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Residual Interactions in Spherical Symmetric Nuclei

by J. Hadermann and M. Simonius1)
Institute of Theoretical Physics, University of Basel, Basel

(31. 1. 67)

Abstract. Introducing a residual two-body interaction in the shell model, the low-lying states
are similar to collective vibrations. Energies, state vectors and transition rates have been evaluated
in the quasi-boson approximation which is exact for only one pair of nucleons outside the closed
shell. Numerical results for some Pb and Ni isotopes are given.

1. Introduction

In order to describe the low-lying levels of even-even nuclei in the shell model, it
is necessary to introduce a residual two-body interaction.

We make the assumption that the nucleus consists of closed shells whose excita-
tions are not considered and an even number of protons or neutrons (or holes) outside
closed shells. Energies, state vectors and transition rates are evaluated in the quasi-
boson approximation (QBA), which is exact for only one pair outside the closed shell.
It is seen, that the low-lying states behave like collective vibrations with two funda-
mental differences;
first, the number of “phonons” excited is limited by the number of pairs outside
closed shells.

Secondly, the static quadrupole moment of excited quadrupole states is not zero but
has a collective value as for instance in the asymmetric rotator model.

Ratios of transition rates for different nuclei can be given independently of the
interaction. Though our method is not restricted to a special residual interaction we
consider here only a delta force and assume that the long-range part of the nucleon
interactions is included in the mean potential. It can be shown [1] that this force
gives the usual parity rule for the one-phonon states of spin J; (—)/ = (—)™

Numerical results for some Pb and Ni isotopes are discussed. While the QBA
restricts the validity of the results to nuclei with only a few pairs outside closed shells,
it is assumed that the general behaviour of the states holds also for other spherical
symmetric nuclei.

2. The Hamiltonian

We can write the Hamiltonian as follows
HZH()"_H,‘M: (1)
where the diagonal term given by the potential well of the shell model is H,

— +
Hy,= Z & Qi Uiy +
im

1) Present address: Illinois Institute of Technology, Physics Department, Chicago, Ill.
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The single-particle levels are denoted by ¢; and are taken either from experiment
or from theoretical considerations [2, 3].

The creation operator &}, creates a nucleon in the state (jm). The two-body inter-
action can be expressed by

+
HZ‘<71 UG ‘ <?2 Mg l v ‘ 71 m1> l?z m2> 71m1 @fymy it ;a;r{'mf ’
all jm

where V is the residual interaction potential between the two nucleons.
We define the following tensor operators of order JM:

B;_M(jl fol == — e 2 {Jy My Jo My J IM> amm ;:mz v 1= Tss
I/1+5J1J2 Wiy My

with the symmetry relation

B}M(?'l 12) = — (— )71+72+] B+ mlfz 11) -

The interaction can now be expressed by

M= 2 Zwl/(1 + 6j1j2) 1+ 61';;';) G](fl /2 ?.; ?2) B_?M(ﬁ 72) B]M(?.ll 72’) .

JM allj

For the special case of a d-force,
V= 10%(r —1y),
it can be shown [1] that

. - o Ly 1 " " 1 : ,
Gylinffa o) = — (V"% 57 Vo R o (L4 (=)+57)

. . ; ; Y hda ]
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We define the coupling constant G by

G = .f,,}i__ T/ Rnll #g 1y

327 nilingls ?

111”212

where the radial part R}, of the two-body matrix element is taken as constant.
It has been shown [3] that thls 1s a good assumption.

In general it is impossible to diagonalize Hamiltonian, (1), but some qualitative
considerations can be made. The interaction H j;, induces a strong correlation of the
nucleons and depresses the lowest state of spin (JM). Because of the correlation, this
state exhibits a collective character, whereas the excited levels of spin (/M) remain
nearly undisturbed at the position of the corresponding single-particle levels and
show single-particle character.

The parity-selection rule in eq. (2) is a consequence of the short-range force and
permits identification of the low-lying levels with those of the vibration model.

3. The Quasi-Boson Approximation (QBA)

In order to diagonalize Hamiltonian, (1), we partially neglect the Pauli principle
and consider the operators B7,, (j; 7,) as Boson operators

[B]M(h T2)s B]'M'(h 72)] = (31'1;'; ajg(;‘; 6]]’ O ar for 71, =1, 71 = 7; .
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This quasi-boson approximation was first considered for the specialcase ] = M = 0
by HoGAASEN-FELDMAN [3]. It permits us to write the Hamiltonian in the form

H = ZHJM 22{ &, +&,) 0j,1 0,5, + 2 |/(72 —0;,;,) (2 —0;,)
M ?1>12
?1‘“12

X Gj17a i 72 )} B;}VI(?‘I T2) B]M(ji fa) (3)

where the number operator for the single-particles has been substituted by the num-
ber operator for quasi-bosons.
Now every term H j;, can be individually diagonalized by the unitary transform-

ation ) .
w1 72) ZCM, B;M K), 11 =1z

It is emphasized here that the QBA is exact for only one pair of nucleons outside the
closed shells.

We write the eigenvectors of the Hamiltonian as follows:

(H?JM |)—112 H(ETM(K)Y{"M 10>,

Jm

where p{M gives the number of quasi-bosons of spin (JM) in the state K
2 e
JM
K
The corresponding cigenvalue is

E — ZyJM EJ

where EY% is an eigenvalue of the matrix H yu- The collective level of spin (JM) is
labelled by K = 0.

For a definite spin /, as many equidistant collective levels can be built up as
there are pairs of nucleons outside the closed shell. This is in contradiction to the
vibration model. But the equal spacing of the collective energy levels (if there is more
than one pair of nucleons outside) and the parity (—)/ are predictions which are given
also by the vibration model.

4. Matrix Elements of Tensor Operators in the QBA

In the QBA, single-particle operators can be written as two-particle operators
(see also eq. (3)).

The matrix elements of a tensor operator 7}, can be calculated and expressed
by the transformation coefficients C/; .

For diagonal matrix elements we get

<GB | Ty IV s
’ ’ Id ’ ’M’ ,‘-M, M> ’
= DM (=) gl =B |J (=Y 2] +1)T (], ])

J’M’ V2 J+1 K’
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where

]-r ]l,’

T] ( Kf Krr
S S "
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Tajal’ T2 .7 7

and <j, || 77 || 7> is the reduced single-particle matrix element. Because of the strong
correlation in the state K = 0, the static multipole moments are appreciably greater
than those of a single-particle calculation. The vibration model in contradiction to
this gives zero for multipole moments of excited states.

Off-diagonal matrix elements are given by

<_._,y{{M/_ l,y;:v’;,w’ +1, ... ‘ TJM] :}’}T{';‘J’,y{f’w”, -
4 1 " <JIIMII ],_,{M, M> - -
= () o L Ye T+ @]+ 1)
’ nmasn ] "
X l/}"]M {gnM + ].) (K I{vﬂ : (4)

As an example, the reduced transition probability from the first excited state of
spin L to the ground state is given

B(T;, L —0f) =08,,p ( (I(; 8)) (5)

As a consequence of the partial neglecting of the Pauli principle in the QBA, the
cross-over from collective spin multiplets to the ground state is forbidden.

5. Numerical Calculations

In the following we present some numerical results for the Pb and Ni i1sotopes.
It may be noted again that the QBA is exact for the two isotopes Pb2% and Ni58.

5.1. Lead Isotopes

The single-particle levels ¢; are taken from experimental data [5] on Pb2?. The
first five levels are interpreted as single-neutron hole states and have been used in
the diagonalization of Hamiltonian (3).

Figure 1 shows the level scheme of Pb2% calculated in this way compared to the
experimental data [7]. The coupling constant G = — 0.040 has been fitted by the energy
difference between the ground state and the first excited state. The calculated level
sequence agrees very well with the experimental data.

We have investigated whether G is reasonably well independent of J (a statement
implied by the d-force). For J = 0 we have fitted G by the energy difference 0 — 05
and for J = 2 by the energy difference 2] — 2;'. The state 3+ determines the zero
point of the energy scale. Figure 2 shows the corresponding level scheme which is
almost the same as fig. 1. The two coupling constants are the same to within 109%,.
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The experimental [7] level sche-
me of Pb2?% is compared to the
calculated levelsequence. The coup-
ling constant is G = — 0.040 (see
also sect. 5). The calculated levels

The calculated level scheme of
Pb2% jis compared to experiment
[7]. For spin J = 0 the coupling
constant is G = — 0.042, for spin
J=2,G= —0.045.

are marked with spin and parity
assignement, the index gives the
number K.

The level scheme of Pb20 can be obtained from figure 1 provided the nuclear
parameters vary only slowly with mass, that is, we take G to be — 0.040. The level
scheme of Pb2" is given in figure 3. Note that there exists a collective spin triplet
state at 1.60 MeV. '

In table 1, some calculated reduced transition probabilities in Pb2% are given and
compared to existing experiments.

All results have been obtained by assuming an effective charge of one electron.
The magnitude of the transition 2; - 0, is a consequence of the correlation of the
nucleons in these two states.

There exists an experimental [7] branching ratio of 56/44 between the transitions
21 = 25 and 2;7 > 0. If the former is M1, we get theratio 18/100. The E2 transition
is still 7.5 times slower. As far as our model and a radiative transition is concerned,
we cannot account for this discrepancy. '

- The corresponding quantities of Pb2% can easily been deduced from the foregoing
by means of formula (4). :
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Table I

Some reduced electric quadrupole and magnetic dipole transition probabilities in Pb20® are
compared to existing experiments

Electric quadrupole transition Theory Experiment?)

25 > 0y 6.40 - 1071 b? (6.5 + 2.5) . 101 p?
0F > 2¢ 2.05 - 102 b2

2f = o 1.78 - 1072 b2

2f => 2§ 1.41 1072 p?

Magnetic dipole transition

2f > 2% 2.095 - 102 (¢ Bj2 M c)?

2) Ref. [6].

We give here only one result, which can be compared to experiment. If the para-
meters are the same as for Pb2%%, the reduced transition probability for 2;- > 05
should be twice that of Pb20¢ i.e. 1.28 b2 The experimental value [6]is 1.10 4+ 0.45 b2

E
4
MeV CAL. E XP.
2+
20 f —— 4
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05
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Figure 3

The theoretical level scheme of Pb2%* obtained from figure 1 is compared to the experimental
data [7] (see sect. 5).

The spectroscopic quadrupole moment [8] of the state 2; is

Q = — 0.505 b,
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and of state 2" is
Q = — 0.095b.

The same trend as in the transition probabilities is noted here. The quadrupole
moment of the collective state is enhanced by a factor 5 due to the correlation of the
nucleons in this state.

5.2. Nuckel Isotopes

Since the single-particle levels cannot be taken from experiment those of Kiss-
LINGER and SORENSEN [9] are used.
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The calculated energy levels of The theoretical level scheme of Ni%0
Ni®*® are compared to experiment obtained from figure 4 is compa-
[10]. The coupling constant is red to experimental data [7] (see
G = - 0.094. sect. 5).

In figure 4 the calculated level scheme of Ni% is compared to the experimental
data [10].

The fitted coupling constant is G = 0.094. As the spin sequence of the levels is
rather good, it is possible to obtain better agreement with experiment by shifting
upwards the relatively uncertain single-particle energy ¢, , so that the energies of the
45, 2 and 0; levels also increase.

Figure 5 shows the level scheme of Ni® obtained from figure 4. Data are from
ref. [7]. Because the multiplicity of the single-particle levels is small, the QBA be-
comes less adequate.



538 J. Hadermann and M. Simonius H: P A

This can also be seen in the transition probabilities. The only free parameter, the
effective charge of the neutrons, is assumed to be unity.
Some reduced transition probabilities are compared with experiment in table II.

Table 11

Some reduced electric quadrupole and magnetic dipole transition probabilities inNi% are compared
to existing experiments

Electric quadrupole transition Theory Experiment

24 = of 3.48 - 101 b2 (3.60 + 0.35) » 10-1 b2 a)
(3.55 4+ 0.70) - 10-1 b2 D)
2+ > 2% 1.34 - 103 b2

Magnetic dipole transition

2t > 2% 1.33 - 1071 (¢ B/2 M ¢)?

a) Ref. [11].  P) Ref. [12].

That the QBA is less accurate in Ni than in Pb is also shown by the reduced
transition probability B (E2, 27 - 0;) in Ni®. It should be 6.96 - 10~1 b2 Experi-
mental data [11, 12] give (4.55 & 0.40) - 10-1 b2, and (6.00 + 0.60) - 10~ b2, respec-
tively. For Ni®2, the situation is worse; the experimental value B (E2, 2] = 0))is
(4.15 + 0.40) - 10~ b2, whereas the theory gives 1.04 b2.

As the term H,, in Hamiltonian (3) corresponds to the usual pairing force, we
can compare our coupling constant G to that of ref. [9], denoted by Ggs. The relation
is G/Ggs = — 0.5. For Pb we obtain for this ratio — 0.364 and for Ni — 0.294.

A remark must be made about the lighter elements. In this region of the periodic
table, neutron and proton shells are not filled independently, and the two-particle
interaction must be handled with isospin formalism. Our calculations with O
obtained no reasonable energy levels.

We wish to thank Professor K. ALDER for helpful comments and his interest in
this work.
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