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Time-Dependent Scattering Theory for Singular Potentials

von W. Hunziker
Seminar fur theoretische Physik der ETH, Ziurich

(24. VIL. 67)

Abstract. Scattering states are constructed for nonrelativistic multiparticle systems with
singular potentials. The case of hard-core potentials provides a simple example of a system whose
Hilbertspace is not simply defined by the kinematical structure, but also by the interactions.
This leads to a modification of the usual scattering formalism and of the notion of asymptotic
observables:quantities like the momenta of single particles are not observables of the system,
but still defined as asymptotic observables.

1. Introduction

Recently, J. KupscH and W. SANDHAS [1] have proved the existence of scattering
states for two-particle systems with potentials which may have strong singularities
on a compact set of measure zero, so that the Hilbertspace of the interacting system
is still the same as for the free particles. Regardless of the sign of the singularities, the
Hamiltonian can then always be taken as a (generally not unique) selfadjoint extension
of a real, symmetric operator, and the asymptotic condition is proved for any such
extension. This generalizes easily to a multiparticle system for the channel in which
all particles are asymptotically free. For channels containing bound states, however,
we need not only the selfadjointness of H, but also that the momentum operators of
single particles are defined on D(H) and can be estimated in terms of H. Therefore,
we shall assume that the (strong) singularities of the potentials are repulsive and then
construct the Hamiltonian by the method of Friedrichs-extension.

If the potentials are singular on a set of non-zero measure, as in the example of
hard spheres, then the situation is complicated by the fact that the Hilbertspace of
the system is not simply defined by the kinematical structure, but also by the
interactions. Therefore, if we decompose the system by dropping all interactions
between certain subsystems, the Hamiltonian and the Hilbertspace are altered. This
requires a modification of the usual scattering formalism, which will be discussed first.

2. A Suitably Generalized Scattering Formalism

Let H be the Hamiltonian of the system, acting on a Hilbertspace H. A channel, o,

of the system is a triple
w = {§h, H. . P;

where H, is a Hilbertspace (space of channel states), H, a selfadjoint operator on ¥,
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(channel Hamiltonian) and P, a bounded operator from H, to H with the property
lim_ | P, ety |~ ] g

|| —> 00

for all p, € H,, and such that

t_l,iinoo e—th Pac e—z’Hatwa - ‘Q$ v, (2)
exists for any 9, € H#,. By virtue of (1), the wave-operators 25 are isometric from H,

into H and satisfy _ .
e—th‘ont: — .Q;t e=¢Hat. (3)

Therefore, the ranges R} of QFf reduce H and the parts of H in R} are unitarily
equivalent to H,. Note also that two operators P, and P, are equivalent if for all
Yo € H, , N

lim | (B, — ) e™¥aty, | = 0, “

t]— 00

in the sense that they give rise to the same wave-operators.
For a multichannel system we require a set of mutually orthogonal channels, i.e.

R¥ L Rf (@ + B) (5)
or, equivalently,
lim (P, e "ty , Py e~ Hpt pg =0 (6)

|| —>c0

forally,e H,, s€H - 1f the set of channels is denumerable, the S-operators can be
constructed as usual: Let

H =0 H,,
and define two isometric operators 2+ from ¥ into H by

Q=)0 y,

where p € ' and y, denotes the component of ¢ in H,. In view of (5), the ranges in
H of 2+ are
R* =@ R%.

Defining Q+* by (¢, 2+ y)gy = (2+* @, p)qy for all p € Hand y e, we find that
Q¥ = (%) g if pe R+ and Q+* ¢ = 0 if ¢ | R+ The S-operators are then

S’ = £2+* (- = operator on ¥, unitary if and only if R+ = R-,

S = 0+ Q* = operator on ¥, unitary if and only if Rt = R— = H.
S is the S-operator defined by JaucH [2], while #’ and S’ have first been introduced
by BEREZIN, FADDEEV and MinLos [3]. S’ has a simple physical interpretation: let
p = {y,} € H. By [2], there exists a motion of the system, with initial state ¢ = Q~y,

such that _ _
et g —>Z’POC e~ ety (t— —o00).

If pe R* (which is the case if R— = R*), this motion has a similar asymptotic
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behaviour for ¢ > + oo:
gHr @ —>2Pa eyt qp; (t — +o0),
o
where v, is the component in N, of the asymptotic state

Y =Sy
in H'. The operator S’, therefore, gives the asymptotic behaviour in the future in
terms of the asymptotic behaviour in the past. From the point of view of S-matrix
theory, H' is the Hilbertspace of the system and S’ the operator characterizing the
system.

The scattering formalism presented here is suitable for the multiparticle systems
treated in this paper. However, it can be extended to include other systems
as well. For example, we could allow that P = P(f), uniformly bounded in ¢ for
sufficiently large |¢|, and such that (1) (2) (6) hold. To preserve (3), it is sufficient to
require that : , ‘

! Jim (P (t+5) — P) ey, =0
for any real s and any y, € H, . Precisely this generalization is necessary in the presence
of Coulomb interactions, where P(#) is a phase-factor in momentum space, with a
phase proportional to log|#| [4].

3. Construction of Hamiltonians

Formally, the N-particle systems under consideration are characterized by a
Hamiltonian

N e
Pk
Hﬁ,;:Zm;c" +21:'V,(xl)=H0+V,

where [ labels the pairs of particles and x, is the relative coordinate of the pair /.
The potentials satisfy the following conditions: V,(x) is a real-valued function on

the set
E={x|x¢Kj,
where K, C R3 is compact (hard core, possibly empty). On E;, V,(x) 1s of the form
Vi(x) =V r(0) + V) s(x)

where the ‘regular’ part V, p satisfies the usual conditions of time-dependent
scattering theory for non-singular potentials,

Viel) € LHE) + LHE), (2<p <3)

meaning that V, p(x) is the sum of an L2-function and an L?-function almost every-
where. For the singular part we assume:

a <V, 4(x) a.e. for some real a, supp V, 5 is compact, and V, 5(x) is locally
square integrable on an open set whose complement in E, has measure zero.

The Hilbertspace of the N-particle system is { = L2(E), where E is the subset of R3¥

fined b
defined by E = {(% ... xy) | x,¢ K, for all pairs I}.
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By our assumption on the potentials,
Vi ooe i) =3 Vo o) 4 37 V5 o8] = Vgl oo g + Vislity e )
] 1

is (term by term) locally square-integrable on an open set M C E, whose complement
in E has measure zero. Therefore, we can define

N 9
'__2' j!.r__}_l?_—‘ '+[/

in the usual way on the dense set 4 = CP(M) (infinitely differentiable functions with
compact supports contained in M), where it is symmetric. Since V5 is a Kato-
potential [5] with respect to H, 1/, H, + V is bounded below on /A, which implies

5 (v (Hy+ 1) ) < (p, (Hy+ Ve +0) )

for some real b and all p € 4. Adding the non-negative form (p, Vs ) — a(y, y) on the
right, we obtain

(m) gl + 5 [wl2 < (w (' + ) ) (7)

for all 7, all ye A and ¢ = b — a, where the p; are the usual differential operators.
Therefore, we can define:

H + ¢ = Friedrichs-extension of H' + ¢.

The momentum operators of single particles are defined in the usual way on C°(E),
where they are symmetric. They will not have selfadjoint extensions, since the
corresponding translation groups are forbidden by the geometry of E (hard cores).
They have, however, symmetric closures, which will be denoted by #;...py.

Lemma 1

D ((H + 1) C D(p,) and | p, ]| < 2mi® | (H + Py

for all < and all p e D ((H + ¢)'2).
Proof

By construction of the Friedrichs-extension, D(H) C H, = completion of A in the
Friedrichs-norm ||y |3 = (p, ), = (@, (H + ¢) y). Therefore, if y € D(H), there exists
a sequence y, € 4 with ||y, — y ||; > 0, which, by (7) implies that p, y, is a Cauchy-
sequence and that ¢, - w. Since $, is closed, it follows thatw € D(p;) and p, w, = 9, v,
and the inequality (7) is preserved in the limit. Since (H + ¢)!/2 is the closure of its
restriction to D(H), this extends, again by continuity, to all y e D ((H + ¢)1/2).

4. Scattering Theory

Let D = (C,...C,) be a partition of the set (1...N) into »n subsets C,, and let
H(D) and H(D) be the Hilbertspace and the Hamiltonian of the decomposed system
(formally obtained by dropping in H all interactions linking different subsets C,),
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which are constructed in the same way as H and H in Section 3. In particular,
H(D) = L*(E(D)), where

E(D) = {(x, ... xy) | x, ¢ K, for all pairs ! not linking different subsets C,} .
Next, we define a mapping P(D) of H#(D) into H. Let R be such that the hard cores K,

as subsets of R3, are all contained in the sphere |x| << R. Then we choose a cut-off
function F(r) with the properties:

F e C®[0,00),
0 Fr) <1 for 0 L7 <00,
F(r)=0 for r <R and F(r)=1 forr > R+ 1. (8)

For any w e (D), we define P(D)ype H by
(P(D) w) (xy ... xy) :ﬂF(’ % )%y ... xy) (9)

where / runs over all pairs linking different subsets C,.
The results of this section are collected in the following two theorems:

Theorem 1

For any decomposition D, [H#(D), H(D), P(D)] is a channel of the system; i.e.
P(D) 1s asymptotically in the sense of (1), and the strong limits
+ 1 iHt ~iH (D)t
s = t_l)linoo et P(D) e
exist on H(D). Moreover, they are independent of the particular choice of the
cut-off function F(»): if F'(r) is a second cut-off satisfying (8), then the corre-
sponding operator P(D)’" is equivalent to P(D) in the sense of (4).
The channels mentioned in Theorem 1 are not orthogonal as required by (5). In order
to get a set of orthogonal channels, we restrict D by the condition that each composite
subsystem C, possesses at least one bound state, and we choose a complete set of
orthogonal bound states for each of these C,. A channel, &, then specifies such a
decomposition into fragments and, in addition, one of the bound states, ¢, for each
composite fragment C,:
R (RPN oA |
oL =
I(pl pet (Pnl

(g, = 1 if C, is a single particle). #, C H(D) is then the set of states of the form

Vol - 2y) = bl . 9) 2 Pilz)

where ¢, € L%(R®") and where y,, z, are the coordinates of the center-of-mass of C,
and internal coordinates of C,, respectively. On H,, H(D) reduces to

Hn PZ
e ) o
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B., M,, &, being the total momentum, the total mass and the bound state energy of
Cy. If we denote the restriction of P(D) to #, by P,, Theorem 1 implies that o =
(H,, H,, P,) is a channel of the system, and the wave-operators 2 are simply the
restrictions of Q7 to H,.

Theorem 2
The channels defined above are orthogonal in the sense of (5).

Proof of Theorem 1

Since £ C E(D), we have ¥ C (D), and the identity map H > H(D) is
isometric. Therefore, P(D) may also be viewed as a bounded operator mapping H(D)
into itself. In this sense,

lim [[(1 — P(D))e " # Pyl =0 (11)

[f]—o0

for ally e (D). Since P(D) is bounded, it suffices to prove this on the dense set used
in Appendix 3. Writing F, for F(|x,|), the inequality of Appendix 1 yields

1—JI# <ZZ(1~P;)
4

[(1— P(D)) =¥ ®p | < S| (1= Fy ™y
!

and therefore

Since 1 — F, € L% R3), each term in this sum vanishes like |#|-3/2 as || = oo, by the
estimate of Appendix 3. This proves (11), and as a consequence, P(D) is asymptoti-
cally isometric in the sense of (1). Also, if P(D)’ is defined by a second cut-off F'(r)
with the properties (8), we have :

[(P(D) = PIDY) 6= P | < | (1 = PD)) e~ # Pty | ] (1 — P(DY) =Pty

¥

which vanishes as [¢| = oo, by (11).

Finally, we establish the asymptotic condition (2) for y in the dense set of Appen-
dix 3. Using our freedom in the choice of F, we choose R in (8) so large that ¥} 5(x) = 0
for [x| > R and all /. Since p € D(H (D)), we can apply the result of Appendix 2 and
obtain

¢
M P(D) ¢ )y — PD) y+ i [ dr 17 (H P(D) — P(D) H(D)) e "y,
0
where the integral is bounded in norm by

(12)

»

@ |[((Ho, PD)) + 1(D) P(D)) = H Py

provided that P(D)exp(— ¢ H(D) {)y ¢ D(I(D)). But this follows from our choice
of the cut-oft, by which

1) PD) = XV, [T B,

o7
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and since the ‘potentials’ V; (x) F(x) satisfy the assumptions of Appendix 3,

| I(D) P(D) e~ % | < 3|V, g Fr e *# P17 | < const. (1 + |7])~° forsomes > 1.
!

Therefore, the contribution of the term I(D) P(D) to the integrand in (12) is well-
defined and integrable over — oo < 7 < + oo.

To show the same for the term [H,, P(D)], we consider a typical part
1] Gix) 4, (13)
r

where one of the functions G,,, say G,, has compact support. If 4 is 1 or the total
momentum of one of the subsystems C,, it commutes with exp(— ¢ H(D) ) and the
contribution of (13) to the integrand in (12) is estimated by

const. | G, e H P17 4 o] . (14)

But 4 maps the dense set of ¢’s of Appendix 3 into itself, therefore (14) is bounded by
const. (1 + |7|)~3/2. It remains to consider the case where 4 is an internal momentum
of one of the subsystems C,, say of C,. Then the contribution of (13) is bounded by

const. | G, A e Py < const. (1 + |7])=32 | 4 e~ M7 g, |,

by the estimate of Appendix 3. Applying Lemma 1 (to the internal Hamiltonian /7,
of C;, which is also a Friedrichs-extension), we see that the last norm is bounded
uniformly in z:

3

[ A4 e gy < al g+ e R g | = a b+ 2 gy

for some constant a.

Proof of Theorem 2

First, consider the case where the set D = (C,...C,) of fragments in the channels
o and f is the same, so that the two channels differ only in the assignment of bound
states to these fragments. Due to the orthogonality of bound states, we then have
H, | H; (as subspaces of #(D)). Since 2, and Q% are the restrictions of the isometric
operators 27 to H, and H,, the orthogonality of their ranges follows from the
orthogonality of the domains.

In the case where the decompositions specified by « and f are not the same, it is
actually simpler to prove a statement more general than (6), namely

Jim (B, ety Byt ) = 0

for any v, , v, € L3 R?Y), where H_, Hy, P,, Py are defined by (10) and (9) in an
obvious way as operators on L2(R?*Y). From

(Poc g_icht v, Pﬁ’ 6—z‘Hﬁt wﬂ) — (e—iHatwm, g—z'Hﬁt ’quﬂ)
_ ((1 — Pa) 8_iHat Yoo B_iH’Bt ’4/)/5') - (Poc e_iHat wau (1 - Pﬂ) e_iHﬁt Wﬂ) ;
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we see that, by (11), it suffices to show that the first term on the right vanishes as
|¢] > oo for u,, wpe S(R*Y). Up to a constant, H, — Hy is a quadratic form of
P1---Pn, which can be diagonalized by introducing new momentum variables
Ty .. 7Ty

N
(H, — Hg) (p1--- Pn) :ZAZ- 7?4+ const.,
|

where we can assume 4; + 0 since the quadratic form (H, — Hp) (p;...py) does not
vanish identically. For states g, , 9, of the form

N
Py ... 7y) = Hwk(ﬂk) , preS(RY),
k=1

which still span a dense set in L2(R?*Y), we then obtain

il n2t 1

i(Hy — Hpg)t pp) | << const. | / dmy e 1y (o) wpley)

L

| (2 €
which vanishes as || - oo.

5. Asymptotic Observables

In the framework of Section 1, an asymptotic observable in channel e is represented
by a selfadjoint operator on H,,. It is immaterial whether or not the same quantity is
an observable of the system, i.e. whether or not it is also represented by a seltadjoint
operator on .

For example: In the channel [{(D), H(D), P(D)], the total momenta of the sub-
systems C,...C, are observables: they generate an #-parameter unitary group
Ulay...a,) on H(D), representing a translation of each subsystem C, by a,. As
mentioned before, these momentum operators can also be defined in # = L3(E) on the
dense set C;°(E), where they are symmetric. However, they will not have selfadjoint
extensions, since the corresponding translations are forbidden by the hard cores.
Therefore, these momenta are not observables of the system. Nevertheless, they are
well-defined asymptotic observables, so that it is perfectly meaningful to specify the
momenta of ingoing and outgoing fragments in a collision. If the pair-potentials are
spherically symmetric, similar statements hold for the other observables associated
with the Galilei-group: energy, angular momentum and parity.
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Appendix 1
Let 0 < a, <1,2=1...n Then

1~]”]a,. <f(1 —a). (15)
i=1 1=1
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Proof

(15) holds for » = 1, and if it holds for » — 1, it also holds for » if a, = 1. Since
both sides are linear in a,,, it therefore suffices to compare the derivatives with respect

to a,:
0 n n—1 d »n

which implies (15).

Appendix 2
For any decomposition D, we define the operator I(D) on H by

1(D) :;'V;,

where / runs over all pairs linking different subsets C, . Asin the proof of the asymptotic
condition, we choose the cut-off F(r) such that

1(D) P(D) = XV, 1 PD).

Lemma

If y e D(H(D)) and P(D) y € D(I(D)), then P(D)y e D(H) and
H P(D)y = P(D) HD)y + [Hy, P(D)]y + I(D) P(D) v,

where [H,, P(D)] is formally the commutator, on L2(R*"), of the usual differential
operator H, with the multiplication operator /7, F}, i.e. a sum of terms of the form

ch(xz) A, (16)

where the G, are bounded C*®-functions on R3*¥ of which at least one has compact
support (being a derivative of F,), and where A is either the identity or one of the
momentum operators p,...py. The precise meaning of (16) is then the following:
A is an operator on (D), either 1 or one of the closed, symmetric p;...py, so that
D(H(D)) C D(A4), by Lemma 1. /1, G, is a (bounded) multiplication operator mapping
H(D) into ¥, so that [H,, P(D)] is defined as an operator from D(H (D)) into H.

Proof

Let A(D) C (D) be defined in the same way as A4 C H in Section 3. Then
P(D) A(D) C A C A(D) so that P(D) has an obvious meaning as a mapping of A(D)
into itself. By virtue of Lemma 1, it is easily seen that this mapping is also bounded
with respect to the Friedrichs-norm |y|? = (v, (H(D) + ¢) )2 on A(D). Since
I(D) P(D) is a Kato-potential [5], H(D) — I(D) is bounded below on P(D) A(D),
which implies

(p, 1(D) @) < (9. H(D) ) + alp, @) ,

forany g = P(D)y, weA (D), and some real a. Since for these ¢, Hp=H(D) g+ I(D) g,
we have

(9, Hep) <2 (p, HD) @) + alg, ¢) . (17)
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Now, let ye D(H(D)). Since H(D) is the Friedrichs-extension of its restriction to
A(D), there exists a sequence y, € A(D) with |y, — | = 0. Since P(D) is bounded
in the norm | |2, ¢, = P(D)y, is also a Cauchy-sequence in this norm. By (17),
@, is then a Cauchy-sequence in the Friedrichs-norm associated with H, and it follows
that lim P(D) y € #, (Notation as in proof of Lemma 1). For any ¢ € 4, we have now

(. P(D) y) — clp, P(D) y) = (H ¢, P(D) ) = (P(D) H p, )
= (H(D) P(D) ¢, y) + ([P(D), Hol ¢, y) + (P(D) I(D) g, y),
where [P(D), Hy] is a sum of terms of the form A4 [JG,(x,) as described in (16). By
!

Lemma 1, p e D(4) and, since A4 is symmetric, we obtain

(¢, P(D) ), = (p, P(D) H(D) ) + (¢, [Hy, P(D)] )
+ (¢, I(D) P(D) ) + ¢(p, P(D) y), (18)

provided that P(D)ye D(I(D)), which is assumed in the Lemma. If follows that
l(p, P(D)w);| <const. | ¢| for all g €4, hence P(D)ye D(H) and (¢, P(D) ), =
(@, (H + ¢) P(D)w). Comparison with (18) now yields the expression for H P(D) y
stated in the Lemma.

Appendix 3

For convenience, we collect here the usual estimates of time-dependent scattering
theory which were derived, in one form or another, by various people.

For any decomposition D = (C;...C,) of the system, consider the set of states
of the form

P(xy ... xy) = ﬂﬁbk(yk) Px(zi) »

with ¢, € CP(R3), ¢, € D(k) (y; = center-of-mass of C, %, = internal Hamiltonian of
C,, %, = internal coordinates in C;). These states span a dense set in (D). Let V" be a
pair-potential linking two of the subsystems C,, say C; and C,, and suppose that
V(.)e L°(R?3), 2 <s < oo. Then we have:
N() = |V exp(— i H(D) t) y|| is uniformly bounded in — oo < ¢<C + co and
satisfies the estimate

N(@E) < Cly, b, o) [T [V [e™ ]l [em™ gl .

The last two factors are independent of . They are exhibited only to show how
the internal motion in the subsystem C;, C, enters in the estimate. (This is
important in the last step of the proof of Theorem 1.) '

Proof

Obviously, N(f) = | V exp(— ¢ Hyy ) 9y, ||, where H,, is the internal energy of the
(decomposed) subsystem (C;, C,) and yy, = IT; 1 (Vi) @(2,). Now

—iHy,t —iHS,t —ihyt —ihyt
ety = e R gy oy @ T M g ® T gy,

where HY, is the kinetic energy of the relative motion of C;, C,. To estimate the first
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factor on the right, let 9 be the coordinate of the CM (center-of-mass) of (C;, C5), and
& the relative coordinate of the CM of C,; with respect to the CM of C,. Then

[ Gyl m )| = = ()" [ R g 8y @)
< ( u )3/2 [df’ 6—2nz(y§/2nt)§’ equ”/Et (¢1 ¢2) (EI, 7/)

27|t

1 being the reduced mass of Cy, C,.
Applying the Hausdorff-Young inequality to this Fourier-integral, we obtain

[ g g0 om0l < ()™ 1 Gad ol 09

where 2 <p <L ocand p~' + g7 1= 1.
Since supp ¢, is contained in a sphere of radius R, one easily sees that
s da(..m) |, = 0 for || > 3 R, so that

M2(g /dn | By o) (-, )|, < oo
Now we have
NE(t) < [|e ™ @y |2 [ e g ?
xsup [dn [dE |V (E+ o2+ oy 2| |77 gy ) (6, 1)

21,29

(20)

il

where o, 2, is some linear combination of the internal coordinates of C,. Hoelder’s
inequality and (19) imply

fdn/'dg VO (25“[)6/5 e (%57)

N < (G20 M (EE) VO L™ g e g

or, finally,

for 2 <s < o0.

On the other hand, N(f) is bounded uniformly in ¢ — even if V e L2 + L™, For
V' € L™ this is trivial. For V' e L2 this follows from (20) and from the fact that
| exp(— i Hiy t) ¢y do(&, .) |5 is bounded by || é, |5 | P, uniformly in & and 2.
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