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Générateurs d’un mouvement et champs covariants?)

par J. Poncet

Université de Lausanne (Suisse)

(25 X 66)

Abstract. A N-field is defined under weaker covariance conditions than for a local field.
(N is a set in which SL(2, C) operates, see def. 6.1., part II). In particular, the energy-momentum
of an N-field is given by unitary representations R(n) : a > R, (n) of the translations a, depending
on # in N, which are covariant under a representation M : 4 > M4 of SL(2, C) (M determines
the angular momentum) in the sense: Ry 4(An) = M4 Ry(n) M j.

It is shown that if N is the set of timelike directions a definition of the «interaction picture”
is possible, which resembles in some way the conventional one, and therefore permits bypassing
the conclusions of Haag’s theorem. An example of a N-field is constructed which is obtained by
an “‘interaction picture’’ from a free field. Properties of its energy-momentum are discussed.

All this requires some results on generators of evolutions contained in part I.

PARTIE I

Remarques préliminaires. Nous appelons mouvement une fonction U: (z, o) -
U, , & valeurs dans le groupe projectif d'un espace d’Hilbert, définie sur des paires
de 3-surfaces dans I’espace M, de Minkowski, et telle que

U0, Us, 0, = Us, o, -

M, est supposé muni de la métrique définie par

(@, a) =a®=al — a% — a3 — a2

Pour les applications que nous avons en vue (voir no 6 ou sont définis les N-
champs) nous nous restreignons dans la suite au cas particulier ou (t, o) sont des
paires de 3-plans paralléles du genre espace.

Les générateurs d'un mouvement sont définis par certaines conditions de diffé-
rentiabilité. Les générateurs étant des opérateurs symétriques non bornés en général,
la question de I'existence et de 1'unicité d’'un mouvement de générateurs donnés n’est
pas triviale, et nous I'avons considérée de deux points de vue différents.

Au no 1, les hypothéses de différentiabilité sont forfes et les générateurs sont des
opérateurs symétriques définis sur un méme domaine A (voir définitions D 1-3).
Sous ces conditions on démontre un théoréme d’unicité (théoréme 1.1). Sa démonstra-
tion se rameéne d’ailleurs a celle d’'un théoréme analogue pour des «mouvements sur
la droite», dont nous notons une conséquence simple: soit 7 un opérateur symétrique

1) Ce travail a été préparé avec I'aide du Fonds National Suisse.
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sur un domaine /A, qui posséde des extensions autoadjointes; alors, il en existe au
plus une, soit 4, telle que ¢4 A = A.

Nous définissons ensuite les constantes d'un mouvement quelconque (qui ne pos-
séde pas nécessairement des générateurs) associées a un groupe (no 2), et nous con-
sidérons la notion de générateurs d’un point de vue différent (no 3); les conditions de
différentiabilité sont plus faibles, mais les générateurs sont supposés essentiellement
autoadjoints sur leur domaine (pas nécessairement constant comme dans la premiére
définition). On peut alors énoncer un théoréme d’existence et d’unicité d'un mouve-
ment qui posseéde des générateurs et au moins une constante associée au groupe des
translations de M,.

Auno 4, nous introduisons la notion de variation d’'un mouvement et nous donnons
des conditions sous lesquelles un mouvement varié posséde une constante de moment
d’impulsion M: 4 - M 4, ou M est représentation unitaire de SL(2, C), et une con-
stante d’énergie-impulsion covariante velativement ¢ M (voir no 2). Nous montrons
ensuite (no 5) ,qu’il existe des mouvements qui possédent une telle constante cova-
riante relativement a un moment M, et non triviale en ce sens que la classe de repré-
sentations qu’elle détermine ne peut pas étre obtenue par une restriction au groupe
des translations d’une représentation unitaire du groupe SL(2, C) inhomogeéne.

Nous définissons pour terminer ce que nous appelons l'application d’interaction
et les N-distributions (no 6). Celles-ci peuvent aussi avoir une énergie-impulsion
covariante relativement 4 un moment M. Nous donnons alors un exemple de N-
champ obtenu & partir d'un champ libre par une application d’interaction, qui pos-
seéde une énergie-impulsion covariante relativement & un moment M (celui du champ
libre considéré) et non triviale dans le sens que nous venons d’indiquer. Ceci montre
en particulier qu'un N-champ a des propriétés différentes de celles d’'un champ auquel
serait applicable le théoréme de Haag. |

Comme on sait, les fonctions que nous appelons mouvements apparaissent en
électrodynamique quantique formelle, spécialement en relation avec I'«interaction
picture» (voir par ex. 8) que nous avons redéfinie par I'application d’interaction sus-
mentionné. Notre but était de montrer que celle-ci peut étre non-constante pour des
N-champs. Ajoutons que la construction particuliére que nous avons choisie pour
obtenir un N-champ qui remplit les conditions imposées n’est pas la seule possible.

Dans un article récent [12], M. GUENIN a traité, en relation avec le théoréme de
Haag et '«interaction picture», une question qu’on peut a certains égards rapprocher
de celle que nous avons considérée.

1. Générateurs d’un mouvement. Premiére définition

On désignera par U(H) le groupe topologique unitaire, muni de la topologie forte,
de I'espace d'Hilbert H, par D(H) le groupe projectif U(H)/S, S étant le sous-groupe
des opérateurs unitaires scalaires. Les éléments (ou rayons) de P(H) seront notés
A, U, Vetc., ceux de U(H) par 4, U, V etc.

Si o est un 3-plan dans l'espace de Minkowski M,, o + a sera le translaté de o
par la translation a : x - x + a. Par définition, ¢ est du genre espace si pour y =+ z,
on a (y — 2)2<< 0. L’ensemble X' des ¢ forme une variété homéomorphe au produit
d'une droite par la variété des vecteurs b tels que 42 =1, & > 0.
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On définit un mouvement Y par la donnée d’une fonction U,,, & valeurs dans
PD(H) définie sur les paires (t, o) de 3-plans du genre espace, avec T = ¢ + 4 qui satis-
fait a la condition

a) ‘uo".,,trz ‘uo'z,a'1 == ua;,,o‘, *
Nous exigeons aussi généralement:
b) ua‘+x, o uo’+(n,x)n, o

est continue de (o, ), # = n, étant une normale a o telleque n2 = 1.
De la condition a) suit que U,,, est I'élément neutre J de P(H) et que U,,, =

-1
G, T*

Nous appelons mouvement unitaire une fonction U, , a valeurs dans U(H), définie
pour les mémes paires (7, o), et satisfaisant aux mémes conditions a) et b); la projec-
tion U(H) - P(H) définit de maniére évidente un mouvement U, . que nous dirons
wmduit par U, .

Nous supposons dans ce no 1 que Y satisfait en outre a la condition D) ci-aprés,
que nous modifierons au no 3.

D) Il existe un sous-espace dense A de H, des opérateurs L(o) symétriques de
domaine A, associés aux ¢, et pour tout ¢ des représentants unitaires U de
U,.., continus de (o, x) tels que

1) Uyppo 4 =4, U, ,=E, E étant I'opérateur identité de H;
2) pour  dans 4, la limite forte

ot+x,0

lim 1/s (U,

ctatsa, g Uo’+x, a) ¥
s—0
(s réel) existe et est continue de (o, x) pour toute translation a;

2 Slgr}) 1/s (Uyisoe — E)p =1L, (0)y = i(n, a) L(o)y
pour p dans A, n = n, étant une normale a g, n% = 1.
Par ces conditions, les limites fortes de D 2) et D 3) sont linéaires en a, de rang
un, L (¢) = (n, a) L(o), L,(0) = 0sioc+ a =0, et L,(6)y est continu en o. '
Les opérateurs L (o) seront appelés générateurs en o de U, associésa U, , sur A.
On pourrait supposer plus généralement qu'on se donne des représentants uni-
taires U,,,, locaux satisfaisant a D 1), 2), 3). Il existe toujours des représentants
unitaires locaux continus d’'un mouvement par le fait de la fibration

UH) > UH)/S,

localement triviale par un théoréme de A. M. GLEASON [7].

Pour simplifier nous supposons que U a des représentants unitaires globaux véri-
fiant D 1), 2), 3), mais il est facile d’énoncer les analogues locaux des théorémes et
propositions démontrés dans la suite.

Soient p, les éléments de X' par un point 0 .Si Y satisfait a D 1), 2), 3), V, . =
U,.00 Ua, o €5t un mouvement unitaire qui induit W, mais qui ne satisfait pas néces-
sairement a D 2), 3).
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Theoreme d'unicite 1.7.

St les opérateurs L, (o) sont des générateurs sur A d’un mouvement qui satisfait a
D 1), 2), 3), ce mouvement est unique.

Soient g et a tels que p + a =+ o.

Définissons w(g, 7, s) (complexe de module un) par

Ug+ra,g+xa UQ-Ha,g - Cl)(Q, 7, S) U;)+ra,g

ou U,,,, sont des représentants unitaires auxquels sont associés les générateurs
L,(o) sur A.
On a w(p, s, s) = 1 et les identités, ol 7 est mis pour g + s a

- U,,=(,

Ttua,
= UH—u a, T

) U

THua, o

w Yo, s+ u,s)— E) U

7,0

(w_l (Q: s+ u, S) — 1) UT,Q + (U‘r+ua,-r - E) U‘J’,Q .
On obtient, en utilisant 1), la limite forte

2) lim 1/ (p (s + 1) — () = 3 (L() + p(s)) (o)

u—>0

en posant, pour a, g supposés fixes et g dans 4,

Upirae ¥ =9(5),  Lalo +58) = L(5) i pls) = lim 1u (0~ (o5 + 10,5) = 1)

Cette derniere limite existe nécessairement par D 2) et D 3) appliqués respective-
ment au premier membre de la premiére égalité de 1) et au deuxiéme membre de la
deuxiéme égalité de 1). En outre, u(s) est réel puisqu’on peut poser w= (g, s + u, s) =
e g (u) réel, «(0) = 0, et que ¢*™ est alors dérivable en u = 0, ce qui entraine
bien que u(s) doit étre réel.

Par les conditions imposées a U,., , %, u(s) est une fonction continue en s. En
effet le membre de gauche de 2) est continu par D 2); (L(s) p(s), @) = (y(s), L(s)p)
est continu en s puisque y(s) et L(s) ¢ le sont pour ¢, y dans 4, donc

(/u’(s) (]‘L)+S€1,Q v, (P) = /LL(S) ((JQ-Ha,g W’ q))

I'est -aussi; comme pour tout s on peut choisir g, y dans 4 tels que (U, ., %, ¢) *+ 0,
il s’ensuit que w(s) est continue en tout s.

Pourypdans 4, U,, ., ,v = (s) est une solution dans A de I'équation 2), qui satis-
fait la condition initiale (0) = . Mais c’est la seule. Car si ¢(s) dans A est une autre
solution de 2) telle que ¢(0) = p, la fonction numérique (p(s), ¢(s)) est évidemment
dérivable et de dérivée nulle. En particulier, si ¢(0) = 0, ¢(s) doit étre nulle. Par la
linéarité de I'équation 2), il n’y a donc qu’une solution y(s) dans 4 telle que 9(0) = y.

Supposons qu’il existe un deuxiéme mouvement vr‘a qui satisfait a D 1), 2), 3),
avec des représentants unitaires V., , qui définissent les mémes générateurs L,(o)
sur /. Alors on a une équation
3) lim (0 (s + u) — 0(s)) = ¢ (L(s) + »(s)) 6(s)

u—0

analogue a 2), v(s) étant réelle et continue.
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On sait d’aprés ce qui précéde que la seule solution f(s) dans A telle que 6(0) =y
est 0(s) =V, 0,9 Comme (s) = U, ., est la solution de 2) dans A telle que
¥(0) =y, la fonction ¢ y(s), ou df/ds = v(s) — u(s), B(0) = 0, est solution de 3)
pour la méme condition initiale, donc on a &P U, ., =V, s, ,%. Comme /

est dense dans H, U, , , doit étre égal & Y, , ,.

Remarque 1.7

On peut démontrer une propriété simple d’opérateurs symétriques qui ont des
extensions autoadjointes, comme conséquence d'un théoréme analogue au Théoréme
1.1.

Définissons un mouvement sur la droite une fonction U : (s, #) > U,y (s, ¢ réels)
a valeurs dans P(H) telle que U, U, ;, = U, 5, et que U, , soit continu de (s, £).

Si on impose & U des conditions analogues aux conditions D 1), 2), 3), on a un
théoréme d’existence semblable au théoréme 1.1, la démonstration restant la méme.

Comme exemple de mouvement unitaire sur la droite qui satisfait a de telles con-
ditions, on peut prendre U, ; = ¢/*=94 ou A4 est autoadjoint, pour 4 le domaine de A4
ou un domaine plus petit A’ tel que 44" = A’, et pour générateur L(s) I'opérateur
symétrique restriction de 4 a A"

Proposition 7.7. Soit T un opérateur symétrique dans H, défini sur A, qui possede
des extensions autoadjointes. Il en existe au plus une, soit 4, telle que ¢*44 = A.

En effet, si B satisfait aux mémes hypothéses que 4, les deux mouvements uni-
taires sur la droite U, ; = e'#=94 et V, = ¢'“=%)F ont le méme générateur (constant)
L(s) = T sur A. Par 'unicité, V, ; = U, ;d’'ot A = B par le théoréme de Stone.

2. Constantes d’un mouvement

Soit G un groupe de Lie, supposé d’abord connexe qui opére (éventuellement
d’une maniére triviale) sur 'ensemble X' des 3-plans du genre espace. On suppose que
les opérations T : ¢ - To conservent le parallélisme des 3-plans o.

Dans la suite, lorsque G est connexe, nous entendrons toujours par représentation

projective de G une représentation globale du revétement universel G de G dans D(H),
ce qui est équivalent A la donnée d’un homomorphisme local continu de G dans P(H)
défini sur un voisinage connexe de ’élément neutre ([3], théoréme 3, p. 49).

Soit U un mouvement qui vérifie les conditions a), b), du no 1.

Une représentation continue R: 7 - Ry de G dans le groupe D(H) telle que

1) uT—c,Ta: RT u’r,o’ Rfltl

pour toute paire (7, 6), T = ¢ + a, sera dite constante de type G de U.

La donnée d’une représentation projective R de G est équivalente [1] & la donnée
d’une représentation unitaire R®™ d’un groupe G, qui est une extension de G par un
groupe isomorphe au tore S

Soient X un élément de I'algébre de Lie L(G,) de G,, ¢°* le groupe a un parameétre
correspondant et ¢*?¥ — R®)(esX), A, étant le générateur autoadjoint de Stone de
R®)(e5X). Par un théoréme de L. GARDING [5] il existe un sous-espace D dense dans H

z ¢ A » - . is A
transformé dans lui-méme par les opérateurs Ay, invariant par ¢*“¥, et tel que Ay
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soit essentiellement autoadjoint sur D ([10]). En outre, I'application X — i 4 x définit
une représentation de L(G;) dans I'algébre des endomorphismes de D.

Nous appellerons les opérateurs autoadjoints Ay les observables définies par la
constante R de type G ou aussi observables de type G. Eventuellement, on désignera
R et ses observables A4 5 par le méme terme. Dans le cas oit R est définie par une re-
présentation unitaire R, Ay est 4 une constante scalaire additive prés le générateur
autoadjoint de R(e¥). Il en est ainsi en particulier si G est le groupe SL(2, C) ou
SL(2, C) inhomogeéne. Pour SL(2, C) cela tient au fait général [1] que les représenta-
tions projectives d’un groupe semi-simple sont induites par des représentations uni-
taires.

SiG est le groupe des translations a: ¢ - ¢ + a, une constante de type G définie
par une représentation unitaire R sera appelée une énergie-impulsion de Y. Nous

noterons aussi R, = ¢¥a ol P, est le générateur de Stone du groupe & un parametre
Rm _ 8@' sPa-

Une constante de moment d’impulsion sera une constante de type SL(2, C), ou
SL(2, C) opére de maniére évidente sur X et sur M, (en laissant un point 0 fixe).

Lorsque G n’est pas connexe, une représentation globale R de G dans le groupe
U'(H) (a deux composantes connexes) des transformations unitaires et antiunitaires
de H, ou dans le groupe P'(H) = U’'(H)/S, sera aussi par définition une constante de
U si 'on a la méme relation 1) que précédemment.

Soit encore G un groupe qui opére trivialement sur X, R:« - R, une constante
de U de type G: on peut 'appeller une charge généralisée si les opérateurs unitaires ou
antiunitaires R, définis par les rayons R, commutent avec toutes les observables 4,
de U.

Dans la suite les différents groupes que nous considérons sont toujours connexes.

Une constante de type SL(2, C) inhomogéne détermine en particulier une con-
stante d’énergie-impulsion par restriction au sous-groupe des translations, et diffé-
rents moments d’'impulsion équivalents par restriction aux sousgroupes isomorphes
a SL(2, C) (et conjugués entre eux).

Aux no 4, 5 et 6, nous aurons a considérer des constantes associées a un groupe en
un sens plus général que nous allons définir.

Soit G un groupe qui opére (éventuellement d’une maniére tr1v1ale) sur 2 en trans-
formant en elle-méme chaque famille de 3-plans paralléles, et tel que A G At =G
pour les rotations A4 laissant un point 0 fixe (4 = élément de SL(2, C)).

Soient Y un mouvement, R(s): T - Ry(0) une représentation projective de G
donnée pour chaque o, et soit M : 4 - M 4, un moment d’impulsion de U: Uy, 46 =
M4 U, , M, avec les relations

a) R(o) = R (o + b)
b) R4r4-(da) = M, Rp(o) M 1 ’
C) uTr, Ts™= RT( ) u'r,cr RT( )

Nous appellerons constante de type G de U, covariante relativement a M, l'en-
semble R des représentations R(o) de G muni des relations a), b), ¢). Si G est le groupe
des translations, si R(o) est définie par une représentation unitaire R(o) de G, la
constante R de type G sera dite énergie-impulsion covariante relativement a M.
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3. Autres conditions pour les générateurs

Dans la suite, un mouvement est encore supposé vérifier les conditions a), b) du
no 1, mais des générateurs sont définis sous des conditions différentes de D 1), 2), 3).

Nous n’énoncerons pas de théoréme général d’unicité. Par contre, nous établirons
deux théorémes d’existence et d’unicité (Théorémes 3.1. et 3.2.) pour un mouvement
qui possede des générateurs et une constante d’énergie-impulsion donnés. Eventuelle-
ment, on peut se donner encore d’autres constantes a part celle d’énergie-impulsion.

Supposons

(L) qu’il existe des représentants unitaires U _,, , (définis localement ou globale-
ment) continus de (o, x), avec U, . = E, et des opérateurs autoadjoints L(c) dont la
restriction a un sous-espace dense A, de H soit essentiellement autoadjointe, tels que
pour ¢ dans A,

lim 1/s (U, — E)p = iL,(0)p = iln, a) Lio)y

ou la limite de gauche est une limite faible.

Les opérateurs L (o) seront dits générateurs de U en o sur A, associés aux repré-
sentants unitaires U, ., et générateurs au sens fort si la limite précédente est forte.

Théoréme 3.7. Supposons donnés des opérateurs autoadjoints M (o) pour tout

o de X' et toute translation a, une représentation unitaire R:b - ¢’ du groupe G
des translations, un sous-espace A, dense dans H pour tout ¢ de X, avec les conditions
a-d:

a) M (o) est essentiellement autoadjoint sur A,, M (o) =0 st 0+ a =0, M,(o) ¢
est linéaire en b pour @ dans A,,.

b) le domaine de P, contient A, et ¢l A, = A, pour tout a et tout o de X;
c) pour tout a ef tout o de X, I'opérateur M (o) — P, est autoadjoint et sa restriction

a A, est essentiellement autoadjointe; I’ exponentielle ¢ M P oot continue de (0, a);

d) M,(c+b) =¢"? M o) e *Tr 4 Uolo, ) E o u,(o,b) est une fonction réelle
linéaive en a. .

Alors 1l existe un et un seul mouvement d énergie-impulsion R:a —> ¢ ot de
générateurs M (o) au sens de (L). Ceux-ci sont méme des générateurs au sens fort et sont
associés aux representants unitaires

isP, is(M -P
Vo’+3a,a- = 31 g [Mgtel ~Eg)
ou aussi
y is(n,a) P is(n,a) (M, (c)—P 5
Ifo%/sa’c . ezs(n a) P, 6»5(?‘» a) (M (0)—P,) (?’L —normale A ¢, n%= 1) .
; . . . (M _(¢)—P ) . . , . .
L'application S(o) : a - ¢ el La) iyduit une représentation projective du groupe

G des translations a pour tout o de 2.

Démonstration de I’existence. Nous montrons d’abord qu’il existe un mouvement
W d’énergie-impulsion R: a - ¢Fe et de générateurs M (o).

Soit n = n_ une normale a ¢ telle que #2 = 1. La condition 3.1.a) entraine M (o) =
(n, a) M, (o).

Posons
isP, i1s(M,(o)-F
1) V0'+sn,o- = ne ( " n)
2) . - Vcr+a,0' = Vo‘-+(n,a)11,o' ’
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et montrons que les opérateurs V_, sont des représentants unitaires d'un mouve-
ment Y.

Il suffit, tenant compte de 1), 2) de vérifier que V,,,1gnaisn Vorsmos ¥» S T€EIS,
appartient au méme rayon unitaire de P(H) que V, (4 (La continuité de Y, .,
est une conséquence immédiate de I'hypothése 3.1 ¢) et de la derniére relation 2).

Par 3.1. b) et d) et pour ¢ dans 4,

v,

(M, (04 b) — P)p=¢"" (Myo) — P e " + pylo, b)g -

Comme M, (¢ + b) — P, et M, (o) — P, sont essentiellement autoadjoints sur
A,y tespectivement A, et que ¢ 70 A_,, = A, on déduit de cette égalité que
M,(o+0b) —P,= ¢ (Myo) — P e "o+ u,o,b) E et

3) 8i(Ma(a+b) “P 8£yﬂ(0’, b) eiP” 61‘ (M (0) - Pp) - iPy .

De 1a, on obtient
v

: 17 fi,(0,Sn)
oHr+s)n,o+sn Va’+s no b Va'+(r+s)n, s

ce qui montre que les opérateurs V., . sont des représentants unitaires d'un mouve-
ment.

On a ensuite
1s (Vysono — Ep = ¢ 7 1fs (¢ 0P _ E)p 4 1)s (" — E)g

et si ¢ est dans A, les deux termes de droite ont les limites fortes, pour s - 0,
1 (M,(0) — P,) @ et ¢ P, ¢, de somme M (o) . Par la définition 2) de V., ,, cecl
entraine que M (o) = (n, @) M (o) satisfait (L) au sens fort, ce qui établit I'existence
d'un mouvement de générateurs M (o) et, d’aprés 3), de constante R.

Avant de démontrer 'unicité de Y et les autres conclusions du théoréme 3.1., nous
montrons qu'un mouvement qui posséde une constante R associée au groupe des
translations, ne dépend que de R et de la donnée, pour tout ¢, d’'une représentation
projective §(o) : @ > §,(0) du méme groupe.

Proposition 3.7. Soit R: a > R, une représentation projective du groupe G des trans-
lations de M ,. Un mouvement W de constante R associée aux translations, c’est-a-dire tel
que

1) YVesrrte=R. Y, BT

est de la forme

2) Yoia,0 = Ra S,(0)

o $(o):a > §,(0) est une représentation projective de G pour chagque o de X, telle que
3) Ry Sulo) Ry ' =S, (0 + 1),

S.(o) est continu en (o, a), et
4) S,o0) =R lsic+a=o0.

Réciproguement, si les veprésentations projectives R et $(o) de G satisfont ces relations
3) et 4), et s1i S,(0) est continu en (o, a), I équation 2) définit un mouvement de constante R.
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En effet, si ¥ est un mouvement de constante R, en posant ¥, ..., = R, S,(0),
les relations 1) et W, s, gip Gorvo = Upigis, . entrainent 3) 4) et § (o) §,(0) =
Sz+5(0). La continuité en a de §,(o) est évidente.

Réciproquement, si §(c) : @ > §,(0) et R: a > R, sont des représentations projec-
tives de G avec les propriétés 3) et 4), R, S,(c) ne dépend que de o et o + a par 4)
et définit un mouvement V¥ continu en (o, @), qui par 3) posséde la constante R
associée a G.

Corollaire 3.1. Tout mouwvement V,,, = V.4, d¢ constante R associée a G possede
pour chaque o des représentants unitaives de la forme

ot+a,o

174 isQa eisTa(o) '

otsa, o

Onaeneffet Y, , ., .= R, S,.(0), et comme des représentations projectives telles
que s > R,,, s = §,,(0) d'un groupe 4 un paramétre sont induites [1] par des repré-
sentations unitaires, Q, et T, seront les générateurs de Stone de celles-ci.

Soit maintenant WP, = W2, .., un deuxiéme mouvement qui satisfait aux
hypothéses du théoréme 3.1. et montrons qu'il est identique & celui dont l'existence
est établie plus haut, autrement dit, si V%), , sont des représentants unitaires de
V2., - qui définissent le générateur M, (o) sur A, ils appartiennent au méme rayon
_— 55 Pn G5 (My(0)—Py)

D’apresles propositions et corollaire 3.1.,ona V&, = ¢ g CTat*0) 4 (s) étant
une fonction réelle, avec «(0) = 1, qui, comme T,, dépend de ¢. Paur ¢ dans 4,
fdans H, on aura donc

lim 1/s ((e

s—0

z'sPn gi(s Tn + a(s))

— Elp, f)=1 (M, o, )
ce qui entraine, comme 1/s £t _F ,f) ala limite 2(P, @, f), que la limite de
' a® q

1/s ((61'513" ez’(sTn+oc(s)) . eis Pn) @, ]() est ¢ ((Mn(g) —- Pn)(p, f) .
On a encore

1/s ((61‘31-’” ei(sTn-!-cz(s)) B eisPn)(p’ f) _1s ((ei(sTn—l—c(.(s)) _ E)p, 6—isPn f)

et la limite de cette derniére expression est aussi celle de
s (¢ — E)p, f) = 15 (7 = 1) (" g ) + Vs (€77 — Edg. 1)

car 1/s e (¢ CTn ") _ £y ¢ convergeant faiblement est borné, (¢~ 7 — E) f con-
verge fortement vers 0, donc 1/s ((¢'" Tntol) _ E) ®, (eﬂsp" — E) f) aune limite nulle.

Si en particulier f est dans le domaine de T, le deuxiéme terme de droite de la
derniére égalité a la limite #(¢, 7, f), donc le premier terme a aussi une limite, et en
supposant en outre (¢, f) + 0, ce qui est toujours possible, on voit que 1/s (¢'*® — 1)
a une limite 7 4, A étant réel. En définitive, si ¢ est dans 4, et f dans le domaine de
T

n

15 Tn Ty

(@, Af) + (@, T, /) = ((M,(0) — P, f) -

Par la définition de I’adjoint d’un opérateur, ceci implique que 4 + 7, est une
extension autoadjointe de M, (o) — P, restreint a A,. Comme M (o) — P, est essen-
tiellement autoadjoint sur 4, ona 4 + 7, = M (o) — P

n n*
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Ainsi V& ., et ¢ Fn g Ml =Pa) ont des représentants unitaires d'une méme
lwa’%—s:fx;a"

Pour démontrer les autres conclusions du théoréme 3.1., supposons choisie pour
chaque ¢ une direction a, = a non paralléle a g, continue en ¢ et telle que a,,, = a,,
et soit #(b) la forme réelle linéaire en b définie par ¢ + b = o + 7(b) a.

En posant

| Z48))

c+bo = V
et
V(g) _ B'isPa eis(M

o+sa, o

a)_Pa)

on vérifie, comme dans le cas particulier a, = n, = n, que V{®, , définit un mouve-

ment qui satisfait aux hypotheéses du théoréme 3.1. Par I'unicité de U, ,, on en déduit
P g Mal=Pa) gont des représentants unitaires de Y
tion 3.1., en faisant s = 1, que I'application a - ¢ '« ~%a) induit pour chaque o de
2’ une représentation projective des translations.

Remarque 3.71. U, , a les propriétés de continuité et de différentiabilité énoncées

au no 1, si on ajoute aux hypothéses du théoréme 3.1., que A4, = A ne dépend pas de
M ylo)—Py)

T 0’

que e et par la proposi-

g+sa,o?

g, que ¢ Ma9=a) st continu de (0,a) et laisse invariant A et que M (o) 'l

@ est
(n,x\P i(n,x) (Mn(a)wPﬂ) ik

Vo'+x, 0') qj

continuen (¢,4). Eneffet,lesreprésentantsunitaires V. =

les propriétés D 2), 3) duno 1, car la limite forte, pour s - 0, de 1/s (V.
est

otxtsa,o

1(% x) —i(n,x) P

?:(%, 61,) n M( ) , " a‘+x,0'(p *

Cecl est aussi continu de (o, %), et la propriété b) du no 1 est évidente.

On peut aussi énoncer un théoréme d’existence et d’unicité pour des mouvements
qui possédent une constante d’énergie-impulsion et des générateurs satisfaisant aux
conditions D 1), 2), 3) du no 1. L’unicité est déja garantie par le théoréme 1.1. La
démonstration utilisera essentiellement la proposition 1.1.

s 1 . . P , . . . ‘ .
Théoréme 3.2. Soit a — ¢ @ une représentation unitaire des translations a. soient
M (o) des opérateurs symétriques dans H qui dépendent de a et o, définis sur un domaine
commun A, avec les propriélés:

a) le domaine de P, contient A et ¢’ transforme A en lui-méme,
b) M, (o) = (n, a) M (o) (n est une normale a o telle que n® = 1);

¢) M, (o) a une extension autoadjointe M (0), Ma(o') — P, est autoadjoint, ¢ Mal?)

A=A, (1d1=20) g — A ot ]’tha(U) ¢' (Mal?)=Fa) @ est continu de (o, a);

d) M, (c+b)=¢" 2 M,o) ¢ "0+ 0.0, D)E, on p,(o, b) = (n, a) g,(o, b) est une
fonction réelle.

Alors il existe un et un seul mouvement ¥ d’énergie-impulsion R : a - ¢*Fa et de
générateurs M (o) sur A au sens de D 1), 2), 3) du no 1, associés aus représentants
unitaires

v isP, eis(ﬁa(a) ~P,)

octsa, o

L’application §(a) ca > ¢ M) fyuduit pour chaque o de X une représentation
projective du groupe des translations a.
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Démonstration. Par I'hypothése c) et la proposition 1.1., les extensions auto-
adjointes M (o), M .(6) — P, sont uniques et b) entraine alors que

~

My(0) = (n, b) M) .

Par la propriété d), les opérateuts autoadjoinrs M . 0+ b) et e M (o) e oy
0.(c, b)E sont des extensions d’'un méme opérateur symétrique sur 4, et comme les

M (o+b iP, isM
al )ete b

. ; M . . . boa .
exponentielles ¢’ ¢ *Ma”) laissent A invariant, on en déduit encore parla

proposition 1.1. que

~

M, (o+08) =¢ *Mo)e '™ + 0,00, b) E .

Soit A, le domaine de ]VI',,(G), donc aussi de Ma(a) = (mn, a) MR(O’)Z onac’? A =
A 4y Alnsi M J0), A, et la représentation R:b - ¢ " satisfont aux hypotheéses du
théoréme 3.1., d’out I'existence d’'un mouvement Y de générateurs Ma(a) au sens
de L) (fort) sur A4,, de constante R, et la propriété indiquée de SN(o').

jsP_ is(M_(0)—P 3 s,

On peut prendre V., , = ¢ ae"* Ma”""a) comme représentantes unitairs de ‘Y
et ceux-ci transforment A en lui-méme. Mais W a aussi les générateurs symétriques
M (o) au sens de D 1), 2), 3) sur le domaine constant A. Ceci se vérifie comme a la fin

a
de la remarque 3.1. en considérant la limite forte de

1/s (V,

otxtsa, 0 V(H—x, o‘) 4

pour ¢ dans A. Enfin le théoréme 1.1. assure 1'unicité du mouvement ¥ du théoréme
s A
Remarque 3.2. Sil'on a une représentation unitaire R': (a, 4) > R, 4) du groupe
SL(2, C) inhomogene et les hypothéses 3.1. a), b), ¢), mais au lieu de 3.1. d) une iden-
tité
d') My, (Ao + b) = Ry, 4 M,(0) R, %) + v,(0, 4,b) E

ot Aa, Ao sont les transformés de a, o par A4 de SL(2, C), et v,(o, 4, b) est une fonction
réelle linéaire en a, et des sous-espaces denses A, de H tels que A4,,, = R, 44,
en prenant pour R la représentation a - ¢le= R, I)IIeS conclusions du théoréme
3.1. permettent d’établir immédiatement I'existence et l'unicité d'un mouvement
V., de générateurs M (o) qui posséde une constante R’ de type SL(2, C) inhomogeéne,
. et en particulier, & part la constante d’énergie-impulsion R:a - ¢fa— R, 1y, les
différentes constantes de moment d’impulsion équivalentes associées par R’ aux sous-
groupes conjugués a SL(2, C) dans SL(2, C) inhomogeéne.

De méme, sous les hypothéses 3.2. a), b), ¢), et d’) ci-dessus au lieu de 3.2. d), il
existe un mouvement unique de générateurs M (o) au sens de D 1), 2), 3) du no 1,
et les mémes constantes déterminées par la représentation R’.

Remarque 3.3. Soient R(o): a > R, (o) des représentations projectives données
pour chaque ¢ de 2, et N une représentation unitaire de SL(2, C), satisfaisant aux
relations qui définissent une constante covariante au no 2. La famille de 3-plans
o -+ a paralléles A ¢ étant fixée, soit s = ¢"T(%) un groupe unitaire & un paramétre qui
par passage au quotient U(H) - P(H) induit la représentation projective s > R, (o)
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(n normale & g, #2 = 1), et notons R:a > ¢ @ = ¢ma Tl S M .0) et ¢ e satisfont
aux conditions du théoréme 3.1. et si M (o) est covariante relativement a N:

My, (A0) = N, M,(0) N;* + u, (0, 4) E

ou p,(o, A) est réelle et linéaire en 4, en raisonnant comme dans la démonstration du
théoréme 3.1., on obtient l'existence et I'unicité d’un mouvement de moment N, de
constante R(o) covariante relativement & N et de générateurs M (o).

4. Variations d’un mouvement

Soit Y(*) un mouvement au sens des conditions a) b) du no 1. Si 4:0 > 4, est
une fonction a valeurs dans P(H), définie sur 'ensemble 2’ des 3-plans du genre es-
pace, U2, = A4, VY, A;! est aussi un mouvement. La fonction 4 sera dite variation,
et on dira que V(%) s’obtient en faisant varier Y1) de 4.

Proposition 4.7. a) V() et V() élant deux mouvements il existe une variation A
telle que V2, = A, VY, A;*. En particulier tout mouvement Uest de la formeV, , —
A, A

b) Supposons que WY, W aient des générateurs vespectifs L¥ (o), L (o) sur DV,
D@ au sens de (L) du no 3, associés & des représentants unitaives (locaux ou globaux)
Vﬁ}w o V&, o continus de (o,a) et que DP® = A, DV, A, élant un représentant
unitaire de A, .

Alors, 1l existe des représentants unitaives A, ., de A,.,, tels que si @ est dans

B 1/s (Ayisa Aot — E)g ait une limite faible, lovsque s - 0, égale a

L(LPo) — A, LP(0) A7) .

Pour démontrer 4.1. a), soit O un point de M,, et o étant donné soit g, le 3-plan
par O parallele & 0. En posant A4, = VZ, WY  on obtient Y2, = 4, VY, A, "
Pour 4.1. b), si V) s et V‘g) définissent les generateurs LY (o) et LP) (o) sur

o+4sa,o

D{P) respectivement D®, comme V@, | peuts’écrire 4, V¥, . A, en choisissant
convenablement les representants unitaires A, ,, 4, de A,..,, A, et que 4., €

alors continu en s par nos hypothése, I'identité, pour ¢ dans D

1/3 ( o'+$a, o E) i == 1/3 (Aa'+saA(r_1 - E) @ + /S Aa+m (Val—q)-sa,, - E) A;1 P
donne la conclusion 4.1. b).

Remarque 4.7. Si la différence L® (o) — 4, LM (o) A5* est essentiellement auto-
adjointe sur D@ = A4, D{ 4.1. b) montre que son extension autoadjointe est un
générateur au sens de (L) du mouvement 4 A,

Notons ancore que si LM (o) resp. L{P (o) de 4.1. b) sont des générateurs de W
resp. ¥ au sens de D 1), 2), 3) du no 1 sur le méme domaine constant A, que les
représentants unitaires de 4, transforment en lui-méme, on voit par la méme identité
que dans la démonstration de 4.1. b) que le mouvement A4, 4, a toujours des géné-
rateurs LP(0) — A, LP(0) A;* au sens de D 1), 2), 3) sur 4.

Energie-impulsion d’'un mouvement varié. Considérons deux mouvements Y, W sur
H. Soit 4, une variation telle que V., = A4, U, , A, et supposons que U
V.., possédent des représentants unitaires respectifs U_ , V, . et des generateurs

associés L (o), L,(0) sur A, et A, A, respectivement, A appartenant au rayon uni-
taire A4,.

T
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Par la proposition 4.1. b), on obtient une relation (pour 4, convenable)
Li(0) = Ay (o) + K,0)) A"
valable sur A, A, et ¢ A, K,(06) A;' @ est la limite faible, pour s > 0, de
s (A, A;' — E)g
avec ¢ dans A, 4. K (o)y, pour y dans A, est alors la limite faible de
1s (A7  Ayry— EYp = A7 Ayry o 1s (B — A1, Ay

otsa

otsa

Supposons l'opérateur K (o) essentiellement autoadjoint sur son domaine 4, et
notons [ (o) son extension autoadjointe K}(a). J (o) sera dit générateur a droite du
mouvement A; 4 ausensde (L)surAd,si 4, [ (o) A;* est un générateur de A4, A;*
sur A, au sens de (L) défini au no 3, ou, ce qui revient au méme par la derniere égalité
et la continuité de 4., ,, si — [, (o) est un générateur au sens de (L), que nous appel-
lerons aussi générateur a gauche, de A7 A, sur A,. On définit de méme un générateur
a droite au sens de D 1), 2), 3) sur un sous-espace 4. Aux théorémes et propositions
donnés jusqu’ici, correspondent évidemment des énoncés analogues lorsqu’on y rem-
place générateurs a gauche par générateurs a droite.

U et ] (o) étant donnés, soit R:a - ¢ Faune énergie-impulsion de Y.

La variation A4,, donc aussi VY, ,, est déterminée si [, (o) est tel que

T0?

T+t =" J0) et +,0,0) E,

(v4(o, ) réelle) et remplit les autres conditions qui par le théoréme 3.1. en font un
générateur 4 droite de 4,1 A4_ausens de (L). Soit ¢, un 3-plan qui parcourt les 3-plans
du genre espace par O dans M,. On aura, comme expression possible pour 4" 4

_ i o)+ T -1T
AO‘nl Ao'o‘f‘a = 61(]61(0) ﬂ) € ! a .

ota”

A= A
cation ¢ >e¢ induit une représentation projective ¢ - §,(¢) du groupe des
translations par le théoréme 3.1.

#o+a €5t une solution qui ne dépend que de la donnée initiale A4, , et I'appli-
F(Jo)+T)

R désignant la représentation projective induite par R:c —> el R'(0) celle qui
est induite par 'application

; 7
e Aaez(‘fﬂ(a)+ ¢) AL,

on vérifie immédiatement les relations 1), 2), 3) ci-aprés et la proposition 4.2.
Proposition 4.2. Les trois relations:

1) R.(0) = A, S.(0) A;?

2) ’40_1 Az = S,(0) Rb_l

3) Sy (0+¢) =R.S0) R,
entrainent

R’ (o + b) = R'(0) = R'(0)
el v:r+c,o-+c = ’41—1-0 uT—I—C, o-+c o_'—ic = R;(UO) hwq—,cr R;(GO)—l =

R'(gy) = R’ (04 + b) est donc une constante de ¥ associée au groupe des trans-
lations si R'(g,) ne dépend pas de o, ce qui n’est pas nécessairement le cas.
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Supposons maintenant que v,(o, b) = 0 et que

S(oy) : % — g U +13)

soit une représentation unitaire des translations (qui induise §(o,)). On a alors, en
posant R,(0) = 4, S,(a) A5*:

R,(0) = ¢T%) = 4, S,(0) A;* = R, (0,)
et
R'(o) induit R'(0) .

Prenons A4, = E. Si U a une constante de type SL(2, C) inhomogéne qui déter-

mine R:¢c > ¢ ¢ par restriction aux translations et le moment M : 4> M, de U,
A étant mis pour (0, 4) et laissant le point O fixe, si J,(o) posséde encore la propriété
de covariance relativement a M :

]Aa(Ag) = MA ]a(g) M.‘; '

alors R'(o) = R'(0,) est une constante d’énergie-impulsion de VY covariante relative-
ment a M (n°2), et ¥ a méme moment d’impulsion M que U.

Comme [ (0y) = (», ) J,(o,) par définition (#» = normale a ¢, #% = 1), les compo-
santes 17, (o,) suivant des directions a telles que (#, a) = 0, a®2 = — 1, c’est-A-dire les
composantes de 'impulsion, sont égales aux composantes de I'impulsion 7, de U,
tandis que I'énergie T,(a,) est égale & T, + J,(0,)-

Plus généralement, si »,(o, b) n’est pas nulle et si

Ju(do) = My J (o) M; ' + 0,(0, 4) E ,

0.(c, A) réelle, les relations 1), 2), 3), de la proposition 4.2. et les conditions initiales
A, = E entrainent que le mouvement varié ¥ a le méme moment d’impulsion M que
U et une constante R'(p) associée aux translations, covariante (no 2) relativement 4 la
représentation M.

Le théoréme 4.1.) résume ce qui a été démontré jusqu’ici dans ce no 4.

Théoréme 4.1. Soient R: a - ¢ *une représentation unitaire des translations, [ (o)
une famille d’opérateurs autoadjoints satisfaisant aux conditions qui en font (par le
théoreme 3.1.) des générateurs a droite d’un mouwvement, au sens de (L) sur A

a) le domaine de T, contient A, et eiT"AU =l
b) la restriction de [ (o) a A, est essentiellement autoadjointe, J,(0) = (n, a) J,(0);
c) J.o) + T, est autoadjoint, sa restriction a A, est essentiellement autoadjointe,

i(Jy0)+T

é a) est continu de (o, a);

d) J 0+ b) =T J,(0) e 0+ 0, (0, b), v (0, b) réelle.

Sotent A, A;' le mowvement (unique par le théoréme 3.1.) de génératewrs @ droite
J.(0) aun sens de (L) et de constante R associée aux translations, et U un mouvement de
méme constante R.

Alors si U, , = A, U, , As" et si $(o): a —> §,(0) est la représentation projective
induite par a —> ¢ UatTa) 1, représentation R (0): a - R,(0) = A, S,(0) A7 a les
proprieteés:

R, (G + b) - R’(G) 4 191+c, ote R;(G) 197',0’ R;(G)_l 4

29
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R'(0) est une constante covariante relativement & un moment M (no 2) du mowvement
varie B, , = A, U, . A>* st U a une constante de type SL(2, C) inhomogéne qui définit
R et un moment d’ impulsion M de U par restriction aux translations resp. a un sous-
groupe SL(2, C), et si pour A dans ce sous-groupe, J 4 (A,) = M, [ (0) M7 + o,(0, 4),
(040, A) réelle), sous les conditions initiales A, = E, o, passant par un point O fixe
par les rotations A.

Remarque 4.2. a) Si U posséde les générateurs L (o) au sens de L) sur A et sila
restriction de L (o) + J,(06) & A est essentiellement autoadjointe, I'adjoint de

b A (L) + Ji(e) A1

est un générateur de WY au sens de L) sur 4, 41,.

b) Ajoutons qu’en supposant 4, = A et en imposant & T, [, (o), T, + J,(o) des
conditions semblables a a), b), ¢), d) du théoréme 3.2. (pour P,, M (o), P, — M (o)
respectivement) on obtient une variante du théoréme 4.1. qui s’énonce de maniére
évidente: les opérateurs symétriques [, (o) sont alors des générateurs a droite de
A-1 A, ausens de D 1), 2), 3) duno 1.

¢) Lorsqu’on ne suppose pas l'existence de générateurs pour U et A4;1 A,, mais
seulement l'existence d’une constante commune R associée aux translations, on peut
toujours poser les relations 1), 2), 3) de la proposition 4.2., dont on déduit un mouve-
ment varié 4, U,,, A7'= TV, , et des représentations projectives R'(c) : a - R,(0)
telles que R (0'+ 0) = R'(0) ¢t By, g = RA0) U, RL) ™

Cela donne en particulier la proposition 4.3.

Proposition 4.3. Supposons que U ait une constante de type SL(2, C) inhomogéne
qui définit la constante d’énergie-impulsion R et le moment M:A - M 4 de U (A dé-
signant les rotations qui laissent un powmt O fixe).

Alors les relations 1), 2), 3) de la proposition 4.2. jointes a la relation

Sap(do) = M, Sy(o) M3",

et les conditions initiales A, = J pour tout o, de X par O, entrainent que le mouvement
varié V. .= A, WU, , A5 posséde une constante

R'(0):a— R)(0) = A, S,(0) A;"

covariante relativement a M.

PARTIE 1II

5. Produit tensoriel de mouvements

H®Y, H® étant deux espaces d’Hilbert, H = HY & H® désignera 1'espace d’Hil-
bert défini par 'espace préhilbertien HY @ H® muni de la forme hermitienne (x, f)
telle que

f@gh®q) =m0 (102,

(f, W)W, (g, 71)® étant les formes hermitiennes de HY et H® respectivement.
Soient A4, B des opérateurs bornés sur H resp. H® et A @ Bl'extension fermée
de A ® BaH.
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Si UM, UP sont des mouvements sur HY et H® respectivement, UL, U®), des
représentants unitaires de ceux-ci, les opérateurs U, , = UlY, ® U%, sur H sont des
représentants unitaires d’'un mouvement U. U sera dit produit tensoriel de UV et
U et seranoté Y = UM ® UP ot U,,, = U, ® UZ,. (Le produit tensoriel de plus
de deux mouvements se définit de maniére évidente).

Généralement, le produit 4 ® B de deux éléments 4 de P(HY), B de D(H®)
sera par définition I'élément de P(HM & H®)) de représentant unitaire 4 ® B, 4, B
appartenant aux rayons unitaires 4, B respectivement.

Lorsque UM posséde la constante RY : a - RY, U® la constante R® : a — R,
U= UM & U peut s’écrire par la proposition 3.1.

Usiae = (RY ® RY) (S(0) © §7(0)) = R, S,(0)

R—RO® R®:a—»RY G RY,
S(o) = $H ® $2: a - §P(0) & $2(0)

sont des représentations projectives, et R:a - R, est une constante de U associée
au groupe des translations.
Plus généralement, une constante de Y et une constante de méme type de UZ
déterminent une constante de UV @ U® qu’on appellera leur produit tensoriel.
Si UM et U ont les générateurs respectifs MM (o), M P(o) au sens de (L), sur 4D,
A®, posons
MO3)(g) = M (o) @ E® + E® @ MP(o),

EM) et E@ désignant les opérateurs identités de HV, H® respectivement ;

M}2)(0) est considéré comme opérateur symétrique sur A% ® AP). Soient FM,
F® les projecteurs spectraux (qui dépendent de a et ¢) des opérateurs autoadjoints
MP(0) resp. M (o). Les opérateurs autoadjoints LM (¢), L2 (o) dans H = HY @ H®
dont les projecteurs spectraux sont F{! @ E® resp. EY & F2), sont des extensions de
MMP(o) ® E® resp. EM @ M®(0), et I'opérateur symétrique LP (o) + LP (o) est une
extension de M{:?(g). Comme les projecteurs F{1) @ E® commutent avec les projec-
teurs EM @ F@, LMN(o) et L (o) sont fonctions d’un méme opérateur autoadjoint.
LM (o) + LP(o) possede alors une extension autoadjointe L (o) (7, p. 342) qui est un
générateur de YUY @ U sur 4, = AP ® AP au sens de (L) si sa restriction M2 (o)
a A4, est essentiellement autoadjointe.

D’autre part, si MP (o), MP(0) sont des générateurs de UY, U? ausens de D 1),
2), 3) sur AW, A® respectivement, UP & U® a les générateurs M2 (g) dans le méme
sens sur 4 =AM @ A® et c’est le seul mouvement qui posséde ces générateurs sur A
par le théoréme d’unicité 1.1.

SiHY = H®, YD = U, le produit U, ® UY, du représentant unitaire UY), par
lui-méme transforme en eux-mémes les deux sous-espaces HY @, HV et HO &, H®
formés respectivement des éléments symétriques et antisymétriques de l'espace
H® @ H®, d’ou I'existence de deux mouvements notés U® &, UD et UV &, UD sur
les sous-espaces complétés HO @, H' et H® @, HY de H = H® @ H®. Comme pour
le produit tensoriel de deux mouvements, la donnée de générateurs de Y@ détermine
sous certaines conditions des générateurs de U é}s UD ou YD Ci)a UD. Cest toujours
le cas si YW a des générateurs au sens de D 1), 2), 3) du no 1.
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On définit de maniére évidente les produits symétriques R® @, R® et antisymé-
trique R® ®, R® d’une constante R™ par elle-méme. Ce sont des constantes de
UY @, UD resp. UL @, UW.

Soit U un produit de plusieurs mouvements qui peut étre symétrique ou anti-
symétrique en des facteurs égaux, et formons de méme les produits de leurs constantes
de type donné.

Soit A4, une variation d’un tel produit U: on appellera générateur d’interaction un
générateur a droite de A4, A4..

Construction de générateurs d’interaction

Supposons le mouvement unitaire U, ¢ = 1, 2, muni de la constante F: (a, 4)
— F{) 4, de type SL(2, C) inhomogéne. Soient R" une énergie-impulsion et M un
moment induits par F®, c’est-a-dire

R?: (a,1) — Fgfj,l) = Rif), M®: (0, A) — Fﬁ,{m = ij’,
et
F=FO® F® R=ROK R® M = MDD M®

les constantes correspondantes de U = U®W & U2, Soient encore O le point de M,
fixe par les rotations (0, 4), et g, les 3-plans de 2 passant par O.

Nous allons montrer qu’il existe U, des variations unitaires A, (avec les conditions
wmitiales A, = E) de U et des générateurs d’interaction corvespondants [, (o), tels que

VT,G" = AT U‘T,(T AO'_l

ait une constante d’énergie-impulsion R'(c) covariante velativement a un moment M de
U, avec les propriéiés:

1) R, (0) — donc aussi [ ,(0) —ne commute pas avec R, (n = n, = normale d o, n* = 1),
2) il w'existe pas de représentation unitaive de SL(2, C) inhomogéne qui induise la
classe des représentations R'(o) par vestriction aux translations.

Supposons d’abord les représentations F®, R®, M® données. Pour U® nous pre-
nons le mouvement défini par
' ;o (8
G R = T
4 =R’ =e¢

ctsn, o

qui a les générateurs au sens de (L)
M (0) = (n, a) T})

sur le domaine A = A%}, =AY de T, et les constantes F®, R®, M®, Le produit
U=U® U est de la forme
isT

n

U,

o+sn, o =

Lo) = (n,a) T

n

au sens de (L) sur le domaine A, =4, ,=4,de T,.
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Fixons maintenant un 3-plan 7, par 0, de normale #%,, #> = 1. Pour construire des
opérateurs 4 et J (o) d'un type assez général, satisfaisant a 1) et 2), on peut utiliser
un opérateur autoadjoint et positif B? tel que

a) le domaine de B° contient le domaine 4, de T, ;

b) B® + T, est autoadjoint sur 4, ;

c) R, B*R; 1= Bsi (#y,a) =0, M, B M;'= B®si A ny=n,

Ces relations entrainent 'existence d’une fonction ¢ - B(o) telle que

B(r,) = B, M, B(o) M;* = B(do), B (0 + b) = R, B(o) R;'*,
donc aussi

B(de) + T, =M, (Blo)+ T, )M ;' Blo+0b+ 1T, =R, (Blo) +T,) R,

Si I'on pose [, (o) = (n, a) B(s), avec n = n,, on vérifie directement que c’est un
générateur (fort) a droite, au sens de (L) sur le domaine A, = 4, de T, d'un mouve-
ment (qui est unique par le théoréme 3.1. et qui n’est pas défini comme U par un
groupe unitaire s - ¢%7)

1, ; T AR E T
A;_]_A(H-a:gz(n a)([ﬂ(aH- n) ¢ t(n, a)

n
et que pour Ao‘o = E’ Va‘-t—a, o Ao‘+a Uu‘+a, o Aa—l a l’énergie—impulsion R,(G) = R'(UO)
(0 = 0y + ¢) covariante relativement a M, définie par

R;(O‘) _ R;(O-O) _ giTa(aﬂ) _ e‘l/ (n')ﬂ) (Jﬂ(0°)+T1;) 61: Ta*(n,a)n .

Si donc R®, M® et B9 sont donnés, il suffira de vérifier que R’(o) satisfait aux
conditions 1), 2), ce que nous ferons, I'énergie T, étant positive, en utilisant essentielle-
ment le fait que B? est choisi positif et de bonne inférieure non nulle. L’énergie

T\(00) = Jloo) + T,
est positive si T, 'est, puisque /,(o,) = B(0,) est unitairement semblable a B°.

RO M® sont donnés de la maniére suivante.

Soient o, o, les deux hypersurfaces 2 = m3, $° > 0, g% = m3, m,, My * 0,etd T,
d o, les mesures invariantes correspondantes, H®, H® les espaces d’Hilbert associés
a ces mesures. H® s’identifie a 'espace des fonctions de carré sommable f(p) =
F(pY, p2, p3) pour la mesure 1/p° d3p, de méme pour H®, et HV @ H® = H est associé
a la mesure d o, , = do,d g, RY et M® sont définis par

RO() () =€ {(p), MP(f) (p) = {4 ),

de méme pour R®, M@, d’ou en particulier

Ry (p,g) = (RD & R (/) (b, q) = &2 f(p, q) = & 721

T, étant comme jusqu’ici le générateur de Stone de s = R, par la derniere rela-
tion T, est ainsi 'opérateur de multiplication par (p + ¢) a.
T, étant fixé comme précédemment et de normale #,, n% = 1, soient n,, n,, 4 trois

vecteurs orthonormés dans 7, tels que 79 = T = 0,1, 2, 3, soit 'opérateur de

sa’

nj’ ]
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multiplication par $/ + ¢/. Nous désignons par 4 ou u les retations (dans SU(2)) de
M, qui laissent O et n, fixes, et par a le vecteur (a', a2, %) si a = (a°, a?, a2, a8).

Soit a: (p, g) - (r, 5) une transformation inversible (qui s’identifie a une transfor-
mation inversible de o, X a,) telle que 7 + st = p' + ¢, 2 =1, 2, 3, «(0, 0) * (0, 0)
et que le déterminant fonctionnel

0 (r, )
op.q)

son inverse, et les fonctions 70/p°, 079, s°/¢°, ¢°/s°, soient bornés et positifs. Ils s’ensuit
que 'opérateur

A() : f(p, ) = [(@)(2. 9))

est borné sur H ainsi que son inverse 4(x)~!: on a en effet

| A FllE<C| 7]?

ou C est la borne supérieure de

o(p. q)
0= 6(r,5) = 5,57 (#)a) ;

I'adjoint de A («) est
A(o)* = 0 A)1: f(u, v) — O(u, v) {a(u, v)),

et comme 01 et A(x)* sont bornés, Ag) I'est aussi. De telles transformations o
existent, par exemple

yi = pi 4 1/2 6—(pi)2 , 8t = qi _ 1/26—(1)")2’ i=1,2,3.
A(x) et A(e)* commutent avec ¢ e 7o + @ = T,, ce qui provient du fait que

ri4si=Ti=pl+qg" pour 1=1,273,

T

mais ne commutent pas avec ¢’
Soit
A°=fMAA(oc) M;1da
ol d4 est la mesure invariante sur SU(2). A° est borné et commute avec les opérateurs
M,etelasi ATy = Ty = 7, + a, il en est donc de méme de l'opérateur positif 4%* A49.
Mais A%* A% ne commute pas avec 79, ce que nous allons vérifier.
Si V est un voisinage compact de (0, 0) et ¢ la fonction caractéristique d'un en-

semble compact qui contient la réunion des ensembles Aa A  pat g~ V, ol 4, u
parcourent SU(2), les restrictions & 7 des fonctions (éléments de H)

(T0A™ A%) (p,q) et (A" A° T) (b, q)
sont égales respectivement a

(#° + ¢°) [ O(up, pg) dAdu et [ O(up, pg) & Ao A= pat p= (p, q)) dA du
avec

go(u, v) = u® + 2%, u(p, q) = (b, uq) ,

et sont continues sur V.
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Ces deux fonctions sont des éléments différents dans H si elles différent dans V,
ou encore, par la continuité de leur restriction & V, si elles différent en (0, 0). Or il
existe 4, u tels que

Ao Ao tpt(0,0) =2adtuat(0,0) * (0,0)
ou
Aot (0,0) + «1(0,0),

puisque a~1(0, 0) = (0, 0), ce qui a pour conséquence

(my + my) [60(0,0) didu < [0(0,0)g° (Aai™ pat (0,0) dh dp
et
(TO A% A0 ) (0, 0) < (A% A° T?g) (0, 0)

en tenant compte du fait que g°(p, ¢) = p° + ¢° a un minimum m, + m, en (0, 0).
Donc 4% A° ne commute pas avec 7°.

L’opérateur B® = A% A0 satisfait aux conditions a), b), c). Mais il en existe d’au-
tres, positifs, bornés ou non, de borne inférieure non nulle, vérifiant a), b), c) par
exemple A% A® + ¢ E et A% A%+ ¢ T9 avec ¢ > 0.

Soit donc B un opérateur positif, borné ou non, de borne inférieure non nulle,
vérifiant a), b), c), et soit [, (o) = (n, a) B(o).

Comme R, = ¢*T" et

R.;no (TO) =¢€

ne commutent pas, il reste seulement a voir que R’(¢), ou la représentation semblable

is (Tt +Tp,) eis (BOLT)

R'(tg):a— R;(T“) _ i me,a)(B'+T°) jt Ta—(ma)n _ F T, (%)

n’est pas la restriction d’une représentation de SL(2, C) inhomogéne au sous-groupe
des translations.

Soit X: (a, A) > X, 4 une représentation de SL(2, C) inhomogene telle que
X(a, 1) = R,(z,). Si D est un domaine de Garding pour la représentation X, on a

X@aD=D,T,DCD.
Soit T7=T,;,1=0,1, 2, 3, c’est-a-dire
TW=BV4- T8 T =T 4=1,2,8.
L’opérateur Xy 4 7'° X5}, considéré sur D, est de la forme
(@, T") = ay T° — (a,7T)

ol
ao > 1, aﬁ —a?=1,a= (ay, ay, ay, a3) = A(1,0,0,0),

—@D=a T ' +ay T>+ a; T3

Siy (> my + m,) est la borne inférieure de I'opérateur positif B + 70 = 770 sur
D, c’est aussi celle de X, 4) 770 Xg'y) égala (a, T') = ay B® + (a, T') sur D;1'opérateur
(@, T)=ayT°+ a, T* + a, T2 + a, T3 est une restriction de T, et son domaine con-
tient D par la derniére identité; la borne inférieure de (@, T) considéré comme opéra-
teur symétrique positif sur D est > m, + m,; en effet m, + m, est celle de T, sur son
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domaine, puisque cet opérateur est unitairement semblable & 7°. Si donc 6 > 0 est
la borne inférieure de B° sur D, on aura

Y == ay 0 + my + my,

ce qui est impossible car @, > 1 peut étre arbitrairement grand, donc X, ;) ne peut
pas étre égal & R, (7).

Le raisonnement précédent démontre évidemment la proposition suivante:

Proposition 5.7. Soit a — e'®!" g’ giasl® giaT® yye yeprésentation unitaive, qui
est ume vestriction au sous-groupe des tramslations a de M, d'une veprésentation de
SL(2, C) inhomogéne. On suppose T° positif. St BO est un opérateur positif, de borne
inférieure non nulle, tel que T° + B soit autoadjoint et commute avec ¢**'T pour | =
1, 2, 3, alors la représentation a — @I’ +8) giaI pial® gial® yo poyt pas élre une
vestriction d’'une représentation de SL(2, C) inhomogéne au sous-groupe des translations.

S1my = m,, on peut montrer d’'une maniére analogue qu’il existe une variation 4,
du produit U® @, UM ou UM @, UD (ou d’un produit plus général symétrique ou anti-
symétrique en des facteurs égaux) et un générateur d’interaction tels que I'énergie-
impulsion R’(¢) du mouvement varié satisfasse aux conditions 1) 2).

Pour m; = m,, 'espace H® que nous avons considéré est 'espace des états a une
particule d’'un champ scalaire libre, H® @,  H® celui des états & deux particules.
Généralement, si N > 2 on construit facilement, sur les espaces H®) a4 N particules
d’un champlibre de spin quelconque ([11], p. 103), une variation 4% des mouvementsde
la forme U, , = R{} et un générateur d’interaction correspondant, tels que I'éner-
gie-impulsion du mouvement varié satisfasse a 1), 2). Si on a un nombre fini de telles
variations A", en passant 4 la somme hilbertienne H des H™Y), on obtient une varia-
tion 4, du mouvement unitaire U, ,, .= R,,, R étant 'énergie -impulsion a > F, ;,
du champ libre, et une énergie-impulsion R’(¢) du mouvement varié qui satisfait a
1), 2) et qui est covariante relativement au moment M : 4 -> M, = H, 4,du méme
champ libre.

Si on a deux champs libres (%), y,(x) sur la somme hilbertienne H,; des sous-
espaces H{™), respectivement la somme hilbertienne H, de sous-espaces F"), et les
mouvements correspondants

U =K i=1,2

i,otsn,o i,sn?

on peut procéder de maniére analogue sur des sous-espaces H™:" (au lieu des H™)
précédents) de somme H, avec HM:N = HM @ HM (ou HM @, HM, ou HM &,
H®™ siy, (%), ps(x) sont identiques), H = H; ® H, (ou H, ®, H,, ou H; ®, H,), pour
construire une variation 4, de U = U; ® U, (ou U; ®, U;, ou U; ®, U,) telle que
I'énergie-impulsion R’(¢) du mouvement varié ait encore les mémes propriétés.

Nous montrerons au paragraphe suivant que la donnée de la variation 4 , implique
assez généralement une certaine transformation des distributions y,(x) ® E,, E, ®
Pa(x).

6. Application I(4,) et N-distributions

A chaque ¢ dans I'ensemble 2’ faisons correspondre un ensemble B, d’opérateurs
de T'espace hilbertien H. Soit B la réunion des B, et soit U un mouvement. Nous
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supposons que B, = U, . B, U, ,. Si F est dans B,, nous notons F,_ I'opérateur
WU,,, F U, ,dans B_. En particulier F, = F. L’ensemble des opérateurs F sera noté
(F):ona (F) = (F,) = (F,); c’est la classe de F dans B pour la relation d’équivalence
X, = U, X, U, ,définie par Y entre éléments X, X, de B (X, dans B,, X, dans
B.,t=0+c).

Nous supposerons toujours, lorsque des classes (F) sont données dans B, qu'il
n'existe qu'un mouvement U qui les définit; ce sera le cas si les B, sont unitairement
irréductibles, c’est-a-dire: si W est unitaire et W X, W~ = X pour tout X de B,
alors W est scalaire.

Soit alors M : T - Wy une représentation projective d'un groupe G qui opere
(éventuellement d’une maniére triviale) sur X' en conservant le parallélisme des 3-
plans. Si

BTG' = 7/lT BU”EI

et si en outre les classes (F) définies par U sont permutées entre elles par les applica-
tions .

(F) =Ny (F) N7

alors N est une constante de type G de U.
En effet, soient F = Ny F, N7! les éléments de la classe Uy (F) Nr'; ona

’

uTT, To FTO‘ uTO',TT = FTT
et

‘nT uT,O’ ‘n;1 ‘F;‘a 7/lT u'r,a' 711—"1 = F,Tr

pour tout 7; ainsi les deux mouvements Uy, r, et Hy U, Ny définissent les mémes
classes dans B pour chaque T et sont donc identiques par nos hypothéses, et N est
une constante de type G de U.

Inversement, si } est une constante de type G de U telle que By, = Ny B, N7t
G opére sur les classes (F) de U par les applications (F) = Ny (F) Uz

Soit encore F(o) = F (o + ¢) une constante covariante relativement a un moment
M:A->M,de W SiM,B, M;'= B, et Fr(0) B, Fr(o)™* = Br,, et si (X) est
une classe pour U, les opérateurs

Xp. =370 X, Fr (07, (t=0+¢)

sont aussi les éléments d’une classe.

A, étant une variation de U, les classes (Y) définies par 4, U, , A; ' dans 'en-
semble C réunion des ensembles C_ = A, B, A; " sont en correspondance biunivoque
avec les classes (X) de U dans B, par 'application

[(;40') . XO' — YO' = }40' XU' }4;1

qui sera dite application d’interaction.

N-distributions. Nous désignons par §, ’espace de ScHWARTZ [9] (Vol. II) des fonc-
tions 4 décroissance rapide sur 1'élément ¢ de X' et par §(M,) 'espace analogue sur
M,. Sif, estdans §,. =0+ sn (n=mn,, n*=1), la fonction fr = fo 4 sn sera par
définition la fonction de §. telle que f, (x + sn) = f,(x).
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Pour chaque ¢ nous considérons une famille E de distributions
@?: f9 > @_(f,), (j dans 'ensemble d’indices J) sur o, notées aussi ¢ (x), & valeurs
opérateurs de domaine commun D et satisfaisant aux conditions suivantes:

1)  ¢¥(f,) D est dans D et |
fo = (@ (£,) 1y, ho)

est tempérée pour %, /i, dans D;
2) il existe un mouvement U, et un seul, tel que U, . D = D (U, , représentant
unitaire de U, ) et

Us,o 9P (fe) Us,» = ¢2(F)

(les opérateurs X = ¢)(f,) forment donc des classes pour U dans l'ensemble B de
ces opérateurs);

- 3a) pour chaque direction » = n_, n? = 1, et chaque 7 dans [, il existe une distri-
bution g > yY)(n, g) D sur M,, notée aussi p¥(n, x), & valeurs opérateurs de domaine
D, telle que Y (n, g) D soit dans D et

g = (W9(n, g) hy, hy)

soit tempérée pour 4,, h, dans D, et il existe un sous-espace §(#) dense dans §(M,) tel
que pour v dans §(x), & dans D et tout 7, la fonction @f).,, (y/o + su) & de s soit inté-
grable et

W, y) h= [ @D, ., (y|o+sn)hds;

((y | o+ sn) signifie la restriction de yao + sn) ;

b) pI(n, x) et §(n) déterminent univoquement ¢, (x) pour tout #, par les égali-

tés de 3a) (autrement dit, si ¢’/ (x) satisfait 1, 2, 3a) pour les mémes D, p)(n, x) et
§(n), alors ¢’ (%) = ¢}, (%))

L’intégrale de 3a) ne change évidemment pas si on remplace ¢ par ¢ + c.

Comme §(n) est dense dans $(M,), g > @ (n, g) &y, hy) est déterminée par les
valeurs qu’elle prend sur $(n). :

Les conditions 2) et 3) ont pour conséquence que si §(n) est invariant par les
translations g(x) > g (x + a), si R:a - R, est une représentation unitaire telle que
R,D =D et 99 (n,x + a) = R, v (n, x) R;}, alors on a aussi ¢¥), (x +a) = R,
PP(x) R;7' d’ou le fait que U est induit par un mouvement unitaire de la forme
Usismoe = R,,. De méme on obtiendrait d’autres constantes de U (de moment M,
d’énergie-impulsion covariante relativement a M, ou de type charge) en utilisant
d’autres propriétés d’invariance ou de covariance de la famille des distributions
pY)(n, x) et des §(n). Inversément R,D = Detgll , (x + a) = R, ¢!¥)(x) R; ' entrainent
YO (n, 5+ a) = R, p(n, 2) R;.

Définissons maintenant une N-distribution.

Définition 6.7. Soit N un ensemble sur lequel SL(2, C) opére et M une représen-
tation unitaire de SL(2, C). A chaque élément « de N, on fait correspondre une
représentation projective

R(x): a — R,(x)
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des translations de M,, et un ensemble fini de distributions g ¢, («, g) sur M,,

1=1,2, ... m, notées aussi ¢,(«, x), & valeurs opérateurs de domaine D, telles que
g > (di(e, 8) 4y, g,) soit tempérée pour k,, hy, dans D. On suppose

Ny - MAD:D,Ra(oc)D=D,¢-(oc,g)D est dans D,

N,) Ryo(do) = M, R, (0) M1, b;(Aa, Ax) 25 ) M,y (x, %) Mg?

¢i (d, X+ d) o= Ra (OC) qbz' (O(, x) Ra (a)“l ’

ol A > (S;,(4)) est une représentation de degré m de SL(2, C).

Dans ces conditions, nous appelons 1'ensemble fini ¢ de ces distributions ¢;(«, x)
une N-distribution; M sera dit un moment d’ impulsion de ¢, 'application R : o« > R(a)
sera une constante de ¢ covariante relativement & M, ou aussi I'énergie-impulsion de
¢ si R(x) provient d’une représentation unitaire R(o) des translations.

SiMy = F, 4, Ax = o pour tout 4 et tout o, R () = R, = F, 1), 00 F: (a, 4) -
F (4, 4) st une représentation de SL(2, C) inhomogeéne, et ¢;(x, ) = ¢;(x), les relations
N;), N,) sont de celles qu'on impose 4 un champ [11, chap. 3]. Généralement, on
pourra ajouter a N,) et N,) des conditions d’irréductibilité de I’ensemble des opéra-
teurs ¢;(«, g) (pour chaque o), analogues A celles d'un champ. (Voir par exemple [11]).

N sera dorénavant ’ensemble des directions %, #2 = 1. Soit ¢"¥)(n, x) un systeme
de N-distributions (indexées par & dans K). On suppose que celles-ci ont une énergie-
impulsion commune R(#), covariante relativement & un méme moment M, et qu’il
existe des g{)(x) qui satisfont aux conditions 1) & 3) plus haut en prenant la famille
des ¢(n, x) (i =1 ... my, k dans K) pour la famille des (%, x), et pour §(x) des
sous-espaces de §(M,) invariants par les translations et permutés entre eux par les
applications g(x) > g(4-x) (§(4 ») comprenant les fonctions g(4-! x) si g(x) est dans
S(n)). U est alors induit comme on sait par le mouvement unitaire U, , = R (#).
Cela étant, on appellera les ¢, (n, x) des N-champs si en outre les @i’ (x) sont telles que
Nj) tous les commutateurs [ tp(”( 1), ®¥(g,)]_ — ou bien tous les anticommutateurs
[99(,), 9(&,)); — sont nuls si £,(x) g,(x) = 0 pour » dans a.

A, étant une variation unitaire de U telle que 4,D = D (et A, = E), par 'appli-
cation d’interaction correspondante '

I(A): 2 () = A, 6P (1) A7 = @, (f,)

on obtient de nouvelles distributions g,(x) sur o qui satisfont a 1), 2) pour les mémes
Sm)et A, U, , A;' aulieu de U, mais il n’existe pas nécessairement de y'?(n, )
correspondantes telles que 3a), 3b) soient aussi vérifiées (en prenant les ¢'?)(x) pour
les ¢ (x)). Cependant, en partant d’un champ y(x) de spin 1/2, auquel cas D = H,
nous allons montrer qu’il existe une application I(4,), un N-champ y'(n, x) de méme
moment M, et d’énergie-impulsion R’(n), covariante relativement a M, possédant les
mémes propriétés 1), 2) que R'(6) = R’ (o + ¢) du no 5:

1') R,(n) ne commute pas avec R,

2') R'(n):a - R,(n) n’est pas une restriction au sous-groupe des translations
d’une représentation de SL(2, C) inhomogéne.

La propriété 2') montre en particulier que le N-champ ’(n, ) n’a pas I'énergie-
impulsion d’un champ local de Wightman.
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Une construction analogue serait possible en partant de deux (ou plus) champs
libres de spin demi-entier y,(x), y4(x) sur H,, H, respectivement; plus précisément,
la famille des distributions @ (%, x) = ! (x) serait formée des distributions

P1,q (%) ® E,, Ey ® Yo, o (%)

a valeurs opérateurs sur H = H; & H, (éventuellement H, &, H, si ;(x), 1,(¥) sont
identiques).

Sil'on partait de champs libres tels que D + H, une construction d’une applica-
tion I(A4,), des N-champs correspondants et de R’(n) telle que 1) et 2") soient vraies,
est possible mais plus compliquée.

Remarque 6.7. Comme la construction de 4, et de R'(n) sera semblable a celle du
no 5, ou on écrivait R'(¢) = R’ (¢ + ¢) au lieu de R’(n), on peut remarquer ici déja
qu’on aura

R;(n) _ ei T (o) _ ei(”,ﬂ) (Tn(oo) +Tn) 61. Ty (n, a)n, (74, ey, = na-)

si R, = ¢ est I'énergie-impulsion de y(x) et /(o) un générateur & droite de A;* 4,.
Pour (n, a) = 0 et An = »n on aura aussi

Rmn =R, M{R,M;'=R

a

d’ol, une représentation (a, 4) - R, M 4 de SU(2) inhomogéne. Désignant par ¢, (%),
@,(x) les distributions déterminées sur chaque ¢ de normale # sous les conditions 1),
2), 3) de ce no 6 par y(x) et y'(n, x) respectivement, on voit que @,(x) et ,(x) seront
toutes deux invariantes par cette représentation de SU(2) inhomogene:

@o (Ax +-a) = S(4) M4 R, ¢,(x) R, My?
o (Ax + a) = S(4) M, R, @ (x) R M}

pour (n,a) =0, An=mn, A > S(4) étant une représentation spinorielle de degré
quatre de SL(2, C), restreinte ic1 & un sous-groupe SU(2) de SL(2, C).

Par les dernieres égalités, si y'(n, x) était indépendant de la direction # et repré-
sentait un champ auquel serait applicable un théoréme de Haag (11, théoréme 4.14,
p. 162), 4, serait constante et I(A4,) triviale. Il en est tout autrement si 'on demande
seulement que le résultat d'une application d’interaction, comme on la définit ici,
soit un N-champ.

Construction de y'(n, x) et de I(4,).

Soit g, la surface p? = (p%)2 — (p1)2 — (p?)% — (p%)2 = M2, p° > 0, et do,, sa mesure
invariante. On note p le vecteur a trois composantes (!, p2, $3).

Nous définissons d’abord le champ y(x) et les distributions correspondantes g,(x).
Pour simplifier, nous choissisons un champ y(x) particulier, mais on raisonnerait de
maniére analogue dans un cas plus général.

Soit H I'espace d'Hilbert des paires de fonctions g(p) = (g4(¢)), # = 1, 2, muni de
la forme hermitienne

(g h) = [ do, h(p) pIM g(p)
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avec (cf. [11], p. 23)
i‘:ZM‘,r" — @), = @), = (0D, = (Y.

Nous noterons g(8, $) pour 85(p).
On a une représentation F de SL(2, C) inhomogéne sur H donnée par

(F (4,4)8) () = &' A g(4,7) .

Pour définir ces distributions, nous utilisons des opérateurs bornés #,,, m =1, 2...,
sur un autre espace d’Hilbert H, formant avec les adjointes 7, une représentation

irréductible des relations d’anticommutation, pour laquelle existent un «nombre» et
un état du vide [6].

Soit g.(p) = (gx(B, $) une base orthonormée de H. Slf@) =1/27A)2 [ e "% f(x) dx
est la transformée de Fourier de f(x) dans §(M,), soit p, (f) I'opérateur égal &

Lo fime avee ao f) = [ doy [(p) X (41M)ay 84(5, 7).

Montrons que cette série a un sens.

Soient E,(p), Ey(p) des vecteurs propres normés de ;b/M &1(p), &s(p) les valeurs
propres correspondantes, et

8u(P) = hy(p) EL(P) + har(p) Ea(D) ;

on peut choisir E,(p), Ey(p) continus presque partout sur a,; (g,(p))V2 Ay, (p), (eq(p))22
hor(p) sont alors deux bases orthonormées de 1'espace L%(do,) qu’on peut méme suppo-

ser identiques. Comme ;bA/M est positive, et

e1(p) + &x(p) = 2P°IM, &(p) &;(p) = 1,
on en déduit, par les propriétés de décroissance a I'infini de fﬁ(;b), que )’5 |cx(et, £)]? con-
verge et que (Z' |ex(ex, f [2))1/2 est inférieure a la norme, dans L?(do,), d'une fonction
k

-~

f(#) u («, p) restreinte a g, ol

wle, p) = (e1(0) V12 Eylor, ) + (ea(8))2 Eqlos )

2 cx(a, f) mx converge en norme sur H et définit ainsi un opérateur borné de norme
J

inférieure a (X ¢ (x, ) |2V/2 donc inférieure A celle de (h) o, p) dans L2(dg,):
g #

[y O <1 (o) ulex, 2) |,
|| F(p) |1% désignant la norme dans L2(dg,) de la restriction de F(p) a o),

Comme || fﬁ(p) u(et, p) H% tend vers zéro si f tend vers zéro dans §(M,), la distri-
bution f - yg (f) est tempérée.
Par cette définition de g, (f), on peut maintenant écrire symboliquement

~

1/2ﬂ22fd0p T (b M) . gi(D) -
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Soit encore, de maniére analogue,

pr(x) = (1/2%)2kz'fd6p e PEL (BIM) gilp)

avec { = ¢ 72 = (_J}), et soit

P (x)
P =y (x) © ) = (W(x))-
Les propriétés d’invariance de yp(x) relativement a SL(2, C) inhomogéne se véri-
fient immédiatement et tiennent au fait que si (V);, est une matrice infinie unitaire,
les opérateurs

7; :%‘(V)Mm, By :2;( )ik M

forment une nouvelle représentation des relations d’anticommutation avec le méme
état du vide, et qi'il existe W unitaire sur H, qui ne dépend que de (V);,, tel que
ni= W n; W= ¥ =W 5;* WL En outre, [y(x), $(y)]. = 0 pour (x — y)* < 0 se
vérifie facilement (en remarquant par exemple qu'on peut exiger pour tout p

Eq(p) = C Ey(p), § Es(p) = — 1(7b)) :

Nous définissons maintenant ¢~ . (%) et §(n), qui avec p_ (x) satisfont aux con-
ditions 1) & 3) de ce no 6.

Fixons n = n, et soient (x°, x!, 2, x3) des coordonnées telles que ¢ soit le plan
x®=0etn=(1,0,0,0). S(n) sera le sous-espace de $(M,) engendré par les fonctions
de la forme g(x) = b(x°) B(x) et leurs translatées g (x + a), b(x°) et B(x) étant a dé-
croissance rapide sur R et RS respectivement.

Nous écrirons ¢ (x) pour ¢, (). Posons

Prwe (B) = (122002 X1, [ da, e #**B(p) %‘:(ﬁ/Muﬁgk(ﬁ, p) .
ou
B(p) = (/27" [ ¢2% B(x) d*

Cette série converge en norme pour tout x°. Les sommes partielles, donc aussi sa
somme, sont bornées par

K(B) = (127" B®) u(w, ) |, .

et K(B) est indépendant de x° et tend versO si B(x) tend vers 0 dans §(R3), ce quien-
traine que B - ¢ ,:(B) est une distribution tempérée sur R? pour tout x°.
Par les propriétés de transformation des 7,

Paaris (B) =V 0,0 (B) V!

avec V unitaire, donc @ ,(B) est continue en 2°. En multipliant les sommes par-
tielles de la série représentant ¢ ,(B) par b(x?), on obtient des fonctions de x°
inférieures en norme & K(B)|b(x?)| auxquelles s’applique le théoréme de Lebesgue
([2], chap. IV), d’ou

[ 86) e (B) ds® = Yo | do b(p°) B(p) % (p/M), 5 (B, D)
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ou
[ @ oren (8) | 0+ sn)ds =y (g(x)) .

Par la définition de @5 ,,,,(%), on a une identité analogue & cette derniére pour
v, (g (¥ + a)), et de méme pour ] (g (x + a)). Donc 3a) est vérifiée. La continuité de
@ »(B) en 2° et 3a) entralnent alors 3b).

La condition 2) est vérifiée par le fait que D = H et que les fonctions sur o, de la
forme B(p) u(x, p) engendrent un sous-espace dense dans L2(da,), I'irréductivilité de
I'ensemble des 7, entrainent celle de I'ensemble B, des opérateurs ¢Ff, (B(x)), et
I'unicité de U, qui est ainsi donné par U = V= Ny 60 Ry == Ja1) 05tV éner-
gie-impulsion de p(x).

Soit A4, une variation unitaire de U, et

octsa o

I(A,): ¢F (%) >t x) = A, 0F ,(x) 4]

[+

I'application d’interaction correspondante. Soient

Vo (1, 8(%) = v, (1, D) B®) = [ g (g(x) |0+ sn) ds = [ b(s) ¢, (B(®)) ds

ol
g(x) = b(x°) B(x), #0s(*) = P o snl®)

et une identité analogue pour y,* (n, g(x)). Cette intégrale a un sens car ¢, ; (B(x))
est continue et bornée uniformément en s. Comme

| v (m, ) | < K(B) [ | b(s) | ds

v, (n, b(x%) B(x)) est une forme bilinéaire séparément continue sur §(R) x §(R?) qui
détermine par le théoréme des noyaux ([4]) une distribution tempérée v, (n, x) &
valeurs opérateurs sur H; ces distributions et U, , = 4, U, , A; " et les mémes §(n)
satisfont aux conditions 1), 2), 3), ce qui se vérifie comme plus haut pour y; (%),
Pit, ().

Si A, est déterminée par un générateur a droite J,(o) de A;' A, (A1 Aypspnest
pas un groupe 4 un parametre s comme U, _, et U ;,HM), qui a les mémes proprié-
tés de covariance relativement a R et M du champ y(x) (avec R, = F, 1), M 4= F, 4))
qu'aux numéros 4 et 5, les distributions y,%, (¥) sont covariantes par M, si 4, = E,
et

R.(n) GTa _ Jma T+ Ty) o (nam

D’ou finalement des N-champs

P (n, %) =~ (n,0) ®y T (n 1) = (w:_(n,x))

d’énergie-impulsion R’(n) covariante relativement a M.,

Il faut encore montrer qu’il existe effectivement des variations 4, telles que R'(n)
remplisse les conditions imposées 1), 2').

L’espace H sur lequel opérent les 7, est somme hilbertienne d’espaces H™ definis
comme suit: .

H est 'espace a une dimension engendré par I'état du vide ¢,, H* est 'espace H
utilisé plus haut, et H™ sera le produit antisymétrique complété de N facteurs H®,
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En posant que
Ny My ™77 My bo

est le produit antisymétrique (élément de H™) de N fonctions &, (), 7=1... N,

g:(p) formant la base orthonormale de H = H® introduite plus haut on définit les
opérateurs 7, sur H. Ces produits antisymétriques forment une base orthonormale de
H®™,

La représentation unitaire F: (a, 4) > F|, 4 relativement a laquelle p(x) était
invariante provenait de la transformation g,(p) = e¢’#2 A1 g,(Ap) qui se transposait
aux 7).

Mk = Fa,4) M FalA) ;

sur H®, F se réduit donc & F, 4: h(p) > e7i#2 A-1 h(Ap).

Cela étant, une construction de 4, et R’(n) analogue a celle du no 5 est maintenant
possible sur H® (plus généralement sur H™, N > 2 voir les remarques de la fin du
no 5) au moyen d’une application A4 («) qui transforme un élément de H® de la forme

hB,y, P, q) — by, B.q,p) en kB, v, alp,q)— h(y, B, (g p)),

ol & est une transformation inversible de o, x ¢, identique a celle du no 5.
Le raisonnement restant le méme, nous pouvons énoncer le résultat suivant:

1l existe un N-champ ' (n, x) de méme moment M que le champ donné w(x), d’énergie-
wmpulsion R'(n) covariante relativement ¢ M, et qui peut élre obtenu par une application
I(A,) & partir de y(x). La classe des représentations R'(n): a - R, (n) w'est pas équi-
valenle a une vestriction d'une représentation unitaive de SL(2, C) inhomogéne aw sous-
groupe des translations.
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