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Generalized Localizability

by J. M. Jauch and C. Piron
Institute of Theoretical Physics, University of Geneva, Geneva, Switzerland

(18. II. 67)

Abstract: It is well known that particles of restmass zero with spin 4= 0 belonging to an
irreducible representation of the Lorentzgroup do not admit position operators. Yet such particles
exist in nature (for instance the neutrino and the photon) and they are localizable in the
experimental sense of this term.

The mathematical description of localizability is generalized in this paper so as to be applicable

in cases where the conventional position operator does not exist. The generalization
consists in omitting the hypothesis that all observations of position measurements are compatible
with one another. Compatibility is maintained only for space domains which do not overlap or
for which one is contained inside the other. For the other cases of overlapping domains compatibility

cannot be justified on empirical grounds and it can be dropped. The resulting mathematical
object is a generalized system of imprimitivities and it is the appropriate concept for the
mathematical description of certain localizable systems.

We give a standard method for constructing such systems based on a theorem of Neumark.
A particle which is localizable in this sense is called weakly localizable.

A further weakening of the conditions leads us to the notion of nearly localizable systems. In
this case there exists no states which localize the particle exactly in a given space domain, but
only states which approximate this property to an arbitrary degree of accuracy (in the topology
induced by the states). We have verified that particles of mass m 0 and spin x/2 (neutrinos)
are nearly localizable. In addition we have verified that the photons are in fact also weakly
localizable.

I. Introduction
The purpose of this paper is to suggest and discuss some ideas about a generalized

notion of localizability within the conceptual frame of quantum mechanics. The
preliminary results obtained with the use of this notion justify our hope that it might
become a fruitful subject for further investigations.

The proposal that we offer is a radical departure from the conventional theory
and we give therefore a rather more elaborate motivation than it would be usual for
such a preliminary communication.

From the very beginning in the history of quantum mechanics the notion of

localizability has been intimately interwoven with the conceptual frame of general
quantum mechanics. In fact quantum mechanics of the realy days was essentially
the theory of localizable systems [1]. Yet it is important to realize that the logical
structure of quantum mechanics is independent of that of localizability. The latter
is intimately connected with the mathematical representation of space and time by a

continuum of four dimensions. A notion which has been transferred without change
from classical into quantum mechanics.

Such a representation of space and time constitutes an abstraction from a collection

of rather general experiences, none of them detailed enough to really justify
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such an abstraction into the vast domain of the continuum where no empirical
foundation is available. We feel therefore that a study of the notion of localizability
might be a fruitful undertaking in preparation for a general theory of elementary
particles.

We are reinforced in this believe by the remarkable stability of general quantum
mechanics under the onslaught of new experimental facts in elementary particle
physics. Whatever facts became known in the course of recent years, no matter how
startling and unexpected they may have been, they did not lead to a basic modification

of quantum mechanics.
For instance the discovery of isotopie spin, strangeness, baryonic and leptonic

numbers etc. require for their descriptions merely additional dimensions of the underlying

Hilbert space and the various multiplets are adequately described by the
irreducible representations of certain symmetry groups in that space. Similarly the
violation of parity in weak interactions merely requires for its quantitative description

a modification of the Hamiltonian. The various restmasses of the resonances are
parameters in the theory for which the general frame of quantum mechanics gives
no restrictions, so that this frame is in fact compatible with any value of these
parameters.

But this very insensitivity of the general concept structure is just one of the
unsatisfactory features of the present theoretical situation. Very few of these properties
which are being discovered can be related in any natural way to each other or to a

more fundamental principle from which they could be derived.
In order to illustrate this it is convenient to recall that the structure of the quantum

mechanics of elementary particles presents itself on three levels of increasing
specialization.

1 General quantum mechanics, described by a certain lattice of elementary (yes-no)
experiments. The structure of this lattice is determined by the nature of the system
alone and it is independent of the state of the system [2] [3].

2) Localizability in a homogeneous and isotropic space described mathematically
by a system of imprimitivities with respect to the Euclidean group of motions [6].

3) The dynamical law described by a one parameter group of evolution of states [7].

The three items of this schema are not independent of one another. For instance
not every lattice will admit localizability. In fact the latter property is one of the
strongest arguments against the modular lattices as has been pointed out by one of
us [2]. On the other hand the dynamical structure is not independent of localizability
either. This was illustrated for instance by Inönü and Wigner [4] who showed that
the vectorrepresentation of the Galileo group is incompatible with localizability. In a

relativistic theory on the other hand localizability imposes certain restrictions on the
representation of the Poincaré group which unites the dynamical law with the space-
time symmetry. This restriction is such that localizability excludes the value of spin
s 4= 0 as well as continuous spin for particles of mass m 0 [5] [6].

This last point alone would suffice to show that something is amiss with our pre
sent notion of localizability because according to the above result both neutrinos
and photons would fall outside the category of localizable particles if their restmass
is indeed exactly zero and not only unobservably small. This result is in such flagrant
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contradiction with the usual physical picture of a particle that the status of a photon
as a particle, for instance, is seriously challenged. Yet for an experimental physicist
it seems meaningful and consistent to speak of the localization of an individual photon
in a finite region of space and time as demonstrated for instance in the beautiful
experiments of Janossy et al. [8]. We encounter here a situation where the mathematical
structure is not conform to the physical reality. This seems therefore quite a
convincing reason to change this mathematical structure.

We might perhaps mention here that the nonlocalizability of the photon was
known to Pauli as early as 1932 [9]. Pauli identified localizability with the
existence of a positiv definite probability density which satisfies a differential conservation

law and which has the correct transformation properties under the Lorentz
transformation. Pauli was most explicit in his affirmation that such an object does

not exist for photons.
A different aspect of the problem of localizability is brought to light in the various

attemps of defining a position operator in a relativistic theory [10, 11, 12]. In this
form there seems to remain an ambiguity even for restmass m 4= 0 which is difficult
to reconcile with the unique definition of the probability density for such particles
with spin. The resolution of this paradox was given by Galindo [13] who showed
that the regularity condition of Newton and Wigner [5] admits different interpretations

and that only one of them is compatible with the explicit form of the position
operator as given by Newton and Wigner.

These experiences indicate that the best way to study the notion of localizability
is by studying the concept of the "systems of imprimitivities". This concept,
introduced by Mackey [14] [15] in its modern form, is the adequate transcription into
mathematical language of the physical concept of localizability. It has the advantage
that with it one can express this concept with relatively modest effort in full
mathematical rigor and that there exist important representation theorems which permit
an exhaustive classification of all the representations of such systems.

We shall therefore try to generalize the notion of localizability by defining
generalized systems of imprimitivities. The nature of this generalization will be motivated
by physical considerations.

One of the advantages of systems of imprimitivities is precisely that this notion
is still meaningful in situations where a position operator no longer exists for instance
in the case of a system subject to certain constraints.

In the next section we give a brief description of localizability in term of systems
of imprimitivities for the reader who is not familiar with this notion and who does not
have the time to work through the difficult mathematical literature.

II. Localizability
The notion of localizability comprises two different aspects, one which expresses

the fact that there exists a family of observables each of which corresponds to the
question whether the system is contained within a certain region in space, and another
which expresses the homogeneity and isotropy of space.

In order to translate the first of these properties into an appropriate mathematical
language we adopt the following notation. We denote by M R3 the Euclidean space
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of three dimensions, by iß the Borei sets of this space, A e 23 a general Borei set,
A' the complementary set and <f> the nul set. Two sets Ax, A2 are disjoint (denoted by
Ax J_ A2) if their intersection is the nul set.

We assume that to each Borei set A is associated a projection EA in a complex
Hilbert space §>. The function A -> EA shall satisfy the following properties

E^ 0 EM / (1)

For any sequence A i such that A { _+Aj for i 4= j
E^a=^eaì. (2)

Condition (2) then implies that for any pair Ax, A2

EA,C\A,= EA,EA,=EA,nEA, (3)

and that all the projections EA commute with each other. A function from the Borei
sets to the projections in a Hilbertspace which satisfies conditions (1) and (2) is called
a spectral measure. Localizability is thus always represented by a spectral measure.

The second of the above mentioned properties, viz. homogeneity and isotropy of

space, is described mathematically in the following manner : We are given a group G

acting transitively on the points q e M. Thus to each pair q e M and x e G there exists
an element [q]x e M called the image of q under the action of the group element.
Furthermore for any pair qx, q2e M there exists at least one x gG such that q2

[qx]x. In the case of physical particles in a free space the group G is the six-parameter
Lie group of Euclidean motions.

The requirement that these motions are induced by symmetry transformations
is expressed in the following way. There exist a representation x -> Ux of the group G

by unitary operators acting in the Hilbertspace § and satisfying the fundamental
property

EX3x=UzxEAUx V*eG. (4)

Where [A]x {q | [q]x-x e A} is the set of all q e M which are image points of the
points in A.

The Equ. (1), (2), and (4) define a transitive system of imprimitivities.
We shall add some sundry remarks to this formal definition in order to clarify

some points which might appear puzzling to a physicist.

1) We have intentionally used a notation of sufficient generality which can
accomodate more general situations than the one considered here. In the particular case of
a single particle the space M is of course to be identified with the Euclidean space R3

of three dimensions and the group G will then be the 6-parameter Lie group of Euclidean

motions. This case can always serve as example for the illustration of general
theorems.

2) We have reduced the conditions imposed on the function A -> EA to the
minimum. In particular we did not specify whether the sequences of disjoint sets A( are
finite or infinite. If we required condition (2) only for finite sequences (which would
be physically more desirable) we could always, by a standard procedure, extend the
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function in a unique manner to one for which (2) is true for infinite sequences, (cf.
ref. [7] appendix I).

3) The commutativity of all the projections which is affirmed after Equ. (3) is an
immediate consequence of the following two facts

a) Every pair of Borei subsets Ax and A2 can be decomposed in a unique manner into
three mutually disjoint Borei subsets Ax, A2, and B such that Ax Ax g B, A2

A2L)B.
b) The sum of two projections Ex + E2 is a projection only if they commute.

Thus let EAX and EA2 for any pair Ax and A2. We write then Ax Ax\j B, A2

A2[jB and denote by Ex EAi, E2 — EAt, E3 EB. From property (2) follows
then that EAi Ex + E3, EA E2 + E3 and Ex + E2 are projections. Thus the
three projections Ex, E2, E3 commute pairwise. Consequently so do EAi and EA%.

4) We have adopted a convention which results in an antihomomorphism of the
group G into the functions [q]x on the space M. This has certain advantages and it
is in agreement with the convention adopted by Mackay. It would be very easy to
change the convention and the notation so as to obtain a homomorphism instead.

5) We have not specified that the representation shall be a vectorrepresentation.
It could be a rayrepresentation. For the Euclidean group this distinction is not
important.

6) It is useful to restrict ones attention to so called irreducible systems of imprimitivities.

With this we mean if Q is a projection which commutes with both the set
of all EA and the set of all the Ux then Q is trivial.

The so called imprimitivity theorem (15) gives a complete characterization of all
the irreducible systems of imprimitivities and thereby a determination of all localizable

systems. The result is as follows : Denote by G0 the subgroup of G consisting of
these elements x which leave an arbitrary but fixed point q0 e M invariant. Thus

Go {x | [?o> %} ¦ (5)

To every irreducible representation of G0 there corresponds exactly one equivalence
class of irreducible representations of the system (1), (2), and (4).

For the Euclidean group which interests us especially the subgroup G0 consists
of all rotations around a fixed point. The irreducible representations of this group are
all known. Each of them is finite-dimensional of dimension 2 s ± 1 where s assumes
one of the values s 0, 1/2, 1, 3/2, The number s is the spin of the particle.

The cases of integer spin s give true vector representations of the rotation group
G0, the cases of half integer spin are true vectorrepresentations of the covering group
of G0 but they are representations up to a factor + 1 of G0.

This theorem tells us therefore, that localizability as formulated here leaves no
room for any generalizations of the well-known cases of particles of rest mass m 4= 0
with spin s. Thus particles with spin different from zero and rest mass zero are not localizable

in this sense. Neither are the irreducible relativistic systems with continuous
spin discovered by Wigner.
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III. Weak localizability

We turn now to the question how best to generalize the notion of localizability.
In this endeavour we let ourselves be guided by the physical interpretation of the
various conditions (1) (4) which we have formulated for a system of imprimitivities.

We have remarked that (2) alone suffices to affirm that all projections EA

commute with one another. This would mean physically that every position measurement
is compatible with every other one. We have reasons to believe that this compatibility

Is verified for certain pairs of measurements, but these reasons are not equally
compelling for all of them. Let us for instance consider the situation of Figure 1 (a).

A,
2 l

I 1A

(t>)

Figure 1

(0

Three situations for pairs of spatial regions. Compatibility of corresponding measurements is
abandoned for case (c).

In that case compatibility of simultaneous measurements of the projections FAi
and FA is the adequate expression of the notion of microcausality. In a relativistic
theory this property is often extended to the measurement of all local observables
and it is then justified by the fact that no physical signals can be propagated faster
than the speed of light. But even in a non-relativistic theory without limiting velocity

it is not unreasonable to suppose that a measurement of FA
i

which gives the
result yes is equivalent with a measurement of FA with the result no, and vice versa.
The reasonableness is due to the fact that such measurements can actually be
performed and are in fact being performed daily in many laboratories (although not for
the purpose of proving compatibility). All the known results are in perfect agreement
with the above mentioned relation between the two measurements. This suffices to
affirm the compatibility of these two measurements.

In the case of Figure 1 (b) we can use a similar argument insofar as a measurement
of the projection FA with positive outcome implies a measurement of Fät with the
same result. This means that the two projections must stand in the relationship
FAi < FA and it is well known that this implies that they commute.

In the case of Figure 1 (c) we have no such arguments to affirm that the two
measurements are compatible. We shall therefore admit that they may not be.

From the remarks which we have made in connection with properties (1), (2),
and (3) of a spectral measure it follows that we have to abandon the property (2)

which implies commutability of all projections. We are therefore lead to the following
definition for a generalized spectral measure.
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To each Borei set A CM there is associated a projection FA in a Hilbertspace §>.

The function A -> FA satisfiesA „ „ T (1),

(2)'

(3)'

Since not all projections commute with each other we can no longer express
FAi n 7?^ in the simple manner as the product of the two projections. Instead
FAi n y7ZJ2 is the greatest lower bound which can be defined only by the formula

FAnFA=s-\xm(FAiFAy. (6)
1 2 fi—»-CO x a

It may be interpreted geometrically as the projection onto the intersection of the
two ranges of FAi and FA

The condition (2)' still assures that the operator FAi + FAi is a projection and

it is in fact equal to FAi g FAi. But in general it is smaller than FAiUA:

FAi + FAi<FAiUAt for AX±A2.

In particular if A ' is the complementary set of A then according to (2) ' the two
projections FA and FA, still commute, but the projection FA + FA> is in general no
longer equal to the unit operator. Instead we have FA + FA> < I.

In fact we can prove that

FA + FA,= I V A e 93 (7)

is the necessary and sufficient condition that the generalized spectral measure is an
ordinary spectral measure, that is, that all projections commute and condition (2)
is satisfied. Since the proof is easy, we shall give it here.

Necessity of (7) is obvious, so we prove sufficiency. Let us consider two disjoint
sets Ax _|_ A2. Then we can obviously write A2 (Ax u A2) D Ax. Consequently
Fi, FWU4)ni,' FAx\jA,nFA'> by property (3)'. Now using (7), we can write
FA, FA' I — Fa hence

F — F n FrAz — rA1\jA2l ' rA, ¦

This equation shows first of all that FAz < F'A. Thus FAt commutes with FAi,
consequently also with FAi, so that

FA,\jA% EA, 7 rAt ¦

By induction one proves then finite additivity and finally by the standard extension

procedure, mentioned before, one arrives at (2). Since (2) implies commutativity
for all projections. The proof is complete.

In the general case, that is if (7) is not satisfied then one has instead of (2) only
the weaker relation

ZFa^Fua. (8)

for any sequence of pairwise disjoint sets Af.
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The occurrence of inequalities in these relations is very suggestive from a physical
point of view.

For instance the relation FA + FA, < I implies that it is not possible to give a

complete description of all the states of the system in terms of superpositions of state
vectors which are localized in A and in A'. In other words there are additional degrees
of freedom present which are superimposed on those which are associated with
localization.

In such a system pure states can in general no longer be described by Schrödinger
functions as complex valued functions of position. That this is not possible for photons
has been known for a long time [16] but until now a clear understanding of the origin
this fact has been missing.

In our view, one of the basic problems of elementary particle physics is this: to
find a natural expression for the degrees of freedom which manifest themselves in
conservation laws and symmetry principles for the known elementary particles. The
fact that generalized localizability as introduced here implies additional degrees of
freedom seems to open up new and encouraging perspectives in this direction.

We now give the following formal definition of localizability, which includes the
ordinary one as a special case :

To each Borei set A CM there is associated a projection FA in a Hilbert space £j.
The function A -> FA satisfies

F$ 0, FM I (1)

Ax±A2~FAi±FAs (2)'

Fa^a^F^F^. (3)'

There exists a representation x -> Ux of a group G of motions in M such that

Fuk=V?FâUx. (4)'

A trivial realisation of these axioms are the systems of imprimitivities which satisfy
the stronger properties (1), (2), (3), and (4). In the next section we shall show that
there exist generalized systems of imprimitivities which satisfy only (1)', (4)'
but not (1), ,(4).

Such generalized systems can be constructed with the help of another generalized
measure, the so called positive operator valued measure (hence forth called POV-
measure) which we shall describe in the next section.

IV. The POV-measures

A selfadjoint operator T is called positive if (/, Tf) > 0 for a\lfe§>. It is called
bounded if there exists a constant C < oo such that || Tf\\ < C |]/||.

A POV-measure is a function A -> TA from the Borei sets 93 of M to the bounded
positive selfadjoint operators which satisfies the following properties

T^ 0 TM=I. (8)

For every sequence A,- such that Ai J_ Aj

T A=ETAi. (9)il »
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If the operators TA are projections we obtain the PV-measures (projection-valued
measures). For such measures we have the characteristic properties TA TA for all
A 6 93. For the POV-measures this property is not assumed [17].

POV-measures can be constructed very easily out of PV-measures. Indeed let
Elx) and E{2) be two different PV-measures then

TA^lxE^+X2E^
with Xx + X2 1, A, > 0 is a POV-measure.

One sees immediately from this remark that the POV-measures are a convex set
with the PV-measures as extremal points.

The POV-measures arise naturally in the spectral theory of normal operators.
For us the following representation of POV-measures is of great importance :

Let EA be a PV-measure in a Hilbert space §+, denote by P a fixed non-trivial
projection in §+ and by § C §,+ the range of P. Assume furthermore that P does not
commute with all the operators EA. Then the operators

TA PEAP (10)

are defined in § and they are zero on £-7 It is easy to verify that the TA are a POV-
measure in §.

More remarkable is the converse of this : For every POV-measure TA in a Hilbertspace

§ one can construct an extension $>+ of § and a PV-measure EA in .§+ such that
TA P EA P, where P is the projection from §+ to §. This is a theorem due to
Neumark [18] [19].

One can furthermore prove that there exists a unique minimal extension in the
sense of isomorphism [19].

From the point of view of this paper the interest of the POV-measure lies in the
following fact: If P and EA are as in the theorem of Neumark, then the projections

FA PnEA

are a generalized spectral measure which satisfies relations (1)', (2)', and (3)' of the
preceding section. Thus we see to every POV-measure corresponds such a generalized
spectral measure. We state a converse of this with the following

Conjecture: For any generalized spectral measure in a Hilbert space § which
satisfies (1)', (2)', and (3)' there exists a minimal extension §>+ of the Hilbertspace .§
such that FA P n EA, where P is the projection from §,+ to §.

Even without this conjectured theorem the preceding remarks show that we have
a vast store of generalized spectral measures which we can construct from POV-
measures.

With this technique we can now easily also construct generalized imprimitivity
systems. It suffices indeed to consider an ordinary such system under the assumption
that the representation U+ of the group G is not irreducible. There exists then a non-
trivial projection P which commutes with all the £/+ but which need not commute
with every EA. The following formulae define then a generalized system of imprimitivities

:

FA PnEA UX=PU: (11)

as one verifies easily.
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V. Localizability of the photon

In this section we shall now show, how the notion of weak localizability can be

applied to the photon.
We describe the photon by a fourcomponent function <pIÀ(p) (n 0, 3) define

on the lightcone „
ft"ft» ftl~P2 V, ft°>0- (12)

The wave function cplx(p) is to satisfy the Loren tz condition

P/lcp"(ft)=0. (13)

We define a scalar product by setting

(<p,v>)=f^?t(p)r(p)- (w)

The functions for which this product is finite form a linear vector space ©.
Because of the Lorentz condition the scalar product in © is non negative. But there
are in fact functions cpß(p), namely those of the form cp^p) pß A(p) with A(p) an
arbitrary scalar function, for which

(<P,f) f -£- P, P" A*(ft)A(ft) 0

The set of all functions of this kind are a linear subspace ©0. We define the factorspace
§ ©/©0 as the set of all equivalence classes of functions cpß(p) modulo the subspace
©0. Two functions cp^ and cp'2 are said to be equivalent if they differ by an element in
©r>:

rt~tf if cp? - cpÇ ft" A(ft) (15)

We designate by cp the equivalence class containing one particular function cp>"(p).

The scalar product for the equivalence classes is then defined by

(w)=/^>)#. (16)

It is positive definite by construction.
The space § thus constructed induces an irreducible unitary representation of the

Poincaré group ^8. Let a, Abe a. general element of this group consisting of the translation

a and the pure Lorentztransformation A then we define

[U(a, A)cpY(ft) e-iaPA"v cpv(A~x ft) (17)

It is easily verified that the transformation U(a, A) thus defined is really a
transformation of the equivalence classes, that is it leaves the subspace ©0 invariant.

In order to construct the generalized system of imprimitivities for the photon
according to formula (11) we must identify the extended space §+, the projection P
from §+ onto §, the representation U+(a, R) of the Euclidean group which commutes
with P and the system of imprimitivities EA in § which must not commute with P.

We begin with the construction of the extended space §+. To this end we choose

in each equivalence class of © a particular representative as follows : Let cplt(p) be any
element in cp. We define

np) <p"(P) - 4r ?°(P) ¦ (18)
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Since the passage from cp" tof is a gaugetransformation/'i(^) is also in the class cp.

Furthermore it has the propertyf°(p) 0. We shall therefore denote it byf(p) instead

off"(p).
The Lorentzcondition and the scalar product can be expressed in terms of these

functions in the form
ft-f(ft)=0 (19)

(f,g)=f^t-f*(P)-g(P)- (20)

The Hilbertspace jrj+ consists of all the vectorvalued functions for which (20) is

finite, but they need not satisfy (18). The projection operator P from §+ to § is
defined by

[Pf](P) f(P) - t (p-f(ft))- (21)
Po

The condition (19) is invariant under the representation U+(a, R) which is an
extension of U(a, R) (the representation of the Euclidean group) to .§+ in an obvious
sense. Hence this projection P commutes with J7+(«, R).

In order to define the system of imprimitivities EA we carry out two transformations

as follows. The first denoted by K transforms f(p) according to the formula

K:f(ft)-+J=-f(p). (22)

It is an isomorphism with the scalar product of L2(p). The second is the Fourier-
transformation F defined by

F:f(P) -*/(*) -{Jl)3l2- fd3fte>f*f(ft) (23)

The transformation FK maps the space §+ onto the space L2(x) consisting of
Lebesgue square integrable vectorvalued function s f(x) over the 3-dimensional Euclidean

space. Likewise, the space § is mapped onto the subspace L^(y) consisting of
similarfunction s which satisfy in addition the divergence condition

4 7(*) 0 (24)

We define the projections EA for each Borei set A by the formula

Œ./)(*)=** (*)/(*) (25)

where %A (x) is the characteristic function of the Borei set A.
The functions (25) in general do not satisfy condition (24) even if f(x) does. This

shows that the projections EA do not commute with the projection P from L2(x)
onto L\(x).

We now return to the spaces §+ and § by defining

EA (F K)-x EAFK. (26)

It is now easy to verify that this is a system of imprimitivities with respect to the
representation U+(a> R) 0I the grouP of Euclidean motions.
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Let us now define the projections

FA EAnP Um (EA P)" (27)
n—>oo

This system of projections defines then a generalized system of imprimitivities
in accordance with the definition given in the preceding section.

In order to verify that this system FA is not trivial (that is FA 0 for all compact
A e 33) it must be shown that the POV-measure TA P Eâ P has eigenvectors with
eigenvalues 1, since FA is simply the projection onto the subspace spanned by these

eigenvectors. This can in fact be shown. We shall not do this here. This and other
aspects of the problem will be the subject of a forthcoming thesis by Mr. Amrein.

In conclusion we summarize that the foregoing calculations show that the photons
are indeed weakly localizable, but not localizable in the ordinary sense.
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