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Functional-Analytic Discussion of the Linearized Boltzmann Equation

by G. Scharf
Institut fiir Theoretische Physik der Universitat Ziirich

(20. VI. 67)

Summary. The existence theory for the linearized Boltzmann equation is discussed by means
of semigroup methods. The infinite medium and systems with boundaries, are treated. It is shown
that the Boltzmann operator is the infinitesimal generator of a contraction semigroup, which
solves the initial value problem. The connection between this general solution and the Chapman-
Enskog method is then considered. It is found that under suitable conditions, it is the ‘hydro-
dynamic’ part of the general solution, which is calculated by Chapman-Enskog. Concerning this, an
expansion formula involving the normal solutions is obtained. Applications of the semigroup
method to other kinetic equations are discussed.

I. Introduction

There exist various formal procedures for constructing solutions to the Boltzmann
equation, for instance the Hilbert or the Chapman-Enskog expansion. Although
these work very well in practice, one must ask how the calculated quantities are
related to the actual solutions of the Boltzmann equation. To answer this question
one has to construct these actual solutions, and then connect them with the approxi-
mate ones.

This problem was attacked mainly by H. GRAD in a series of papers [1, 2, 3] by
means of classical analysis. In the present paper the problem is treated using semi-
group methods. In this way it is straightforward to get a complete existence theory
for the linearized Boltzmann equation.

In the following section the basic concepts are introduced and the infinite-space
problem is considered. This is the simplest case, because it concerns only a pure initial
value problem. We find that the solution of the Boltzmann equation is uniquely given
from the initial distribution by a contraction semigroup. In the third section the case
of a finite system is treated. This is a mixed problem; in addition to the initial condition,
boundary conditions are imposed, which must be satisfied at all times. Also in this
case the solution is given by a contraction semigroup, if the boundary condition is
such that the stationary distribution is a strict Maxwellian (for example specular
reflection or constant temperature along the walls). Otherwise the solution has to be
altered due to the fact that we consider the Boltzmann equation linearized about a
strict Maxwell distribution. In the fourth section we turn to the second problem
mentioned above, namely the relation between these general solutions and the normal
solutions of the Hilbert and Chapman-Enskog theory. This part falls into line with a
work of MCLENNAN [4]. In contrast to the general existence theory two important
restrictions are now necessary: the interaction potential must be of the class of hard
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930 G. Scharf H. P. A.

potentials introduced by GrRAD [2], and the initial distribution must be restricted in
the spatial derivatives. Then considering for instance the infinite space problem the
semigroup solution can be split into a hydrodynamic and a microscopic part. The
former can be expanded in terms of the normal solutions. The last section is de-
voted to some soncluding remarks, and it is pointed out that an external electro-
magnetic field can be easily dealt within the framework of the linearized Boltz-
mann equation. Application of the semigroup method to kinetic equations with
other collision operators, for instance occurring in neutron diffusion problems and
solid state physics is possible as well.

II. The Boltzmann Equation for an Infinite Medium

We start with a few fundamental results of the theory of contraction semi-
groups (6, 7].

Let # be a Hilbert space. A one-parameter family 7', { > 0 of bounded linear
operators on H is called a contraction semigroup of class C?, if

T# Tt Totd (semigroup property)
V=1

| Tt <1 (contraction property)
s T_}(i)m Ttf=f, V feH (strong continuity) .

The infinitesimal generator 4 of T is defined by

Af=s—lim 5 (T*=1)] (1)

t—0

where the domain D(A4) consists of those f € W, such that (1) exists. It is an important
property of the infinitesimal generator, that it is dissipative: 4 is called dissipative
in case it is densely defined and

Re(f, Af) <0, VfeD(4).
The following theorem gives a complete characterization of 4.

Theorem 1 (HILLE, YOSHIDA)

A linear operator A4 is the infinitesimal generator of a contraction semigroup 7'*
if and only if one of the following conditions is satisfied:

1) A is closed and dissipative and the adjoint A* is dissipative.
2) A is dissipative and the range of A — 4 coincides with H for some A with Re 4 > 0.

Then 7% can be represented as follows

Ttf=s—limexp(tnd(n—A)7)f.

7—>00

For operators which generate a contraction semigroup of class C? the so-called
abstract initial value problem can be solved.
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Theorem 2

Let A be the infinitesimal generator of a semigroup of class C?, f, € D(A4) and A(¢)
continuously differentiable for £ >> 0. Then there exists one and only one function f({)
from [0, o0) to H with

1) f(#) is continuously differentiable, f(¢) € D(4), for each > 0,
2) djdsf(t) = A f(0) + ht),
3) s —limf(¥) = f,.
t—0
This function f(¢) is given by

o) = T, +f:rt—sh(s) ds .

After these preliminaries we turn to the linearized Boltzmann equation:

of of

f(x, v, ¢) determines the Boltzmann distribution function F = fy(1 + f), where

m 3/2 w v2
T _ 3
i ”0(2 7 ,0) eXP ~ 547 (3)

is the space-independent Maxwell distribution and f a $mall deviation from it.
I denotes the linearized collision operator [2]

1=t h=1 — B hle) |0 —vy |0 @Qam, E) = Kf. (4

Here o (| v — v, |, ) is the differential scattering cross section ¢ the scattering angle
and »(v) the so-called collision frequency, the arguments », v, v’, v, for the f’s are the
velocities of two colliding molecules before and after the collision respectively.

We consider (2) within the Hilbert space # = L2(%) ® L} (v) with the following
scalar product

(/, 8 =ffg o (0) do o .

The L?(x) can be formed over the whole R3 or over some compact part £ of it, in which
case it will be denoted by L?(£2), according to the region covered by the medium. The
L2-spaces are taken complex since a Fourier transformation is to be used.

Apart from technical reasons, the choice of the Hilbert space H as above has
physical meaning, since the norm in ¥ is related to the relevant thermodynamic
potential of the system. We linearize Boltzmann’s H-function

_ T s 1 (2mBTo\M2] 4 1
H—fl 1og{P%(m) ]dvdx
considering a finite system and assuming that energy transfer through the boundaries
of the system is possible, but the number of particles is constant, N = [ F d% d3x =
[ f5 @ d3x.
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We get
H=—_%_ 4 1 f f2fod®vd3x, E = energy, freal.
kT, 2

If H is identified with the negative entropy by — 1/% S, there results

1 A= E-T,S F
7” 1= RT, — kT,
Thus, in case of a closed system, with E = const., | |?is a measure for the entropy S;

otherwise for the free energy F.
In the following we introduce dimensionless variables by replacing

t v v x . r 1,

t—%— ? vV — ﬁ?‘;ﬁ;—— — 7?7)0 X — m* Etnd fﬂ“% 990 = _(2_3'[)3/2 eXp 7 V 5

7 is some time of the order of magnitude of the mean collision time. In order to solve

(2) in the whole space, we must study the properties of the Boltzmann operator

0

B:—'vwh.

o — T in 3 = L2(R9) ® L2 (RY) .

This can be done simply by means of a spatial Fourier transformation F,, let

U=FE®1 (5)
then

B=UBU'=—ikv)—1I. (6)

The collision operator [ is in general unbounded, because of the multiplication by the
collision frequency »(v). However we suppose that the remaining integral operator K
in (4) is a bounded operator in Y. Indeed this was shown by GraD [2] under the weak
assumption that the collision cross section o(#, w) satisfies

1 0>0
o(d, w) < b (1 - E'z‘;s') (7)
0 <e<l1.
Then the domain of B can be easily described:
D(B): fedt—L2k) © LL,(v), [~ (ko) —»(o)] fe T ®
since »(v) is real, the latter is equivalent to
(kv)feH and »(v)feH (9)

separately. The operator B defined in this way is dissipative

~

Re (f, B flgy = — (£, 1 gy <O
because [ is symmetric and positive. Moreover, since K is bounded,

B* = i(kv) — »(v) + K* = i(kv) — I (10)
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is dissipative too, and B** — B is closed. Therefore applying theorems 1 and 2 we get
a unique solution of the Boltzmann equation given by a contraction semigroup 7°: Let

-~

f(0) = U }(0) € D(B)
be the initial distribution. Then
f6) = U T U £(0) = T (0). (11)

If condition (7) is not satisfied, the Boltzmann operator (respectively the collision
operator I) still can be densely defined and is then dissipative. But instead of (10)
we in general only have

B*Dilkv)— 1. (12)
In this case the following more general argument can be used. The operator J defined by

J flk,v) = f(k,v)  feH

is a conjugation in H:

JhT&=(lg J2=1.

Since the collision operator I commutes with J, we conclude that
pBr—ie)—1I.
Because of (12) this shows that B is J-symmetric
B*DJB]J.

It is a general result [6], that a J-symmetric dissipative operator always posesses a

J-selfadjoint extension, which preserves the dissipativity. Taking this extension B,
we have

Bf =J B, J
and therefore ];”1" together with él are dissipative. Now we arrive at the same result

as above. B; generates a contraction semigroup, which gives the solution to the
Boltzmann equation. The only difference to the foregoing case is that we do not have
an explicit description of the domain of the Boltzmann operator.

III. Systems with Boundaries

Boundary conditions can be dealt with by the semigroup method in the following
manner: One includes the boundary conditions in the definition of the domain of the
infinitesimal generator A. Then if at # = 0 the boundary conditions are satisfied, they
remain satisfied for all times £ > 0 in view of theorem 2 (1).

Let £2 be an open bounded region of R® with smooth boundary 0. We will define
the Boltzmann operator (4) in the Hilbert space

W) = 1XQ) ® L, (R .
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In order to get explicit domains we assume again I = »(v) — K with bounded K.
et us first introduce an operator 4,

of

g Jo=t — W — i
D(A4,): feCX(2), fyo=0
v e HQ), o) fe WD) . (13)
To determine it’s adjoint operator A} (respectively the adjoint of 4, = —v 0/0x — »(v))

we use again the Fourier operator (5), which now transforms H({2) into a subspace
H(2) C . Since every g of the form

jeD(4, for xef
|

0 otherwise

belongs to the domain D(B) of the previous Boltzmann operator in #, we have

(€ A gpy = @ (— ik D) § —v(0)P)gy = (kD) § — () & gy,
ge @), feDA)

and this is continuous for fe D(4,) if and only if (kv)ge il(.Q) v(v) g€ il(Q)
(compare (9)). Therefore A} is given by

Afg=v % —Ig  DAN:ge Q) v % WD), (o) g € HQ)

where 0/0x; now denotes the distributional derivatives. Obviously A4, is dissipative,
but A7 is not. So we look for extensions A4

AD 4, A* C A*

of 4, such that 4* together with 4 becomes dissipative.
Since I is already dissipative on D(A}), we need only consider the convective

term. Taking the closure 4, of 4, the C*®-functions in D(4,) are replaced by functions
/€ W(Q) with first distributional derivatives v 0f/0% € H(L2). For f, g € D(4?%) we can
integrate by parts

(o 3) == (vserg)+ [ [ fevdo (14

942

2Re(f,_v-gf?)z_ab[fdsv%mzvdo_ (15)

The value on the right hand side in (15) depends on the boundary conditions. The
physically interesting boundary conditions are local in the sense that they connect
only the values of f(x, v) at the same point x of the surface. Otherwise there would
be a correlation between different points of the wall caused by processes inside the
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wall. Supposing local boundary conditions we see from (15), that the convective term
is dissipative if and only if

o0 2n nf2
fdsv% /12 (@, n) =/dvv3q90(v)qu)fdﬁ
0 0 0

sind cos® [| f(x,v,)|2 — |f(x,v_)[2 =0 (16)
where n is the unit vector in the normal direction,

v 1n = v cosd
v; = (v sind cosg, v sind} sing, + v cos?) .

We introduce for every point & of the surface a Hilbert space #, with respect to
the velocity v = (v sind cosg, v siné sing, v cosd¥) with the following scalar product

o) 2m nf2
(f,8)" =/dv 3 (po(v)fd(pfdﬁ % sin2d f(x, v) g(x, v) , & fixed.
0 o 0
This is an ordinary L2, (R3), if one makes the identification

1 o
(0, @, &) = ]‘(v, g o= ﬂ)
hence
def 1

’ 1 _-I r r AN
(he) =5 [vm® ' g d= L ().
Now we choose linear boundary conditions
[.(%v)=f@®v.) f_=R,f, x€0Q (17)

connecting the incoming and emitted distributions; R, is a linear operator in #,.
The boundary conditions must be homogeneous to define a linear set. With (17) we
conclude from (16) that the convective term is dissipative if R, is a contraction in 3£,
| R,|" < 1. Therefore we define the Boltzmann operator 4 on the following domain:

D(A): f(%,v)eD(4]), freWH,, [_=Rf,
IR <1, xe 0. (18)
To determine the adjoint A*, we see from (14), that for fe D(4*)

[[aaiievie =0, v geDa)

02
1s necessary, that is

’

@0 go) [7,(6) €, ) — 7_(0) &_(0)] = 0
or with (18)
(Footy) = (BEE 1 £.) «
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Hence the domain of the adjoint operator A* is described by the adjoint boundary
condition

DAY): feDAl), f, =R/ .
If R, is a contraction R} is a contraction as well; consequently it follows from

2Re (f,v gy — 1) = —2(1 1) + [ |do| I, @] * = £ @)
002

%

that 4* is dissipative too. Since

/

DA™): feDAY) L =R"f.,
we see that A** = 4. By Theorem 1 and 2 we now arrive at the

Theorem 3

The Boltzmann operator 4 with D(A) given by (18) generates a contraction
semigroup 7%, which gives the unique solution of the associated mixed initial value
problem.

Actually the boundary conditions are imposed on the whole distribution function

F(x,v,8) = @o(v) (1 + $(%,v, 1)) (19)
and not on ¢. For instance for specular reflection we have

F®,v_,t)=F(s,v,,1 x e 08 .
But then

b =¢, ie. R=1

and Theorem 3 applies. The stochastic boundary condition

F (o) — f kv, 1) Fu) du — f k(v, 1) o) P
¥ +
+ [ W, ) ol ) | 20)
+

where the integrals are taken over the halfspace (4, n) > 0, leads to an inhomogeneous
condition for ¢. This cannot be handled within the above framework because it does
not define a linear set. To avoid this difficulty, we consider

fwvt) =1+ ¢(x0,10) F=g,f, (21)
which also fulfils the Boltzmann equation but with homogeneous boundary conditions
’ 1 73 4 / ’
Rfy = oo [Fo 0 gufo) o) f e W
in our above convention. Now, R is a contraction if

[RI® < [0 [@u |k up 20 2 <1
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But this is only a poor result as we will explicitly verify for diffuse reflection. Here the
emitted distribution is a Boltzmann distribution

1 v? T ;
= Qaopr FP T2, TTT, o
with temperature 7, and we have
’ _ ”Q’P(L_ e
E (v, u) Teta vl (23)
’ 1 (P(U) ' 1 fP(”) ne
Rf = - S = 1
/ fdf’v v) Polv) ./% Polw) 1'(u) & fdav vp(v) Polv) (.7
Rz — 1112 lle@g@ 2 _  [opow) d fqoL() 3
v v p(v) & v () Pol? v
| Rl ( )2 ( )? (v)
1 T3
_ _ . (24)

1—(r—1)2 T:—(T—T,>

Theorem 3 applies only if T = T, = const. along the boundary. On the other hand
there is only a quadratic deviation ~ ((T° — Ty)/7)? from 1 in (24), bringing in mind
that we have lost the linearity in this treatment of the boundary conditions (21).

To be consistent with linearity we must linearize the boundary conditions too.
Instead of (22) we choose more generally

1 1
(p(x, v, L() = W exXp — B ('U — W)2 , xc 08 (25)

where w = w(¥, ) represents a possible movement of the wall at point & € 0£2. This
for instance occurs if sound is propagated from an oscillating wall into the medium.
w = w(¥, {) 1s given and is supposed to be small. We write w = w; n + w,, where w,
1s the component in the normal direction to the wall and w, the tangential component.
Inserting (25) into (23), expanding with respect to the small quantities w, 1 — 1/t =
(T — T3)]T and keeping only the linear terms we get

B __ o) [ v g It _ l/“— ]
(v, u) [0 v 9u0) 14 ( 5 2) s (w, ) 5 W,

and from (20)

0 ]. i VD)) = k’ . 0 d3 _ ﬂ(‘l}_)_,ﬁ i d3 .
7o (1 + ¢ (v) J (o, ) ol P+ 0 gl ) v

This gives the following inhomogeneous condition for ¢

BL0) =g+ ugl) 6,0 =g+ R, (26)
where

g(‘”:v: t) = (—ii;— _2) = TO 1 (W, ‘U) - 2 W,

T 2
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and R is the contraction belonging to constant temperature 7;,. We transform the
inhomogeneity from the boundary condition to the Boltzmann equation by setting

(5,0, 8) — bi(%,,8) = f(5,0,9), (27)

where ¢, is any function satisfying the inhomogeneous condition (26) such that

o Fy — 28 e (28)

is continuously differentiable with respect to ¢. Then we have to solve

of of

o= Ve —1ftR (29)
fiwv) =fwv) [ =Rf, (50,0 =¢®v0 —d®v0. (0
Now Theorem 2 and 3 apply:
t
f(x,v,8) =T f(x,v, 0) +fTH h(s) ds . (31)
o

In the case of time-independent boundary conditions ¢, can be chosen equal to the
given initial distribution ¢y(x, v). Then

- 0¢0 I ¢ 0¢(x -v, t) l

and the first term in (31) drops out such that

B(%, v, 1) = (¥, v) + f Tt~ B ¢y(%, v) ds . (32)

The above argument obviously applies to a general stochastic kernel &(v, u) if this
can be written as
k(v, u) = ko(v, u) + ky(v, u),

where &, corresponds to a contraction in W’ and %, is small.

IV. Hydrodynamics

Let us return to the whole space problem of Section II; remarking that most of
what follows can also be done for systems with boundaries. We will look at the
behavior of the solution (11) for large ¢. If nothing more about the Boltzmann operator
is known, one can only apply general results of ergodic theory [6], which say that the
time average
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or more sharply each Cesaro average

11

%/(i—s)“‘lf(s) ds  a>0

0

converges strongly for ¢ - oo to a stationary solution of the Boltzmann equation.

To get more detailed information, we suppose the interaction potential to be a
hard potential in the terminology of GRAD [2], for instance a hard core potential in
quantum mechanics, and also (7). This has the following consequences for the collision
operator I: The spectrum of I in L? consists of the five-fold point eigenvalue 0,
which is separated from the rest of the spectrum, a continuum extending from a
minimum », to oo, and possibly further eigenvalues between 0 and »,. The collision
frequency »(v) is ~ v for v = co. The integral operator K in (4) is compact. In this

situation the spectrum a(ék) of the operator B,

B,

Il

—i(kv) —»(v) + K k fixed (33)

in L2 (v) can be analysed by a method due to MCLENNAN [4]. Since B . 1s dissipative,
the whole spectrum lies in the left half-plane. If k is not too large

keS, S={k| |k| <x} (34)

6(-I

¢ (B

(A,

\
/

Spectra of the various operators. The points in ¢(B,) denote the hydrodynamic poles, the crosses in
o(— I) are other possible point eigenvalues, which are suppressed in ¢(B,) and &(4).

€0
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the point eigenvalues are perturbed analytically, in particular the perturbed eigen-
value 0, say — 4 w;(k) (f = 1... 5), remains separated from the rest of the spectrum
(see figure). The continuous spectrum extends to the region given by the values of the
singular part — ¢(kv) — »(v) in (33), because it is conserved under the compact
perturbation K ([7], p. 244). We note that we can choose a constant 9, > 0 such that

the spectrum of B, lies to the left of — y, for all |k| <2 apart from the — 7 w;(%).
If I has no eigenvalues between 0 and », then v, = v, for all k of (34).

Now we turn to the Hilbert space U= L%*k) ® L? (v) and introduce the projection
operator £,
fll,v) if [k| <
E, flk,v) = y,(k) [ (k,v) =

0 otherwise,

-~

E, commutes with the Boltzmann operator B (6) in H, consequently the subspace
?‘21 = Ex #

1s invariant with respect to 7. From now we consider 7*in “ﬂl and Ttin H{; = U? ';Ql.
This requires a restriction of the initial distribution f,. Since » must be supposed to be
of the order of magnitude of the inverse mean free path, the restriction means that
the initial distribution should vary slowly over a spatial distance of a mean free path,

which is physically reasonable. The infinitesimal generator of Ttin ?21 has a spectrum
which is a proper part of the spectrum of B, namely the spectrum ¢(4,) of

A,=E B—BE,—=E BE,orof A,= U4, U.
The latter can be analysed by means of the following two lemmas.

Lemma 7
If A is in the point spectrum ()'P(ék/) of ék for some k' € S, then 1ea(4,).

Proof. The spatial Fourier transformation

» . ] '
[ (%, 0) v fi(v) = s f‘g_th f(x,v) d3x = @) O f>.€ Lin(k)

(2 n)ali

defines an isometric mapping of ¥ into a direct integral of Hilbert spaces L2 [9]
7 f @ L2 (k) &% . (35)
Hereby the operators B and 4, are transformed into
B»f@ékd% Ax—>f@]§kd3k. (36)
§
Since the embedding is isometric, we have

|27~ B3y = [145— Befell @
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Now let 4 eap(ék,), k'€ S i.e. there exists 0 + ¢, € D(ék,) with

~

A@pp— By g =0.
We must verify, that for any ¢ > 0 there exists an fe D(4,) such that
27— A ]2 <elf]. @)
We choose a sphere 4 < S around k" and set
1 ke4
Pk = {O otherwise.

Then we have for f = U~ ¢, (v) p(k)

Frod ~

HA]‘_Axf”z:/”;‘(Fk'_Bk'(Pk"f‘i(kI_“k:”) 2%

o

2 I5%

Y

2
v

< [ah |k k|- |vg,
4

20 4) P09 |0 e
e e

N

” Pre TPH;I ’ (38)

where
[a3k | k—k |2

3 Ay — 4 e
g3 (A) = T < max |k —k
a4

2

can be made arbitrarily small for small A4 and the second factor in (38) is bounded
independently of A because ¢, € 'D(é w)- Therefore (37) is proved.

Lemma 2

If A is in the resolvent set Q(‘ék) of ék for every ke S, then A€ p(4,).
Proof. From

|2fe— Bef2 =042, V keS, feD(By

it follows with (36)
|2 — 4,113, >an Fel2 as =6 ) 112,

Hence the resolvent R(A; 4,) = (A — 4,)~! is a bounded operator on the range of
A— A,. Since 4,,is [-self-adjoint on H; (see Section II), its residual spectrum is empty
and therefore A € p(4,,).

These two lemmas enable us to conclude the following about the spectrum of 4,
(see figure)

NeB)Cold), U onlByCold,). (39)
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It now follows from (39) and the choice of » that the part
8= U co(B})

keS
of ¢(4,) arising from the disturbed eigenvalue 0 (the ‘hydrodynamic part’ of the
spectrum) is separated from the rest by a regular region. It is a spectral set in the
sense of DUNFORD [6]. We can form the contour integral

1
= ga7 § RO 4, ah (40)
r

around s and get a bounded indempotent operator J,

=17,

which commutes with 4, [6]. J is a non-rectangular projection, which projects on the
‘hydrodynamic’ subspace. To define this we use the direct decomposition ¥, =
H, ® U, each fe I, can be uniquely written as

f=1l+1 fo=JfeMW, fs=(—])feH,.

Let us introduce the operators

A= T A~ JA,]

Ay and 4 both generate contraction semigroups 7%, 7% in H, and H; respectively.
Then the original semigroup T splits in #; into a ‘hydrodynamic’ and a ‘microsco-
pic part’:

th‘“_"T;fz"l' Tt3f3=th2+ T fy e, .

Since the spectrum of Ag lies to the left of — y, << 0, one may expect that the
microscopic part decreases rapidly in time and at large times one is left with the
hydrodynamic part alone. But this requires a closer investigation. It is exactly
the hydrodynamic part, which is calculated by the Chapman-Enskog method.

Let us return to the direct integral (35). Applying this to the hydrodynamic
subspace H#, = J H; we have

T H — f ® P, 12 (k) &3 . (41)
S

Here F, is the projection onto the five dimensional space spanned by the eigen-
functions g;(k, v) corresponding to the point eigenvalues — 7 w;(k), 1 = 1...5 of B,.
The g;(k, v) are just the normal solutions of the Hilbert or Chapman-Enskog theory [4].
Now we consider the hydrodynamic part 7% = J 7T J with respect to the representa-
tion (41). From (36) we see, that

Azijx]»/eaPkékPkd?’k and

~

TT - / @ exp (L P, B, P) d% . (42)
3
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Note that B, B B, is a bounded operator in a five dimensional space and therefore
the exp is easily defined, for instance by the power series. The projection F, can be
expressed by means of the normal solutions

P = 2 gj(k v) .

i=1

h;(k, v) is the biorthogonal basis with respect to g;(k, v) in B, L% which is defined by
(gj: he) - 5]'3 . (43)

This must be used, because the g; are not orthogonal for finite k. Now every f € #,,
which for instance decreases rapidly for |#| - oo can be expanded in terms of the
normal solutions

1 2 1khx
f= i f £,(k) gk, v) €** dok (44)
7=1
where

1 1 By T
fi(k) = VEEE €™ b, (R, v), 15, , = (mfe_”” hi(k,v) [ (%, v) @o(v) d® d® .  (45)

Since, according to (42), the semigroup operates on g; simply by multiplication with
e~'?j? we arrive at the following expansion formula for the hydrodynamic part

Tt fo = o 2 f 1,(k) g;(, v) ¥ =io @3 f e Y, . (46)

We see that a solution of this part is completely determined by the five quantities
fi(k). These can be calculated from the five first moments. With w; = 1, m v, 1/2 m 2
(m 1s the particle mass), it follows from (44) that

1 1kx
T € fodn = Z’f (w,, g(k,v), I=1...5. (47)

On the left-hand side are the Fourier-transformed hydrodynamic variables n, # m w,
3/2n kg T + 1/2 nm w?, which then determine the solution (46). This property
characterizes the Hilbert class of solutions of the Boltzmann equation. If f(#) 1s
determined by the hydrodynamic variables, then so are all higher moments, in
particular the heat flow vector j; and the stress tensor 7;;. Inserting these into the
conversation equations, one gets the hydrodynamic equations.

These conclusions are only possible, if the initial f; lies in the hydrodynamic
subspace H,. If a general f € I is given initially, then after an ‘aging period’, where
the microscopic part is decreased, the solution is expected to be of the form (46). But
the expansion coefficients f;(k) must now be calculated with (45) instead of (47). In (45)
all higher moments and their spatial derivatives contribute for finite k, not only the five
hydrodynamic ones. If the f;(k) calculated from (45) are inserted in (47), one gets
hydrodynamic variables belonging to a normal initial distribution f, e 3, which
gives the same hydrodynamic part as f. These hydrodynamic variables are the right
initial values for the hydrodynamic equations, they correct the so-called initial layer.
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Because the g;(k,v) can be calculated by the Chapman-Enskog procedure or by
perturbation theory, this problem can be solved explicitly. This shall be done in a
subsequent paper.

V. Concluding Rémarks

Our discussion of finite systems in Section III was complicated by the inhomo-
geneous boundary conditions. By this we mean conditions which vary along the
boundaries in such a way that Theorem 3 does not directly apply, for example diffuse
reflection with spatially varying temperature. The physical reason for this compli-
cation can be found in the occurence of a steady state. In fact, if the existence of a
stationary solution is assumed, one can subtract it, and has then only to solve the
Boltzmann equation with zero boundary conditions. This is immediately done by
means of a contraction semigroup. Concerning the existence of the steady state f,
we have the following answer: Equation (29) shows that

0

must hold, where the domain D(B) is defined with homogeneous (time independent)
boundary conditions (30). Then a steady state exists if O is not a point eigenvalue of B.
This must be verified for individual cases, because it is not satisfied in all situations.
A counterexample is given by the rigid rotation in a spherical symmetric domain.

A second remark is devoted to the consideration of an electromagnetic field in the
Boltzmann equation. We start assuming a magnetic field B to be present, which may
be space dependent but is time-independent. This causes a term

0 0
”XB'()—I,‘((IJD‘*“POJ‘):(”XB f)‘Po:

because the contribution from the Maxwellian vanishes. The corresponding operator
is skew-symmetric in our Hilbert space

3
fva g(pod%__vaxB g%dsv

3
fZ —0"— v % B); g p,] d3v~-ffv><B o d%

-1

and therefore dissipative without any further assumptions. Hence our results remain
unchanged in case of a magnetic field of arbitrary strength.
An electric field £ on the other hand gives the following contribution

E-L (go+¢0f) =—Evege+ E- (p]) . (48)

But here the second term is not dissipative. Furthermore the external regularity field
of the operator E 0/0v is zero. This situation is similar to that of the inhomogeneous
boundary conditions in Section III. Again it is possible to derive an existence theorem
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in the linear framework. If E is assumed to be small, only the first term on the right
hand side of (48) has to be taken into account. This is simply an inhomogeneous term
in the Boltzmann equation, and hence the solution takes the form (31).

An other direction of extending the method is the consideration of different
collision operators in the Boltzmann equation. As we have found the existence theory
can be established if the collision operator is dissipative and J-symmetric in an
appropriate Hilbert space. Let us give two further examples of this kind. The first
one is the simple collision operator for self-diffusion

(1) (5.0) = [ (#0) = ) foon) [0 — 2] 0 (B [0 — va]) 22

which occurs in neutron diffusion problems and in solid state physics describing
scattering of electrons by static impurities. Here the same Hilbert space as above can
be used. The second one is the more complicated collision operator for phonon
scattering

(1) (o ks) = 3 [ (70 ) + fUR, ) — (7, 7) (N + 1) (N4 1) N7
-w(k) (#) (&) 8 (@ + 0’ — o) plk, 5; K, 55 ")
+ g () = f(R, 9) = {7, 5)) (N + 1) N N"

-w(k) wR) w(R")d (0 — o' — ") pk,s; k', s'; s”)} a3k’ d3R"

where
1
(k) = exp (hw(k) kg T)—1"

In this case the following scalar product must be used

)= [ x| dkf(x k s)gx k).
8) =X [ o [ @% s, b 9 gl e 9
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