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Phenomenological Thermodynamics V:

The 2nd Law Applied to Extensive Functionals
with the Use of Lagrange Multipliers

by E. C. G. Stueckelberg de Breidenbach
CERN-Geneva and Universities of Geneva and Lausanne

and P. B. Scheurer1)2)
University of Geneva

(30. V. 67)

Abstract. In most of our preceding articles (I-IV) (see References [l]-[4]), we split the 2nd
law into two parts: a) the law of evolution of an adiabatically isolated system X 20), and
b) the law of equilibrium of an isolated S 2T00). This article is mainly devoted to the 2nd law
part b, where we demonstrate that the maximum of the entropy functional S[. .] may be found
by the use of Lagrange multipliers expressing the conservation of the energy functional H[. .]
and, in general, of several other conserved extensive quantities.

Introduction and Conclusions

In practically all textbooks, the sign of physical concepts in systems E, like
absolute temperature T, heat conductivity x and capacity c are assumed positive
definite. Also the mechanical quantities (mass M, viscosities f and rj, and the elastic
moduli) are, as to the question of their sign, in most all treatises [5], taken mostly
from empirical fact in -phenomenological theories PT). But we have shown that these

signs follow from the 2nd law if it is stated in a more precise manner. So we have
solved the question, left open in Pauli's [6] standard article on relativity in the
'Encyclopädie der mathematischen Wissenschaften' (where he says : '... when the
static compressibility a) approaches Herglotz's and Lamia's limit the phenomenological

equations will probably become incorrect...'), showing that the sound velocity
in a fluid c^X t) < clight.

However, the proof we gave of our 'Maximum theorem of the entropy S(t)'
(Appendix to III) was too short and left some ambiguity.

Thus we devote the present paper to a more rigorous proof which should satisfy
and physicist. Another paper, based on well-known mathematical methods is in
preparation [7].

x) Supported by the Swiss National Fund.
2) The present article is a thesis for the obtention of the 'Dr es Sc' degree by the University of

Geneva.
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In order to understand why the theorem, mentioned in the title, is a fundamental
concept of phenomenological thermodynamics PT), we recall our earlier papers,
I, II, III and IV (see bibliography), in which we determined the sign of all local state
functions occurring in the equations of motion of a fluid [non-relativistic (Galilei
covariant) n.r.), relativistic (restricted Lorentz covariant, including time
reversal) r.r.) and in general relativity g.r.)] in terms of the sign of absolute
temperature T and of the signature of a positive or negative definite space metric

We split the 2nd law into two parts :

2nd law a: Principle of evolution.

If a system E is adiabatically insulated (E E^), there exists an extensive
functional S(t), the entropy of E, which increases monotonously with time t:

S(t) *^?L > 0 if E E0. (0.1)

This law (2nd(a)) determines the sign of all 'frictional' state functions (such as
heat conductivity x, the two viscosities J and -tj, coefficients of diffusion and the
coefficients of velocity for chemical reactions) in terms of the sign of absolute
temperature T. 2nd(a) is, however, not sufficient to determine the arrow of time
(— oo ->1 -> + oo) because time reversal T in PT is

l-{'S('t)Z-s(t) (°-2im

'S('0 —J^- >0 it E=E0 ('0.1)

and gives to the arrow of time 't the inverse direction (+ oo -4-- 't -< oo) : past and
future may thus be interchanged if only the 2nd law a is used. We shall call the two
frames t ('t) ortho- (pseudo-) chronous frames. We thus have to add a

2nd law b: Principile of equilibrium.
If a system 27 is (totally) insulated (E Em), the entropy S(t) increases mono-

tonically with time t to a finite maximum value (which is generally only asymptotically
reached) in the orthochronous frame:

limS(t-*+°o) Smax< + ooiiE=Ew. (0.2)

This 2nd law b determines the sign of inertial mass density m enthalpy in r.r.
and g.r.) and of the elastic modulus a, again in terms of the sign of absolute
temperature T and of the signature of the metric.

3) If ajk «(;A) is symmetric, {ajk} 0 stands for

a.k xl xk 5 0 (* {x>} 4= 0) (0.1*)
4) Notation: Primes to the left: t, 't, "t,... indicate a change of frame. Primes to the right:

t, t', t",... are different points on the t axis, while 't, 't', 't" are the corresponding values of the
same points on the 't axis.

u u
5) In r.r. and g.r. (see III), S[t()] / (doaj%) (y), (aß 1234, ih... 123) is a pseudo-

r(y - 0

chronous scalar (g.. — gu 1; ga^ß 0) defined on a timelike hypersurface r(y) 0
u u u

in x space-time {xa}, where (daa da*) (y) > 0 and daé (y) > 0 in every frame.
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1st law:

In order to define the two conditions 'adiabatically insulated' (E E0) and

'(totally) insulated' (E E00), we have to apply the 1st law. It introduces the state
functional H(t), the (total, including kinetic) energy of E. The 1st law affirms, for a
non-insulated system E

H(t) P(t) PQ(t) + PA(t) (0.3)

where P(t) is the power furnished to E, dividing itself into two terms:

1) 'non-geometrical' power

PQ(t) --f*1 j a"-1 pQ(y t) ~§ (d°i <r) (y *) (o.4)

V(t) Vif)

where òQ(t) is the 'non-geometrical' infinitesimal energy, commonly called heat,
furnished during the infinitesimal time interval dt, at an epoch t.

2) 'geometrical' power

pA(t) ^r § d"-1 pA(y t) + f d*pA(x t)

Vlf) V(t)

(dakr\vi)(yt) + J (dVk{v')(xt) (0.5)

Vif) V(t)

where òA(t) is the 'geometrical' infinitesimal energy, commonly called work,
furnished during the infinitesimal time interval òt, at an epoch t.

V(t) is a region in d dimensional 'affine space' x {x'} :ik 12 d (see Section 1),
enclosed by a moving surface C(y, t) 06). (q {q'}) (x, t) is the density of heat
current, (da {dOj}) (y, t) is a covariant vector, the covariant surface element of the
boundary, dV(x) is the (scalar) volume element, r'k(x, t) is the mixed tensor of tension,
and (k {£/}) (*, t) the density of an external force (at distance, e.g., gravitation):
(v fy'}) (x, t) [or (y, t)] is the velocity of the fluid in V(t) [or the velocity of the
boundary C(y, t) 0]. Now we see why

ÒA(t) dtPA(t) (h dd~1ÔA(yt) + / ddÔA(xt)
V(t) v\t)

j> (da, x\ òr") (yt) + J (dV kt òr') (x t) (0.6)

V(t) V(t)

is 'geometrical work' (furnished to E) because it is proportional to the d infinitesimal
geometric displacements (& > 0) òr'

òr(x t) [or (y t)] =òtv(x t) [or (y t)] (0.7)
while

d*-1 òQ(y t) - (da, q) (y t) òt (0.8)

can never be reduced to a form '(generalized) force X (generalized) displacement'.

6) We use, generally, * for an interior point (* e V(t)), and y for a boundary point on C(v, t) 0.
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[Note that the second Equations (0.4) and (0.5) apply to the case of a determined
phase of a fluid of only one chemical component A. If more than one component
A B 12 C is present, òA(t) contains terms of the form dd~1A(y, t)

EA(da jxA òrA nA) (y, t), where /iA(x, t) is the chemical potential, nA(y, t) the density
of substance A, and òrA(y, t) òt (vA — v) (y, t) (vA velocity of A, v velocity of
the centre-of-mass). Now òrA is a geometrical quantity, and nA can also be determined
by geometrical means (part of A in a well-defined crystalline state). Analogous
considerations apply to electrodynamical work furnished to E.]

Now we are prepared to define adiabatically insulated systems

E=E0 implies: dd~x PQ(y t) - (da, q)(yt) 0 \/ (y, t). (0.9)

A (totally) insulated system is defined, by adding to (0.9)

E EM implies (d'-1 PA(y t) (dakx\vi)(yt) Q y yeC(yt) 0

(0.9) and { dd PA (x t) (dV k{ v<) (x t) 0 V * e V(t)

Thus 2700 is the stronger condition

(0.10)

(0.11)

(0.12)

(0.13)7)

i.e., the (total) energy is a constant of motion. This property is, in analytical dynamics,
quantum theory and g.r. (in r.r. approximation), closely connected to homogeneity
of time t.

We pass now to d further constants of motion, closely connected to homogeneity
of affine space: if the system E 2700 is free to move in space (no 'container'), the
quantity of movement 77 {77,} (also d extensive quantities) is conserved :

/7,(0 0 /7,(0 //; for E Em. (0.14) ')

Furthermore, if a constant metric

y — y " c y —' ^o" •

From (0.10) follows

77(0 0 for E : Em

which states the conservation of energy

77(0 H' for E — V

rfil
Siki à\ g\ (0.15)

of arbitrary signature8) is introduced, we have a space metric which is [for (x, t)

independent metric] isotropic. Isotropy of metric space is again closely connected
to the conservation of the 1/2 d (d — 1) independent components Mik Mr-^ of
angular momentum (also an extensive quantity)

Mik(t) 0; Mik(t)=M'ik for E Em (0.16)

7) H', n'f,... (on the right-hand side) are constants of motion.
8) The definite signature follows (see III and IV) [{gik} 7 0 or signature (g..) ± (+1. +!,-¦¦,

+ 1 1)] from 2nd(a) and from 2nd(b) and leads to Euclidean space in the n.r. and r.r. case.
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Further, from Galilei covariance (see IV) and Newton axiom [see (0.18)] it follows
that the total inert mass M(t) is also a constant of movement for any E [v(x, t) is the
velocity of the centre-of-mass in dV(x) if several chemical components A, B, are
present]. This is the Lavoisier Law for chemical reactions. It is also an extensive
quantity :

M(t) 0 M(t) M' for any E. (0.17)

Thus, if in a one-component fluid we take entropy density s(x, t), inert mass density
m(x, t) and the d velocity components of v(x, t) as 2 + d independent local state
functions, the 2nd law a, plus the 1 4- d + 1/2 d (d — 1) + 1 conservation laws
(generalized 1st law), respectively their Galilei covariant continuity laws (see IV),
the 2 + d laws of evolution are given if the Newton axiom for the density of quantity
of movement 77,(», t) is introduced using inert mass density m(x, t)

ni(xt) (mvi)(xt). (0.18)

The extensive quantities of the generalized 1st law are simple integrals over densities

H(t) j (dV h) (x t) -+ (h[smv.] ~m v} vl + u[s m]) (x t)9)

Vit)

77,(0 =J(dVni)(xt)
V(t)

Mik(t) J (dV (*, 7ik - xk n{) (x t) -+(rik r{ik)) (x t)

Vit)

M(t) j (dVm)(xt) (0.19)

V(t)

In the 2nd law the entropy has an analogous form :

5(0 f (dV s) (x t) (0.20)

V(t)

We repeat the equations of motion for completeness :

2nd law a:

(d,s + div (s v + js)) (xt) (s + s div v + divjs) (x t) i(x t) > 0

[T-* (t»<"><°> vfl + (- fs d{F) + | t,<"> «£)] (* O10)

(T[s m] du[s ni]/ds u,s[s rn]) (x t) (f*[s m] du[s m\ldm u,m[s m\) (x t)

(2vik divk+dkvi 2vUk)) (xt)
v1P (x 0 0; tfr) (0) 011) (js T-1 q) (x t) (0.22)

9) u[s m] (Galilei invariant) density of internal energy.
10) i, m and vi, see (0.24).
u) (4* aik-illd)Sikali>(x-t) is the traceless (irreducible) part of (a.k a[ik))(x,t), rik^r)(x,t)

is the frictional, —gikp(x, t) is the elastic part of the tensor of tensions (rik t<!*>) (*, t).
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T(x, t) and jjt(x, t) are the local absolute temperature and the local chemical potential
(per unit of mass).

The generalized 1st law leads further to :

(dtm + div (v m) m + m div v) (x t) 012)

(m (dt vt + vk dk vt) =mvi= dk xkt) (xt) Q

(xlk - glk p + Ta^r>) (* 013)

(p[s m] s u,s[s m] + m u,m[s m] — u[s m] sT + m/n — u) (xt)

pressure) (0.23)

All equations containing substantial fluxions/ [dtf(x, t) local fluxion]

(f=dtf+vkdkf)(xt) (0.24)

contain but Galilei covariant terms [if/(*, 0 is Galilei covariant]. The substantial
acceleration vt(x, t) in (0.23) is equally Galilei covariant.

We repeat that with the exception of the Newton axiom (0.18) all the 2 + d

Galilei covariant equations of motion follow from 2nd law a and the generalized
1st law [conservation laws for 77, 77, and Mik M[ik] and M(t)]. i(x, t) > 0, in (0.22),
is the (Galilei covariant) density of irreversibility or source density of entropy. The
three terms are (Galilei covariant) bilinear terms (thermodynamical currents x
thermodynamical forces) of an irreducible tensor, a vector and a scalar. The fluid
being isotropic, the positive definiteness of i(x, t) requires that each term is positive
definite14). Therefore

(T«(/r)(o) + 2r][s m] vikv») (X t) ; (T-1 rj) [s rn] (xt) > 0 (0.25)

(fs T-1 q1) (x t); (ql + x[s m] d!T) (x t) ; x[s m] (x t) > 0 (0.26)

(if*) ± £[s m\ v\) (x t); (T-1 £) [s m] (x t) > 0 (0.27)

according to the choice
N ^_W % 0 ¦ (0.27a)

Therefore rj(x, t) ('transverse' viscosity) and |(», t) ('longitudinal' viscosity) have the
sign of T(x, t) ; x(x, t) (heat conductivity) is always positive definite if we choose

Now, in the equations of movement, written in linear approximation, we decompose

(v v±+ »|| rot a - grad cp) (x t) div v± 0 rot V{1 0 (0.2816)

1) transverse 'waves'

(m0 dtv±-rj0Avx) (xt) 0 A d, di Ò1 g!'* dk (0.29)

12) See p. 891, footnote 10).

13) Seep. 891, footnote11).
14) This requires, first of all, that {gik} < 0, i.e., a definite metric. Thus space is Euclidean, and

we may choose, without loss of generality {gik} > 0 and pose : g'k g!- + ôk, a a, etc.
15) See p. 892, footnote 14).

16) This is written for d ~ 3. An analogous decomposition is possible for any d > 1.
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2) heat 'waves' [if Vn(x, t) 0]

(c0dts- x0As) (xt) 0 (0.30)
with

(c=TIT,s)[sm](xt) (0.31)

(heat capacity per unit volume)

3) longitudinal waves [if x(x, t) 0]

(mo d? »,, - «o A v,, - (| + ^ ij)o d d, »„) («0=0 (0.32)

with
a[s w] (s2 «,„ + 2sm u,sm + m2 u,mm) [s rn] (x t) (0.33)

(isentropic elastic modulus of compression)

The index 0 in m0, tj0, £0, x0, c0 and a0 is the constant value of the fluid at rest
[»(*, 0 0] in 'equilibrium' [s(x, t) s0, m(x, t) m0, etc.].

Now, these equations cannot be discussed unless the yet undetermined signs of m,
c[s m] and a[s m] are given in terms of the sign of T.

It is our 2nd law b which gives us this lacking information.
In all cases considered so far17), the equilibrium is stationary (more exactly static)

dt(m(xt),s(xt),v(xt)) 0 dtV(t) 0^V(t) V. (0.34)18)

Therefore S, 77, 77,, Mik are functionals of the d + 2 local state functions s(x), m(x)
and {Vi(x)} v.(x)19). F is a time independent region19). Thus we write

S[s()] J (dV s) (x)
V

H[s(),m(),v.()]= f (dVh) (x)

v

ni[m(),v.()]=J(dV7ti)(x)
v

Mik{m(),v.()}=J(dVciik)(x)
v

M[m( )] f (dV m) (x)

v
(p-ik xtnk- xk7it) (x) (0.35)

17) It is an open question to us whether non-stationary equilibria dt(m(x, t)...) 4= 0 exist. They
certainly do exist for solid (or rigid) bodies, where the constant angular momentum M'ik is not
proportional to coik.

ls) V(t) is an extensive quantity if V(t) symbolizes also the volume of the region V(t) / dV(x),
Vif)

with density v(x) 1. Therefore we should write V(t) V. Or, for certain reasons we omit
here the prime.

19) See p. 893, footnote ").



894 E. C. G. Stueckelberg de Breidenbach and P. B. Scheurer H. P. A.

Now, a necessary condition for the maximum of a functional is that it has a stationary
value (extremum)

S[s( )] extr. (0.36)

under the l + d + 1/2d(d— 1) + 1 functional constraints

H[s(),m( ),v.()]= H'

ni[m(),v.()]=n'i
Mik[m(),v.()] M'ik

M[m( )] M'. (0.37)

This extremum can be found by the use of (1 + d + 1/2 d (d — 1) + 1) LM's, using the
symbols ê, — £', — caik — co[ikl and — ß. We form the extremum, by postulating
stationarity for

W[s( m( v.( )] (s + m- CU, - ~ coik Mik - ß Af) [s( m( v.( )]

f (dV xp) (x) m= 'extr. 20) (0.38)

v

with the density

xp(x) s(x) + ê (— m(x) g'k(Vi vk) (x) + u[s(x),m(x)]\

- C !'(*) m(x) vt(x) - ß m(x) (0.39)

The antisymmetry of tu'* allows to write the £' and co'k terms as a single term

£'•"(*) C' + xk coki [Ç'(x) £, + [<o A x] for d 3] (0.40)

Stationarity requires that the first variation [linear in òs(x), òm(x) and the òv^x)}
vanishes for arbitrary and small variations òs(x), òm(x) and òv{(x)

ÔM ¥[...] f dV (tp, s
os + f,môm + y>,{ ôv{) (x) 0 (0.41)

v
This implies

1) W,0(x) (l + &u,s)(x)m=0. (0.42)

Thus

u,s(x) T(x) - ê-1 T (0.43)

The temperature of E is constant, or more exactly, 'E has a temperature 77

2) V,l(x) &(m V) (x) - C'(*) m(x)m= 0 (0.44}

Thus, if m(x) 4= 0

v'(x) ê-1 f '"(*) i?"1 (£7 + xk coki) [»(*) -&-1 (Ç + [co A *]) for d 3J (0.45)

20) Normally one writes W[---J (S+& (H-H') - ¦¦¦) [•••]. But the LM's being kept constant,
this form would differ from (0.38) but for a constant -fiW— f'77/..., which can be omitted.
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The velocity of the fluid is a constant vector upon which a rotational motion with
constant angular velocity is superposed.

3) f,m(x) & (-L v, v' + u,m) (x) - H"(x) Vi(x) - ßm=0.

Substituting d-1 £''(*) vi(x), and u,m(x) f*(x), one obtains the result for the
chemical potential

f*(x)=[i0 + ±(ViV')(x); //0 ^/3 (0.46)

relation, which will be used later.
It is by no means proved that the solutions following from the stationarity

condition satisfy the equations of motion. Therefore, let us write the equations of
motion for v'(x, t). It is, in its exact form, (0.23)

(m (dt v, + v» dk vt) + dtp-dk rf'>) (»0 0 (0.47)

or, from the definition of p in (0.23) follows

(dip sdiT + mdilA(xt). (0.48)

In our case rtk{lr)(x) disappears because of (0.25) and vlk(x) 0 from (0.45).
Thus, as d,v{(x) 0, we are, on account of (0.23), left with

im vk dkVi+ dip m vk dk v{ + m e), ,w m (vk dk v{ + d, l=- vk vk\\

mvkvik\ (x) 0. (0.49)

The equations of motion s(x, t) are given in (0.22). Because of vik(x) 0 (div»
v\) (x) 0, (jsi — T"1 x(d;T)) (x) 0, the equation of motion is: s(x) 0. This
implies that the source density of entropy vanishes: i(x) 0 [because of vik(x) 0,

diT(x) 0]. The same Equation (0.23) holds for m(x, t):m(x) 0. Now, let us change
from densities (of extensive state functions) to the intensive state functions T(x) T
and /j,(x) /i0 + 1l2(vi vt) (x) and write

s(x) s[T(x), f*(x)] ; m(x) m[T(x), /j,(x)] (0.50)

As T(x) T is a constant, we have, for s(x) :

H«) s,ß(x) fi(x) s,M(x) (vk y dk (v,v^ (x)

S>ll(x) (vk v' dk Vi) (x) («,„»' vk vik) (x) 0 (0.51.S)21)

and an analogous equation for m(x)

m(x) (m,ß v'' vk vik) (x) 0 (0.51.m)

Thus, the stationary extremum is compatible with the equations of motion.

We come now to the essential part of our theorem :

if the first variation of W[...] disappears (extremum) the second variation of
S[...] under constraints is equal to the second variation of 3*[...] (with the LM's
being kept constant!).

21) (vk v' dk Vi vik «'') d{k v{) vl vk vik) (x) 0. (0.51. *>
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In formulae if
òWìF[...] 0, Ò{*]S[...]=Ò{2) ¥[...] <0 (0.52)

(5(fj indicates that the variation is restricted by the 1 + d + 1/2d (d — 1) + 1

constraints (0.37). A necessary condition for the maximum is therefore

Ò^S[...]=O^W[s(),m(),v.()}=f(dV(y,,ss(òs)2 + 2f,smòsòm + W,mm(òm)2

v
must

+ f,ks ovk òs + xp,km òvk òm + f,ik òvt òvk)) (x) < 0. (0.53)

This implies that the 2 + d dimensional symmetric form is negative definite

(*) <0 \/ xgV (0.54)22)

Or, given tp(x) in (0,39), the only quadratic forms of interest are:

1) W'"0} (x) #»*(*) {gik} < 0 -

As

{g'"*} > 0

(Euclidean choice), we have [7_1(«;) — ¦&, (0.43)]

- ihn(x) fg- > 0 (0.55)

thus mass density m has the sign of absolute temperature, and :

2) <^ [(*)=*{ }•(*)< 0. (0.56)

Let us first consider the diagonal element of (0.56)

y>„(*) §u,ss(x) - ^- < 0 (0.57)

Now, quasistatic furniture of heat to the unit volume, at constant 'geometrical
variables' (ôv(x) 0, òm(x) 0), defines the heat capacity per unit volume density
of heat capacity) c(x) :

òh(x) ôu[s, m] (x) T(x) òs(x)

T(x) T,z\x) ÒT(x) c[s, m] (x) ÔT(x) (0.58)23)

Thus, (0.57) states

c[s, m] (x) i^-\ [s, m] (x) > 0 (0.59)
\ 'SS '

Heat capacity is always positive definite.

22) A (positive or) negative definite quadratic form requires that all diagonal minors of the cor¬

responding determinant are (> 0) or < 0.
23) ÔT[s m] (x) T,s[s m] (x) ôs(x) -X ôs(x) T.j^s m] (x) ÔT(x).



Vol. 40, 1967 Phenomenological Thermodynamics V 897

Next we consider the quadratic form corresponding to (0.56)

ê (u,ss s2 + 2 u,sm s m + u,mm m2) (x) - (-f (x) < 0 (0.60)

in which, by the definition (0.33), a[s, m] is the elastic (isentropic) modulus24). Thus
we find that the elastic modulus has the sign of the absolute temperature T[s, m] (x)

c2(x) (-f [s, m] (x) > 0 (0.61)

c2(x) c2[s, m] (x) is the velocity square of longitudinal waves in the absence of
friction.

Thus, the 2nd law, (a and b) combined, gives the sign of all constants in the linear
approximations [(0.29), (0.30) and (0.32)] in terms of the absolute temperature
T[s, m] (x).

We remark further that the thermal quantities: heat conductivity x[s, m] (x) and
density of heat capacity c[s, m] (x) are, independent of choice of sign of T[s, m] (x),
positive definite.

On the other hand, the geometrical quantities: mass m(x), elastic modulus
a[s, m] (x), viscosities £[s, m] (x) and rj[s, m\ (x) have all the sign of T\s, m] (x).

Therefore, in the linear approximations (0.29), (0.30) and (0.32) all coefficients
m m0; a[s0, m0] a0 have, in the equations of motion, the same sign25) (see III
and IV). We have given, in IV, Section 4, the linearized equations of motion for
dts(x, t), dtv^(x, 025) and d2v±(x, t)2f>) [which are, if x(s0, m0) x0 > 0 (not 0)

coupled, even in the r.r. case], the general solutions for the equations in terms of
kernels and the initial values (for t 0). The general solutions exist only for the
future, leading exponentially to the static equilibrium [v(x, O~x0; s(x, t)-> s0;
m(x, t) -x m0 for lim t -X + oo], because the different kernels exist only for t > 0.

Therefore, for the physicist, only the future exists (future evolution 'one-sided'
Laplace determinism).

In an experiment on E, he chooses arbitrary initial conditions E(t') at an epoch,

say, t t' (t'" 0 now!), and observes the evolution E(t) ((!'<<< t" < t'") during
a period {t, t"} in the past (of now). This gives to man the feeling of 'free will', because

24) In the static equilibrium v(x) 0, we have s(x) s0 SjV, m(x) m0 MjV and H
U =fdV u[sm) V u\SjV, MjV] U[S M V] from which follows

V
PIS M V] -dU[S M V]jdV (u,sSjV+u,mMjV-u) [SjV, MjV]

and
-dp[S M V]jdV d2U[S M V]/dV2 V^alS/V, MjV]

Thus a[s, m] is the modulus of compression.

25) In the n.r. case this statement is correct. In the r.r. case, we have for x[s, n] (x, t) > 0 the
'premonition' analogous to Dirac's classical theory of the point electron [8] [9] [10] :

Mi,(t)^rM(-ar1'v(t)4-v(t)) K(z(t),t); v(t) i(t)
where tx > 0 is an enormously small positive constant of dimension [a] [f]_1 (a-1
2/3 (e2l(M cjigin)) > 0). In our case, the equations of motion are, if % 4= 0, changed in the same
way (ma dtv^m0 (-ßZ1 d*v+dtv)) (x, t) with ßZ1 (x T m-1 c^4ht)0 > 0 (T $ 0).
Gruber [11] has shown that such 'premonitions' exist for the coupled system of linear equations
of a n.r. and a r.r. fluid.
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he is under the (right or wrong) impression that he was 'creating' (to a certain extent)
at the past epoch t' such initial conditions [on a limited part E of the finite or infinite
universe 27^)] which assured to him the most favourable future of f up to now
t'" 0.

In this context arises the question : what is the method of history to trace the past
evolution (— oo <; t <J 0 now) (cosmogony, geology, evolution of life and history
of man)? The data of history 27(0) are 'documents7 available now (t 0) ('present-
day' 26) composition of the cosmos, stratographical composition of the earth, fossiles,

archeological and historical documents). All 'documents' are more or less exactly
dated as to epochs t', < t", < t'", < 0 now). Now we choose for our E (f < 0)

initial conditions at t t' in such a manner that the present data (now 0 > t'),
calculated as the future 27(0) of E (V < 0), coincide with the real state of affairs
27'(0). The past events are, in general, only approximately dated, comparison between
the observed states E'(t"), E'(t'"),... with the predicted values 27(7'), 27(7"),... gives
an ever increasing consistency of history. This means that the numbers t' < t" <
< t 0 become more and more exact.

Let us remark here that 'miracles' in the past of 'now' are by no means surprising :

some particular initial state 27(0) (not the general state, of course) may admit solutions
for a finite past interval {f, 0} -x t' < t < 0. However, at t' we find E(t') in a most
singular state, [ò(x) functions, their derivatives and their integrals step functions)],
for which no documents for their (t < t') can exist : this seems to us to be the definition
of the miracles.

Let us finally remark that there exists, independent of the sign of T(x), an upper
limit for elastic waves (v2 gik v' vk) (x) in r.r. (see III, Section 3) :

v>) 77 Is- ni (*) < 4ht (0-62)

inert mass density (m[s, n] w[s, n] (u + p) [s, «]) (*)

(T s + /a n) [s, n] (x) enthalpy density (in the orthochronous rest frame) (0.63)

and, equally independent of the sign of T(x), a lower limit for entropy density:

s(x) > 0 (0.64)

which is a rudimentary form of the 3rd law (Nernst's principle).
For simplicity, let us now call the d + 2 to local state variables s(x), m(x) and

v{(x) [or any d + 2 or =1= co) of co other independent state local variables]

f(x) {|a(*)} a.ß 12...œ \/xeV (0.65)

and consider quite generally extensive functionals or 'density type' functionals

F[?( )] J (dV f) (x) =Jdd F(x) (0.66)

v v
where

f(x)=f[?(x),x]=dp^ (0.67)

:6) i.e., as observed 'now' inside the hypercone of the past!
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is the density of 77 at a point X. Let us write the partial derivatives of densities with
respect to local state functions, as

a»iV..^) - /,lV..4n*)..] - (^gr.'.:ki=^, (o-68)

S [!'()] and the 1 4- d + 1j2 d (d — 1) + 1 m)21) constraints are of this type.
Let us now, for generality, write 77 for S, and let

£*(*) - !?(*) àÇa(x) -> infinitesimal V oc (0.68')

be the variation of £*(x). We shall assume analyticity of/[£\ x] in the small domain
corresponding to (0.68'). Let òCf^x) be any variation compatible with the m
constraints.

Then, the total compatible variation of F[|'( )] must satisfy

/lwF[f()] F[f()]-F[f0()]<0
oo 1 „ 00

Zjt I (dVA«,«,...h«S^-.^W^^^O] (°-69)
k-1 j/ 1 2 " k-1

in order that H,(x) corresponds to a maximum. In particular, we speak of an extremum
of order k and of a maximum of order k, if

(-f > F Ó<2> F=--- Òfck-X) F) [f )] 0; <5<2*> F[f )] < 0 (0.70)

We write the m extensive constraints (of the 'density type') as functionals of the
tu|a(*)'s

Ga[f()] f (dV g") (x) G'« ab... 12... m (0.71)

f(x) f[?{x),x\; g,aVì...ak(x) See (0.68). (0.72)

These m constraints must be linearly independent.
Then we can prove that the conditions of extremum and maximum of order k can

be written as

fJF[f()]=a(1"P[f()] 0

ó<2>F[f()] <5<2>f[f()] 0

C"1' F[|'( )] a«2*"1' y[|"( )] 0 (0.73)
and

C'^'Ol^^LTO] <0 (0.74)
with

!F[f()] F[|'()]+^G«[f()]. (0.75)

Therefore we may state the following theorem :

The maximum of an extensive functional 'density type' functional), submitted
to any finite number of constraints of the same type, is equal to the result found
by Lagrange multipliers.

(not to be confused with m(x), mass density) indicates the (finite) number of constraints.
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Equations (0.73) and (0.74) imply

v^) v.^4*) ¦¦¦ v-^^Jf) o

Kv..a2J (*)< 0 V*eF (0.76)2«)

k being an arbitrary high integer, we have proved our theorem, once (0.73), (0.74) and
(0.76) are shown to hold.

1. The Variation d$'} under m Constraints G" G'"

The Method of Elimination

We separate, out of the region V, m number of constraints) arbitrarily small
and non-intersecting regions V(a) in physical space (x {*'} e V)

f m \ m

V=V'\j[\JV(a)\=V'+ZaV(a)
V f| V(a) cf> V(a) ft V(b) cj>, a 4= b; V a, b (1.1)

We let the V(a)'s tend to such small regions

lim V(a) -> arbitrarity small 4= dV(a) -> 0 (1.2)

such that the mean value theorem [we admit but continuous densities29) f(x), ga(x)]

J(dVt)(x) V(a)i(x% x^eV(a)
Via)

J (dVg») (x) V(a) g"(x^); x^ e V(a) (1.3)

V{a)

lim V(a) ^ xf, x{/] ^xae V(a) V a,b (1.3a)

holds for all a b 12 m; and, in the limit, the mean co-ordinates x^ and
> ' • ' a

x™ ' tend all to the same limit point xa(\/ a, b) (=a or a).
Now, we choose, instead of the most general variation29) ò^(x), at first, the

following particular variation :

f<5f° const") (V(a))
ÔP(x) \ \ior xe\ \, V a

I arbitrary I I V I

ôF(x) { 1 for * e
J 1 V a, x * 1 (1.4a)30)

Iarbitraryl I V I

2S) {V* a a •¦• a ,)(*)< 0 is a negative definite form of order 2 k, i. e.,
v 12 2 Kj

y.a^- ..«,*(*) »A*,"2 nSk < o (0.76)

if the 'vector' -rj- {r]x} 4= 0.

29) As/(«) /[£'(*), *] is a continuous function, ôÇa(x) |a(*) - fj,(#) should also be continuous.
So (1.4a) should be considered as being the limit of continuous functions.

30) See footnote 30) page 901.
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Now, the m constraints on <5F[...], (0.71), imply (as V is kept constant):

<5G"[f )] a #» G"[f )] f (dV g
« ÓD (*)

must
=27F^ s-ï (*») ^6 + / (dVs>a*ò^) (*) ° • (L5a)

We thus have m equations to determine the m <5|ô' s30). In order to do this, we consider
the matrix, defined by :

fe?} fe.î(*»)} (1.6)

where the element depends but on the point xb in physical space. As the m constraints
(0.71) are linearly independent (see Section 0)31), the determinant of this matrix is
not identically (for all x e V) equal to zero. Thus, an inverse matrix g~lba exists
(whose elements depend on all m xa' s) :

rt ài- (1.7a)

Thus, dividing by ôi°L(x) (x e V), we may define a functional derivation of a

ft-]
-F(«)-1g-1«K...*Jg,*(*). (1.8)32)

Let us remark that this system of m functional derivative equations cannot be solved,
i.e., f"[f'( )], xeV does not exist, unless we introduce the further restriction

|> const0') (V(a))
?(*) \ for*e V« (1.9)

[ arbitrary J [ V J

which is by no means necessary. Equation (1.8) would then be of the form

*.:„=*.:„ tn *] xev. (l.io)

Still, we shall use (1.8) as a symbolic notation indicating that, if a variation of

£,£»[...] is performed, the m r3|*'s (V a, b) are m constants h <5|* [(1.4a) or (1.4b)
(footnote 30))] in Equation (1.3). For the procedure of elimination, we need but
the variations d,c) <5{Jj, tS{2], òffi of a symbolic functional

F[f )] ee F[P[f )],.., |»[f )], f )] * e F' (1.11)

30) These formulae imply that all G"[.. .]'s depend on ^(x). lì this is not true, we may define for
these G«[...]'s Mf» const»! \V(b)\

«•«-j arbitrary | ^ ** | r j ^etc. The exact notation of (1.4a), (1.4b),... is rather complicated, but we have found one which
leads effectively to (1.8). Let us remember that this case is generally realized, as shown in the
example of the n. r. fluid (in Section 0).

31) The linear combination ca A (x) 4= 0 unless all ca 0 and for all * e V except an ensemble of
measure zero.

32) See footnote 30).
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which has the property that the free variations <5(A) of the symbolic F[...] (functional
on V) are equal to the variations ó!*} of F[...] (functional on V), restricted by the m
constraints G"[...] G'a. In formula:

d<*> F[f )] (* e V) ò\k\ F[r )] (xeV). (1.12'*»)

2. The 1st Variation df1) F(...)
We shall show here that the well-known method of LM's applies to the 1st

variation, and that (if higher variations are considered), the ûa's figuring both in the

expression for W[... ] and for F[... ] are well defined intensive state variables [such as,
in our fluid example, temperature (ê r — T'1) (x), linear (&~x f* v'0) (x) and

angular (#_1 tu'* m^) velocities and chemical potential at the point where
vl0 + xk coq' v'(x) disappears (#_1 ß /u [v(x) 0])] symbolically written

$a eair,...,r»}. (2.1)

In higher variations <5(*>F[...] ò{k~l)(òwF) [...] (functional on V), they will be
considered as such, varying, state variables. However, if the variations are made for
IF [...],(functional on V), the LM's have to be kept constant.

1) Procedure of Elimination

We write, in analogy to (1.5a), and eliminating <5|» by (1.5b),

dgF[...] =£V(b) f,bòr + [(dVfJ (x) dS"(x)
» J,

-fm*) (/..(*) + (- /.» g-lb.) (*i ••• *j g'M) <*£¦(*) <5(1) n...]
V

f (dV f,a) (x) dt*(x) f dV(x) F,ax «5|«=5t0 xeV. (2.2)

V V'

The co ò£a(x) òt-*" being arbitrary, co equations follow:

£«,[¦••] /.«(*) Â«[f (*),*]
must

/, „(*) 7 &a(*i ¦ ¦ ¦ *J g.'a(*) =0 xeV (2.3)
with

*. *.(*i • • • *j - (A* r") (*i.• • *j • (2.4)

We now compare this result with :

2) Procedure of IM's
It states:

gf» yrf )] y rfT/(Ä) yfM ^« y (rf7 ^^ (ap)

v v
r must
/ (dV (/,„ + #a g,«) <$f («) 0 * e F (2.5)
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for an extremum of the first order. For our particular variation (1.4a) and (1.4b),
where the m <3f°'s are now also arbitrary, this gives

«P «PT,..] £V(b) (j,b + êag,i) (xx...xj Ô?
b

C must
+ j (dV(f,a + êag,aJôn(*) 0 (2.6)

v
from which follows first

V(b)(f,b+eag,t)(xb)=0. (2.7)

This equation leads to (2.4). For points x e V, Equation (2.6) leads to (2.3). Thus the
well-known theorem that stationarity (of the first order) can be found by the use of
LM's is proved. We need this particular 'physical demonstration'33) in order to
calculate the higher (<5((*jF[...]) variations34).

3. The 2nd Variation d|2jF

We form from (2.2) and (2.3)

dg F[f] <5<2> Fir ] f (dv f,aß òr òr) (x)

v
fdv(x) (y>,afi(x) +êa,binn ...r[r})rbß(x)g,i(x))
v

a must
x (òr òr) (x) <0; xeV (3.1)

where the 1st term of the integral in the fourth member of Equation (3.1) is due to the
fact that we have written

/.«/^ *«[••• r[f]...]&/>s *«*(*) V*eF' (3.2)

leaving the LM's unvaried. Now, from (1.7a) or (1.7b*), there follows from

<«'»-lc),b[...r---] (òl),b 0 (3.3)\S'c 6 bhb L--- i -..J — \"bl'b
the relation

-lc _ _ -le f -le
o a,b o f 6' eb S a

(3.4)

Thus, from (2.4), and as gjab Z gjhbòah
b

Ki - V'ic g'*! -ZV'bb Ôbc g~1Ca -ZV'bb e'1"" • (3"5)

l3) We use this term 'physical demonstration' in contradistinction to a rigorous proof of our
theorem, to be published shortly by our collaborator, the mathematician Dr. J. Poncet, who
states the exact mathematical restrictions for the validity of this theorem.

4) It is easily seen [writing FiaLX (respectively F,b) for /,«(*) (respectively /, b(xb)) and G,ax
(respectively G, f) tor g,^(xb) (respectively g, £(*))] that the use of LM's is valid for ô}1)F for all
functionals. It includes, however, contributions from surface terms. (We actually try to free
ourselves from the 'density type' functionals in order to include action at distance for higher
variations.)
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Inserting (3.5) into (3.1), we find

t5<2> F[...] <5<2> F[. ..]=/" (dV V,aß òr òr) (x) + XV(b) f,bb (%"?
v>

b

must

<5<2"F[...]=y (dvw,aßoror) w<o. (3.6)
V

The equality restricts ó(2)?F[...] to our particular variation (1.4a) or (1.4b*).
This is stated as follows:

1st Theorem of LM's
If the 2nd variation of W\_...], making use of constant LM's, is smaller or equal
to zero, the 2nd variation of the functional F[...] submitted to m constraints
G"[...] G'a satisfies the same inequality.

Thus, (5(2) ¥ I... ] < 0 is a sufficient condition for ò{2\ F [... ] < 0. But we shall see that
it is also a necessary one.

In order to do that, we use a particular variation in V, (ô^Ç^fo), xeV),
separating a small F(0) out of V

{orja/V(0) const01! e
> for *

0 $6<P)£"(*) \ „ } for x I F(0) C V (3.73*)

This gives us, from (1.4) - or (1.4b*) - (1.5a) and (1.5b), after elimination with the
inverse matrix {g_1 f} :

ò(p)r - V(a)-i g-'l f (dVg,ba ôw r) (x) - F(a)-1 g"1* g.» (x0) drf (3.8)

V'

So we arrive at :

C,)F[...] <5<2>)F[...]

-zm V'*ß W ^" V + £tW V'bb (*») ((g-lbc g,°J (*o *x ¦ ¦ ¦ *J W)2

d<2»!F[...]<t0. (3.9)

As the m+1 small regions [F(0), F(l), Vip), F(w), Q V] are all arbitrary
positive, and as their m+1 'locations' (x0, xx, xb, xm) are also m+1
arbitrary points e F, we conclude that the following quadratic form must be negative
definite

V.«/»(*MV<0 {¥>.«„(*)} <0 *eF (3.10)

(3.10) being sufficient and necessary, we can conclude, for any arbitrary variation
òr(x)

dj2|F[...] (3«2> «?[...]
r -, o must
/dv(x)w,aßir0(x)...r0(x)...rj(x)i(òrôr)w <o (3.11)

To V(0) applies the same remark as to (1.1) and (1.2).
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is negative, on account of the generality (\/ x e V) of (3.11), at the extremum £0.
Thus our theorem (0.75) is proved [if < holds in (3.11) for k 1 in (0.75)].
We consider now the arbitrary high (k > 3) variations ój*jF[...].

4. Arbitrary High (ft > 3) Variations djjj F

For k 3, let us consider first

+ KbcllJ\g.iy*) V*eF' (4.1)

in which, on account of (3.2) and (3.5), (yi,bb 0) the second term vanishes.

Further, we calculate &a,bc

Kbc= ~ (f,bbcàbag-lda + V,bbàbdg-lda,c) (4.2)

in which, for the same reason, the second term vanishes too.
Thus, the third variation is given by :

ò%Fl...]=òWFl...]=f(dVy,,W3oriòÌ«zò^)(x)
v

+ ZV(b)f,bbb(OÌb)3 ^W[...]m=0. (4.3)
b

Therefore we are again led to the statement: for the extremum of the second order
(k 2), ó(s"F[...] ó(2*-1)lF[...] 0 is a sufficient condition. In order to state that
the condition is necessary, we proceed as in Section 3 (with^j3^) F[...]) and arrive at

<t>,)F[...] -F(^,aiVsW goffrar?*

+Z^w,bbb(*b) «r".g.y (x0,xx,...,xm)ôr,«)s

ò$¥l...r=0 (4.4)

where again the arbitrary choice of x0, xx, xm e V necessitates

must

V.W3(*) 0 V*eF (4.5)

for the extremum of the second order.
It is easy now to formulate a recursion formula. For any k, with the assumption

d<»F[...] =<5<2>F[...] =0<*-1>F[...] 0 (4.6)

one has

K (b)k-2c - V> (i)*"1 ^ « g"'« (4-7)
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with the notation &a,Q)kc &a,b...hc (k times index b), and

Lr..4*) {v,«l...H + \[b)k-\rcakrbH_i...x -r\g,i)(x) v*er. (4.8)

Thus the (k)th variation is given by

ó$F[...]=d<*>F[...]= [(dVy,,ai_Xkôï°i...ôr<k)(x)
v

+Zv(b)W,{b)k(ôr)k^ô^n-i
b

{=
\

-f
\2 k — 11 for a maximum

m<of \ 2 k' J oforder*'

The same construction remains valid for the necessary condition :

€)P)Fl-i=1z(^rW>.v..^o)à^-ôtk
+ Z-vW)^ ?•<»>*(*») (fe"1* S.l) (*o. *i ¦¦• *J fy")* • (4.10)
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