W2 doivent être remplacés par les deux invariants

E-~et(j- — K ApY C.Q.F.D.I ni \ -m J

Notons que si la représentation g -> H(g) du groupe de Poincaré est irréductible on
montre aisément (Bargman 1947) en appliquant le lemme de Schur à la transformée
de Cayley de l'opérateur P2 (resp. W2) que P2 P2** (resp. W2) est défini sur tout
l'espace d'Hilbert 7/ et qu'il se réduit à la multiplication par un scalaire.

L'intérêt de définir la représentation de l'algèbre enveloppante de l'algèbre de Lie
sur le domaine de Gârding tient au caractère général du résultat obtenu, ce qu'on
perd si on a recours aux expressions obtenues directement à partir de la forme
particulière de la représentation. De plus du point de vue où nous nous plaçons, le
domaine de Gârding présente l'avantage de se transformer en lui même lorsqu'on
passe d'une représentation unitaire à une autre représentation unitairement
équivalente, ce qui n'est pas généralement le cas lorsqu'on considère un domaine particulier
lié à la forme particulière de la représentation, comme nous le ferons un peu plus loin.

Malheureusement notre démonstration ne recouvre pas l'ensemble des observables.
En effet, il faut bien s'attendre à ce que généralement toutes les observables ne soient

pas définies indépendamment de la représentation car quel sens donner exactement
au spin d'une masse nulle Ainsi dans le formalisme relativiste, le spin dans sa formulation

trivectorielle, l'hélicité, le moment angulaire orbital, l'opérateur de position ne
sont pas les images d'éléments de l'algèbre enveloppante de l'algèbre de Lie. Il suffit
par exemple de se reporter aux expressions des opérateurs de spin et des opérateurs de

position obtenus par Berg (1965), en fonction des opérateurs infinitésimaux, pour
s'en convraincre. Le cas non relativiste est plus favorisé car l'opérateur de position
X \\m N le moment angulaire L ljm NAP, ainsi que S J — L sont des

images d'éléments de l'algèbre enveloppante de l'algèbre de Lie mais L et S échappent
néanmoins à l'analyse précédente. Aussi sommes-nous contraints de recourir aux
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formes particulières des représentations. Nous considérerons les représentations
unitaires irréductibles dans le formalisme canonique et dans le formalisme hélicité
(appendice I) ; nous distinguerons le cas relativiste du cas non relativiste.

C. Cas relativiste: masse positive et spin j
oC) Formalisme canonique

Dans le cadre du formalisme canonique, on définira le trivecteur spin j: S(j) par
l'intégrale directe:

e
S{J) =fs{j) (p) dfi(p) où d,x(p) ^ (11)

et où le champ p -> 5(j:)(f>) est un champ constant: S{j)(p) est en effet égal aux
3 générateurs S1, S2, S3 de la représentation irréductible de SU(2) indexée par /.
Les 3 opérateurs S' sont évidemment bornés. Le champ p -> Sj(p) est donc
//-essentiellement borné par j. Les 3 opérateurs S, sont définis sur tout l'espace d'hilbert,
ils sont bornés (de borne j) et de plus symétriques. Ils sont donc auto-adjoints.

Le lemme 1 rappelle un résultat bien connu mais généralement mal formulé.

Lemme 7

On a:
©

U(a, A)-i Sj U(a, A) J'R<(p, A) S}(p) dfi(p) (2)

où Rc(p, A) désigne la rotation 3x3 engendrée par la matrice 2x2.

AA~\)p A Ap e SU(2) soit R<(p, A) R(AAj])p A Ap)

Démonstration

En effet, soit:

(U(a, A) f)s (p) e'^JjDW (A'f1 A AA~{\)p) /,, (A(A)~l p)
s'

La représentation [m, f] considérée.
On a:

(U(a, A)-' S, U(a, A) f)s (p) e~^^D\H (A'f1 A~* AA{A)p) [(5,. U(a, A)) /],

(A(A) p)

S Dis~sl (Aa7a\p A A;) (Sj (A(A) p))ti,t Di2S3 (AAJA\p A A%) fH(f)
Si, s2, s3

or

E D^ {ACAfd)P A AD SU OU (A%l)P A A%) R"k(p, A) S*Sj

cette dernière formule n'est rien d'autre que la relation générale

U(B) P U(B)-i Rf(B-i) fj
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où B -> H(B) est une représentation de SU (2) et les opérateurs /' les opérateurs
infinitésimaux habituels dans la représentation considérée, écrite dans la représentation

irréductible D,. En conclusion: H(a, A)-1 Sj(p) H(a, A) est l'opérateur
decomposable engendré par le champ p -> Rc(p, A) Sj(p) /«-essentiellement borné.

Nous avons néanmoins le résultat négatif suivant :

Le domaine de Gârding n'est pas stable par les opérateurs de spin Sj

Soit en effet, u un élément du domaine de Gârding:

i(p) f(p(a, A) (U(a, A) /) (p) da dA

Considérons Sj u. Comme chacun des opérateurs Sj est borné, il commute avec
l'intégrale forte et l'on peut écrire :

Sj u f<p(a, A) Sj(U(a, A) f) da dA

si on note
©

S] =JrHP, A) Sj(p) dpt(p)

on a en vertu du lemme 2

Sj U(a, A) U(a, A) S]
et

SjU= cp(a, A) U(a, A) (S'} /) da dA

Or un simple examen des éléments de matrice de la rotation Rc(p, A) nous montre
qu'ils ne peuvent être absorbés à la fois par la fonction <p(a, A) et par la fonction/ de

façon qu'on retrouve la forme habituelle d'un élément du domaine de Gârding.
D'où la conclusion.

Néanmoins l'opérateur Sj, restreint au domaine de Gârding est un opérateur
essentiellement auto-adjoint.

On peut, pour étudier la polarisation longitudinale, partir de l'expression Hf
(j/P2)-1 PJ. On sait en effet que P Jest essentiellement auto-adjoint sur le domaine
de Gârding.

Néanmoins les propriétés mathématiques de Hf n'apparaissent pas simplement
sur cette expression et il est préférable de partir de l'expression du spin. L'hélicité Hj
est en effet un opérateur unitairement équivalent au spin. C'est l'opérateur

©

Hj [d'(Ap^ Af) Sj(p) D' (A»~l A;) d,,(p)

or
DUA*,-1 AHp) Sj(p) U (Af-1 A;) R(w^k) Sj(p)

où w (p)l\p | et k le vecteur unitaire de l'axe 0 z et R (w -> k) est la rotation dans
le plan (w, k) d'axe w A k qui applique w sur k.

L'étude de cette rotation est grandement facilitée si on l'écrit sous la forme d'un
produit de deux symétries (Michel 1963/64, Bacry 1963). Elle est le produit de la
symétrie par rapport au plan orthogonal à w, et de celle par rapport au plan orthogonal
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à w + k. Or la matrice correspondante à une symétrie par rapport à un plan orthogonal
à un vecteur b s'écrit

_ 2b® b

|6|2
En effet si a ¦ b 0 on a

/A 2 b ®b\ I. 2 b ®b\
y--\b? )a==a et {^-^b-f-)b -b-

La rotation de Jacob et Wick s'écrit alors :

7-. / \ A (k + w) (x) (k + w) -,R (w -> k) 1 - ^--- i^L_T + 2 k (g) w 14

Remarque

Notons que cette rotation n'est pas définie dans deux cas, celui où p 0 et celui où

w — k. Dans le premier cas, la première symétrie n'est pas définie car w ne l'est

pas et dans le second cas c'est la seconde symétrie qui n'est pas définie.
L'hélicité est donc représentée par l'opérateur suivant:

©

Hj=fR(W->k)Sj(p)dfi(p)

comme Hj est unitairement équivalent à S, il est borné, (de borne /), défini sur tout
l'espace d'Hilbert et auto-adjoint; le champ

p^R(w^k)Sj(p) Hj(p)

est /^-essentiellement borné par /.
A la place du lemme 1 nous avons maintenant la relation suivante :

©

U(a, 4)-1 Hj U(a, A) J'RH(p, A) Hj(j>) dfx(p)

où

RH(P, A) R(AHA-A)p A A»)

Pour démontrer cette égalité, il suffit de partir de la définition de Hj. On en déduit
aussi que le domaine de Gârding n'est pas invariant par les opérateurs ff-.

Chacun des opérateurs H) est essentiellement auto-adjoint lorsqu'on restreint son
domaine de définition au domaine de Gârding.

On a:

S2=H*=-^ j(j+l).
On définit les opérateurs de moment angulaire L' par

U= p - S).

Ils sont définis sur le domaine de Gârding associé à la représentation [m, j].

Proposition 1

Chacun des L' est essentiellement auto-adjoint sur le domaine de Gârding.
La démonstration est basée sur le lemme suivant.
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Lemme 3 (cf. Dunford et Schwartz 1963, p. 1189)

Comme S* est un opérateur auto-adjoint et défini partout on a L1* J1* — S).
En effet, comme Sj est défini partout, DLi Dp pour tout i. De plus, comme

((P-s>)f,g) (pf,g)-(s;f,g)
et que S] est continu il suit immédiatement des définitions que

(/*-s')* f*
et pour tout élément/e Dji et g e Dp* on a

((/ - S})* f, g) (/, (p - S}) g) (/, /' g) - (/, S| g)

(/*/, g) -(Sj'f, g) ((/*- 5**)/, g)

d'où le résultat. Mais comme / est essentiellement auto-adjoint on a en itérant le lemme

L*** p** - S{. /*'* - S' U* C.Q.F.D.

L'opérateur L2 échappe à l'analyse précédente.
Evidemment le domaine de Gârding n'est stable ni par chacun des opérateurs L',

ni par L2 puisque il ne l'est pas par les opérateurs Sj.

ß) Formalisme hélicité

L'isomorphisme entre les deux formalismes est engendré par l'opérateur unitaire T
suivant :

©

%(P) =ED*s (AT A%) fs(P) où T fui (A»'1 A;) dfi(p)

C'est l'isométrie entre les deux représentations spectrales associées aux deux bases

(P, Sf) et (P, Hf). Les deux domaines de Gârding engendrés par chacune des représentations

sont en correspondance biunivoque par l'isomorphisme précédent. En effet si

on note g -> Uc(g) la représentation canonique et g -> 1lH(g) celle correspondant au
formalisme hélicité, IIe(<p) fc un élément du domaine de Gârding de la première et
HH(<p)fH un élément du même domaine pour la seconde, alors on a:

T(Uc(cp)ic) UH(<p)(Tf)
et réciproquement:

T~1(UH(<p)fH) Uc(cp)(T-1fH)-

Si 0 est une observable dans le formalisme canonique, dans le formalisme d'hélicité la
nouvelle observable est T 0 T-1. On voit donc que toutes les conclusions précédentes
concernant les observables établies dans le cadre du formalisme canonique sont
valables ici à condition de se rapporter au domaine de Gârding associé à la nouvelle
représentation. C'est ce qui fait notamment l'intérêt de considérer le domaine de

Gârding alors que la remarque précédente risque d'être fausse pour un autre domaine,
comme nous le verrons. Seule la représentation change. Ainsi c'est l'hélicité qui est

représentée par l'intégrale directe :

©

Hj^fsd^p)
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alors que le spin, lui est représenté par le champ:

©

Sj =Jr (k -> w) Hj(p) d^p) où w -A

où R (k -> ti») est la rotation :

7?(fe^M;)=1_Jfe+^®(fe+"') + 2U,®*.v ' 1 + ft ¦w w

Les mêmes conclusions en ce qui concerne toutes les observables sont valables dans ce

cas puisque T est un opérateur unitaire.

D. Cas relativiste masse m 0 et spin j
Les observables physiquement intéressantes sont P°, P, J, J2, P2, P-J ainsi que

W qui ici est simplement W j Pfl ¦ P2 et W2 sont tous deux nuls. On voit donc

que toutes ces observables sont essentiellement auto-adjointes sur le domaine de

Gârding.
Il ne peut être question de spin au sens strict pour une masse nulle et le moment

angulaire L n'est pas une observable intéressante puisqu'elle ne peut pas être définie
canoniquement par manque de définition du spin.

E. Cas non relativiste masse positive et spin j
Ce cas est strictement identique au cas relativiste à quelque changement près.

Néanmoins le cas est plus favorable car nombreuses sont les observables qui sont les

images d'éléments de l'algèbre enveloppante de l'algèbre de Lie si bien que les

résultats obtenus sont plus généraux.
Nous avons démontré que les opérateurs E, P, J, K, P-J, P2, J2 ainsi que les

invariants E — P2j2 m et (J — 1/m K A P)2 sont des opérateurs essentiellement

auto-adjoints sur le domaine de Gârding.
Signalons que contrairement au cas relativiste 1/m K s'interprète comme l'opérateur

de position du système de masse m. L'opérateur de spin est l'image d'un élément
de l'algèbre enveloppante de l'algèbre de Lie puisque

S=J- - KAP
m

c'est-à-dire que le moment angulaire orbital est ici

L — KAP
m

Contrairement au cas relativiste, c'est aussi l'image d'un élément de l'algèbre enveloppante

de l'algèbre de Lie.
Le comportement du spin non relativiste dans une transformation de Galilée

quelconque est très simple puisque l'on a:

U-Hb, a, v, B) Sj U(b, a, v, B) - R(B) Sj
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Le spin est invariant dans une transformation de Galilée pure et l'opérateur borné Sj
est essentiellement auto-adjoint, sur le domaine de Gârding; contrairement au cas
relativiste le domaine de Gârding est stable par les opérateurs Sj.

De même en ce qui concerne l'hélicité dont la définition est strictement identique
au cas relativiste, à savoir :

©

Hj=JR(W^k)Sj(p)d3p.

Hj est donc aussi essentiellement auto-adjoint sur le domaine de Gârding. Notons la
relation importante suivante :

©

U-\b, a, v, B) Hj U(b, a, v, B) =JR(B^p + m, B Bp) Hj(p) d3p

où Bp est la rotation [appendice I; (1)].
Cette relation a pour conséquence que le domaine de Gârding n'est pas invariant

par les opérateurs Hj, suivant un argument strictement identique au cas relativiste
du spin Sj.

Les 3 opérateurs L J — Sj sont aussi essentiellement auto-adjoints sur le
domaine de Gârding.

III. Seconde définition des observables utilisant les espaces P et 5

A. Prologue

Nous avons défini l'ensemble des observables d'une particule libre sur un domaine
commun dense, associé à la représentation considérée. Ce domaine présente l'avantage
d'être invariant à la fois par la représentation de l'algèbre enveloppante de l'algèbre
de Lie et par la représentation globale. Les observables sont en général essentiellement
auto-adjointes sur ce domaine et ce sont évidemment les extensions auto-adjointes qui
les caractérisent ; on ne fera pas la distinction entre les deux par la suite. La considération

du domaine de Gârding est intéressante par le caractère général des résultats
obtenus, indépendants notamment de la forme particulière de la représentation
considérée. Néanmoins le domaine de Gârding ne peut pas être stable par certaines
observables comme le spin, le moment orbital et l'hélicité dans le cas d'une particule
relativiste de masse m et de spin j et par l'hélicité dans le cas non relativiste.

Ce n'est pas la seule définition possible des observables et cela peut avoir quelque
importance. Le domaine de Gârding n'est qu'un sous domaine de l'ensemble des

vecteurs différentiables et il peut y en avoir d'autres qui possèdent, vis-à-vis de
l'ensemble des observables, les mêmes propriétés que le domaine de Gârding. Que le choix
ne soit pas unique est particulièrement important lorsque, dans la seconde partie, nous
diagonaliserons une sous algèbre abélienne maximale car le développement sur les

vecteurs propres fait intervenir un domaine particulier muni d'une topologie
convenable. De plus pratiquement on fait toujours intervenir un domaine différent de
celui de Gârding lorsqu'on calcule et exprime, de la manière habituelle, les opérateurs
infinitésimaux des groupes de Poincaré et de Galilée.

En effet si l'on considère le formalisme canonique pour une particule de masse m et
de spin /, le calcul des opérateurs infinitésimaux donne pour ceux ci des expressions
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qui s'expriment à l'aide des opérateurs aux dérivées partielles et aux opérateurs de

multiplication par les variables considérées.
A priori ces opérateurs sont définis sur des domaines de fonctions ayant de bonnes

propriétés de differentiation et deux domaines particulièrement pratiques sont

D(î/2j+1) et S(U2j+i)- Rappelons brièvement la définition de ces ensembles. T)CU2j^ i)
est ici l'ensemble des fonctions définies sur l'hyperboloïde de masse Qm (p2 m;
Po > 0), différentiables, à support compact surßm, et à valeurs dans î/2j-n- $(Hzj+i)
est l'espace des fonctions / différentiables sur Qm, à valeurs dans li2j+i> telles que,
pour tout n > 0 et tout indice de differentiation q, la fonction (1 + p2)"'2 Dq f soit
bornée sur Qm.

°"a
VCU2j+1)CSCU2j+1).

Rappelons, puisque 7/2j+i est de dimension finie, qu'une condition nécessaire et
suffisante pour que/eD(î/27+1) (resp. S(M2j+1)) est que pour tout he ?/2j+i on ait
h-fet)(Qm) (resp. S(Qm)) où h-f est le produit scalaire dans %/+i-

Le choix de VÇH2j+i) et de S(Uij+1) est pratiquement imposé par les considérations

de la seconde partie. De plus T)ÇU2j+1) t)(ßm) ® Hzj+i et S(ïl2J+i)
S(Üm) ® %j+1.

On peut alors se poser un certain nombre de problèmes. A savoir

1) Quel est le rapport entre la nouvelle définition des observables et celle obtenue en

utilisant le domaine de Gârding?

2) Les nouveaux opérateurs définissant les observables sont-ils essentiellement auto¬

adjoints sur VÇUzj+i) et sur SÇU2J+1).

La solution du premier problème permet de résoudre le second. Elle repose sur le

théorème 2, comme au second paragraphe. Là, encore, A sera un opérateur symétrique
représentant un élément de l'algèbre enveloppante de l'algèbre de Lie, calculé directement

et définie sur T>ÇU2j+i) et sur S(U2j + 1). Par suite, si la condition (1) du théorème
2 est vérifiée, la seconde sera automatiquement vérifiée.

B. Cas relativiste: masse positive et spin j. Formalisme canonique.

1° On considère d'abord les opérateurs représentant les éléments de l'algèbre
enveloppante de l'algèbre de Lie.

Comme on peut le voir en considérant les expressions explicites (appendice I)
le domaine de définition de ces opérateurs est T>('H2j +1 et ceci les définit complètement.

D(?/2j+1) est stable par ces opérateurs. Ils sont aussi définis sur S(H2j+1) mais
en vertu du lemme 2 ci-dessous, et de l'inclusion D(?/2j+1) C $(7/2,.+]) d suffira de
considérer le premier domaine, sur lequel chacun des opérateurs précédents est symétrique.

Avant de parvenir aux résultats essentiels (théorèmes 3 et 4) nous aurons besoin
de démontrer un certain nombre de résultats préliminaires.

Lemme 2

Soient H1 et H2 deux opérateurs symétriques tels que Hl C H2. Si H1 est

essentiellement auto-adjoint, alors H2 l'est aussi et H1 H* H** H2 H* H**.
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Démonstration

Si H1 Cff2ona H* C H* est aussi H** C H**. Comme H*2* C H* on a donc

#ï* C #** C H* C #*. Comme H* H*m, on en déduit le résultat. C.Q.F.D.

Proposition 2

Soient G un groupe de Lie analytique ; r un sous-groupe fermé de G. On suppose
G/r muni de la structure de variété analytique unique telle que l'application
(g'P) ""*"g'P ou g^G et peGjr soit différentiable. De plus soit "U un espace
d'Hilbert de dimension finie et (p, g) -> T(p, g) une application de G/r X G dans
l'ensemble des opérateurs unitaires définis sur "M- On suppose que pour tout g
et pour tout h e "U l'application p -> T(p, g) h est différentiable.
Soient (p G V(G) et /e V(U). Alors la fonction W: G/r -> 11 définie par

np) f<p(g)T(p,g)f(g-ip)dg

où dg est la mesure de Haar invariante à gauche sur G, appartient à UÇH).

Démonstration

Soit X(p, g) la fonction de G/r x G dans 11 suivante

HP,g)=<p(g)T(p,g)f(g-1p).

La démonstration de l'intégrabilité pour tout p de la fonction g -> X(g, />) et celle de la
différentiabilité de la fonction fne présentent aucune difficulté. Aussi nous porterons
notre attention sur la propriété du support de W.

Soient supp <f> le support de la fonction <j> et supp/celui de la fonction/. Le support
de la fonction X(g, p) est compact. En effet puisque T(p, g) est toujours 4= 0, X(g, p)
est nulle pour tout g, située dans le complémentaire de supp <j> et pour tout p situé
dans le complémentaire de (J g • supp/et seulement pour ces éléments.

g e supp (4

or (J g supp f={g-peQm;ge supp <f> et p e supp /}
g esupp0

C'est une partie de Qm compacte car c'est l'image par l'application continue (g, p) ->
g-p de l'ensemble compact supp <j) x supp/. Donc

supp X supp (j) x [J & ' supp /
g 6 supp $

Comme l'ensemble produit de deux parties compactes est compact, supp X est compact.
Donc il est clair que W(j>) 0 pour tout p situé dans le complémentaire de

(J g • supp/ par suite supp W C (J g • supp/; comme le support d'une fonction
gesupp0 gesupp^
est fermé par définition, supp W est compact. C.Q.F.D.

Corollaire 1

Soit H(a, A) la représentation de G :

f(p) ^X eitt* D> (Ai-1 A AA.lp) f{A~HA) p).
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Alors si f(p) e VCU^+t) et <p e V(G), la fonction U((p) f définie par:

P -> (WW /) (#) =/?(«. 4) *"* -D'^;-1 ^ 4« _>,) /(/l-1^) #) & <M
G

est un élément de V(U2J+1) \ en particulier *U(«, A) V(U2j+1) C D(%/ + 1).

Ce corollaire n'est que l'application de la proposition 2 au groupe de Poincaré et à

G/r =SL(2, C)/SU(2)=flm.
Seul le cas de la différentiabilité mérite un examen par suite de la présence du

terme eîa* D^Ap-1 A AcA-,p) f(A~1(A)p). Or quelque soit heìl2j + 1 l'application
B -> D'(B) h est différentiable car la représentation est de dimension finie. Il suffira
donc que l'application

p-*Ap-iAAA-lpeSXJ(2)
»

soit aussi différentiable pour tout A.
L'application p -> A"1 p est, pour tout A, un difféomorphisme deßm sur lui-même

donc différentiable quelque soit A ; de plus le choix fait pour la transformation
p ¦> Ap (appendice I) est tel que l'application p -> Ap est elle-même différentiable.
On en déduit que l'application

p-*D\A*p^AAA^p)h
est une application différentiable de Qm. dans 142j+1 et qu'il en est de même de

l'application
p -> ê>* d^a;-1 a AA_lp) / (A-HA) p).

On a bien donc U(a, A) D(%J+1) C V(U2j+1). C.Q.F.D.
Nous pouvons donc conclure en vertu du théorème 2 que les opérateurs P0, P, N, J,

P2, W2, P • J, P2 et J2 sont essentiellement auto-adjoints sur "D(M2j+i) et par suite sur
S(H2j+1) et que leurs fermetures coïncident avec celles précédemment définies par
l'intermédiaire du domaine de Gârding.

2° Autres observables

Les opérateurs de spin 5- sont définis sur VCU2j+1) et de plus SJT)(':H2j+1) C
D(?/2j+i)- Sur ce domaine ils sont essentiellement auto-adjoints.

Même conclusion pour L J — Sj puisque la démonstration faite précédemment
(lemme 3) reste la même. De plus sa fermeture L est identique à celle définie par
l'intermédiaire du domaine de Gârding soit J* — S;.

Proposition 2

L'opérateur L2 est essentiellement auto-adjoint sur D(?/2j + 1) et sur S(U2j+1).
Exiger que L2 soit un opérateur essentiellement auto-adjoint, c'est exiger en vertu du
critère de Nelson (1959, Th. 5, p. 602), que la représentation de l'algèbre de Lie de
SU (2) engendrée par L est la représentation infinitésimale associée à une représentation

unitaire du groupe. Ce critère affirme en effet qu'il suffit pour cela que L2 soit
aussi un opérateur essentiellement auto-adjoint. Or, pour le démontrer, il suffit alors
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de montrer l'existence d'une représentation de SU(2) qui admette les opérateurs L
comme générateurs infinitésimaux, donc L2 comme invariant.

Or il est évident que la représentation en question est la suivante :

f(P)^>f(R-HB)p).
L2 est un opérateur défini sur V^j+i) et symétrique. L'argument pour démontrer
qu'il est essentiellement auto-adj oint est le même que celui que nous venons d'employer
pour le groupe de Poincaré. Il repose sur le théorème 2 et il suffit de démontrer que
ÎD(7/2j+1) est invariant par les opérateurs T(<f>) associés à la représentation T(B) et à

une fonction <f> définie sur le groupe SU(2) et différentiable.
La démonstration est, en tous points, identique à celle du corollaire 1 et nous

permet d'affirmer que L2 est essentiellement auto-adjoint sur D(?/2;-+1). C.Q.F.D.
Néanmoins, les mêmes méthodes ne nous permettent pas d'affirmer que l'opérateur

L2, en tant qu'opérateur symétrique défini sur le domaine de Gârding, et qu'on notera
L%, soit essentiellement auto-adjoint sur ce domaine.

En fait, la restriction de la représentation du groupe de Poincaré à SU(2) a dans
le formalisme canonique, la structure très simple suivante :

Hiß)
f(B) --—? D\B)f(R-\B) p) pour fe L\(Qm, U2}+1)

Or on sait que L\(Qm, ?/2j+1) est isomorphe à L2ß(üm) ® î/2j+1 (Dixmier 1957).
Dans ce dernier espace, la représentation H(B) est simplement le produit tensoriel
de la représentation suivante de SU(2) dans L^ÛJ :

f(p)^f(R-\B)p)oùfeLl(QJ (3)

et de la représentation irréductible indexée par j :

h^DJ(B)h où hell2}+1. (4)

Ce que nous avons appelé L n'est rien d'autre que les 3 générateurs de la représentation
(3) et les 3 opérateurs de spin /: Sj les 3 générateurs de la représentation (4).

En conclusion nous pouvons énoncer le théorème suivant :

Théorème 3

Les opérateurs P0, P, J, N, P2, W2, P-J, P2, J2, L2, L, S'f, Hf, Sf, Hj sont
essentiellement auto-adjoints sur T)(U2j+i) et sur S(3/2j+1). Leurs fermetures coïncident
avec celles précédemment par l'intermédiaire du domaine de Gârding. De plus
toutes ces observables, à l'exception de H, stabilisent U(°H2j+1) et S(?/27+1).

C. Cas de l'hélicité

Il y a une difficulté en ce qui concerne l'hélicité H,; de par définition même les

opérateurs sont définis sur D(7/2j + 1) mais on ne peut plus affirmer que Hj T>('U2j+1) C
"D(U2j+1) par suite des deux indéterminations dans la rotation R(w ->fe). Chacun
des H'j est néanmoins essentiellement auto-adjoint sur V(U2j+1).

On peut chercher néanmoins à palier cette difficulté en considérant d'autres
domaines que V(H2j+1) ou S(U2J+1). En effet seules les observables Hf P-S/\P\ et
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H? 1 (i + 1) ont nn intérêt pratique car elle entrent dans la constitution des systèmes
complets d'observables qui commutent (cf. paragraphe IV). La forme même de

l'opérateur représentant la polarisation longitudinale nous invite à considérer les
domaines suivants: tout d'abord t?0(?/2j-+1). C'est le sous espace vectoriel fermé de

"DCUìj+ì) formé des fonctions dont le support compact est contenu dans Qma

&m — {(m> 0)} où (m, 0) est le point stabilisé de la variété ûm,D0(?/S!-+1) est dense

dansL2(ßm,#2i+1).
On peut aussi considérer l'espace S0(?/2j-+1) (cf. Antoine 1966). C'est le sous

espace vectoriel fermé de S(3/2j+1) formé des fonctions appartenant à SCU2j+1) qui
s'annulent au point (m, 0) ainsi que toutes leurs dérivées. C'est un sous espace dense
de Ll(Qm, %J+1) puisque t)0(#2i + 1) C S0(%}+1).

Le problème est de savoir si ces domaines sont acceptables pour les observables,
tout au moins pour un certain nombre d'entre elles.

Toutes les observables que nous avons considérées jusqu'ici sont définies sur
T>oCUîj-,i) et sur $0(U2j+1).

T>oÇH2j+i) et S0ÇH2j+1) sont stables par l'ensemble des observables à l'exception
de Hj et de Hf. De plus elles sont symétriques sur chacun de ces domaines. Le
problème se pose maintenant de savoir si elles sont essentiellement auto-adjointes.
Il suffit de considérer le cas de T)0(H2j + 1) car elles le seront automatiquement sur
S0(':H2j+1). La méthode de démonstration reste la même que pour l'espace D(?/2j + 1).

Néanmoins elle est plus limitée car, si elle repose toujours sur le théorème 2, on ne
peut plus affirmer un résultat analogue, pour T>o(tt2j+1), à celui valable pour T)CU2j+1)
exprimé dans le corollaire 1. La raison en est très simple. La présence des transformations

de Lorentz pures ne nous permet pas d'affirmer que le support de la fonction

P -> (X%) t)(P) /V(«. A) eia* D\A^ A AcA.lp) f(A~l(A) p) da dA

pour/e!D0(?/2i4.1) ne contient pas le point exceptionnel {(m, 0)} que nous voulons
justement éviter. Par contre un simple examen nous montre que le corollaire 1 reste
valable lorsqu'on restreint la représentation du groupe de Poincaré aux sous groupes
suivants E3, SU(2), les translations dans le temps et dans l'espace, ainsi que par la
représentation T(B) de SU(2). Plus précisément D0(7/2 -+1), ainsi que S0(U2j+1) sont
stables par la restriction de la représentation à chacun de ces sous groupes et par la
représentation T(B). On en conclut donc d'une manière strictement analogue au cas
de U(U2j+i) que les opérateurs P°, P, P2, P-J, J2, J, L2, L sont essentiellement
autoadjoints sur T)0ÇU2j+1) donc aussi sur S0(1l2j+1) ; à ces opérateurs il faut évidemment
ajouter les opérateurs P2, W2, Sf, Hf qui sont des simples scalaires, ainsi que Sj et Hj
puisqu'ils sont bornés. Leurs fermetures coïncident avec celles définies précédemment
par l'intermédiaire de E>(74/+i) et par suite par l'intermédiaire du domaine de Gârding.
Echappent à cette analyse les opérateurs N, ce qui est moins grave puisque ces

opérateurs n'ont pas d'interprétation en termes d'observables d'une particule
libre.

Nous pouvons alors énoncer le théorème suivant qui résume l'ensemble des
résultats obtenus.
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Théorème 4

Les opérateurs P0, P, J, P2, W2, P-J, P2, J2, L2, L, Sf, Hf, Sjt Hj sont essentiellement

auto-adjoints sur D0(?/2i+1) et sur S0(?/2^+1). Leurs fermetures coïncident
avec celles définies précédemment par l'intermédiaire de S(î/2j-+1) et de D(?/2j+i)
et par l'intermédiaire du domaine de Gârding. De plus toutes ces observables,
à l'exception de Hj et de Hf, stabilisent V0(tt2j+i) et S0(W2j+i)-

D. Cas non relativiste m + 0 spin j; formalisme canonique

La situation est strictement identique au cas relativiste et la démonstration du
corollaire 1 est encore plus simple puisque ici la forme de la rotation (Appendice I ;

(2)) est très simple car elle ne dépend pas de p.
Les conclusions des théorèmes 3 et 4 restent les mêmes, à condition de substituer

à P2 et W2, les deux invariants du groupe de Galilée, à N, le générateur des
transformations de Galilée pures K, à Qm, l'espace R3, et à ûma, l'espace R3, R3 — {0}.

E. Cas relativiste et non relativiste: formalisme hélicité; m 0

Ces trois cas présentent tous la même particularité, à savoir de ne pas pouvoir
s'analyser par la méthode précédente pour la raison simple que la transformation
p ->Ap n'est pas définie pour tout p. Il faudrait alors exclure des supports des fonctions
considérées l'ensemble de mesure nulle où la transformation n'est pas définie.
Malheureusement le domaine ne serait plus invariant par les opérateurs H(q>) car on ne

pourrait pas assurer que le support de H(<p) /ne contienne pas l'ensemble d'intermina-
tion. Néanmoins dans le cas d'une particule de masse m 4= 0 et de spin ;', et dans le

cas du formalisme hélicité on peut très bien considérer comme domaine de définition
des observables l'image de T>0ÇU2j + xi ou de S0CU2j+1) par l'isomorphisme T entre le
formalisme canonique et le formalisme hélicité. L'ensemble des conclusions du
théorème 4 restent valables si l'on considère TVoCU^+i) et T S0(U2J+1) et les

opérateurs unitairement équivalents à ceux du formalisme canonique. Ceci est valable
aussi bien dans le cas relativiste que dans le cas non relativiste.

IV. Commutativité et systèmes complets d'observables qui commutent

Le dernier problème à résoudre est celui qui concerne la commutativité des

résolutions spectrales des opérateurs représentant certaines observables. On ne fera
qu'esquisser une démonstration.

Ce qu'on peut vérifier très aisément, c'est une égalité du type S3 P° P° S3 sur le
domaine de Gârding ou sur T>ÇH2j+1). Ceci n'entraîne pas, comme l'a montré Nelson
(1959), la commutativité de leurs familles spectrales respectives. Nelson a effectivement

montré l'existence de deux opérateurs essentiellement auto-adjoints A et B tels

qu'ils aient un domaine commun dense et invariant D et tels que A B x B A x pour
tout x e D mais tels que les résolutions spectrales de A et de B ne commutent pas.
En fait l'existence d'un tel contre exemple est lié à l'existence de représentations
locales d'algèbre de Lie, c'est-à-dire de représentations qui ne soient pas les représentations

infinitésimales associées à une représentation unitaire du groupe. Mais dans
notre cas, les observables qui nous intéressent de ce point de vue sont ou bien les
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générateurs infinitésimaux d'un groupe, ou bien l'invariant d'un groupe, ou bien des

opérateurs bornés définis partout ; aussi suffit-il de vérifier que les opérateurs unitaires
correspondants commutent au sens ordinaire, ou bien qu'ils commutent avec un
opérateur essentiellement auto-adjoint représentant un invariant ou un opérateur
borné: ce qui se fait beaucoup plus facilement, pour assurer la commutativité des

résolutions spectrales (Ségal 1952, corollaire). Tout ceci afin de constituer des

systèmes complets d'observables qui commutent ou bases (Jauch 1960) et d'en
obtenir leurs représentations spectrales (Jauch et Misra 1965).

Nous étudierons dans un article ultérieur cinq bases cinématiquement importantes
que ce soit dans le cas relativiste ou dans le cas non relativiste. Ce sont:

(P, Sf), (P, Hf), (P«, J2, P, Hf),

(P°, L2, J2, P), (P°, L2, L3, Sf)

Chacun de ces systèmes est un système complet. Par définition même, puisqu'on
constate que la théorie de Wigner-Mackey fournit bien une représentation spectrale
des deux premiers systèmes et pour les autres on le montrera dans un article ultérieur
en construisant explicitement l'isomorphisme avec les deux premières représentations
spectrales.

V. Conclusion de la première partie
Nous avons montré, aussi bien dans le cas relativiste que dans le cas non relativiste

que l'ensemble des observables d'une particule libre [m, j] (m =f= 0 ou m 0) peut
être défini par des opérateurs symétriques sur le domaine de Gârding associés à la
représentation irréductible considérée. Nous avons démontré, à l'exception de L2,

qu'ils étaient en outre tous essentiellement auto-adjoints sur ce domaine.
Nous avons étudié ensuite une autre définition des observables pour une particule

[m, j] m 4= 0 faisant intervenir des domaines différents soient t)ÇU2j+i)y S(U2j+1),
D0(?/2j+1) et S0("U2j+1). Dans le cas du formalisme canonique, nous avons démontré

que toutes les observables sont définies sur ces domaines par des opérateurs essentiellement

auto-adjoints dont la fermeture auto-adjointe coïncident avec celle des opérateurs

de la représentation sur le domaine de Gârding. Donc du point de vue physique,
les deux définitions sont strictement équivalentes.

Enfin nous avons envisagé le problème de la commutativité forte de certaines
observables.

Seconde partie

CHANGEMENT DE REPRÉSENTATIONS SPECTRALES

VI. Prologue

Nous avons dans la première partie défini les observables cinématiquement
intéressantes d'une particule libre, par des opérateurs essentiellement auto-adjoints,
tous définis sur un même domaine. En fait, nous avons poursuivi deux buts. Le
premier est la définition des observables par des opérateurs auto-adjoints. Le second

correspond au troisième volet du tryptique formé par l'ensemble de la formulation
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de la mécanique quantique par Dirac. Ce premier volet est associé à la notion de

système complet d'observables qui commutent (Jauch 1960) et le second à la notion
de représentation spectrale d'un tel système (Jauch et Misra 1965). Le troisième
correspond au problème du passage d'une représentation spectrale d'un système à
celle d'un autre, en particulier à la détermination de l'isométrie entre les deux et au
développement suivant les «vecteurs propres» d'un système.

Si les deux premiers cas ont pu bénéficier d'un exposé rigoureux et suffisamment
général pour recouvrir les besoins de la mécanique quantique, comme on peut le voir
en se reportant aux travaux précités, il ne peut en être de même du troisième cas.

Dans certaines conditions et pour un opérateur seulement on peut préciser la forme
de l'isométrie linéaire entre l'espace de définition de l'opérateur et l'espace d'Hilbert
associé à sa représentation spectrale (Dunford et Schwartz, p. 1213, th. 11)

(Gerlach 1965). De toutes manières, le théorème précédent ne concerne pas un
ensemble dénombrable d'opérateurs et de plus les conditions supplémentaires imposées
semblent difficilement justifiables du point de vue physique. Les difficultés proviennent

évidemment de l'existence du spectre continu et on peut on opposition aux
théories plus intrinsèques opposer les méthodes modernes de l'analyse fonctionnelle.

La solution est alors plus simple; elle est toujours liée à l'apparition d'un espace
nucléaire; on montrera en effet que le domaine de définition des observables d'une
particule libre, que ce soit le domaine de Gârding, V(M2j+1), S(ïl2j+1) ou D0(%jTi)
et S0(U2j+i) selon les cas, peut toujours être muni d'une topologie qui en fait un
espace nucléaire, topologie strictement plus fine que la topologie hilbertienne initiale.
Les observables qui n'étaient pas continues, le deviennent pour cette nouvelle topologie.

Les vecteurs propres sont tous dans le dual de l'espace nucléaire; un théorème
de Guelfand-Kostyuchenko nous permettra d'écrire le «développement suivant les

vecteurs propres d'une base diagonalisée » et de lui donner un sens mathématique
précis.

Depuis quelques temps des travaux (Grossmann 1964, 1965; Mayer 1965;
Roberts 1966 ; Antoine 1966) employant ces nouvelles méthodes ont été consacrés
à la justification des notions de bras et de kets. Rappelons qu'ici nous poursuivons
un but légèrement différent car nous sommes uniquement intéressés par la structure
de l'isométrie entre deux représentations isomorphes, c'est-à-dire par ce que les

mathématiciens nomment formules de Plancherel et les physiciens coefficients de
Clebsch-Gordan. Nous insistons aussi sur le fait que nous sommes intéressés uniquement

par des problèmes explicites et non généraux car nous sommes persuadés que,
dans la cinématique, les physiciens n'utilisent en fait qu'un petit nombre de formalismes.

Nous bénéficions de la situation favorable d'utiliser les représentations unitaires
d'un groupe car comme nous le verrons les topologies utilisées sont les topologies
habituelles et bien étudiées des espaces S et D. La nucléarité sera toujours assurée.
Alors que dans le cas général, il faut introduire comme l'a fait Roberts (1966) une
topologie plus liée à l'ensemble des observables du système et dont la nucléarité n'est
pas automatiquement assurée.

Un cas particulier important du problème précédent est celui de la décomposition
du produit tensoriel de deux représentations irréductibles du groupe de Poincaré ou de
Galilée en représentations irréductibles et de la définition du coefficient de Clebsch-
Gordan. En fait la décomposition est équivalente à un nouveau choix d'une base pour
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les états des deux particules et le coefficient de Clebsch-Gordan apparaît alors comme
un vecteur propre commun et donc comme une distribution.

Nous rappelons dans l'appendice II un certain nombre de définitions et de théorèmes
qui se trouvent tous dans le tome IV des Distributions de Guelfand et Vilenkin
(1964). On peut aussi les trouver dans Grothendieck (1955) et L. Schwartz (1953/54)
mais il est incontestable que la lecture de la première référence est plus facile pour un
physicien. Néanmoins les définitions y sont données dans un sens trop restreint pour
recouvrir l'ensemble des cas dont nous avons besoin et il sera nécessaire dans ce cas de

recourir au séminaire de L. Schwartz (1953/54). Ensuite nous étudierons, à l'aide
de la théorie précédemment exposée le passage d'un système complet d'observables
qui commutent à un autre. Enfin nous considérerons des exemples physiques
caractéristiques, comme la définition des coefficients de Clebsch-Gordan du groupe de
Poincaré et du groupe de Galilée. Notons qu'indépendamment de nous Rideau s'est
intéressé à la définition des coefficients de Clebsch-Gordan (Rideau 1966).

VII. Représentation spectrale d'un système complet
d'observables qui commutent

A l'aide des concepts et résultats exposés dans l'appendice II nous sommes en

mesure de préciser la théorie de la représentation spectrale des opérateurs
autoadjoints définis dans un espace d'Hilbert équipé 11. Plus précisément nous supposerons
qu'une suite au plus dénombrable d'opérateurs auto-adjoints est définie sur un
domaine dense et qui soit un espace nucléaire et tel que l'application identique de ce
domaine dans -W soit continue, donc nucléaire. On peut supposer tous les opérateurs
continus pour cette topologie, car tel sera le cas dans les applications que nous visons.
Nous nous intéressons uniquement au cas où tous les opérateurs commutent; nous
entendons par là que leurs familles spectrales respectives commutent et on se restreint
aussi au cas où ce système est «complet». Les opérateurs en question définissent des

observables et un système d'observables qui commutent est complet s'il engendre une
algèbre abélienne maximale de l'algèbre de von Neumann engendré par l'ensemble des
observables du système étudié. Il suffit d'ailleurs de se reporter à (Jauch 1960) pour
de plus amples développements.

Le théorème de Jauch et Misra (1965) affirme qu'il existe une représentation
spectrale d'un système complet d'observables qui commutent. Plus précisément:

Théorème 5 (Jauch et Misra)
Soit S {Aj}iEN un système complet d'opérateurs auto-adjoints et soient At le

spectre de l'opérateur At et P{ la mesure spectrale associée à l'opérateur A{: il
existe alors une classe unique C de mesures équivalentes définies sur les boréliens
de l'ensemble produit P[A(. Pour chaque élément oeC de la classe il existe une

i
correspondance isométrique bijective:

/<-> u(X1 ,X2, ...,Xt, avec X{eA,

entre 7/ et L2 lpjAt, C\ telle que si:

f*->u(Xx,X2,... ,Xit
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on ait
PAM{) f <-> xufit) «&.*.. ¦¦¦. K, ¦ ¦¦) (»" L 2;

où M,- est un sous ensemble borélien de At et x. (A,-) est la fonction caractéristique
de M,..
Soit Vf la mesure définie sur les boréliens de At par

V{(M{) =y 4?

7JM.
;

(Mj /ly pour f =t= i et My A pour ;' i)
Si la mesure g est absolument continue par rapport à la mesure produit des mesures

Vf, alors l'isométrie a la propriété supplémentaire que :

Aii<r^Xiu(X1,X2, ,Xf)

Nous supposerons que nous sommes toujours dans la situation où les opérateurs A{
se ramènent à des opérateurs de multiplication par la variable X{. C'est le cas dans les

applications physiques. En fait, l'isométrie entre "U et L\ (TI^A s'interprète,

comme nous le verrons, comme la décomposition en sous espaces propres de l'espace
d'Hilbert "U puisque

©

u ~ l\ çtja^ =JdQ c

où C est le corps des complexes. Si l'une des observables a un spectre discret, la mesure
C, lorsqu'on la restreint à ce spectre, est supposée discrete. L'intégrale directe est
alors une somme directe d'intégrales directes.

Le fait que chacun des sous espaces propres isomorphes à C soit unidimensionnel
traduit la propriété du système d'être complet.

Soit maintenant un autre système complet d'observables qui commutent S'

{Bi}ieN de la même algèbre d'observables. Soit/<-> v(fj,l, /t2, ..fiit...) la représentation

spectrale associée telle que :

Bjft-^/J-iV^,^, ,/*,-,

pour une mesure a définie sur les produits des spectres JJ{/J*i} des opérateurs
autoadjoints B{. {/<;} est le spectre de l'observable Bt. *

Le théorème 5 nous assure qu'il y a une isométrie u(X1, AA, Xs, <—>

v(iu1,/j.2, ...fii, entre les deux représentations spectrales. Ce que nous voulons
préciser c'est la structure de cette isométrie lorsqu'on la restreint à certains sous

espaces denses et nucléaires de L\ ([JAA ou de L\ //Jl/tJV
Supposons donc les opérateurs B,6) définis sur un domaine densedeL2/rj/lA :D,

invariant par ces opérateurs. De plus D est supposé être muni d'une structure d'espace
nucléaire telle que l'injection canonique D -> L\ (TJAÀ soit continue.(IJA.)
6) Nous conservons la même notation pour l'observable B{ auto-adjointe et pour sa restriction à D,

essentiellement auto-ad;'ointe. Lorsque nous devons les distinguer, on emploie la notation
evidente Bf (fermeture auto-adjointe de B{) pour l'observable.
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Supposons aussi ces mêmes opérateurs continus pour cette nouvelle topologie.
L'ensemble D C L\ /TJAA C D' forme bien un triplet de Guelfand. On peut alors

définir une fonctionelle propre d'un opérateur B{.
L'opérateur B{ induit dans D'l'opérateur transposé TBi, continu puisque Bt l'est

et défini par l'égalité:
<TBiF,<p>=<F,Bi<p>

où F e D', <p e D et <F, 99 > est la valeur de la fonctionelle F pour cp notée suivant
Schwartz.

Une fonctionelle F e D' est une fonctionnelle propre de B{ pour la valeur propre

fj,j si et seulement si on a:

ou
<TBi F„f, <p> <F B, q» fif <F., çpy

on définit ainsi un sous espace propre D'ß. C D' qui est l'espace vectoriel engendré

par les fonctionnelles Fß. pour une valeur /^ déterminée. On définit ensuite une

décomposition spectrale de <p comme une application de D x {/*;} dans D'f,. soit:

(<p, pt) -> <^. e D"ßi

définie par

où {pij} est le spectre de Bi.
On dira que l'ensemble des fonctionnelles propres généralisées est complet is

9V 0 pour tout /t,- => c? 0.

Soit maintenant C/ l'isométrie de L2 tpjAA sur L2 lTJ{/j,^\ et c7_1 l'isométrie

inverse. Supposons la déterminée. Un théorème de Guelfand et Kostyuchenko permet
d'en préciser la structure.

Théorème 6 (Guelfand et Vilenkin 1964)

Soit D C "H C D' un espace d'Hilbert équipé isomorphe à un espace d'Hilbert
L2{X) où X est un espace localement compact et a une mesure positive sur X.
Soit U l'isométrie qui applique ?/ sur L2(X). Alors pour chaque valeur de x,
on peut associer une fonctionnelle Fxe D' telle que pour toute fonction (U cp) où

<pe D, on ait
(U q)) (x) <i^, ç>> pour presque tout x (6)

Pour la démonstration, il suffit de se reporter au tome IV des distributions
(Guelfand et Vilenkin 1964) dans le cas d'un espace nucléaire qui soit en même
temps un espace dénombrablement norme. Dans le cas où la topologie de l'espace
nucléaire n'est pas nécessairement métrisable on peut se reporter à la démonstration
de Maurin (1959; Lemme).

Notons qu'on peut toujours modifier la fonction (U<p) de sorte que l'égalité (5)
ait lieu pour tout x et c'est en ce sens que nous la comprendrons dorénavant. Si
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maintenant nous appliquons ce théorème à l'isométrie U entre les deux représentations
spectrales, on voit que, si pour epe D on note W la fonction U <p, il existe pour tout
(fj) e rjipii} une fonctionnelle F{/j) e D' telle que

i
<F(/<).9'> '^(/«i.i«2.--- ,Mi, ••¦)

avec

(fi) (fa,/**, .fr,
Montrons que l'application (fi) -> F( est une application de rj{pc{} dans D'ß

i
c'est-à-dire dans le sous espace propre correspondant à l'ensemble des valeurs propres
(pi). En effet par définition de la représentation spectrale U(Bi (p) /j,j W avec
||B,.<p|| |/«,.|||'F||<oo.

Donc

<TB,Fil2), <p(h,K --,K •••)> <FW, B,<p&, A„ ...)>

U(BiV)((fi))=fziW(/u1,fi2,...,fzi,...) C.Q.F.D.

Ainsi l'expression (6) n'est rien d'autre que l'interprétation mathématiquement
correcte de celle qu'on écrit, après Dirac, habituellement sous la forme heuristique:

<pt <f>> Uq(X) iX | pt><X | 0>

\<f>y étant l'état du système, </t|^> est la fonction d'onde correspondant à cet état
dans la représentation (/t) et <A | (/>} celle dans la représentation (X) ; ainsi à </t | <f>}

correspond bien ÎF(/t1( yt2, (xt, et à (X (j>y, cp(Xlt X2, Xi}
La distribution F{/l) n'est rien d'autre que l'élément de matrice généralisé du

système S' ou noyau <X\pi>, c'est-à-dire la fonction propre indexée par (pi) exprimée
dans la représentation (X).

En fait la formule de Dirac a été écrite en parfaite analogie avec le cas de la
dimension finie. Elle est encore valable dans le cas de la dimension infinie à condition
qu'on ait affaire à des fonctions propres qui appartiennent elles-mêmes à l'espace
d'Hilbert L2 (JJAA et conformément à l'esprit de la théorie des distributions, on

doit vérifier que la formule (6) redonne bien celle de Dirac lorsque la fonctionnelle

propre F^ est un élément de l'espace d'Hilbert soit /(rf. La présence du complexe
conjugué du noyau <l|/*> s'explique alors très bien. Si T' désigne l'application
canonique antilinéaire de L2 (TJAA dans D', il suffit de connaître la fonctionnelle

T' fl/x) pour/(//) e L2 (TJAA. Or en vertu du théorème de Riesz et de l'antilinéarité

de T', on a pour tout <peD

<Thn).<P>=jhp)(h,h, ¦¦¦ ,k. ...)<p(h.h, ---.h' ¦¦¦)dQ

ce qui n'est rien d'autre que l'expression de Dirac. On voit d'ailleurs tout de suite sur
cette expression que la correspondance/^ ->- T'/(Ai) est antilinéaire.



32 J. C. Guillot H. P. A.

De plus si B*f[ß) pJm on a bien TBi(T'f{fl)) fi{(Tfw).
En effet:

<TB,(T A,,), ç» <r /w, B^> =|/(/<) B, y dp (/,„„ ßä <p) (B* /,„„ ç,)

IIA.
%

/««(/<„)> 9?) car fteÄ
/*.• <T' h^'fy
ifif T' /(//), 99 > pour tout cpeD

d'où la conclusion.
Par contre la réciproque n'est pas nécessairement vraie même si /*,- e R. En effet le

spectre de TBt peut être beaucoup plus grand que celui de Bt (Dunford et Schwartz
1963, p. 1399; Roberts 1966). Mais en fait ce que nous avons montré c'est que le

développement ne faisait intervenir que les fonctions propres associées uniquement au
spectre de l'observable physique soit B*.

Enfin, on voit immédiatement que, puisque les sous espaces propres D',^ sont
unidimensionnels, on a bien obtenu une décomposition spectrale au sens précédent
de la fonction q> puisque

Wfai.fii,... ,ft,,...) =<p(iA

La fonction Wiß) coïncide sur l'espace D[^ des fonctionnelles propres F^ avec <p^.
Par suite si q>(fl) 0 alors f((/«)) 0 et comme la correspondance entre Lp (IT AA

et L2 (JJ {/*;}\ est isométrique on en déduit que

9V °^ <p(*i,à2, ¦¦¦.A,,...) 0*99 0

c'est-à-dire que l'ensemble des fonctionnelles propres est complet au sens où nous
l'avons défini précédemment.

VIII. Exemples; Notion de coefficient de Clebsch-Gordan
Ils sont évidemment fort nombreux mais ce qui est en général sous estimé c'est

l'importance des conditions mathématiques imposées pour pouvoir rendre compte du
schéma de Dirac. Rappelons qu'il est nécessaire que le domaine D soit invariant par
chaque opérateur Bt et qu'il puisse être muni d'une topologie strictement plus fine

que la topologie initiale. De plus, condition presque unanimement oubliée, B,- doit
être essentiellement auto-adjoint sur ce domaine de sorte que B,- représente l'observable

physique.
Signalons encore que le problème suppose résolue la détermination de l'isométrie

entre les deux représentations.

1° Base L- S

Les changements de base dans l'ensemble des états d'une particule libre relativiste
ou non sont très simples. Le passage de la représentation spectrale associée à la base

(P, Sf) à celle correspondant à la base ((P2)1'2 L2, L3, Sf) dans le cas d'une particule
de masse m 4= 0 et de spin / quelconque, relativiste ou non est bien connu. L'isométrie
s'écrit simplement

F(\p\J>l3,s)=fdwY[lt(a>)fs(\p\co)
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m est un point de la sphère unité S2 de R3, extrémité du vecteur unité m pj\p\
d'origine 0. dm est la mesure sur S2 habituelle, invariante par SU(2). Les fonctions (ou
mieux les classes de fonctions presque partout égales) F(\p\, l, l3, s) forment un espace
d'Hilbert muni du produit scalaire suivant

{F,G) mdM E E E
J yps + m2 -)<s<+j Z-0,1,2,... -Kl,<Kls< + 1

F(\p\,l,l3,s)G(\p\l,l3,s)

Or l'on sait que la représentation spectrale associée à la base (P, Sf) est celle associée

au formalisme canonique ; dans ce cas les observables sont toutes définies sur T)ÇU2j+1)
ou sur S(M2j+1) et elles sont essentiellement auto-adjointes. On sait, de plus que
VCU2j+1) (resp. S(?/2j-+1)) est un espace nucléaire et que l'application canonique
T)CU2j+1) (resp. SÇU2j+1)) -> L% (Qm, U2j+1) est continue.

On peut donc appliquer les résultats généraux précédents. Néanmoins la structure
même de l'isométrie nous invite, par suite du changement de variables p ~> (\p\, to)
à considérer un domaine de définition des observables légèrement différent de

U(:U2j+1) et de SCU2j+1). Précisons le changement de variables précédent. Soient donc
Qm, S2 la sphère unité de R3, Qma Qm~ {(m, 0)}, R+ la droite réelle positive. Tout
point de Qma peut s'écrire uniquement sous la forme \p\ m où \p\ e R+ et a>eS2 et
l'application (\p\, co) -> \p\co est un homéomorphisme de R+ x S sur Qm. On doit
alors, comme dans le cas de l'hélicité, considérer les domaines Do(^a./+i) et S0(Jl2j+1)
sur lesquels les observables qui constituent le système complet sont essentiellement
auto-adjointes, comme nous l'avons vu; T)0(ll2j + 1) et S0(U2j+1) sont tous les deux
denses dans L2 (Qm, ?/2j-+1). De plus, comme ils sont des sous espaces vectoriels fermés

respectivement de D(7/2j + 1) et de S(U2j+A ce sont des espaces nucléaires complets.
L'application canonique T>o(U2j+1) (resp. S0(U2j + A) ->L2jl(Qm, "U2jJrl) est continue.
L'ensemble V0CU2j+1) (resp. S0(#2y+1)), L\(Qm, lt2j+1) V'0{%j+1) (resp. $'0(U2j+1))
forme un triplet de Guelfand.

On peut donc appliquer les résultats généraux précédents et écrire l'isométrie sous
la forme habituelle aux physiciens.

F(\p\, l, l3, s)=jr f\p-\2 d \p'\dœ Ylh(œ) à (|p'| - \p\) ôss, fs,(\p'\ co)

où nous avons adopté la notation intégrale pour noter la distribution. Le produit
direct de distributions Ylm(co) ® Ô(\p'\ — \p\) ® ôss' I, où / est la matrice identité
de ~U2j+1, est la fonctionnelle propre, élément de Sq(?/2j+1), du système ((P2)1'2,
L2, L3, Sf) pour l'ensemble des valeurs propres (|pj, l, l3, s). Par le théorème de
Hahn Banach, cette fonctionnelle propre se prolonge à S'(M2j+1). Néanmoins cette
extension n'est pas unique, deux d'entre elles différant d'une distribution de support
le point {(m, 0)}. S'0(U2j+1) s'identifie au quotient de S'CJl2j+1) par le sous espace
vectoriel fermé des distributions de support {(m, 0)} (Antoine 1966). Ce résultat
nous permet d'apprécier la perturbation apportée à la structure de la fonctionnelle
propre lorsqu'on substitue S0(H2j+1) à SCU2j+1).
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2° Coefficient de Clebsch-Gordan du groupe de Poincaré et du groupe de Galilée6)

L'exemple précédent est très élémentaire ; ceux qui suivent le sont beaucoup moins
car ils débouchent sur la théorie de la décomposition en représentations irréductibles
des représentations unitaires des groupes de Lie.

Dans ce qui suit, on considérera une somme directe d'espace d'Hilbert comme le

cas particulier de l'intégrale hilbertienne correspondant à une mesure discrète.
Néanmoins rappelons qu'il existe une différence fondamentale entre ces deux notions.
En effet le caractère discret de la mesure permet d'identifier canoniquement chacun
des espaces lln à un sous espace hilbertien de la somme directe alors que dans le cas
de l'intégrale directe ceci n'est plus possible car la valeur d'un champ de vecteurs n'a
plus de sens.

Soit g -> H(g) une représentation unitaire d'un groupe G qui opère sur un espace
d'Hilbert 14 separable. Décomposer cette représentation irréductibles, c'est établir

©
une isométrie de 11 avec une intégrale hilbertienne J "Ux dpi(x) telle que:

x
©

U ~ [Ux dfi(x)
x

où X est un espace localement compact et où Hx est une représentation unitaire
irréductible de G qui opère dans l'espace d'Hilbert separable "Ux. En particulier,
l'algèbre faiblement fermée engendrée par les opérateurs g -> Hx(g) est un facteur.
Ce qui est intrinsèque au problème c'est la classe de la mesure pi et non pas la mesure
elle-même, ainsi évidemment que le champ x -> Hx; choisir une mesure v équivalente
à la mesure pi revient à faire une nouvelle isométrie qui ne change pas le résultat
obtenu. Il importe de remarquer que l'isométrie entre les deux espaces hilbertiens
ne sera bien déterminée que lorsque le choix de la mesure sera fixé ainsi que la forme
de la représentation Hx et l'espace d'Hilbert "Ux. Se pose alors le problème de l'unicité
de la décomposition précédente. Ce problème a été résolu favorablement dans les cas

qui nous intéressent (groupes du type I) et il suffit de se rapporter à Mackey (1952)

pour avoir toutes les informations nécessaires.

L'exemple du produit tensoriel de deux représentations unitaires irréductibles
d'un groupe de Lie est un exemple particulièrement important de représentation
unitaire dont on se propose de connaître la structure en fonction des représentations
unitaires irréductibles.

Le problème se pose de la manière suivante dans le cas du groupe de Poincaré,
considérons le produit tensoriel de deux représentations unitaires irréductibles
indexées par \mx, /J et par [m2, /2]. Le résultat de la décomposition de ce produit
tensoriel est bien connu (Wigtman 1961). La décomposition peut être faite de plusieurs
manières (Mac Farlane 1962; 1963 et les références qui s'y trouvent) parmi lesquelles
l'application du théorème d'induction-réduction de Macyek (1952) semble être la
méthode la plus adaptée à la structure de représentations induites des représentations
(Moussa et Stora 1964; Rideau 1966).

L'auteur est particulièrement reconnaissant au Dr R. Stora de lui avoir suggéré ce problème.
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On a (Mac Farlane 1962; 1963)
©

[*,, /i] ® [m2, i2] ~ / a(m) dm © [m, j]
J i,v '

où a(m) dm est une mesure positive sur R.
Chaque représentation [m, j] peut intervenir un certain nombre de fois dans la

décomposition, au plus dénombrable dans le cas général et fini dans ce cas particulier;
la dégénérescence est alors levée par les paramètres r\. Ce résultat est intrinsèque, àia
levée de la dégénérescence près qui ne l'est pas et à condition de ne considérer que la
classe des mesures équivalentes à a(m) dm.

On peut désirer être plus précis et vouloir déterminer l'isométrie entre

LlS.Qmi, U2jl + 1) ® Ll(Ûm!, %,2+1) LliXJQmi x Qm%, U2Ji + 1 ® U2ji+1)

l'espace d'Hilbert de base du produit tensoriel [mlt /J ® [m2, /2] avec

[a(m)dm® Ll(Ûm,U2}+ 11

où L2l(Qm, "U2J+1) est l'espace de base de la représentation [m, j] qui intervient dans la
décomposition. Mais pour que ce problème ait un sens il est nécessaire de préciser un
certain nombre de conventions à savoir

(1) La forme des représentations initiales et celle des représentations finales.

(2) Le choix d'une mesure a(m) dm dans la classe canoniquement associée à la
décomposition.

(3) La levée de la dégénérescence.

On voit donc qu'on a un très grand choix; les physiciens se sont limités à un certain
nombre déterminés uniquement par des raisons physiques.

D'une manière générale, les deux représentations du départ [mlt /J et [m2, j2] sont
choisies simultanément soit dans le formalisme canonique soit dans le formalisme
hélicité; les représentations spectrales associées sont particulièrement adaptées à la
description de l'état d'une particule d'un faisceau; on fait souvent le même choix
pour la représentation d'arrivée.

Mais comme la décomposition est utilisée pour obtenir une décomposition
d'éléments de la matrice S en ondes partielles relativistes (Mac Farlane 1962) il se peut
que la représentation spectrale qu'on obtient finalement soit particulièrement mal
adaptée à la dynamique de la réaction étudiée. Il est alors préférable de considérer une
base de moment angulaire totale dans la représentation finale comme l'ont fait
Jacob et Wick (1959), ou bien des développements multipolaires généraux (Stora
1962) ; la théorie des pôles de Regge est venue renforcer cette opinion.

Le fait important pour un physicien est de reconnaître que la décomposition du
produit tensoriel n'est rien d'autre qu'un changement de représentation spectrale
dans l'ensemble des observables de deux particules libres. D'une manière générale
l'étude des produits tensoriels de représentations unitaires irréductibles du groupe de
Poincaré n'est qu'un moyen d'étudier le problème à «-corps relativiste, qui n'est pas
encore entièrement résolu. On connaît la représentation de l'algèbre de Lie associée
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à la représentation \mlt /J ® [m2, /2]. Si X1 est l'opérateur infinitésimal associé à un
sous groupe à un paramètre dans la représentation [m1, /J, X2 l'opérateur infinitésimal
du même sous groupe dans la représentation [m2, /2], alors X1 ® I + I ® X2 est

l'opérateur infinitésimal associé au même sous groupe dans la représentation
[mi • iii ® lm2 > /al ¦ Les deux invariants P2 et W2 ne sont plus de simples scalaires et

en décomposant la représentation unitaire on obtient une représentation spectrale
des deux invariants et ceci dans tous les cas, c'est-à-dire indépendamment de toutes
les conditions qui déterminent l'isométrie. P2 et W2 seront donc toujours membres de

la nouvelle sous algèbre abélienne maximale. En précisant les conditions pour lesquelles
l'isométrie est définie, on définit automatiquement les autres membres. Parmi tous
les cas, celui où l'on s'est fixé le formalisme canonique aussi bien pour les représentations

initiales que pour les représentations finales est très important; ce qu'on appelle
le couplage (/, s) permet de lever la dégénérescence. Il a été très étudié (Mac Farlane
1962; 1963; Moussa et Stora 1964). Nous suivons les notations de (Mac Farlane
1963). Ainsi, par hypothèse, la représentation spectrale du départ est celle de la sous

algèbre abélienne maximale constituée par (P1, Sf) (P2, Sf).

On considérera deux cas

«) /i j2 0 m * °> mì * 0

Dans ce cas
©

\m,, 01 ® \m9, 01 ~ / a(m) dm © \m, F\
J /-0,1,2,... "

Il n'y a pas de dégénérescence.
L'isométrie entre

©

L2iX/„ (Û x Qm) et f a(m) dm © L2fi(Ûm, U2l+1)

m, -j m-,

s'écrit alors simplement (Mac Farlane 1963)

/«-—Jfo, p2) m*» X-V*(m) £ Ylh(e) ^»> (p) (7)
'h

avec
/» /»!+ p2 m2 p2 (px + p2)2 -1<13<1
X(m) m* — 2 m2 (m\ + m2,) + (m2 — m2)2

q m A-"2(m) (p, - pt - "^ (Pi + P*))

c'est l'équivalent relativiste de l'impulsion relative.

(0, e) A-\A%) q où (Ap)

est la transformation de Lorentz pure le long de p telle que p (ApA (m, 0).
En particulier

- _ ?°JP„e 1 [m+im^ + p2)1!2]
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Il importe de ramarquer que lorsque px (mx, 0), p2 (m2, 0), q p e 0

et le changement de variables précédent n'est défini que lorsque px + (mx, 0) et
p2 =1= (m2, 0). Aussi comme dans le cas d'une seule particule on considérera par la suite
Qm. et ßm20 à la place de Qmi et de Qmi.

Ce choix, suivant les conventions habituelles, caractérise le formalisme canonique
pour la représentation finale. De plus son sens à la fois physique et géométrique est
clair: A~1(Ap) est la transformation qui fait passer au système du centre de masse.

a(m) dm m-1 Xll2(m) dm

L'isométrie peut formellement se mettre sous la forme suivante pour une fonction
f(p1,p2) élément de S0(ûmi x QJ ou de V0(Qmi X QJ

<t>l'm)(P) =\^pY 7? Wl'2*-1,4M P°ò(p~Pi -P*

ô(m-[(p1 + p2)2yi2)Ylh(e)f(p1,p2). (8)

On définit alors le coefficient de Clebsch-Gordan, soit la distribution

m1'2 X-W(m) p°ô(p-Pl~ p2) Ò (m - [(p, + p2)2] w) Ylh(e) (9)

On justifie entièrement l'existence d'une telle distribution et sa forme à l'aide des

résultats précédents. En effet, comme nous l'avons déjà signalé cette décomposition
est équivalente à un changement de représentation spectrale dans l'ensemble des états
des deux particules libres sans spin. La représentation du départ est associée au
système (P1, P2) ¦ P2 (Px + P2)2 fait automatiquement partie du nouveau système.
Imposer le formalisme canonique c'est obtenir la représentation spectrale de P

Px + P2, de la 3ème composante du spin Sf, ainsi que S'f ; or le spin du système réduit
n'est rien d'autre que «le moment angulaire dans le système du centre de masse», soit
l'opérateur — i e A djde L7).

En résumé, l'isométrie (7) est l'isométrie entre les deux représentations spectrales
associées aux deux systèmes complets d'observables suivants:

(P, P2) et P2 (P, + P2)2, P P1 + P2,[-ieA A]2, (_,-«A -^f
l'exposant (2) indique que l'opérateur este levé au carré; l'exposant (3) indique que
c'est la 3ème composante.

En fait tous ces opérateurs sont définis sur le domaine dense S0(Qmi X ûmi)
(resp. V0(Qmi X ß„J). Ces domaines sont stables par ces deux systèmes. Ce sont des

espaces nucléaires; l'application canonique: S0 (resp. D0) -> Z.2^„„2(i2mi XQm) est
continue. Avec S' (resp. T)'), l'ensemble forme un triplet de Guelfand. Les opérateurs
sont continus pour la topologie de S0 (resp. de T>0).

L'expression (8) n'est qu'une réplique de la formule (6) et la distribution (9)

s'interprète alors comme la fonctionnelle propre du nouveau système complet associé
à l'ensemble (m, p, l, l3) des valeurs propres et (8) exprime bien le développement
d'une fonction suivant les fonctionnelles propres du nouveau système.

7) C'est l'expression de l'opérateur cherché, après qu'on ait effectué le changement de variables
(Pi- Pî) -> (>». p. e) (Mac Farlane 1963).
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ß) Le cas général de deux représentations quelconques [m1,j1] et [m2,j2] est
évidemment plus complexe mais l'esprit reste le même. L'isométrie entre

*£** (û-, x Qm,, %jt+1 ® #,/i+l)
et

©

y"«r(«j ^w.
_

© L2(ß„,, %j+jfts]
mi+mz ï-ji+i%

l -0,1,2,...
s'écrit

/.,..&.&) ^1'2*-«•(«)EEEE E DiwsRi)^uw

C(f, h, k, s', S;, s2) C(/ ; /'; s, /3) s') Y„s(e) $$,(# »}

Si on note B(£, A) la rotation e SU(2) : ^Jr1 .4 AA.lp, alors

iv^B^^f) B2=B(^2,^-1).
Les coefficients C(f, jlt j2; s', s[, s2) et C(j, l, j'; s, l3, j') sont les coefficients de

Clebsch-Gordan de SU(2) habituels. Nous suivons à leur sujet les conventions de

Rose (1957). On peut alors écrire formellement

ÛrKP) E [^ "% m^X-^(m) Ò (m - [(/>1 + p2)2^2)

à(P~Pi-p2) E 5,s',(Ri) ^U(^) C(f, h, /2; s', s;, 4

C(/,/,/';s,/3)s')ÎT/8(e)/Sl,S2(A.N-

On définit le coefficient de Clebsch-Gordan :

w1'2 /l-1/4M p»ô(p-Pl- p2) ô(m- [(px + p2)2]m)

E dT\s>,(Ri) dÎuSR*) C(f, h, n; s', s[, s;)

C(j,l,j';s,l3,s') Y[lz(e)

L'existence de ce coefficient et ses propriétés sont démontrées toujours suivant le
même principe. Là encore cette décomposition est équivalente à un changement de

représentations spectrales. Le nouveau système complet auquel on aboutit contient
nécessairement les deux invariants P2 et W2, ainsi que P Px + P2, et la 3ème

composante du spin final. Dire qu'il y a dégénérescence c'est affirmer que ces
observables ne forment pas une sous algèbre abélienne maximale, on lève cette
dégénérescence en considérant de plus près la définition du spin du système final.
Heuristiquement la démarche est bien connue. Elle consiste à se placer dans le système
du centre de masse, puis à construire le spin du système par addition du moment
orbital relatif des deux particules et des deux spins de chacun des deux particules.

8) Les sommes j l+j', j' jx+j2 doivent être comprises comme des couplages de moments
angulaires et chacune des sommations 27 27 • • • et°- doit être compatible avec les règles d'addition

des moments angulaires. ' i'
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On lève la dégénérescence en choisissant la manière dont on couple les trois moments
angulaires. Le couplage (l s) (ici (/, /')) est alors le couplage du moment orbital avec la
somme des deux spins. Plus précisément, le spin S-(p) doit être la somme des trois
moments angulaires

Sj(p) - i e A ±. + Sjt(px) + Sja(p2) L + Sjtf,) + Sjip2)

Cette équation n'est valable que si l'on se place dans le système du centre de masse,
c'est-à-dire si p (m, 0) : on peut à partir de là donner les expressions analytiques de

ces différents opérateurs (Stora 1962). Nous ne le ferons pas ici. En résumé le nouveau
système complet est constitué des éléments suivants: (P2, W2, P, Sf(p), L2, (Sx + S2)2).

Le coefficient de Clebsch-Gordan n'est alors que la fonctionnelle propre de ce

système, associée à l'ensemble (m, j, p, s, l, j') des valeurs propres. Ceci se justifie
d'une manière strictement identique à condition de substituer à S0 ou £)0 qui précédent,
les espaces nucléaires S0(U2ji+1 ® H2j.i+1) et T)nCU2jl+l ® %/1+i) sur lesquels les

opérateurs précédents sont définis et continus.
Nous n'avons considéré ici que le cas de deux particules de masses positives et nous

n'avons utilisé que le formalisme canonique. On peut aussi substituer le formalisme
hélicité au formalisme canonique, à la fois pour les représentations du départ et pour
la représentation finale. On définit alors (Moussa et Stora 1964; Werle 1966) un
coefficient de Clebsch-Gordan qui suivant le même principe, s'interprète comme la
fonctionnelle propre de la nouvelle base ; dans ce cas elle est constituée des éléments
suivants (Werle 1966) :

/P2 w2 p PJ Wi-P_ *V* \
\ ' ' ' \P\ ' [(P^P^-mlm2]1'2 ' [(P2-P)2-m|m8]1'2/ '

Les deux dernières observables sont égales aux polarisations longitudinales
individuelles dans le système du centre de masse. Elle est souvent préférée à la précédente:
en effet la levée de la dégénérescence est plus simple que dans le cas précédent
puisqu'elle se fait par l'intermédiaire des deux polarisations longitudinales dans le système
du centre de masse ; on évite le couplage des trois moments angulaires ; Si l'on part du
formalisme canonique on peut encore utiliser dans ce cas les espaces T)a(U2ji+1 ®
#2./2+i) et S0(#2ji+1 ® H2jz+1).

On doit considérer aussi le cas des masses nulles et des couplages multipolaires,
ainsi que le cas d'un nombre quelconque de particules (Wick 1962; Werle 1966;
Stora 1962). Comme l'ont montré Voisin (1964) et Levy-Leblond (1965), le cas du

groupe de Galilée est strictement analogue au cas du groupe de Poincaré et n'exige
aucune mention particulière.

Dans tous les cas la justification mathématique est la même. Le coefficient de
Clebsch-Gordan est alors une distribution caractéristique de l'isométrie entre l'espace
d'Hilbert, base de la représentation unitaire et l'intégrale hilbertienne, base de la
décomposition en représentations irréductibles. De plus cette distribution est toujours
la fonctionnelle propre d'un système complet d'observables qui commutent, différent
de celui du départ. D'un point de vue strictement mathématique il importe d'insister
sur l'existence d'un espace nucléaire, dense et sur lequel tous les opérateurs sont
définis. Seules les modalités de la démonstration varient d'un cas à l'autre suivant la
complexité de l'exemple particulier considéré.
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APPENDICE I

Représentations unitaires et irréductibles des groupes
de Poincaré et de Galilée

1° Définition des différents groupes rencontrés

Conformément à la théorie des représentations projectives (Bargman 1954) nous
entendons par groupe de Poincaré, le groupe de recouvrement universel du groupe de
Lorentz inhomogène.

Le groupe de Lorentz C est l'ensemble des transformations linéaires, laissant
invariante la forme bilinéaire définie sur R4: X-Y X° Y0 — X-Y9) qu'on notera
y A x ou yß A^ xv, de déterminant égal à 1 et telles que /1° > 1.

Le groupe de Lorentz inhomogène est formé des transformations de B4 dans lui-
même suivantes yß A^ x" + a*', il est muni de la loi de composition suivante :

(a, A) (a', A') (a + A a', A A')

Le groupe de recouvrement universel ou groupe de Poincaré est un produit semi
direct du groupe des translations d'espace temps par SL(2, C). C'est un revêtement
d'ordre 2 du groupe de Poincaré ±ie SL(2, C) déterminent la même transformation
de Lorentz A(A) définie par la formule

A(x a) A1 A(A) x .a où x a x a" x

et où aß (a0, a) sont les matrices de Pauli habituelles

0 1\ /0 -i\ /1 0

et

1 0 / \i 0 / \ 0 - 1

1 0

0 1

Si on note (a, A) un élément du groupe de Poincaré la loi de groupe s'écrit alors:

K.^i) («2.^2) (a1+A(A1) a2,A1A2)

Toute représentation projective unitaire du groupe de Poincaré provient d'une
représentation continue unitaire de son revêtement universel (Wigner 1939 ; Bargman
1954).

Le groupe de Galilée est l'ensemble des transformations de l'espace et du temps
comprenant les rotations spatiales R, les accélérations v ou encore transformations de
Galilée pures, les translations d'espace a et de temps b. On note l'un de ses éléments

g= (b;a;v; R)

Où X ¦ Y X1 ¦ Y1 + X2 ¦ Y2+X3 ¦ Y3 est le produit scalaire habituel dans Rs. X note le
vecteur de S3 de composantes (X1, X2, X3). et X le quadrivecteur de if4 de composantes
(X°, X1, X2, Xs). De plus i?4 est toujours suppose muni du produit scalaire X ¦ Y X" ¦ Y0 —

-X1- Y1-A2 • Y2-X3 ¦ Y3 X« ¦ Y°-X- Y. Enfin X2 I X I2 {X1)2+(X2)2+(X3)2.
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avec par définition
x' Rx + vt + a

t' t+b
la loi de groupe est donc

(èri ari vri Rx) (b2; a2;v2; R2) (bx + b2; ax + R1a2+ b2v1;v1 + Rxv2, Rx R2)

Le groupe de recouvrement universel est alors simplement le groupe obtenu en
substituant au sous groupe des rotations son recouvrement universel SU (2). Les
matrices ± B e SU(2) déterminent la même rotation R(B) donnée par la formule.

Bx.o BT R(B) x a

avec

* a x1 a1 + x2 o"2 + x3 a3

si on note g (b, a; v; B) l'élément générique, la loi de groupe s'écrit

(&ri«rivri #i) (b2,a2;v2;B2) =-- (b^ + b2,a1 + R(BA ^ + b^^v^ R(B1)v2; B^B2)

Bargman (1954) a démontré que la dimension de l'espace vectoriel réel des classes

d'équivalence d'exposants locaux est l'unité. Il existe donc des extensions non
triviales du groupe de Galilée. Ainsi tous les exposants inéquivalents sont obtenus à

partir d'un exposant et lui sont tous proportionnels la constance de proportionnalité
notée m s'interprète comme la masse.

Le choix de l'exposant de base sera

Ug1.g2) (vi.R(B1)a2 + ±b2vl).
C'est le choix habituel (Wightman 1962; Levy-Leblond 1965).

On est donc amené à étudier les représentations unitaires et continues du groupe
Hm dont on notera l'élément générique

h (d, g)

et dont la loi de groupe est simplement

K K (öi, gì) (02, ïè (d]_+ d2 + m £„&, g2), gx g2)

Comme on se limite aux représentations irréductibles, toute représentation irréductible
de Hm restreinte au recouvrement universel du groupe de Galilée, qu'on appellera
dorénavant sans crainte de confusion encore groupe de Galilée, sera une représentation
projective irréductible du groupe de Galilée. Dans tous les cas en effet, le centre
isomorphe à Z2 s'applique bien sur le rayon unité.

Lorsque m 0 on obtient évidemment les «vraies» représentations du groupe de

Galilée. Notons enfin que toutes les extensions Hm sont isomorphes comme l'a montré
Bargman.

Enfin rappelons que le groupe euclidien de l'espace tridimensionnel E3 est défini par
l'ensemble des couples (a, R) où a est un trivecteur et R un élément de S 0(3) muni
de la loi de groupe suivante :

(alt ÄJ (a2, R2) (oj + Rx a2, Rx R2)
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Le recouvrement universel E3 est l'ensemble des couples (a, B) oh B e SU(2) muni
de la loi de groupe

(alt Bx) (a2, B2) (a, + R(B,) a2, B, B2)

Le groupe E2 est formé de l'ensemble des transformations du plan suivantes :

x' R^x + a

où *, *' et a sont des vecteurs du plan et R$ la rotation d'angle <j) autour de l'origine.
Elles forment un groupe de Lie pour la loi suivante :

(ai, R*) (<*«. R*) («i + R* «2, R^+i) ¦

Le groupe de recouvrement universel a une infinité de «feuillets» mais la théorie des

représentations induites n'utilise que le groupe dit spinoriel qu'on note E2 qui est le

recouvrement «a deux feuillets» de E2. Le groupe spinoriel est le groupe des matrices

2x2 suivantes

'e-'* 0
(z; <f>)

<peR

zeC

muni de la loi de composition suivante

(z; (j)) (z'; </>') - (z e-^'12 + z' e**12; (f> + <f>')

L'homomorphisme de E2 sur E2 est le suivant :

(z;c/>)->(a(tzei*l2);R^

où a(i z e"*'2) désigne le vecteur (Re (i z e^12), Im (i z e4*'2)).

2° Algèbres de Lie correspondantes

En reportant ici les relations de commutation habituelles entre les différents
générateurs, nous ferons la remarque suivante : on peut y voir apparaître en effet le

nombre complexe i j/— 1. Nous avons ainsi sacrifié à l'habitude des physiciens qui
pensent surtout plus en termes de représentations qu'en termes d'algèbre de Lie elle-
même et il faut considérer ces expressions comme une représentation fidèle des

algèbres de Lie telles que les obtient Bargman (1954) par des opérateurs hermitiens
dans le cas d'une représentation de dimension finie, et essentiellement auto-adjoints
dans le cas de la dimension infinie.
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Notations

On notera

f' (i 1, 2, 3) les générateurs des rotations spatiales.

P°, le générateur des translations du temps dans le cas du groupe de Poincaré.

E, le générateur des translations du temps dans le cas du groupe de Galilée.

P' (i 1, 2, 3) ceux des translations d'espace.

N' (i 1, 2, 3) ceux des transformations de Lorentz pures.

K1 (i 1, 2, 3) ceux des transformations de Galilée pures.

A celui du sous groupe des phases (6, 1) de l'extension Hm du groupe de Galilée.

Dans une représentation donnée, e~ie"'J est alors une rotation de paramètres
(n; 6); e~ixmN (resp. e~ixm-K) une transformation de Lorentz pure (resp. de Galilée

pure) de paramètres (x, m); e1"ß Pß une translation de vecteur aß.

Relations de commutation

a) cas du groupe de Poincaré

[P", Pv] - 0 [/*, P°] 0 [/*, P'] i eUm Pm

[Nk, P°] -i Pk [Nk, P1] -iôkl P°

r Jk Jll .__ i „kl m Jm

F Jk AJ'l i skl m Nm

[Nk, n1} t ekim r
générateurs du centre de l'algèbre enveloppante de l'algèbre de Lie:

Pß P" et W Wp où (W° P J et W P° J - P A N).

Les indices sont levés et abaissés à l'aide du tenseur métrique habituel

g„v (goo 1, gij " àij)

b) cas de H„
[/'*, p] i'Jk p [N', E] i P'

[/>-, A«] f sij * A/* [P«, PJ] 0

[N1, NJ] 0 [P1, E] 0

[pi PJ] i eijk pk

[A", P>] i ôij m A

[P, E] 0
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Les relations de commutation du groupe de Galilée proprement dit se déduisent des

précédentes en faisant m 0.

Générateurs du centre de l'algèbre enveloppante de l'algèbre de Lie:

P2 / 1 « _\2e- ;- " - "'
c) Cas de E„

et (j- - KA PÌ2
\ m /

'3
Comme les relations de commutation sont déjà contenues dans les précédentes

n'indiquons que les générateurs du centre de l'algèbre enveloppante de l'algèbre de Lie
soient P2 et P ¦ J

3° Représentations unitaires et irréductibles

L'application de la théorie de Wigner-Mackey fournit les résultats suivants.

A. Cas du groupe de Poincaré

a.) masse m > 0 et spin j
Soient Qm l'hyperboloïde de masse m c'est-à-dire la sous variété R* défini par

Qm {f- m2;p°>0} où p2 p" pß. p" e P4, dpi(p) d3plp° est la mesure
habituelle définie suri2m et invariante par SL(2, C) et "U2j+1 un espace d'Hilbert de

dimension 2 / + 1 (/ entier ou demi-entier) espace de base de la représentation Dj de

SU(2) qu'on induit. La représentation est alors définie dans l'espace d'Hilbert
Lfl(üm, T42j+1) c'est-à-dire l'espace d'Hilbert des classes de fonctions F définies sur
Qm, à valeurs dans H2j+i telles que si note le produit scalaire dans 7^2>t1

f(F(p),F(p))di»-<

La représentation (a, A) ->'M[m,'](«> A) est alors

{#*¦*>(«, A) F) (p) é>* D'(A;' A AA.1{A)p) F(A~M) P) ¦

L'écriture de la représentation dépend de la donnée d'un champ de transformations
de Lorentz p -> Ap tel que pour presque tout p on ait

App p où p (m, 0, 0, 0)

Ce choix est important car, si deux choix différents conduisent à deux représentations
unitairement équivalentes, d'un point de vue strictement physique il n'y aura pas
nécessairement équivalence. En effet à la donnée du champ p ->.40, correspond la
«diagonalisation » d'une sous algèbre abélienne maximale de l'algèbre des observables
d'une particule de masse m et de spin /; aussi à deux choix différents correspondent
deux représentations spectrales différentes (Jauch et Misra 1965).

Il existe deux choix physiquement intéressants.

a) A(Ap) est la transformation de Lorentz pure le long de p.
Elle s'écrit, en matrice 2x2:

P [2 m {m + po)]1'2
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le formalisme associé au choix de ce champ est dit «canonique» (Foldy 1956; Wight-
man 1961; Mac Farlane 1962, 1963; Chakrabarti 1965).

b) A(Ap) est le produit d'une transformation de Lorentz pure amenant p sur
(Po, 0, 0, \p\), suivie d'une rotation R^ dans le plan (0z;p) d'angle (k,p\\p\) où k
est le vecteur unitaire de l'axe 0 z. En matrice 2x2

cos — (m - p0 - \p|); - sin — e '* (m + p0+ \p\
AH - —P tfmim + pv)1/2]

1 sin ~ e'* (m + p0 - |p]);coSy (m + p0 + \p\

Le formalisme associé est le formalisme hélicité (Michel et Wightman 1955 ; Bouchiat
et Michel 1958; Jacob et Wick 1959; Wick 1962).

Notons que dans le cas du formalisme canonique on a

Ap'1 B AA-, {B)p B pour tout B e SU(2)

C'est la propriété fondamentale qui caractérise le formalisme car elle nous assure que
la 3ème composante du spin est automatiquement diagonalisée.

Cette propriété disparaît évidemment dans le formalisme hélicité puisque l'on a

Ap
' B A^l(B) B : B Bs.,

où Bp est la matrice
(B)p - ^p " LJR-HB)p

0
cos ; — sin —- e

»
'¦ ">

sin ; e"T cos —

où ö et 99 sont les angles polaires de p.
Donnons la forme des opérateurs infinitésimaux, uniquement dans le formalisme

canonique

(JF)(p) {(-ipA *- + s)f\Q)

^)^JH4-^)FI^
Les opérateurs S sont les générateurs des transformations infinitésimales de la
représentation Dj de SU(2). Par définition Dj (Rk) 1 — i 6 Sk où Rk est une
rotation infinitésimale d'angle Ö autour du Aème-axe.

ß) Cas m 0 spin discret

Soient Q le cône de lumière: Q {p2 0; p° > 0} et LJ la représentation, indexée

par / entier ou demi-entier de E2 suivante: (z; <f>) -> e-*'^.
Soit enfin un champ de transformations de Lorentz p -> Ap telles que pour

presque tout p on ait
Ap $ p où £ (1, 0, 0, 1)
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La représentation (a, A) -> U['](a, A) est définie dans l'espace d'Hilbert LfJ^Q) par

{Um(a; A) F} (p) e*«* U(Ap' A AA.1{A)p) F (A~*(A) p)

Il y a deux choix essentiels pour la fonction p -> Ap.

a) celui fait par Wightman (1961)

P +P
(g1-»*>')_

\/2(\p[+p~3)

Pl+'P*
AV

b) le choix correspondant au formalisme hélicité (Lomont et Moses 1962; Guillot
et Petit 1966)

/cos d- \p I-1'2; - sin y \p j1'2 «-'*N

A{2)
\sin y IpI-1'2^*1; costipi1'2

où d et ç> sont les angles polaires de p.

B. Cas rf« groupe de Galilée m 4= 0

Soit i3m la sous variété de P4 définie par

ß t,= \(E,p) e P4; £ - -£- tj>).

La mesure sur Q <m invariante par le groupe, est égale à 6 (E — p2\2 m —19) dE d3p.

Comme dans le cas relativiste 1l2j+1 est l'espace de base de la représentation D->

de SU(2) qu'on induit. Le point de Q •,« stabilisé est ici simplement (19, 0). On doit
considérer un champ (E, p) ->/l(EiJ)) de transformations de Galilée telle que
A{Ep)(19, 0) (E, p) pour presque tout (E, p).

Deux choix

a) /1(£>P) est la transformation de Galilée pure le long de p:
A{E,p) — (0, 0, pjm, 1 Le formalisme correspondant est le formalisme canonique.

b) Le formalisme hélicité correspond au choix

où Bp est la matrice 2x2 [appendice I; (1)].
L'espace d'Hilbert de la représentation est L2fl(Q «g, 7^2j+i) c'est-à-dire l'ensemble

des classes de fonctions définies sur Q -in, à valeurs dans 7f2j+i> telles que

J(f(E,p), f(E,p)) ô (E - fm -19)dEd3p<+oo.
am,19
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Dans cet espace la représentation (b, a; v, B) -> 'M'-'"'™'-'(ô, a, v, B) s'écrit simplement

{U[m'^] (b, a,v, B) /} (E,p) =e^E-v*Di(A-E]p)(v,B)AiViB)-1{EtP))

/ (E + - mv2 — p -v; R~1(B) (p — mv)\.

On peut écrire cette représentation sous une forme légèrement différente en tenant
compte que Q «« est difféomorphe à R3 ; l'espace de Hilbert de la représentation est

alors L2(P3, 'U2j+1), v est la mesure de Lebesgue sur R3.

On montre alors facilement que la représentation s'écrit alors

(1) dans le cas du formalisme canonique

ÇUWV.ÏÏ (ô) a> Vi b) f) (p) 6HP'l2m +19)b-iap Dj(Bj pR-i(B) (p-mv)) (2)

(2) dans le cas du formalisme hélicité

(U[m-v-n (b,a,v,B)f)(p)
c«*"1" + *>»-'«* DJ(Bpi B BR.1[B)(p_mv)) f(R~\B) (p - m v))

Représentation de l'algèbre de Lie dans le formalisme canonique.

J — i p A <r S K — i m -^—r dp dp

APPENDICE II

Espaces nucléaires et triplets de Guelfand

Les espaces d'Hilbert considérés seront tous supposés séparables.

1° Opérateurs nucléaires

La notion d'opérateur nucléaire est une particularisation de la notion d'opérateur
compact ou complètement continu et de celle d'opérateur du type d'Hilbert-Schmidt.

Un opérateur linéaire A défini dans un espace d'Hilbert tl^ à valeurs dans un
espace d'Hilbert "U2 est un opérateur compact s'il transforme tout borné en un
ensemble relativement compact (c'est-à-dire à fermeture compacte).

On peut préciser la structure d'un opérateur compact en considérant sa
décomposition polaire (Dixmier 1957). Soit en effet A U T, une telle décomposition,

on sait que T= (A* A)112 e £(-#i) (où C(Uj) est l'ensemble des opérateurs
continus de "U^ dans lui-même) et que U est un opérateur partiellement isométrique
de 7/i dans "U2 dont le support est T(Ht). On montre que T est un opérateur défini
positif compact et auto-adjoint. Son spectre est ponctuel et il existe une base totale
orthonormée de 7^:

{en\neN teue clue "E e„ — K en avec K > ° et um K °
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si donc/= V](en,f) en est un élément de "U1, on a:
n

Af=£XnU eien, f) EXn(en> f) K avec Xn > 0 et h. U en

n n

Les vecteurs hn forment un système orthonormé.
Réciproquement tout opérateur de cette forme est un opérateur compact.
Un opérateur compact A U T est du type d'Hilbert-Schmidt si de

OO

plus Y] X\ < oo où les Xn sont les valeurs propres de l'opérateur T.
n 1 oo

Un opérateur compact est appelé nucléaire si £ Xn < oo. Comme Y Xn < oo =>

oo n 1 n 1

2J X2 <i + oo. Tout opérateur nucléaire est du type d'Hilbert-Schmidt. Pour des
n 1

opérateurs définis positifs, le concept d'un opérateur nucléaire coïncide avec
celui d'un opérateur ayant une trace finie, c'est-à-dire un opérateur A tel que

oc

2J(Afn>fn) converge pour toute base totale orthonormée dans î/.
» i

2° Espaces dénombrablement hilbertiens

Un espace dénombrablement hilbertien F est un espace vectoriel topologique
séparé dont la topologie est définie par une suite dénombrable de produits scalaires
définis sur F et qu'on notera )„. On notera || |j„ la norme associée à )n.

Les normes sont supposées toutes ordonnées c'est-à-dire || || i < Il
•

Il
a <

< [j j[„< et elles doivent vérifier la condition de compatibilité suivante:
si la suite Xj e F tend vers 0 pour la norme | ||m et si c'est une suite de Cauchy pour
la norme || ||n (n > m), alors elle tend aussi vers 0 pour la norme || ]|„.

La topologie est alors définie en considérant pour système fondamental de

voisinages de l'origine l'ensemble des boules U„i£ {99 e F, || cp \n < e} pour tout n
et pour tout 6.

Cette topologie est métrisable (c'est-à-dire qu'elle est identique à la topologie
sous-jacente définie par une métrique) et l'espace est complet.

On dit alors que c'est un espace de Frechet. Ce n'est pas un espace norme sauf si
toutes les normes sont identiques à partir d'un certain rang.

Soit Fn le complété de F pour le produit scalaire )n; pour m < n notons Tnim

l'application identique de F muni de )n sur F muni de )m; Emm se prolonge en

une application linéaire continue de Fn dans Fm qu'on notera encore Enm; comme les

produits scalaires vérifient la condition de compatibilité, Tmm est injective et si l'on
identifie Fn à une partie de Fm on peut écrire :

FC ...CFnC ...CF1
comme l'espace est complet, on a F f) Fn.

n
Précisions la structure du dual F' de F, c'est-à-dire l'ensemble des formes linéaires

et continues de F dans C. Pour tout n notons F'n le sous espace de F' formé des formes
linéaires sur F continues pour )n; F'n est un espace hilbertien dont le produit
scalaire sera noté )„. Et l'on a:

P;C...C F'nC ...C F'
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De plus F' y F'n puisque tout élément de F' est borné sur un voisinage de 0 dans F,
n

donc continu pour un certain )„.
Les espaces dénombrablement hilbertiens sont des espaces de Frechet réflexifs

(c'est-à-dire F" F).

3° Espaces nucléaires

Un espace dénombrablement hilbertien F est dit nucléaire si pour tout m, il existe
un n > m tel que l'application P„,m(F„ -> Fm) soit nucléaire, c'est-à-dire si elle est
de la forme:

oo

En,mx= Eàì(xì¦ x)nVi oh xeFn
i-l

où {#,-} et {y,-} sont des bases orthonormées de Fn et Fm et Xt des nombres positifs tels

que X{ > 0 et £ X{ < oo. Remarquons qu'au lieu d'exiger que P* soit nucléaire, il
i

suffit d'exiger que cet opérateur soit du type d'Hilbert-Schmidt. En effet Tpm T^ P£
si m < n < p et le produit de deux opérateurs d'Hilbert-Schmidt est un opérateur
nucléaire.

Tout sous espace vectoriel d'un espace nucléaire est un espace nucléaire. Le
quotient d'un espace nucléaire par un sous espace fermé est encore un espace nucléaire.
Tout produit d'espace nucléaire est nucléaire. Toute somme directe topologique
dénombrable d'espaces nucléaires est nucléaire. Signalons une propriété importante:
les espaces nucléaires sont des espaces de Montel : tout ensemble borné (tout ensemble

sur lequel chaque norme est borné séparément) est relativement compact. Sur un
espace nucléaire et sur son dual, la topologie faible (pour cette topologie une suite

cpne F est convergente si et seulement si </, <pny -> 0 pour tout/e F') et la topologie
coïncident. Un espace nucléaire est complet relativement à la convergence faible.

Néanmoins la définition précédente d'un espace nucléaire est beaucoup trop
restrictive pour convenir à l'ensemble de nos besoins, car on ne peut se limiter aux
espaces dénombrablement normes ou hilbertiens; il faut considérer les limites
inductives de tels espaces. Il faut alors généraliser la définition précédente aux
espaces vectoriels topologiques localement convexes et on dira que dans ce cas E est

un espace nucléaire si et seulement si toute application linéaire continue de E dans un
Banach est nucléaire. La notion d'opérateur nucléaire doit être aussi convenablement
généralisée (Schwartz 1953/54, exp. n° 12) ; avec cette nouvelle définition l'essentiel
des propriétés précédentes est conservé.

Quelques exemples d'espaces nucléaires

Un espace vectoriel de dimension finie est nucléaire, alors qu'un espace d'Hilbert
ou un espace de Banach de dimension infinie puisque la boule unité fermée, qui est
bornée, n'est pas compacte.

L'espace S, par définition est formé de toutes les fonctions cp(x) cp(x1, xA
définies sur R" à valeurs dans C, indéfiniment différentiables et pour lesquelles les

produits :

(1 + | x \2)P \ Dk cp(x) |

avec 1 </><oo,0<&<^
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et
| k J k + + k„ < n et k{ e N

E> —j,— '—r n
d 1--- d " ir I2 - Vir I2\ x \x\ - Ai \%i\

i-1
sont bornés et continus.

La topologie de S est alors définie par l'ensemble dénombrable des normes

|| 9?IL max sup |(1 + \x j2)* Dh cp(x) \

0<|*|<£ x

Muni de cet ensemble de normes, S est un espace dénombrablement norme et un
espace nucléaire. Il est plus pratique de faire apparaître un système de produits
scalaires équivalents au précédent qui en fera un espace dénombrablement hilbertien.

Soit pi une mesure positive sur Rn; s'il existe un entier p > 0 tel que:

(1 + |*|2)-*

soit une fonction ^-sommable, alors le système de normes ||ç>||n est équivalent au
système de normes associées aux produits scalaires suivants :

t 2J D"(pD"W\
\0<J<* /

(<f, W)p / (1 + | x \2)2" (Y D^cpDiW) dpi(x)
._ iq<pRn

Un autre exemple important car nous le rencontrerons dans les applications est
S(U). C'est l'ensemble des fonctions définies sur R", à valeurs dans un espace d'Hilbert
"U de dimension finie, à décroissance rapide et indéfiniment différentiable. C'est un
espace dénombrablement norme pour l'ensemble des normes || ||„ suivantes

(Schwartz 1955).

|ML max sup I (1 + M2)* Dk w(x) I

o<|*i<^> x

où | | est la norme associée au produit scalaire dans l'espace d'Hilbert ?/ qu'on notera
De plus, c'est un espace nucléaire.

Ceci résulte du théorème 1 de l'exposé n° 10 et de la proposition 8 de l'exposé du
séminaire Schwartz (1953/54). En effet le premier théorème affirme que SÇU)
S <§) "U (les topologies e et n coïncident car S est nucléaire) et la proposition 18 affirme
que S ® -K est un espace nucléaire puisque S et "H le sont.

Le système de norme est équivalent au système de normes associées aux produits
scalaires suivants

(<p, W)p /"(1 + j x \2)2* 2J (D" (p(x), D" W(x))dpi(x)

C'est un espace dénombrablement hilbertien.

L'espace T)

Soit K un compact de R", on désignera par T>k l'espace vectoriel des fonctions
cp(x1, xA k valeurs complexes, indéfiniment différentiables et dont le support est
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contenu dans K. C'est un espace dénombrablement norme pour l'ensemble des

normes || IL suivantes:
\\q> L sup \su-pDPcp\

ÌP\<n \xeK I

C'est aussi un espace nucléaire (voir Schwartz 1953/54, exposé 18). On définit T)

comme la réunion de tous les ensembles T)k lorsque le compact K devient infiniment
grand et on introduit une notion de convergence sur T). On dira que les cpj convergent
vers 0 dans si elles gardent leurs supports dans un compact K fixe et si elles convergent
vers 0 dans T)K. D est alors la limite inductive des espaces Vk (voir par exemple
Garsoux 1963). Par suite (voir Schwartz 1953/54, exposé 18) c'est aussi un espace
nucléaire.

4° Espace d'Hilbert équipé (ou triplet de Guelfand ou Sainte Trinité)

Soit F un sous espace dense d'un espace d'Hilbert "U; supposons que F soit un
espace nucléaire et que de plus, l'application T: F -> "il soit continue. En particulier
c'est toujours le cas lorsque la topologie de F est strictement plus fine que celle de "H.

Alors l'application T est nucléaire. Considérons le dual F' de F; T'l'adjoint de T est

un opérateur appliquant "W (le dual de "H) dans F' : il est défini par l'égalité suivante :

<T' h'', q>y <h'', T q>y h1 eW et ç> e F (1)

Mais on sait d'après le théorème de Riesz que h'(h) (hlt h) ce qui nous permet
d'identifier "H' à "U (H' est anti isomorphe à "U) et T' a une application de 7/ dans F'
mais alors T' est un opérateur antilinéaire injectif.

On appellera un triplet d'espaces tels que F, 11, F' (F C "H C F') ayant les

propriétés ci-dessus, un espace d'Hilbert équipé; on trouve aussi la terminologie
suivante : triplet de Guelfand ou Sainte Trinité.

Cette situation générale peut se particulariser de la manière suivante lorsque l'on a
affaire à un espace dénombrablement hilbertien et nucléaire.

Soit donc F un espace dénombrablement hilbertien et nucléaire ; sa topologie est
définie par un système dénombrable de produits scalaires )„• Supposons que sur F
on puisse définir un produit scalaire supplémentaire qu'on notera sans indice
défini positif et tel qu'il soit continu vis à vis de la topologie d'espace dénombrablement
hilbertien c'est-à-dire si

lim <p„ w dans F alors lim (w w) (<p, w)
M—>O0 M->00

De cette condition, il résulte que le produit scalaire est continu par rapport à une
norme |j ||

m c'est-à-dire que l'on peut trouver des nombres meNetM> 0 tels que :

\(<p,ip)\ <M\\<p\\m\\f\\m

car toute forme linéaire et continue sur un espace dénombrablement hilbertien F est
bornée pour une certaine norme || \\m et réciproquement toute forme linéaire/sur F
bornée pour une certaine norme de F est continue. fait de F un préhilbertien
séparé et on notera 7/ le complété de F vis à vis de ce produit scalaire. Les éléments
de F forment une partie partout dense de 7/ ce qui définit une application continue T
bijective de F dans "H. On identifiera dans la suite F à cette partie dense de -M. T est
continue pour une des normes ||. ||

m qui définissent la topologie dans dé l'espace nombra-
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blement hilbertien. Il se prolonge donc sur r?BB>»enun opérateur qu'on notera Tn et

on sait qu'il existe une valeur n pour laquelle T„ soit un opérateur nucléaire. L'opérateur
T'n est aussi nucléaire.

On peut montrer qu'on a les inclusions suivantes, après avoir effectué les identifications

nécessaires.

F'D ...D F'nD ...F^UD ...DFnD ...D F.
Exemples

1° Considérons l'espace S que nous avons défini au paragraphe précédent. On peut
le munir du produit scalaire supplémentaire suivant :

(95, W) I cp(x) ip(x) dpi(x)

Rn

Ce produit scalaire sépare les éléments de S et de plus il est continu pour la topologie S

Car Ml <\\fV VP>1-
Comme on peut le voir par simple inspection des produits scalaires, le complété de cet

espace vis à vis de ce produit scalaire est L^(R") et nous avons bien un triplet de

Guelfand s c L2 (Rn> C) C S'.
De même en ce qui concerne S(U), il suffit de le munir du produit scalaire supplémen-

(y,W)=f(<p(x),W(x))dpi(x)
R"

onabien:
Il «Pli <llv!>-

Le complété de S(U) par rapport à ce nouveau produit scalaire est E^(Rn, 7/) et on a
bien le triplet de Guelfand suivant

S(#) C L\ (R", H) C S'm ¦

Remarques

1° Nous savons très bien que par rapport à la topologie de P^(P") les opérateurs
de multiplication par les variables x,, les opérateurs de dérivations partielles d/dx-1'

et d'une manière générale les opérateurs de dérivations d'ordre fini ne sont pas des

opérateurs continus. Par contre en tant qu'opérateurs définis sur 5 et pour la topologie
d'espace nucléaire, ce sont tous des opérateurs continus; c'est ce qui fait l'intérêt
d'introduire une topologie plus fine que la topologie initiale, car les opérateurs qui
n'étaient pas continus le deviennent. Par contre la nouvelle topologie n'est pas celle
d'un espace norme, elle est seulement métrisable.

2° L'exemple suivant est très important: Soient G un groupe de Lie, g -> 11(g) une
représentation unitaire de ce groupe dans un espace d'Hilbert "U separable. Maurin
(1959) a montré qu'à partir du domaine de Gârding, on peut construire un domaine
dense D, stable à la fois par la représentation globale du groupe et par la représentation

de l'algèbre de Lie enveloppante; de plus ce domaine peut être muni d'une
topologie strictement plus fine que la topologie initiale, pour laquelle c'est un espace
nucléaire. De plus l'application identique de D est continue si bien que l'ensemble
D C "U C D' forme bien un triplet de Guelfand.
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