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Generalized Localizability

by J. M. Jauch and C. Piron
Institute of Theoretical Physics, University of Geneva, Geneva, Switzerland

(18. I1. 67)

Abstract: 1t is well known that particles of restmass zero with spin + 0 belonging to an irre-
ducible representation of the Lorentzgroup do not admit position operators. Yet such particles

exist in nature (for instance the neutrino and the photon) and they are localizable in the experi-
mental sense of this term.

The mathematical description of localizability is generalized in this paper so as to be appli-
cable in cases where the conventional position operator does not exist. The generalization con-
sists in omitting the hypothesis that all observations of position measurements are compatible
with one another. Compatibility is maintained only for space domains which do not overlap or
for which one is contained inside the other. For the other cases of overlapping domains compati-
bility cannot be justified on empirical grounds and it can be dropped. The resulting mathematical
object is a generalized system of imprimitivities and it is the appropriate concept for the mathe-
matical description of certain localizable systems.

We give a standard method for constructing such systems based on a theorem of Neumark.
A particle which is localizable in this sense is called weakly localizable.

A further weakening of the conditions leads us to the notion of nearly localizable systems. In
this case there exists no states which localize the particle exactly in a given space domain, but
only states which approximate this property to an arbitrary degree of accuracy (in the topology
induced by the states). We have verified that particles of mass m = 0 and spin !/, (neutrinos)

are nearly localizable. In addition we have verified that the photons are in fact also weakly loca-
lizable.

I. Introduction

The purpose of this paper is to suggest and discuss some ideas about a generalized
notion of localizability within the conceptual frame of quantum mechanics. The pre-
liminary results obtained with the use of this notion justify our hope that it might
become a fruitful subject for further investigations.

The proposal that we offer is a radical departure from the conventional theory
and we give therefore a rather more elaborate motivation than it would be usual for
such a preliminary communication.

From the very beginning in the history of quantum mechanics the notion of
localizability has been intimately interwoven with the conceptual frame of general
quantum mechanics. In fact quantum mechanics of the realy days was essentially
the theory of localizable systems [1]. Yet it is important to realize that the logical
structure of quantum mechanics is independent of that of localizability. The latter
is intimately connected with the mathematical representation of space and time by a
continuum of four dimensions. A notion which has been transferred without change
from classical into quantum mechanics.

Such a representation of space and time constitutes an abstraction from a collec-
tion of rather general experiences, none of them detailed enough to really justify
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such an abstraction into the vast domain of the continuum where no empirical
foundation is available. We feel therefore that a study of the notion of localizability
might be a fruitful undertaking in preparation for a general theory of elementary
particles.

We are reinforced in this believe by the remarkable stability of general quantum
mechanics under the onslaught of new experimental facts in elementary particle
physics. Whatever facts became known in the course of recent years, no matter how
startling and unexpected they may have been, they did not lead to a basic modifica-
tion of quantum mechanics.

For instance the discovery of isotopic spin, strangeness, baryonic and leptonic
numbers etc. require for their descriptions merely additional dimensions of the under-
lying Hilbert space and the various multiplets are adequately described by the
irreducible representations of certain symmetry groups in that space. Similarly the
violation of parity in weak interactions merely requires for its quantitative descrip-
tion a modification of the Hamiltonian. The various restmasses of the resonances are
parameters in the theory for which the general frame of quantum mechanics gives
no restrictions, so that this frame is in fact compatible with any value of these para-
meters.

But this very insensitivity of the general concept structure is just one of the un-
satisfactory features of the present theoretical situation. Very few of these properties
which are being discovered can be related in any natural way to each other or to a
more fundamental principle from which they could be derived.

In order to illustrate this it is convenient to recall that the structure of the quan-
tum mechanics of elementary particles presents itself on three levels of increasing
specialization.

1) General quantum mechanics, described by a certain lattice of elementary (yes-no)
experiments. The structure of this lattice is determined by the nature of the system
alone and it is independent of the state of the system [2] [3].

2) Localizability in a homogeneous and isotropic space described mathematically
by a system of imprimitivities with respect to the Euclidean group of motions [6].

3) The dynamical law described by a one parameter group of evolution of states [7].

The three items of this schema are not independent of one another. For instance
not every lattice will admit localizability. In fact the latter property is one of the
strongest arguments against the modular lattices as has been pointed out by one of
us [2]. On the other hand the dynamical structure is not independent of localizability
either. This was illustrated for instance by INONU and WIGNER [4] who showed that
the vectorrepresentation of the Galileo group is incompatible with localizability. In a
relativistic theory on the other hand localizability imposes certain restrictions on the
representation of the Poincaré group which unites the dynamical law with the space-
time symmetry. This restriction is such that localizability excludes the value of spin
s #+ 0 as well as continuous spin for particles of mass m = 0 [5] [6].

This last point alone would suffice to show that something is amiss with our pre
sent notion of localizability because according to the above result both neutrinos
and photons would fall outside the category of localizable particles if their restmass
1s indeed exactly zero and not only unobservably small. This result is in such flagrant
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contradiction with the usual physical picture of a particle that the status of a photon
as a particle, for instance, is seriously challenged. Yet for an experimental physicist
it seems meaningful and consistent to speak of the localization of an individual photon
in a finite region of space and time as demonstrated for instance in the beautiful ex-
periments of JANOssY et al. [8]. We encounter here a situation where the mathematical
structure is not conform to the physical reality. This seems therefore quite a con-
vincing reason to change this mathematical structure.

We might perhaps mention here that the nonlocalizability of the photon was
known to PAULI as early as 1932 [9]. PAuLr identified localizability with the exis-
tence of a positiv definite probability density which satisfies a differential conserva-
tion law and which has the correct transformation properties under the Lorentz
transformation. Pauli was most explicit in his affirmation that such an object does
not exist for photons.

A different aspect of the problem of localizability is brought to light in the various
attemps of defining a position operator in a relativistic theory [10, 11, 12]. In this
form there seems to remain an ambiguity even for restmass m + 0 which is difficult
to reconcile with the unique definition of the probability density for such particles
with spin. The resolution of this paradox was given by GaLiNDo [13] who showed
that the regularity condition of NEwToN and WIGNER [5] admits different interpreta-
tions and that only one of them is compatible with the explicit form of the position
operator as given by NEwTon and WIGNER. '

These experiences indicate that the best way to study the notion of localizability
is by studying the concept of the “‘systems of imprimitivities”. This concept, intro-
duced by MACKEY [14] [15] in its modern form, is the adequate transcription into
mathematical language of the physical concept of localizability. It has the advantage
that with it one can express this concept with relatively modest effort in full mathe-
matical rigor and that there exist important representation theorems which permit
an exhaustive classification of all the representations of such systems.

We shall therefore try to generalize the notion of localizability by defining gene-
ralized systems of imprimitivities. The nature of this generalization will be motivated
by physical considerations.

One of the advantages of systems of imprimitivities is precisely that this notion
is still meaningful in situations where a position operator no longer exists for instance
in the case of a system subject to certain constraints.

In the next section we give a brief description of localizability in term of systems
of imprimitivities for the reader who is not familiar with this notion and who doesnot
have the time to work through the difficult mathematical literature.

I1. Localizability

The notion of localizability comprises two different aspects, one which expresses
the fact that there exists a family of observables each of which corresponds to the
- question whether the system is contained within a certain region in space, and another
which expresses the homogeneity and isotropy of space.

In order to translate the first of these properties into an appropriate mathematical
language we adopt the following notation. We denote by M = R® the Euclidean space

36
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of three dimensions, by B the Borel sets of this space, 4 € B a general Borel set,
A’ the complementary set and ¢ the nul set. Two sets 4,, 4, are disjoint (denoted by
Ay 1 A,) if their intersection is the nul set.

We assume that to each Borel set A is associated a projection E; in a complex
Hilbert space §). The function A - E, shall satisfy the following properties

For any sequence A, such that A, | 4; for¢ + j
E u,=2E, (2)

Condition (2) then implies that for any pair A,, 4,
Ealm Ay = EA‘ EA2 = EA, 0 Eaz (3)

and that all the projections E, commute with each other. A function from the Borel
sets to the projections in a Hilbertspace which satisfies conditions (1) and (2) is called
a spectral measure. Localizability is thus always represented by a spectral measure.

The second of the above mentioned properties, viz. homogeneity and isotropy of
space, is described mathematically in the following manner: We are given a group G
acting transitively on the points ¢ € M. Thus to each pair ¢ € M and x € G there exists
an element [g]x € M called the image of ¢ under the action of the group element.
Furthermore for any pair ¢,, g, € M there exists at least one x € G such that ¢, =
[¢,]x. In the case of physical particles in a free space the group G is the six-parameter
Lie group of Euclidean motions.

The requirement that these motions are induced by symmetry transformations
is expressed in the following way. There exist a representation x - U, of the group &
by unitary operators acting in the Hilbertspace §) and satisfying the fundamental

roperty
properts E,—UE, U v 2eG. (4)

Where [A]x = {q | [g]x~* € 4} is the set of all g € M which are image points of the
points in A.

The Equ. (1), (2), and (4) define a transitive system of imprimitivities.

We shall add some sundry remarks to this formal definition in order to clarify
some points which might appear puzzling to a physicist.

1) We have intentionally used a notation of sufficient generality which can acco-
modate more general situations than the one considered here. In the particular case of
a single particle the space M is of course to be identified with the Euclidean space R3
of three dimensions and the group G will then be the 6-parameter Lie group of Eucli-
dean motions. This case can always serve as example for the illustration of general
theorems.

2) We have reduced the conditions imposed on the function 4 - E,; to the mini-
mum. In particular we did not specify whether the sequences of disjoint sets 4, are
finite or infinite. If we required condition (2) only for finite sequences (which would
be physically more desirable) we could always, by a standard procedure, extend the
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function in a unique manner to one for which (2) is true for infinite sequences. (cf.
ref. [7] appendix I).

3) The commutativity of all the projections which is affirmed after Equ. (3) is an
immediate consequence of the following two facts

a) Every pair of Borel subsets 4, and 4, can be decomposed in a unique manner into
three mutually disjoint Borel subsets 4,, 4,, and B such that A, = 4, y B, 4, =
A, u B.

b) The sum of two projections E, + E, is a projection only if they commute.
Thus let E ;; and E 4, for any pair 4; and 4,. We write then 4, = 4, U B, 4, =
Ay B and denote by E, = E, , E,= E,, E; = Ez. From property (2) follows
then that E, = E, + E,, E, = E, + E; and E, + E, are projections. Thus the
three projections E,, E,, E; commute pairwise. Consequently so do E4 and E, .

4) We have adopted a convention which results in an antihomomorphism of the
group G into the functions [g]x on the space M. This has certain advantages and it
1s in agreement with the convention adopted by Mackay. It would be very easy to
change the convention and the notation so as to obtain a homomorphism instead.

5) We have not specified that the representation shall be a vectorrepresentation.
It could be a rayrepresentation. For the Euclidean group this distinction is not im-
portant.

6) It is useful to restrict ones attention to so called irreducible systems of imprimi-
tivities. With this we mean if Q is a projection which commutes with both the set
of all E, and the set of all the U, then Q is trivial.

The so called imprimitivity theorem (15) gives a complete characterization of all
the irreducible systems of imprimitivities and thereby a determination of all locali-
zable systems. The result is as follows: Denote by G, the subgroup of G consisting of
these elements x which leave an arbitrary but fixed point ¢, € M invariant. Thus

Gy =1{x | [9o]% = g0} - (5)

To every irreducible representation of G, there corresponds exactly one equivalence
class of irreducible representations of the system (1), (2), and (4).

For the Euclidean group which interests us especially the subgroup G, consists
of all rotations around a fixed point. The irreducible representations of this group are
all known. Each of them is finite-dimensional of dimension 2s + 1 where s assumes
one of the values s = 0, 1/,, 1, 3/,, ... The number s is the spin of the particle.

The cases of integer spin s give true vector representations of the rotation group
G, the cases of half integer spin are true vectorrepresentations of the covering group
of G, but they are representations up to a factor + 1 of G,.

This theorem tells us therefore, that localizability as formulated here leaves no
room for any generalizations of the well-known cases of particles of rest mass m + 0
with spin s. Thus particles with spin different from zero and rest mass zero are not locali-
zable in this sense. Neither are the irreducible relativistic systems with continuous
spin discovered by Wigner.
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III. Weak localizability

We turn now to the question how best to generalize the notion of localizability.
In this endeavour we let ourselves be guided by the physical interpretation of the
various conditions (1) ... (4) which we have formulated for a system of imprimitivi-
ties.

We have remarked that (2) alone suffices to affirm that all projections E, com-
mute with one another. This would mean physically that every position measurement
is compatible with every other one. We have reasons to believe that this compatibi-
lity is verified for certain pairs of measurements, but these reasons are not equally
compelling for all of them. Let us for instance consider the situation of Figure 1 (a).

A

(a) (b) (c)
Figure 1

Three situations for pairs of spatial regions. Compatibility of corresponding measurements is
abandoned for case (c).

In that case compatibility of simultaneous measurements of the projections F,
and F, is the adequate expression of the notion of microcausality. In a relativistic
theory this property is often extended to the measurement of all local observables
and it is then justified by the fact that no physical signals can be propagated faster
than the speed of light. But even in a non-relativistic theory without limiting velo-
city it is not unreasonable to suppose that a measurement of F,; which gives the
result yes is equivalent with a measurement of F, with the result no, and vice versa.
The reasonableness is due to the fact that such measurements can actually be per-
formed and are in fact being performed daily in many laboratories (although not for
the purpose of proving compatibility). All the known results are in perfect agreement
with the above mentioned relation between the two measurements. This suffices to
affirm the compatibility of these two measurements.

In the case of Figure 1 (b) we can use a similar argument insofar as a measurement
of the projection F; with positive outcome implies a measurement of F, with the
same result. This means that the two projections must stand in the relationship
F, < F, and it is well known that this implies that they commute.

In the case of Figure 1 (c) we have no such arguments to affirm that the two
measurements are compatible. We shall therefore admit that they may not be.

From the remarks which we have made in connection with properties (1), (2),
and (3) of a spectral measure it follows that we have to abandon the property (2)
which implies commutability of all projections. We are therefore lead to the following
definition for a generalized spectral measure.
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To each Borel set A C M there is associated a projection Fy in a Hilbertspace §.
The function 4 - F, satisfies

F,=0, Fy=I (1)’
A1J_A2=>FAIJ_FA2 (2)’
FdlmAE:FAIOFAE. (3),

Since not all projections commute with each other we can no longer express
Fy, 0 F; in the simple manner as the product of the two projections. Instead
F, N F, is the greatest lower bound which can be defined only by the formula

F, NF; =slim (F, F,)". (6)

It may be interpreted geometrically as the projection onto the intersection of the
two ranges of F; and F, .

The condition (2)" still assures that the operator I, + F, is a projection and
it is in fact equal to F; y F, . But in general it is smaller than F, 4,

Fy +F, <Fy ,, for A, 1 A,.

In particular if A" is the complementary set of A then according to (2)" the two
projections F, and Fj, still commute, but the projection ¥, 4 F, is in general no
longer equal to the unit operator, Instead we have F; + F, < I.

In fact we can prove that

Fy+F,=1 A4e¢%B (7)

is the necessary and sufficient condition that the generalized spectral measure is an
ordinary spectral measure, that is, that all projections commute and condition (2)
is satisfied. Since the proof is easy, we shall give it here.

Necessity of (7) is obvious, so we prove sufficiency. Let us consider two disjoint
sets 4, | A,. Then we can obviously write A, = (4, U 4;) 0O 4,". Consequently
Fy, = Faoayna, = Fy 4,0 Fy, by property (3). Now using (7), we can write

Fy = F =1 — F,, hence

. Fy = By, o5 (L -

11U dy
This equation shows first of all that F, < F,. Thus F, commutes with FA:,
consequently also with F, so that

Fy s, = Fa, + Ly, -

By induction one proves then finite additivity and finally by the standard exten-
sion procedure, mentioned before, one arrives at (2). Since (2) implies commutativity
for all projections. The proof is complete.

In the general case, that is if (7) is not satisfied then one has instead of (2) only

the weaker relation
BBy & B (8)

for any sequence of pairwise disjoint sets Ai.
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The occurrence of inequalities in these relations is very suggestive from a physical
point of view.

For instance the relation F, + F, < I implies that it is not possible to give a
complete description of all the states of the system in terms of superpositions of state
vectors which are localized in A and in A’. In other words there are additional degrees
of freedom present which are superimposed on those which are associated with locali-
zation.

In such a system pure states can in general no longer be described by Schrodinger
functions as complex valued functions of position. That this isnot possible for photons
has been known for a long time [16] but until now a clear understanding of the origin
this fact has been missing.

In our view, one of the basic problems of elementary particle physics is this: to
find a natural expression for the degrees of freedom which manifest themselves in
conservation laws and symmetry principles for the known elementary particles. The
fact that generalized localizability as introduced here implies additional degrees of
freedom seems to open up new and encouraging perspectives in this direction.

We now give the following formal definition of localizability, which includes the
ordinary one as a special case:

To each Borel set A4 C M there is associated a projection F, in a Hilbert space $.
The function 4 - F, satisfies

Fy,=0, FE,=1I (1)’
AlJ_Az:’FAlJ_FAZ (2)’
Fyna,=FNE . (3)’

There exists a representation x = U, of a group G of motions in M such that
Fip,=U;"F4U,. (4)

A trivial realisation of these axioms are the systems of imprimitivities which satisfy
the stronger properties (1), (2), (3), and (4). In the next section we shall show that
there exist generalized systems of imprimitivities which satisfy only (1)’, ..., (4)’
but not (1), ... ,(4).

Such generalized systems can be constructed with the help of another generalized
measure, the so called positive operator valued measure (hence forth called POV-
measure) which we shall describe in the next section.

IV. The POV-measures

A selfadjoint operator T is called positive if (f, Tf) > 0 for all f€ $. It is called
bounded if there exists a constant C < oo such that | Tf || < C| f]|.

A POV-measure is a function 4 = T, from the Borel sets B of M to the bounded
positive selfadjoint operators which satisfies the following properties

For every sequence 4, such that A; | 4;

Tu,-A,» = 52 TA:‘ . (9)
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If the operators T, are projections we obtain the PV-measures (projection-valued
measures). For such measures we have the characteristic properties T5 = T, for all
A € B. For the POV-measures this property is not assumed [17].

POV-measures can be constructed very easily out of PV-measures. Indeed let
E®) and E® be two different PV-measures then

T, =2, B + 1, B

with 4, + 4, =1, 4, > 0 is a POV-measure.

One sees immediately from this remark that the POV-measures are a convex set
with the PV-measures as extremal points.

The POV-measures arise naturally in the spectral theory of normal operators.
For us the following representation of POV-measures is of great importance:

Let E; be a PV-measure in a Hilbert space §+, denote by P a fixed non-trivial
projection in $§* and by § C §+ the range of P. Assume furthermore that P does not
commute with all the operators E,. Then the operators

T,= PE, P - (10)

are defined in §) and they are zero on 1. It is easy to verify that the 7, are a POV-
measure in $).

More remarkable is the converse of this: For every POV-measure T, in a Hilbert-
space §) one can construct an extension §+ of § and a PV-measure E,in $* such that
T, = PE, P, where P is the projection from $* to . This is a theorem due to
NEUMARK [18] [19].

One can furthermore prove that there exists a unique minimal extension in the
sense of isomorphism [19].

From the point of view of this paper the interest of the POV-measure lies in the
following fact: If P and E, are as in the theorem of Neumark, then the projections

are a generalized spectral measure which satisfies relations (1), (2), and (3)’ of the
preceding section. Thus we see to every POV-measure corresponds such a generalized
spectral measure. We state a converse of this with the following

Congecture: For any generalized spectral measure in a Hilbert space $ which
satisfies (1)’, (2)’, and (3)’ there exists a minimal extension $+ of the Hilbertspace $
such that F; = P 0 E,, where P is the projection from $H+ to §.

Even without this conjectured theorem the preceding remarks show that we have
a vast store of generalized spectral measures which we can construct from POV-
measures.

With this technique we can now easily also construct generalized imprimitivity
systems. It suffices indeed to consider an ordinary such system under the assumption
that the representation U} of the group G is not irreducible. There exists then a non-
trivial projection P which commutes with all the U} but which need not commute
with every E,. The following formulae define then a generalized system of imprimi-

tivities:
F,—=PNE, Ux:PUj (11)
as one verifies easily.
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V. Localizability of the photon

In this section we shall now show, how the notion of weak localizability can be
applied to the photon.

We describe the photon by a fourcomponent function ¢#(p) (u = 0, ..., 3) define
on the lightcone P
prp,=po—pP*=0, p°=0. (12)
The wave function @#(p) is to satisfy the Lorentz condition
p.t(p) =0. (13)
We define a scalar product by setting
d3
(7. 9) = [ L giip) v'ih) (14

The functions for which this product is finite form a linear vector space ®.
Because of the Lorentz condition the scalar product in ( is non negative. But there
are in fact functions @#(p), namely those of the form g#(p) = p* A(p) with A(p) an
arbitrary scalar function, for which

@.9) = [ 50 bt 4%5) Alp) = 0.

The set of all functions of this kind are a linear subspace ®,. We define the factorspace
$H = /G, as the set of all equivalence classes of functions ¢*(p) modulo the subspace
®,. Two functions ¢} and ¢4 are said to be equivalent if they differ by an element in

®y: : .
’ of ~of i @) — b =p"A(p) . (15)

We designate by ¢ the equivalence class containing one particular function g#(p).
The scalar product for the equivalence classes is then defined by

@9 = [ 50 wp) v, (16)

It 1s positive definite by construction.

The space §) thus constructed induces an irreducible unitary representation of the
Poincaré group . Let a, A be a general element of this group consisting of the trans-
lation @ and the pure Lorentztransformation A then we define

[Ula, A)pl“(p) = e~ieb AT ¢"(A7 ) . (17)

It is easily verified that the transformation U(a, /) thus defined is really a trans-
formation of the equivalence classes, that is it leaves the subspace ®, invariant.

In order to construct the generalized system of imprimitivities for the photon
according to formula (11) we must identify the extended space §+, the projection P
from $+ onto §), the representation U+(a, R) of the Euclidean group which commutes
with P and the system of imprimitivities E, in § which must not commute with P.

We begin with the construction of the extended space $+. To this end we choose
in each equivalence class of & a particular representative as follows: Let ¢*(p) be any

element in . We define »
) = ¢ (0) — L 9°(8) (18)
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Since the passage from @* to f# is a gaugetransformation f#(p) is also in the class ¢.
Furthermore it has the property f(p) = 0. We shall therefore denote it by f(p) instead
of f¥(p).

The Lorentzcondition and the scalar product can be expressed in terms of these
functions in the form

p-flp) =0 (19)

(1.8 = [ 25 7*#) - 86) - (20)

The Hilbertspace $+ consists of all the vectorvalued functions for which (20) is
finite, but they need not satisfy (18). The projection operator P from $* to § is

defined by B 5 -
P = 16) — 5 (0-S#). 1)

The condition (19) is invariant under the representation U+(a, R) which is an
extension of Uf(a, R) (the representation of the Euclidean group) to §* in an obvious
sense. Hence this projection P commutes with U+(a, R).

In order to define the system of imprimitivities E, we carry out two transforma-
tions as follows. The first denoted by K transforms f(p) according to the formula

K: f(p) f@) - (22)

e
It is an isomorphism with the scalar product of L?(p). The second is the Fourier-
transformation F defined by

F:f() > 106) =~ ayuw | @B 4558 3

The transformation FK maps the space $* onto the space L%(x) consisting of
Lebesgue square integrable vectorvalued functions f(x) over the 3-dimensional Eucli-
dean space. Likewise, the space § is mapped onto the subspace L§(y) consisting of
similarfunctions which satisfy in addition the divergence condition

A, flx) =0. (24)
We define the projections EA for each Borel set 4 by the formula

(E,f) (%) = 24(%) f%) (25)

where x,(x) 1s the characteristic function of the Borel set A.
The functions (25) in general do not satisfy condition (24) even if f(x) does. This

shows that the projections E, do not commute with the projection P from L3(x)
onto L3(x).
We now return to the spaces $*+ and § by defining

E,— (FK)'E,FK. (26)

It 1s now easy to verify that this is a system of imprimitivities with respect to the
representation U+(a, R) of the group of Euclidean motions.
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Let us now define the projections
F,=E,nP=lim (E; P)". (27)
Hn—>00

This system of projections defines then a generalized system of imprimitivities
in accordance with the definition given in the preceding section.

In order to verify that this system F, is not trivial (that is F; = 0 for all compact
A € B) it must be shown that the POV-measure 7, = P E, P has eigenvectors with
eigenvalues 1, since F, is simply the projection onto the subspace spanned by these
eigenvectors. This can in fact be shown. We shall not do this here. This and other
aspects of the problem will be the subject of a forthcoming thesis by Mr. Amrein.

In conclusion we summarize that the foregoing calculations show that the photons
are indeed weakly localizable, but not localizable in the ordinary sense.
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