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Finite Nuclear Size Effects in Internal Conversion

by Hans-Christian Pauli
Seminar fiir theoretische Physik der Universitit Basel

(28. IV. 67)

Abstract. The process of internal conversion including finite nuclear size effects is reanalysed
for an arbitrary multipole order. It can be shown that the dependence on nuclear structure can be
described by two so called nuclear parameters which are—for a specific nuclear transition —inde-
pendent of the atomic subshells. These parameters may be determined by two or three conversion
experiments and checked by others. New formulas for the particle parameter and for the con-
version coefficients and their dependence on these nuclear parameters are derived. A recalculation
of the conversion coefficients and particle parameters including all finite nuclear size effects has
been performed as well as a comparison with the conversion coefficients as computed by Roske
or by Sriv. The agreement with SLiv’s values is generally better than with those of RosE.

I. Introduction and Summary

An excited nucleus can decay by electromagnetic interactions. Internal conversion
belongs to these processes and competes with the usual gamma transition inasmuch
as the de-excitation takes place by the emission of an orbital electron instead of by
the emission of a photon, especially at low energies. Assuming the gamma transition
as the standard, the internal conversion transition probability W, can be measured
in units of the photon transition probability W, and this measure is the so called
“internal conversion coefficient (ICC)” i.e.

The internal conversion coefficient is a rather important tool for the determination
of the multipolarity L as well as for the parity z of a nuclear transition. From these
quantum numbers limitations on the spin and parities of the involved nuclear levels
can be obtained.

In the first calculations of the internal conversion coefficients, as performed by
Rosk [1] for the K-shell, neither the screening of the atomic electrons was taken into
account nor the finite nuclear size, but the nucleus was assumed to be a point charge.

The renounciation of the latter assumption i.e. the introduction of the finite
nuclear size leads to considerable corrections of the conversion coefficients. Firstly,
the radial wave functions of the electrons have a completely different behaviour near
the origin for a finite nucleus than for a point nucleus. Since the neighbourhood of
the nucleus contributes a large part to the radial matrix elements this—so called
static—effect is nonnegligible. Secondly, the correct treatment of the conversion
matrix elements gives rise to additional matrix elements which disappear in a point
nucleus approximation and wherein the operators of nuclear transition charges and



714 Hans-Christian Pauli H.P A.

currents are explicitely contained. Thus, detailed nuclear structure enters in these
additional terms and we shall call them dynamic in the following, contrary to the
above mentioned static effects which depend only on static nuclear charge distribu-
tion. Especially for heavier nuclei the dynamic matrix elements may become impor-
tant, and the measurement of conversion coefficients may contribute to the investi-
gation of the dynamic nuclear structure.

The existence of nuclear structure effects in internal conversion—the so-called
penetration—was first suggested by CHURCH and WENESER [2] for magnetic dipole
(M 1) transitions. In subsequent work the theory was extended to other multipolari-
ties [3]. Calculations of the dynamic matrix elements were given only for the K-shell
[4], and thus the considerations of CHURCH and WENESER had to be restricted on this
shell. Nevertheless, penetration eftects have to be expected also for the higher atomic
shells. Particular work for L-subshell conversion coetficients has been done by CHURCH
and WENESER [5] and KRAMERS and NILssoN [6], in order to explain the partially
very large anomalies of the conversion coefficients which have been observed in
hindered electric dipole (E'1) transitions of low energy [7].

Although the theory of internal conversion including finite size effects is already
scetched by the above mentioned authors, we shall present in this paper a complete
and general reanalysis of the conversion process and obviously, repetitions can not
always be avoided. The main aim we persue in this reanalysis is to separate properly
the matrix elements which depend only on the electronic wave functions from those
carrying the nuclear information. We will show, that all nuclear structure effects can
be put into one nuclear parameter for magnetic and into two parameters for electric
multipole transitions. These well defined parameters are independent of the subshells
involved and can be determined by the measurement of one or two conversion coeffi-
cients or particle parameters and checked by others. Once these parameters are deter-
mined they should be verified by model dependent considerations.

Parallely to the investigation of the conversion coefficients we have reanalyzed
the angular correlation for conversion electrons including finite size effects. For the
standard -y correlation we refer to the textbook literature [8] and restrict ourselves
on the so-called particle parameter which includes all modifications of the standard
theory through the introduction of conversion electrons. We shall present a consider-
able simpler notation for the general particle parameter than the formulas of BIEDEN-
HARN and RosE [9, 10, 11] or of IvasH [12], as well as explicit formulas for the particle
parameters for the K, L;, Ly, Ly, My, My, My, My, Ng, ... subshells.

The investigation of nuclear structure by means of internal conversion presumes
the knowledge of the static conversion coefficients. Today, two tabulations of internal
conversion coefficients including the finite nuclear size are available.

The tabulation of Rosk [13] takes only the static effects of the finite nuclear size
into account. SL1v and BAND [14] include also dynamic effects by means of the very
rough model of the nuclear surface transition currents and charges. However, the
discrepancies of these two tables are in many cases too large to be only due to these
different assumptions. Such discrepancies can be expected to be significant only for
magnetic low energy transitions. Therefore, they have to be attributed to numerical
errors. In order to check their calculations we have performed a recalculation of the
conversion coefficients for the K- and the L-shell with the same physical assumptions
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as Rosk or Sriv. Although we agree very often with the values of Rose within the
combined limits of error, the agreement with SLIV’s values is generally better, espe-
cially at low energies.

In the following, we discuss in Chapter II the formulation of the interaction and
the separation of the general matrix elements into the static and dynamic parts.
In Chapter III the formulas of the particle parameters are derived. The dynamic
matrix elements are discussed in detail in Chapter IV, in order to simplify the theory
by means of the definition of the nuclear parameter. Finally we give in Chapter V an
outline of our numerical procedure as well as some selected numerical results.

II. Formulation of the Interaction

The total system consisting of the electron, the nucleus and the quantized radia-
tion field is described in a zero order approximation by the Hamiltonian?)

HO:HH+Hy+ap+ﬁ+V(re) (l)

where the two first terms represent the Hamiltonians of the free nucleus and the free
radiation field. The latter terms in Eq. (1) represent the electron, moving in the cen-
tral and static Coulomb potential. The interaction between the nucleus and electron
occurs via the electro-magnetic field, which is usually divided into a transverse part,
described by the vector potential A(r) for which divA = 0 (solenoidal fields), and a
longitudinal part causing the instanteous Coulomb interaction. With this gauge any
divergencies can be avoided [15]. Since the point charge interaction is already con-
tained in the unperturbed Hamiltonian, the interaction Hamiltonian is given by

Hi = [dn (4,(1) + n) A + [ dr aw 2020y @

where j(r) and p(r) are the transition currents and charges of the nucleus and the
electron.
The vector potential A(r) is expanded into multipole components according to [15]

22V4nq {0, u(E) ALy (E) + ap (M) Ap (M) 4 c.c.} (3)

q LM
L>1
where the electric (E) and magnetic (M) multipole fields are given by [16]
L
A (M) = VE@Ci1) 12(g7) i Yy (%)
1 vV XL . . -
ALM(E) = _? : V-—I‘“(fiﬁ 7L(q T) zL YLM(,’) * (4)

For the spherical Bessel functions j;(g - ) we use the same notation as ScHIFF [17].

The multipole fields, enclosed in a large sphere of radius R, can be understood
as photons with angular momentum I and magnetic quantum number M, wave
number ¢, parity (—)* and (—)E*! for electric and magnetic fields, respectively, and
obey the “convention 7" i.e. they are transformed under time-reversal-operation T as

Tlju>=(=V""]j—u>.
1) Here and afterwards relativistic units are used throughout (8 = ¢ = 1, m, =1, ie. €2 = o
1/137.
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With the normalization (3) the destruction and creation operators, a;,, and aj,,
have the only nonvanishing matrix elements

<n|aLM|n+1>:<n+1|aL+Min>:]/n-{—1
where | n> represents an eigenstate with » photons in question.

In order to evaluate the transition amplitudes we consider a transition from an
initial state | > where the nucleus is in the excited and the electron in the ground
(or bound) state, to a final state | f>, where the nucleus has transferred the energy
k to the electron. The eigenfunctions of Eq. (1) for the nucleus are represented by ¢
and for the electron by y. The transition matrixelement of the Coulomb interaction
(third term in (2)) is calculated by first order perturbation theory and that of the
current interaction by second order according to an emission and reabsorption of a
photon. Thus we have

(1) Oe(r’
H,, = <99y %l —V(r) | @i
dng [ Lprlin ALy | @0 yrlie ALu) | v
2 l/ R { gk
. ; . + :
+ $@rlin ALmlm) |'?’zq>+<z’f | Je ALM(7) | w2 } _ (5)
The summation over g can be evaluated, replacing Z' by [ dg Rjx and using the
relations [18]

/ 4 o inlg M) 7l ) = i Bk ) Bylhrs) (6a)

and
n o Agtel

fq L 1@ iulg ) =i k) k) — e TS (6b)

In the above formula %, (k7) is the spherical Hankel function [17] and »_, 7., are
the smaller or greater of » and #’, respectively. Since magnetic and electric multipole
fields have different parity and different selection rules, it will be useful to split up
the total amplitude into the magnetic and electric components and to discuss each
part Separately, 1.8,

ZHIM M)+ 3 Hpy(E) + H (E, L=0). (7)

I bl
The last term represents the so called monopole transition amplitude.
Since the transition amplitude is easier to handle in the magnetic than in the
electric case, we start with the magnetic amplitudes.

Magnetic Multipole Transitions
Inserting (4) and (63.) in Eq. (5) we obtain

Hy (M) = e fdr dv, [ Ly Yppli G La" Yoyl gulkr) bylbry) . (8)

7

2) The symbol f dt means an integration over a sphere of radius 7.
0
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It is suitable to construct the matrixelements in the way that always 7, > 7,, since
we have much more knowledge of electronic than about nucleonic variables. Therefore
we write for (8)

4mik

Hy M) = & (L+1)

fdr (. Li" Y, )% 5, (k7) fdr LitY, ) k()

+ f ey Uy L Yyl hylk ) [ s, U, L Yyl ok

0

= / dry Uy L i Yyu)* ok ) [ dr (5 1" Y, ) by (k7)) 9)
0 0

In the first term of this equation the nucleonic and electronic variables are sepa-
rated exactly and the pure nucleonic integral is just the matrix element of a radiative
M L transition. The second and third terms are the so called penetration terms,
where such a factorability is not possible. Obviously the penetration terms disappear
in the approximation of a point nucleus. We denote the first term in Eq. (9) as static
and the penetration terms as dynamic matrix element since the latter depends expli-
citely on a dynamic nuclear model. It is useful to have the gamma transition amplitude
as an overall factor and thus we write

Hy(M) = 4mik [ dv,j, Aby (M) My (M) (10)
0

where the magnetic multipole field A, ,,(M) is defined in Eq. (4). In Eq. (10) we have
chosen the notation

My yfM) = MP,, + M, (M) (11)
with

M, fdr 7L L-_i—l LY, g (7). (12)

f dty [§, L Yyt kL dT oJe L il Yrarir— 7L dT Jo Ll Ypphr(k 7)l
MY (M) = 0 |
LM = - o

VL (Z+1) f dr, [§, LiL YL ul* jr(k )
0

(13)

where the indices (s) or (d) stand for “‘static”” or “‘dynamic” matrix elements.

Electric Multipole Transitions

The amplitude of an electric transition is obtained in a similar manner as in the
magnetic case, but the formulas are much more complicated. In precise analogy to
Eq. (8) we get from Eq. (5) using Eqgs. (4) and (6b)

4
Hy y(E) = kL(fil f dr, dv, [j(V x L) i Y, /17 [§ (VX L) & ¥, 5], (k7 ) By (Rs)

— e ] Y 45 U (VX L) Yol [ (VX L) i Yy,

x vt rZEL (14)
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This matrix element can be evaluated further by use of the well-known gradient
formula

VxL:—i[rAﬁVwo%-r].

The operator j(7) - 7 can be integrated by parts in order to use the Continuify equation
Vj+1ko,=0 Vj,—tkp,=0.

After some straight forward calculations we get

H; y(E)=4m1k dr,dz, Q) Q7. (kr_) hy(kr.)
., { I ,

— 4 | Fdurli Yot § drjor 6 Vi)
0

4 . ; ~L-
B ETET)f dv, d7, 0,0, (15 Yy )t (0" Vi) v2 73571 (15)
where we have introduced the operator
1 T 0 ;
Oc= yp iy 1497 = 0 g, 7] Yiu (162)
1 C A 0 .
=y [P — gy 7] Vi (16b)

In the derivation of this result we have made use of the identity

70%) Bpa (%) — Jpa(®) B () = 25
and their derivatives.

It can now be seen at once that the last term in (15) cancels the corresponding
term of the multipole expansion of the Coulomb matrix elements in Eq. (2). Since
the expansion of the radiative field has no component L = 0, this term remains and
gives rise to the monopole term as discussed e.g. in ref. [3]. In the present paper we
shall neglect this monopole term since the strange surface integral in (15) is caused
by the integration by parts and not only non-negligible but in fact dominant, as
will be discussed in chapter IV. The further procedure is in precise analogy to the
magnetic case.

We write the pure transition amplitude
T

fdrn Q: 7L(k 7’) =fdrnjn AEM(E)
0 0

as an overall factor of the electric matrix element and get

Hyp(E) =4 ik [ ds,j, Afy(E) My y(E) 17)
0
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where we have used the following notation

M, 1(E) = ME(E) + M), (E) (18)
with
MEy(E) = [ ds, Qi (k7). ‘ (199)
MY (E) 0

n

. oo o™ *n
7 . 5 % & . 3
— ;f dr,j,r (iILY )t 56 aQj, r il Yyiy + fdrn O {th dTng?L—JLf dr, Q, hr
0 0 L0

Ye="Tn 0

[ de, 0y jLik7)
0
(19b)
The index (s) stands for “‘static”” and (d) for “dynamic’” matrix elements.

III. Density Matrix Formalism

The aim of this chapter is to deduce the density matrix of the conversion process
in order to get so called general or normalized particle parameters through comparison
with the normal density matrix for a gamma transition.

In the former chapter we have calculated the general transition amplitude in
terms of transition currents and charges. In order to specify the different states, let
us introduce explicit quantum numbers. The nucleus is initially in the excited and
randomly oriented state with spin 7;, and decays into the final state described by the
quantum spin number I, M ,under emission of an electron. The electron is character-
ised in the initial state by the Dirac quantum number #%;, with random spin orienta-
tion u;, and in the final state by the wave number p and the intrinsic polarisation 7.
Thus we have

Hy,=4nik 2 Ay My |j, ALy | I; M <p, v | Mpy(m) |2 p> - (20)
al M

The final state of the electron can be expanded into the standing wave solutions
| #u>, which are eigensolutions of the Dirac equation, i.e.

|p.T> =), a, ,(v) | % p>
" g

where s, and @, is defined in the appendix by Eq. (A 12). Thus, equation (20) becomes
Hy,=4nik Z Ty Mp|ju ALy(m) | I, M5 s} a5, () <xp | Mpy(7) | 2> (21)

AL Mxu

and the density matrix can be written

’
<Mf [ 0 ‘ Mf> - 2 S;— S a:_y(T) A, /1,’(1")
Mi, pi, 7
wLMxp
nILIMI x’ #I

< | My (70) | o st e | My ag() | g o>
Ly My j Afy(m) | 1 M <Tp My |, ALy () | 1 MY (22)
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The summation over the polarization 7 can be carried out as well as the summation
over the remaining azimuthal quantum numbers u;, u, u’, of the electron. We use the
Wigner-Eckart theorem [19], and introduce reduced matrix elements according to

/. -
.1 L ]
ep | My (o) | o, u;> = (=)"#"" )(x wL| x>. (23)
#| LM()‘ I —) w; M — “ H

Together with Eqgs. (A 22) and (A 23) in the appendix, the relation
i - [1i L i\ (i: L' 7"\ .
(—)7 w+i - ( )( L ,) a; (t)a, ,(T)
T:#szﬂ'jﬂi u; M —pu ‘“iM —u Iz 1
L A L L kR " : .
= mg (N (M M,_q)(—)’ V2i+1) @27 +1)

kg

iR\ (i ik
8 (1/2 U 0) {L’ Lijf

can be derived.
The density matrix can now be written in the final form

, . L L'R\(L L &k
anglelin= 5 rmarsy ot (Y )

(2k+ 1) D

oq

bg 5 1-10/\M—-—M—q

M;MM
X T My |jo Afy(m) | I My> <Tp M| jo Affpp ) | I M+
xY2L+1)(2L +1) Byn L' L. (24)

This represents the density matrix of a pure gamma transition up to the factor B,
which we shall call the non normalized particle parameter for internal conversion.
This particle parameter B, (zL, #'L’) is defined by
5,8 2
[e=1/2 0/ \L" Ly

By L, n' L) 11f22|/27+1 ) (27 + 1) T
(1—1 0)
X Quu L) Q3 (' L) (25)
with

For the special case k£ = 0, the partlcle parameter B, is just the conversion coeffi-
cient, i.e. for electric multipoles

o :2’ ani(E L) |2 = By(EL, EL) (27)
while for magnetic multipoles

Br=21Quu ML) |P=ByML ML). (28)

The particle parameter [9] is normalized corresponding to

g1
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and we define thus the normalized particle parameter to be

7 Bk(nL 7’ L)
VB, nL aL) Byw' L', o' L)

bieL, 7' L") = (29)

Further Investigation of the Particle Parameter

The geometry factor of particle parameter does not depend neither on the angular
momentum / nor on the sign of %, and we can handle the magnetic and electric
transitions simultaneously. Although every wanted particle parameter can be obtained
by the general formula (29), we will go more into detail, in order to clarify the depen-
dence on the tensor parameter £, at least in the simplier cases.

First, we shall consider pure multipoles only, i.e. L = L'. For the K, L;, Ly, My,
M ; shell, i.e. for j, = 1/,, the normalized particle parameter b, can be written by use
of Eq. (A 28) as

k(k+1) 1 'ZVZj-l—l Qxx.(ﬂL)'g

B % i . 30
bl L, mL) =1+ ZLIAD-k G+ Z@L+1) Z1Q,, wL)P <0

Correspondingly we obtain an expression for j, = 3/2, that is for the L;;;, My, My

subshell by help of Eq. (A 30).
E(E+1)

LL+L) =k (E+D

E(k+1)-3L(L+1
G225 e (le;) cfnl)| ()

L, ml) =1+ 5

with - ;
e,
Cl(n L) = 2| ani(n L) Iz
and

| $vyiamr {1 2
_ |57, 2 o) et
Z1Q,,,@L)

The second term cancels for dipole transitions i.e. ¢y(m 1) = 0.

Considering the particle parameter for mixed multipole transitions, i.e. L = L' £+ 1,
and restricting ourselves first of all to j, = 1/,, that is to the K, L;, Ly, M;, M;;
subshells, the particle parameter b, (7L, nL’) is independent of the tensor parameter
k, as can be seen by inserting Eq. (A 29) in eq.

bymwL,n L") =

Re{Z (=)*V2L-1%[+1Q,, (L) 5(‘)’” V2= T+ 10, @ L)}

X —
VY E 1 L I P Z 10,0 LV TP

(32)

The mixed particle parameters for the L, M;;, and M, shells, that is for ;, = 3/,
can be reduced by means of Eq. (A 31) and is given by

bl L' L) =C, + k (k+ 1) 5, (33)
with ) BT -
_ R{Z V@i +1) @7 1) Q,, 1) 0, (' 1)
Cc; = .
YE QD E 18 LT T

46
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The coefficients Ct(j §) are combinations of 3j-symbols and are defined in the appen-
dix, Eqgs. (A 31) and (A 32).

Similar relations could be derived for higher subshells, i.e. 7, = 5/2, 7/2. In these
cases it is more economic, however, to use the general formula (29), directly. It should
be mentioned that similar formulas as Eqs. (30) and (32) have been given by BIEDEN-
HARN and RosE [9, 10]. The particle parameters for mixed multipoles (Eqgs. 32 and
33) carry the correct sign.

Reduced Matrix Elements in Terms of radial Integrals

The evaluation of the reduced matrix elements as defined in Eq. (23) amounts to
the computation of the conversion matrix elements as defined in Egs. (12) and (19).
Let us start with the magnetic amplitudes, defined as

e p l M (M) l Xl = e p ‘ M(LS)M(M) s M(ﬂw(M) | 2 i -

We shall content ourselves with the static matrix element, since both static and dyna-
mic terms have the same angular dependence. We insert in Eq. (12) the nuclear
transition current

]e:wfawi‘

The electronic charge ¢ is omitted and already contained in the overall factor of
the general particle parameter. With Eq. (A 2) we obtain

Cew | My gy (M) | 25 ;> = VTi+I) @y |oLi" Yy | — S(x) @liix,)/ dr by w, v,
0

.L I. 4
+ (— S(x) D", |0 L1 YLM|€D55>/dthuxl.v,{J.
0

The angular matrix element may be integrated by parts by means of

O(L " Y, ) Qii= (0 L) (1" Y, , PLi) — " Y, 0 L DL
and, thus

MO (M) |, > = — S EF54) g 1Ly ey R (ML
<%{LL| LM( )|%1M1> [/L(L+1) < ﬁx{f’ LM| u¢> xx,( )

with
(e e]
Ruxi(M L) = / d?’ h’L(k 7) (uxi vx + vui u’x) .

; ‘

The angular matrix element still contains all selection rules.
The explicit evaluation in terms of 3j-symbols, Eq. (A 9) leads to
i Log
pe M —p

2L+1) (25+1) 27;+1) (1; 1 L
e ] <1/2 _1/20) R ML)

Gt | MEW(M) | #; > = (—)H‘( ) (=) V2T S () (s + ;)
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For the dynamic matrix element we obtain the same result except that the radial
integral R,,. is replaced by

[ dv,3, L) () - Yoa)*
T ML) = = — (34)

oo

[ dr, 3, LiLlkr) GL Yia)*
0

with
E0) = hylk7) [ Gy ) (o, 4 v 0) — k) [ dr hylr) (o, + 0,g0) . 39
0 0

Finally we get for the reduced matrix element

. - A - .. W L
G| ML | wp> = (=Y 125270 S(30) (ot + ) V(ZLH) 27+1) @fi+1) (Jz ] )

4L (L+1) s — s O
X [R ML)+ T,, (ML)]. (36)

i
For electric transitions the procedure is quite analogous and again we shall con-
sider only the static part.

oo

; 1 . ) .
e | MPM) | 2 > = VTYme (i kGt =0 g ) hylk) i ¥y ppdr.
0

The transition charge density g, is defined as

Q= Yf ¥
and thus we get by use of Eq. (A 6) in the appendix
ME(E) | % iy — e <D |65 Y, | B4 R, (EL
<%/,l/1 LM( ) |%Huz> ]/L(L+1) < x'z’ LMI x,> xxz( )
with

R, (EL) = f dr {k y hy(kr) [, v, — v, w] + (% 7 (7)) [t 2, + 9, v”]} :

0

Inserting Eq. (A 6) we have

s ] i—uf7:i L ' ; sarn11/ @L+1) 27+1) @fi+1)
Gt p | MEW(E) | 2, p> = (=) u(j 7) (—yitie it it/ ) (27

/“iM_lu 4L (L+1)
ji 7 L
% R, (EL).
(1/2“1/20) {E L)

In the dynamic matrix element the radial integral R, ,, is replaced by

[ dv{ij, 7 gl 0 +o, 68,0} GL Yia*
Ty (EL) = —— (37)

Ty o . .
f dv {z]ny kBvip(k r)+94577 ir(k r)} (L Yot
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with
gi«zlg)ci(r) = _g'kA (uni v, — vxi Mx) -+ k y{hL f(?’, 71’,) - 7VL f(;" kL)}

f(?’, SL) :fdf’ {k ¥ EL (%xi Uy — vni %x) ¥ b%: ¥ £L (uui u, + vx,’ 'Ux)} : (38)
0

Finally we obtain the reduced matrix element for electric transitions

1z e |/ @L+1) @j+0) @5+ (1 1
<ZHEL” %i>:(—)j 1/27/1+L ll/ 4m L (L+1) (1/2 1/2 )[R"”z( L)

+ T, (EL)]. (39)

Together with Eqgs. (37) and (39) the conversion coefficient can be written in
terms of radial integrals for electric transitions

@7+l 27+1) (1, 7
——ncka 7L(L+17) (1/ _y, 0) |R,,(EL)+ T, (EL) |2 (40a)

and for magnetic transitions

27:+1)27+1) j: 7 L\
_mkz e (1/2_1/20) (¢ + %) | R, (ML) + T, (ML)

(40b)
IV. Further Investigation of the Dynamic Matrix Elements

In this chapter we shall discuss only the dynamic matrix element 7, which is
defined in Eqgs. (34) and (35) for magnetic transitions and in Eqs. (37) and (38) for
electric transitions.

In the expression of 7" the nominator and denominator is described by the same
nuclear transition operators which are, however, weighted by different radial func-
tions, and it is possible to obtain information on dynamic nuclear properties through
the internal conversion process. In general, however, the nuclear contribution to the
internal conversion will be small and outside the present experimental limits of error.
Only in those cases where the gamma transition is hindered, while the conversion
1s unhindered, dynamic nuclear effects may be expected. Especially in E1 and M1
transitions many anomalies were observed which can be explained by dynamic or
penetration effects. It should be noted that anomalies may occur also in higher order
multipole transitions.

Let us assume that the nucleus is a homogenously charged sphere with sharp edge.
The radius of this sphere can be assumed to be

R = 1.20 AY3 1018 cm — 0.00311 A3 .

Inside the nucleus, the argument %7 of the spherical Bessel or Hankel functions
is small compared to one, i.e. k7 <€ 1. We may therefore restrict ourselves to the first
term of the series expansion,
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l.e.
(kr)L

. (2L_1)|'|
e = Gronn

The Coulomb functions and similarly the radial functions g%, () may be expanded
into a power series of x = 7/R [20], i.e

o0 o~ oo
gxxz =1 Zd x g:(mza)ci(r):i%zemxzm (41)
=0
and "
b = o
.0 =i =3 fu 2
m=0
with
?=|xt|+|%|+1 —ztxil+|%[ for%%i>0
| 2e; | + | #| |oe; |4+ |2 ] + 1 xn, <0,

The dynamic matrix elements can now be written

e+t 1 1 ) )
Lo EL) = =09y 2R G40 de"m t+ en En

ey ML) =14 (2 L+ 1)!! Zf A0
where
g _ KIplliurapizm Vi | I e BB gy
I AT ALE 31 Mo
g — Irllenspt2m Yo || Ip 0 _ g ldnLar+2m vy || I 2)
" AT AR m NG, LAY T

In the above expressions the parameters #,,, £,, and 4, contain all nuclear inform-
ation and could be evaluated if a specific nuclear model is assumed. The coefficients
d,. e, and f, can be calculated exactly for any specific static charge distribution of
the nucleus and are given in the appendix for our used charge distribution. As long
as we deal only with small energies, the assumption of a sharp edged sphere seems to
be reasonable and the introduction of a more physical charge distribution would not
change these coefficients appreciably [3].

In Table 1 we give the Dirac quantum number x, the quantities p, p and ¢ =
| 2¢; | + | % | (see Eq. (37)) for all possibilities of the ejected electron. The dynamic
matrix element 7, , is proportional to the product of the normalization coefficients
of the bound and continuum states, i.e. T,, ~ayAd, ~ R For a definite multipole
transition L the partial wave with the lowest value of | % | is characterized by ¢ =
L + 1. The corresponding matrix element is therefore about a factor 100 larger com-
pared to the others, which we will neglect in the following. The number of model
independent nuclear parameter can be further reduced.

We consider first for magnetic multipole transitions the ratio

_ Im
. ="
which do not depend on the normalization coefficients and thus can be computed
directly by means of Eq. (A 21).
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Table 1

Selection rules for the outgoing electron (x) in dependence on the multipolarity L for electric
(left) and magnetic (right) transitions. Simultaneously, the values of p, p and g are given.

i X P q " % ? P q
-1 ~L L42 L+1 -1 L L+1 L2 L+ 1
L+1 L+2 L+2 —(L+1) L+3 L+2 L+2
-2 —(L-1) L4+2 L+1 -2 L-1 L+1 L+42 L+1
L L+2 L+2 —L L+3 L+2 L+2
={L+1) L+4 L+3 L+1 L+3 L+4 L4:3
L+2 L+4 L+4 —(L+2) L+5 L+4 L+4
-3 —(L-2) L+2 L+1 -3 L-2 L+1 L+2 L+1
L-1 L+2 L+2 —(L-1) L+3 L+2 L+2
—~L L+4 L+3 L L+3 L+4 L+3
L+1 L+4 ool —(L+1) L+5 L+4 L+4
—(L+2) L+6 L+5 L+2 L+5 L+6 L+5
L+3 L+6 L+6 —(L+3) L+7 L+6 L+6

We define now a nuclear parameter 4, independent of any subshell, by
7 e ;1(0L+1) 1+ F 1(1L+1) + F, 2(2]“‘*'1) NI (43)

where A{**+1) is defined in Eq. (42). The number of nuclear parameters in magnetic
transitions is thus reduced to one, which contains all nuclear information and which
has to be consistent with all conversion data of a distinct nuclear ML transition. The
dynamic matrix element can now finally be written

;2L

LMZ(ML) = k k R NL fO( ) q! L+1- (44)

For electric multipole transitions the same arguments as in the magnetic transi-

tions are valid and we define corresponding to Eqgs. (40), (41) and (42) for all electric
multipole ordess (except electric dipole transitions)

1

1
&= s (EgL+2) e El 5(1L+2) e E2 5(2L+2) s )
dm . _ em
For the dynamic matrix element we get finally
. @2L+1!
];xi(E L) =1 k(kR)L (L)+ 1) (dO(%’ %i) 77 + 60(%: %1‘) E) 6q,L+1 . (46)
The “nuclear current parameter’” # as well as the “nuclear charge parameter” &
does not depend on the subshell. — For electric dipole (E1) transitions, a strong
cancellation occurs in the dynamic coefficients of & Thus, the g =L 4+ 1 = 2 term
1s no longer the leading term and we have to include matrix elements with ¢ = 3.
We restrict in this case ourselves in Eq. (38) to the first term with m = 0 and rede-
fine the nuclear charge parameter:

_ 1 a4g
E= o EE (47)
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the dynamic matrix elements can now be written

T(E1) =i 5oug [dgn0y5+ (6905 + €0 0,0) £]. (48)
The restriction to the first term in the series expansion is necessary, since the
coefficients E,, for ¢ = 2 are not the same ones as for ¢ = 3. However, the charge
parameter is not very important, and experimentally it is in most cases even consis-
tent with zero.
The above approximation i.e. the neglection of the dynamic matrix elements of
the higher partial waves, is only true, if

Vi1 < 10
v o~

(49)
where »; is one of the nuclear parameters (1;, & or 4,).

This condition is, however, rather weak and will be fulfilled in general.

We like to stress that, as long as the condition (49) holds the discussed neglections
will have little influence on the numerical values. The above equations of the dynamic
matrix elements must thus be regarded as exact relations.

Similar, but less general parametrizations have been given earlier in the literature.
In Table 2 we give a comparison between the present and the corresponding notation
of earlier authors [3, 6, 21].

Table 2

Different notations of the nuclear parameters. The present parameters are expressed in the nota-
tion of other authors.

Present Corresponding notation Reference Remarks

of earlier authors

nlL+1) s1) p(L+1) T Defined in [3] for the
)ﬂlEL (1 /l'lT ?TIL—JFT,) (1+07) Ll kR ,1; K-shell and correct
s 56 o ’ L CHURCH and for j = L—1/,, only.
(L+2) @) o(L+2) o WENBEER, [3] Church and Weneser
§o {4 21 &1 ~n1/L+1 - give also the relation
1+¢ si2) §6L+2) (1 +Gj) % }'j to the notation of
0 GREEN and Roske [4]
P 2 1/ 1
1+e B R Sy EMERY and only for E1
: P 21
75(83) i 3 ERLMAN [21]
1+¢ R2Y mo
iy 2 KrAMERS and only for E1
T_{_—g”@: 0, 1, 2, T ——3" }.S,S = 0, 2, 4, 84w NILSSON [6]

A

A

CHURCH and
WENESER [3]

We can separate the conversion coefficient into a static part depending only on
the electron wave tunctions and an ““anomaly factor” 4(¢), which contains all nuclear



728 Hans-Christian Pauli H.P. A.

information. For a specific subshell ¢, the conversion coefficient for magnetic tran-
sition of multipolarity L can be written

BLlo) = (o) Alo) (50)
with
A(e) = 1 + by(o) 4 + by(o) 22

where $%(0) is the “static conversion coefficient”. In the approximation of RosE,
all penetration effects are neglected, i.e. A = 0 and 4 = 1. The surface model of SLiv
et al. assumes the value 4; = 1 for the nuclear parameter.

A corresponding anomaly factor 4(o) can be defined for the particle parameters
of the subshell, i.e.

bilo) = ¥ A(0)  with Zlo) = 57 (51a)
where 4(¢) is given by Eq. (50) and I by
I'(6) =1+ ¢,(0) A + cy(0) A2 (51b)

The conversion coefficient for an electric multipole transition can be factorized
in a similar way into a static part «{’(¢) and a dynamic part, the anomaly factor
A(o).

o (0) = a'(c) 4(0) (52a)
with
A(0) = 1 + ay(0) 1 + ay(0) 1° + as(0) n& + ay(0) & + as(o) &% (52b)

For the particle parameters of electric multipole transitions the anomaly factor I'(o)
(Eq. 51a) is replaced by

I'(0) = 1 4 ¢1(0) 1 + c2(0) 9* + ¢3(0) 9 + ¢4lo) & + c5(0) £2. (53)

The nonpenetration model of Rose, corresponds again ton; = &; = 01.e. 4A(o) =1,
while the connection with SL1v’s surface model is given by #; = 0 and &; = 1. Since
the coefficients a,(0) and a4(0) are usually much smaller than one, A(¢) = 1 is also an
admittable approximation for electric multipoles, in SLI1v’s model.

V. Numerical Results and Discussion

Today, two tabulations of the internal conversion coefficients are available, i.e.
those of RosE [13] and those of Sriv [14]. Both authors include the screening of the
atomic electrons by the Thomas-Fermi-Dirac model as well as finite nuclear size
corrections, although the latter in a somewhat different manner. It is known, that
the two tabulations differ by larger amounts than could be understood by their
different inclusion of finite size effects. In order to check the results of Rose and
SL1v we have performed a recalculation of the internal conversion matrix elements
and phases. In the following we shall give an outline of our numerical procedure.

1. Numerical procedure

The eigenvalues and eigenfunctions of the bound states were found with the help
of a method described by Rosk [16] which we reproduce in outline in the following.
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As an approximate eigenvalue we choose W =1 — g [m, c* where g, represents
the binding energy of the electron. This values have been recently tabulated by
HAGSTROM et al. [22]. The Dirac equation was solved numerically from the origin up
to a matching point 7, and the left side ratio g, (r,) = (v,;/u,,),-,, was computed.

Then, we choose a point 7; > #,, where the asymptotic solutions [16] are exact
up to a relative error of about 10-4. The Dirac equation was solved numerically for
7 <7, and the right side ratio g4(ry) = (v,,/%,,),-,, at the matching point #», was
computed.

The correct eigenvalue is defined by the relation g, = g, at the matching point.
If this condition is not fulfilled a corrector formula leads to a better eigenvalue. With
the corrected eigenvalue the above procedure was repeated. As soon as the absolute
value of

_exl)
oL(7p)

was less than 104, the iteration was stopped. It should be mentioned, that because
of numerical instabilities the numerical solutions are very sensitive to the matching
point 7,. We have obtained the most exact results choosing the matching point to be
a little smaller than the classical turning point. We have also checked the normalized
wave functions for a point nucleus of the K- and L-subshell with the pure Coulomb
wave function. The agreement within 10— was better than over about 600 compton
wave lengths.

For the normalization of the continuum wave functions we use the following
method. For V' = 0, the regular solutions of the Dirac equation are given by [20]

) W =Se S prien) (64

u® —

and the irregular solutions by -

U = |/ ”;;1 prn, (pr) v = S(x) l/—”f:f_ybr ny (p7) - (55)

In the above equations, # is the momentum and /(x) is the “orbital angular momen-
tum” of the electron. The spherical Neumann tfunctions are denoted by #, The
asymptotic behaviour of those solutions are discussed in (A 11). The general solution
of the Dirac equation for a zero potential is a combination of the regular and irregular
solutions. These equations and the asymptotic behaviour are sufficient to determine
the normalization and the phases of the partial waves. Since the actual potential
vanishes for large distances, the actual numerical wave functions will approach the
Z = 0 limit, i.e.

u,=aul + bu? v,=av® + 539, (56)

We investigated the behaviour of the coefficients a2 and b in Eq. (56) and did not
compare the actual wave functions with the free particle or with the asymptotic
solutions. This method was found to converge rapidly. As soon as 2 and b were constant
within 3 - 10~ over two wavelengths, the integration was stopped and the normali-
zation factor as well as the phase averaged over one wavelength. The numerical error
of about 19, of our conversion coefficients arises mainly from the relatively large
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error in the normalization of the continuum states and could be reduced easily by the
use of more computer time.

For the integration of the differential equations both, the Runge-Kutta and the
Adams-Moulton-Bashfort scheme [23] have been used. In the final calculations the
latter method has been preferred saving computer time. We have checked finally
our programs by the calculation of the conversion coefficients for a pure Coulomb
potential [1]. We found agreement within the estimated limit of error.

In our calculations screening was taken into account by the Thomas-Fermi-Dirac
model [24]. We used the same screening function for the bound states as well as for
the continuum states. By reasons of consistency, we have not included the hole as
introduced by Rosk [13], especially since this hole would not change the conversion
coefficients by more than !/, percent, even in medium heavy nuclei.

2. Numerical results

The conversion coefficients in SrLiv’s and Rose’s tables differ by rather large
amounts [25] which cannot be only due to their different handling of the penetration
effects. Thus, numerical inconsistencies may exist in one or both of the tables. A
possible explanation for these deviations was given by BHALLA et al. [26] pointing
out that the interpolated conversion coefficients fluctuate around a smooth curve
of calculated values and that the use of the eight-point interpolation formula may be
responsible for these fluctuations. In order to check the calculated results of Sriv
and to exclude these interpolation errors we have recalculated some L-subshell con-
version coefficients and particle parameters at the same point as in SLIV’s tables.
The errors of interpolation are still contained in the comparison with Rose’s values.
The results of this recalculation are given in Tables 3-8.

A more concentrated and illustrative comparison is shown in figure 1 for electric
transitions. The values of RoSE are compared with our static conversion coefficients
(i.e. A4 = 1, see chapter IV) by computing the quantity

*L; Rose
0
arff )(0)

SLIV’s values are compared with our values for the surface model (SM) (i.e. n =0
and &, = 1, see chapter IV), i.e.

_ %L Sliv_
«r(0)s m

RosE and Sr1v estimate their computational error to be about 29,. SLIv suggests
that the error may pass over this limit for smaller Z and higher energies. Except some
coefficients in these areas we agree with SLiv’s values within the combined limits of
error. As expected the agreement with RosEg’s calculation is better for larger energies
and smaller Z. Particular exceptions may be due to the above mentioned interpola-
tion uncertainty. The similar behaviour occurs in the comparison of the conversion
coefticients for magnetic transitions (see Figure 2). We have plotted the quantities

ﬁL- Rose
R = =
BO(0)
and S = ﬂL’ Sliv

© BLlo)sm
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The surface model (SM) leads to the nuclear parameters 4, = 1 (see section IV) and
1s included in 8, (0) -

A similar result has been obtained by HAGER and SELTZER [27], who used a
screening function, obtained by non-relativistic Hartree-Fock calculations [28].

The recalculated particle parameters of the K, L; and Ly; shell agree very well
with the values of SL1v and BAND [29], as can be seen in Tables 3-8, where we show
our results in the notation of Eq. (50)-(53). An investigation of the dynamic coeffi-

cients and of the anomaly factor A, as defined in Eq. (52a) shows, that the particle
parameters may also depend considerably on nuclear structure effects. The fact, that

120}
110}
1.00—
90}
80
E2 L, A E2 Ly E2 Ly
120} /R 1
_I
7a L4
Lor s, A 4 \5.1 T AR T s
."":/--.__' s - / ._‘f' 1. =
100 [ et N e T i il
§‘——-4§l’ ![ s -
.90t 4 ; 1
80} i 1
8 69 8 88 95 8 69 BZI 88 95 6 69 . 88 95
1.20¢ T + .
110} 1 S ] i
: - /\// R
1.00 ‘ ‘ > g -—-*’"*‘F"‘—“
L/ . R -1 A R -t O s
90} / I ¢ 4 ' ]
rd 'd
80}
05 1 2 4 7 1e 05 1 .ik.i 71 05 1 2 4 7 1
Figure 1

Comparison of the present conversion coefficients with those of RosE (R) and those of SLiv (S)
for electric dipole and electric quadrupole transitions. The indices .1 and 1. represent the energies
k = 0.1 and & = 1.0 (m,?), respectively.
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most particle parameters are normal within the limits of error is regarded to be
accidental. For the L;; shell we have compared our results with the recent calculation
by MIRANDA et al. [30]. We agree well with the particle parameters of electric tran-
sitions. There is, however, not as well for magnetic transitions.

We have performed a recalculation of the K- and L-shell matrix elements and
phases for electric as well as magnetic transitions. We have restricted ourselves to
medium and heavy nuclear charge numbers and to small energies, where possible
large penetration effects may be significant. We have chosen the following values of

nuclear charges: Z = 60,64, ...96
T /'/ ] \s\ | >
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""" e’ R Ry a7 TR ..x"“'“'\“n N
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Figure 2
Comparison of the present conversion coefficients with those of Rose (R) and those of SLiv (S)
for magnetic dipole and magnetic quadrupole transitions. The indices .1 and 1. represent the
energies ¢ = 0.1 and & = 1.0 (m?), respectively.
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and the following energies:
k= .02, .05, .10, .15, .20, .30, .40, .50, .70, 1.0.

Furthermore we have calculated the M-shell conversion coefficients and particle
parameters including screening (TFD) and all finite nuclear size effects from

Z=172,76,...,9

The results of this calculation will be published separately.
About a dozen of highly hindered E1 transitions with anomalous conversion

coefficients or particle parameters have been investigated using our recalculated
values [31].

Acknowledgements
The author likes to thank Prof. RoLF M. STEFFEN to have suggested this work.

He is indebted to Prof. KurT ALDER for his kind support and interest during the

course of this work, as well as for many instructive discussions. The computations
on a UNIVAC 1107 were enabled by a grant of the UNIVAC Switzerland, Inc., and

the “Arithma Rechenzentrum” in Ziirich-Switzerland, and are acknowledged thank-
fully.

VI. Appendixes

Appendix 1

Although the solutions of the Dirac equation for a central field are described

often in the literature [20], we shall give here a short survey and define the notation.
The Dirac equation

(ap+ﬁ—|—V(r))zp=sz, (A1)

with the momentum operator 4 and the total energy W = V/p? + 1, has for the central
field V'(#) the particular spinor solution designed by

| iy == (— S(x) @, v (r)) ' .

-% KX

The 4-component spinor as well as the two component spinor @, obey the “Convention
T (cf. ref. [10]). This two component spinor is defined by

Oh= Y dp—1st [fu> i Y, (A3)

1 0
12 _ 12
=) =)

The Dirac quantum number x is the eigenvalue of the equation

— (O L+ 1) D — » D (A4)

with

and replaces the orbital quantum number / in the unrelativistic theory. It is restricted
to all positive and negative integers except zero, i.e.

x—L({+1) = G+
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or
l=1un for x>0 l=—x—1 for % <<0. (A5)

Sometimes the quantity I=1—S (%) is used.
The sign of x is designed by S(x).
The spinor @ has further the property

iord = S(x) O, . (A6)

The matrix elements containing these spinors can be easily evaluated. We get for
the angular matrix element of the electric transitions

47

: . LILN (7, L 7 {Z-ZL}
xV27,+1)27+1)2L+1)21+1) () ! b . (A7)
For magnetic transitions » has to be replaced by — % in Eq. (A 6). Thus we can
replace in Eq. (A 7) / by [ to get the right selection rules for magnetic transitions.
The use of (A 23) leads finally to

Dy | " Yy | Doy = (—)p- 1z z""+L‘l]/~2—£i

@Y Yy | B> = (prr et [[ R LD o g )
Yo =120/ \pe; M —pu

for the electric transitions.
In Eq. (A 2) the radial functions #, and v, are real and solutions of the equations

du,,
dr

= LU+ WH1-V)y, Zx_Zy (W—1-VE)u, (A9)

% dr vy ¥
The asymptotic behaviour of the radial functions is given by

ux_;]/””};l cos (p7 + A, + 8,(0))

7T
w-1 : I+1
B, et I/‘ET sin (pr +4,+6,0)); 6,0 =———= (A10)

where phase 4, depends on the specific potential and is zero in a Z = 0 approximation
1.8,
A Z=0)=0

For large distances the electron behaves like a plane wave carrying the intrinsic
spin orientation 7. This plane wave can be expanded into the particular “spherical
waves” |z u> of Eq. (A 2), i.e.

|p.T>=N s, a,l)|xu (A11)
%
with __ il 1/2i+1 ] " s D N ,.) (A12)
g = £ axﬂ,_ 4 </LL—T/2T‘]ILL> war(p z)

The overall factor NV is fixed by the asymptotic behaviour (A 10).
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Appendix 2

In chapter IV we have taken into account the finite nuclear size by the assumption
of a sharp edged sphere of radius R with homogeneous charge distribution. Inside
this nucleus the potential V(r) of the electron is described by

—_Z 3 2. s e
Vi) = 2 (3—58)8 A= = (A13)
The solutions of the Dirac equation (A 9) in this potential are wel-lknown, and can
be given as a power series [20]. For % > 0, &k = | » | we have
w,=x*1 Y'a 2P, o =2 Db, a2, (A14)
n=0 n=0 '
The coefficients a, and b, are related through the recursion relations

(2k—i—2n+1)an=[R(W+1)+3—;£J b~ 22 b,

Z VA
20+ 1) by = —|[RW -1+ 57| 0, + 5 0, (A15)
with
_ RWHD+Bazp)
g 2k+1 e*

For % << 0 we obtain the solutions by interchanging #, and v, in (A 14) and by
replacing in (A 15) the charge Z and the energy W by their negative values.

In the following we compile the different radial functions g¥), (r) (i = 1,3) and
their explicit dependence on the coefficients a, and b,. Let us consider the following

expression:
o0

— — 2m
Uy, U, — U, U, = x* z &y, X
m~=0

with

m
S(ui) Zan Bm—nﬁbnAm—n; %%1>0
- =0

Sty 27 On-1Am-n = bu Buys %% <0 (A16)

Here and in the following the solution of the recursion relations (A 15), for the
bound states and for the continuum states are denoted by minor and capital letters,
respectively. The quantities p and p are defined in Eq. (41). For the similar expres-
sions occurring in the definition of the functions g(r) we get

o0
— 2m
Uy, Uy + Uy, 0, = XP 2 B &
=0

with

"
Zaanun—{_bnAm—-n; %%i>0
_ n=0
ﬁm - i
Z an—1 Am——n + bn Bm—n; ] < 0 (A17)
n=0 .
and

_ o

— 2

unt_un-l—vxivx—x!’Zymx"‘
m=0
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with i
Zan—lAm—n+bn Bm—n; %xi>0

l\gs

n Bm—-n + bn Am—n; L < O (A18)

Using these expressions we can write the radial functions as follows

" 0oC
1
U () = - av 3 d, xm
m=0

with e ™ iy = L (er(j;tn? Zz;?;’:)kf;t:q) % #; >0
", hR RS DA <0 (a1
and g (7) =%x;r§;gm x2m
with —L (L+1) y:,,+kR(gb_+2 mAD s g s
P+2m)p+2m+1)—L(L+1)
B —L(L+1)ym+kR(§+2m+1)am; 2, < 0 (A20)

(p+2m) (p+2m+1)—L (L+1)
g0 =5 x* 3 fnatm
m=0

_ Bm
fu = (p+2m) (p+2m+1)—~L(L+1) ° (AZ]_)

and finally

with

Appendix 3
In the following, all expressions are based on the well-known relation [19]

5 peimonen( b BY(h )b )
s fha s My g — U/ \— M1 Mg U/ \ U1 — Ug M3
(71 J2 T3 \[ir72Ts
- ('ml Mg m3) ‘ll Ly ls} (A22)
and on the tables of selected 3;- and 6j-symbols (see e.g. EDMONDS).
With the special value /3 = 1/, the useful relation

, LURN(L VR (7 7 k
—V@i+1)@er+) (000)];"7' 1| —(1/2_1/20) (A23)

can be easily derived.
Furthermore, the recursion relation

Ua (o + 1) =71 Ga + 1) — o Gz + 1)~—2m1m21(h ” 73)

My Mg Mg

= V(h +my) (1 —my + 1) (ja — my) (12 + my + 1) ( " Py )

: : ; . 7 Ja 1
+ l/(?l —my) (Ju + my + 1) (Jo + my) (7o — my + 1) (ml _*1_ 1 g — 1 7;3) (A24)
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leads to the special relations (& even)

LLE k (k+1) L LE A25
(000)“_[1+2L(L+1)—k(k+1)](1_10 (A29)
L LEk\ k(k+1) Ek+1)-3L(L+1)1(L Lk
(2—2 o)_—[l SLETIAGT ~ E-h@rs J\1-10) %

(A27)

L L'k)’_k(k+1)+2——L(L+1)—L’(L’+1) L L'k
2-20/ YL-n @+ L -DL'+2 \1-10/"

In order to extract the dependence on the tensor coupling constant %z explicitely
we can now express the geometrical factor

(.15 in
, \lfy=14,0) 12/ L j;

gl L, L') = (=) L L'
(r-1"0)
In the case of j, = 1/, we obtain
dij k(k+1) +1
§C1e L. 1) = 27+1 T ZL@rD-kG+D) 2L ([L+1) (A28)
and
N ()i (2L—j+%s) QL =7+
8 L, L') = (=)™ V(2j+1) (2 L+12) Ci+1) 2L +1) ° (A29)

In a similar way we obtain for j; = 3/2 and pure multipoles i.e. L = L’

By B (R+1) L og 2L\ (L 7 %,
8Cle L L) = 57 + 3@ -2 G D) (0 —1/, 1/2) (0 =2ty

k(B+1) AEeD-3 L+ (L 7 YO fL § #y
t2L @ kGt E-D @+ \2—y,—3,) 21,3,
(A30)
and for the mixed multipoles, i.e. L + L’ odd,
g3ls L, L) = CO(j, §') + & (B + 1) CO(7 ¢") (A31)
ith . ) . -
" CO(j §") = ! L?’/z) L, (P L g 3/2)
P =gy —1 1y, (1/ el 1/2 — et \ Ly,
V(L=1) (L+2) (L'-1) (L'+z Yo =23,/ \}y—2 3,
and

-1
V-1 T-2) (-1 (B 42

CA(j 1) =

L) +L (L+1) - (1 L3/2)' L'a/ﬂ) (A32)

j ) " L 3/2)
1/2—2 3o \M2 =2 72
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