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Générateurs d'un mouvement et champs covariantsx)

par J. Poncet
Université de Lausanne (Suisse)

(25 X 66)

Abstract. A N-field is defined under weaker covariance conditions than for a local field.
(N is a set in which SL(2, C) operates, see def. 6.1., part II). In particular, the energy-momentum
ol an AT-field is given by unitary representations R(n) : a ->¦ Ra(n) of the translations a, depending
on n in N, which are covariant under a representation M : A ->- Ma of SL(2, C) (M determines
the angular momentum) in the sense: RAa(An) Ma Ra(n) ^a-

It is shown that if N is the set of timelike directions a definition of the «interaction picture"
is possible, which resembles in some way the conventional one, and therefore permits bypassing
the conclusions of Haag's theorem. An example of a Ar-field is constructed which is obtained by
an "interaction picture" from a free field. Properties of its energy-momentum are discussed.

All this requires some results on generators of evolutions contained in part I.

PARTIE I

Remarques -préliminaires. Nous appelons mouvement une fonction %l: (x, a) ->
KT CT

à valeurs dans le groupe projectif d'un espace d'Hilbert, définie sur des paires
de 3-surfaces dans l'espace Mi de Minkowski, et telle que

Wo-,, crs tto-j, a-, l*cr,, <rx '

M4 est supposé muni de la métrique définie par

Pour les applications que nous avons en vue (voir no 6 où sont définis les TV-

champs) nous nous restreignons dans la suite au cas particulier où (x, a) sont des

paires de 3-plans parallèles du genre espace.
Les générateurs d'un mouvement sont définis par certaines conditions de diffé-

rentiabilité. Les générateurs étant des opérateurs symétriques non bornés en général,
la question de l'existence et de l'unicité d'un mouvement de générateurs donnés n'est

pas triviale, et nous l'avons considérée de deux points de vue différents.
Au no 1, les hypothèses de différentiabilité sont fortes et les générateurs sont des

opérateurs symétriques définis sur un même domaine A (voir définitions D 1-3).
Sous ces conditions on démontre un théorème d'unicité (théorème 1.1). Sa démonstration

se ramène d'ailleurs à celle d'un théorème analogue pour des «mouvements sur
la droite», dont nous notons une conséquence simple: soit T un opérateur symétrique

*) Ce travail a été préparé avec l'aide du Fonds National Suisse.



Vol. 40, 1967 Générateurs d'un mouvement et champs covariants 437

sur un domaine A, qui possède des extensions autoadjointes; alors, il en existe au
plus une, soit A, telle que elsA A A.

Nous définissons ensuite les constantes d'un mouvement quelconque (qui ne
possède pas nécessairement des générateurs) associées à un groupe (no 2), et nous
considérons la notion de générateurs d'un point de vue différent (no 3) ; les conditions de

différentiabilité sont plus faibles, mais les générateurs sont supposés essentiellement

autoadjoints sur leur domaine (pas nécessairement constant comme dans la première
définition). On peut alors énoncer un théorème d'existence et d'unicité d'un mouvement

qui possède des générateurs et au moins une constante associée au groupe des

translations de M4.
Au no 4, nous introduisons la notion de variation d'un mouvement et nous donnons

des conditions sous lesquelles un mouvement varié possède une constante de moment
d'impulsion M: A ->MA, où M est représentation unitaire de SL(2, C), et une
constante d'énergie-imftulsion covariante relativement à M (voir no 2). Nous montrons
ensuite (no 5) ,qu'il existe des mouvements qui possèdent une telle constante
covariante relativement à un moment M, et non triviale en ce sens que la classe de
représentations qu'elle détermine ne peut pas être obtenue par une restriction au groupe
des translations d'une représentation unitaire du groupe SL(2, C) inhomogène.

Nous définissons pour terminer ce que nous appelons l'application d'interaction
et les N-distributions (no 6). Celles-ci peuvent aussi avoir une énergie-impulsion
covariante relativement à un moment M. Nous donnons alors un exemple de TV-

champ obtenu à partir d'un champ libre par une application d'interaction, qui
possède une énergie-impulsion covariante relativement à un moment M (celui du champ
libre considéré) et non triviale dans le sens que nous venons d'indiquer. Ceci montre
en particulier qu'un TV-champ a des propriétés différentes de celles d'un champ auquel
serait applicable le théorème de Haag.

Comme on sait, les fonctions que nous appelons mouvements apparaissent en

électrodynamique quantique formelle, spécialement en relation avec ^interaction
picture» (voir par ex. 8) que nous avons redéfinie par l'application d'interaction
susmentionné. Notre but était de montrer que celle-ci peut être non-constante pour des

TV-champs. Ajoutons que la construction particulière que nous avons choisie pour
obtenir un TV-champ qui remplit les conditions imposées n'est pas la seule possible.

Dans un article récent [12], M. Guenin a traité, en relation avec le théorème de

Haag et l'«interaction picture», une question qu'on peut à certains égards rapprocher
de celle que nous avons considérée.

1. Générateurs d'un mouvement. Première définition

On désignera par U(H) le groupe topologique unitaire, muni de la topologie forte,
de l'espace d'Hilbert H, par p(H) le groupe projectif U(H)IS, S étant le sous-groupe
des opérateurs unitaires scalaires. Les éléments (ou rayons) de J)(H) seront notés
A, U, 19 etc., ceux de U(H) par A, U, V etc.

Si a est un 3-plan dans l'espace de Minkowski M4, a + a sera le translaté de ct

par la translation a : x -> x + a. Par définition, a est du genre espace si pour y 4= 2,

on a (y — z)2 < 0. L'ensemble 27 des a forme une variété homéomorphe au produit
d'une droite par la variété des vecteurs b tels que b2 1, b° > 0.
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On définit un mouvement XI par la donnée d'une fonction XXTUT à valeurs dans
J)(H) définie sur les paires (r, a) de 3-plans du genre espace, avec x a + a qui satisfait

à la condition

a) 11^,11^ 11^.
Nous exigeons aussi généralement :

/ ^cr+x.ir ^¦<T+(n,x)n,(r

est continue de (a, x), n n^ étant une normale à a telleque n2 — 1.

De la condition a) suit que Xlata. est l'élément neutre 'O de p(H) et que XlT,(r

via, r-
Nous appelons mouvement unitaire une fonction UT(rk valeurs dans U(H), définie

pour les mêmes paires (x, a), et satisfaisant aux mêmes conditions a) et b); la projection

U(H) -> P(H) définit de manière évidente un mouvement %lTt7 que nous dirons
induit par UTa..

Nous supposons dans ce no 1 que XI satisfait en outre à la condition D) ci-après,
que nous modifierons au no 3.

D) Il existe un sous-espace dense A de H, des opérateurs L(a) symétriques de
domaine A, associés aux a, et pour tout a des représentants unitaires Ua+Xi(r de

U<x+X,a continus de (a, x) tels que

1) Ua+Xttr A A, Uaa. E, E étant l'opérateur identité de H;
2) pour f dans A, la limite forte

Iiml/s(c7(7+,4ja;(r-c7r+;tj[r)v)
s—i-0

(s réel) existe et est continue de (a, x) pour toute translation a ;

3) lim 1/s (Ua+sa-„ - E) y) iLa(a)ip i(n, a) L(a)xp
s—>0

pour y> dans A, n na étant une normale à a, n2 1.

Par ces conditions, les limites fortes de D 2) et D 3) sont linéaires en a, de rang
un, Ia(a) (n, a) L(a), La(a) 0 si a + a a, et La(a) ip est continu en a.

Les opérateurs La(a) seront appelés générateurs en a de XI, associés à Ua+Xi(r sur A.
On pourrait supposer plus généralement qu'on se donne des représentants

unitaires Ua+Xx(T locaux satisfaisant à D 1), 2), 3). Il existe toujours des représentants
unitaires locaux continus d'un mouvement par le fait de la fibration

U(H) ¦> U(H)IS

localement triviale par un théorème de A. M. Gleason [7].
Pour simplifier nous supposons que XX a des représentants unitaires globaux

vérifiant D 1), 2), 3), mais il est facile d'énoncer les analogues locaux des théorèmes et

propositions démontrés dans la suite.
Soient q0 les éléments de 27 par un point 0 .Si li satisfait à D 1), 2), 3), VTa. —

Ut,q„ Ueoi a est un mouvement unitaire qui induit Xl, mais qui ne satisfait pas
nécessairement à D 2), 3).
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Théorème d'unicité 1.1.

Si les opérateurs La(a) sont des générateurs sur A d'un mouvement qui satisfait à

D 1), 2), 3), ce mouvement est unique.
Soient q et a tels que q + a =\= q.
Définissons co(q, r, s) (complexe de module un) par

Ue+ra,g+sa Ue+sa,Q (»fa. r> S) ^+r«
où Ue+Xiß sont des représentants unitaires auxquels sont associés les générateurs
La(q) sax A.

On a co(q, s, s) 1 et les identités, où x est mis pour q + s a

UT+ua,Q - UTrQ (Ur+ua<Tco-l(Q, s + u,s)-E) UT:„

UTA-ua,r y1 (Q. S + U,S)- 1) U^ + (UT+ua,T - E) U7Q

On obtient, en utilisant 1), la limite forte

2) lim 1/w (xp (s + u) — xp(s) i (L(s) + pi(s) ip(s)
w-^0

en posant, pour a, g supposés fixes et xp dans A,

Uo+sa,e f w(s) • La(Q + sa) L(s) i /j,(s) lim 1/w (co-1 (g, s + u, s) - 1)
«—»-0

Cette dernière limite existe nécessairement par D 2) et D 3) appliqués respectivement

au premier membre de la première égalité de 1) et au deuxième membre de la
deuxième égalité de 1). En outre, pi(s) est réel puisqu'on peut poser co-1 (g, s + u, s)

etal'u\ <x(u) réel, a(0) 0, et que eiai-a) est alors derivable en u 0, ce qui entraîne
bien que pt(s) doit être réel.

Par les conditions imposées à Ue+X,ey>, ju,(s) est une fonction continue en s. En
effet le membre de gauche de 2) est continu par D 2); (L(s) ip(s), cp) (y>(s), L(s)cp)

est continu en s puisque yi(s) et L(s) cp le sont pour cp, xp dans A, donc

(h(s) Ue+sa,o W' <P) H(s) (Ue+sa,g f- f)
l'est aussi; comme pour tout s on peut choisir cp, xp dans A tels que (Ug+saie xp, cp) 4= 0,

il s'ensuit que pi(s) est continue en tout s.

Pour xp dans A, Ue+sae xp xp (s) est une solution dans A de l'équation 2), qui satisfait

la condition initiale xp(0) xp. Mais c'est la seule. Car si cp(s) dans A est une autre
solution de 2) telle que ç?(0) xp, la fonction numérique (cp(s), cp(s)) est évidemment
derivable et de dérivée nulle. En particulier, si 93(0) 0, cp(s) doit être nulle. Par la
linéarité de l'équation 2), il n'y a donc qu'une solution xp(s) dans A telle que ^(0) xp.

Supposons qu'il existe un deuxième mouvement T9T>(r qui satisfait à D 1), 2), 3),
avec des représentants unitaires Ve+sa,e qui définissent les mêmes générateurs La(g)
sur A. Alors on a une équation

3) lim (6 (s + u) - 0(s) i (L(s)+ v(s) 6(s)

analogue à 2), v[s) étant réelle et continue.
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On sait d'après ce qui précède que la seule solution 8(s) dans A telle que 0(0) xp

est 0(s) Ve+saexp. Comme xp(s) Ue+sa>gxp est la solution de 2) dans A telle que
xp(0) xp, la fonction etßls) xp(s), où dßjds v(s) — /i(s), ß(0) 0, est solution de 3)

pour la même condition initiale, donc on a e'^s) Ue+sagxp Ve+satgxp. Comme A
est dense dans H, Xle+Sa:e doit être égal à X9e+Sa,e-

Remarque 1.1

On peut démontrer une propriété simple d'opérateurs symétriques qui ont des

extensions autoadjointes, comme conséquence d'un théorème analogue au Théorème
1.1.

Définissons un mouvement sur la droite une fonction XI '¦ (s, t) -> Xl(S,t) (s> t réels)
à valeurs dans J)(H) telle que XlSl,St 1iSi,Sl ï4„Sl et que Xls+t,s soit continu de (s, t).

Si on impose à Xl des conditions analogues aux conditions D 1), 2), 3), on a un
théorème d'existence semblable au théorème 1.1, la démonstration restant la même.

Comme exemple de mouvement unitaire sur la droite qui satisfait à de telles
conditions, on peut prendre Ut s

etl-t~s)A, où A est autoadjoint, pour A le domaine de A
ou un domaine plus petit A' tel que e'sAA' A', et pour générateur L(s) l'opérateur
symétrique restriction de A k A'.

Proposition 1.1. Soit T un opérateur symétrique dans H, défini sur A, qui possède
des extensions autoadjointes. Il en existe au plus une, soit A, telle que e,sAA A.

En effet, si B satisfait aux mêmes hypothèses que A, les deux mouvements
unitaires sur la droite Ut<s etl-t~s',A et Vt s

etl-t~s'lB ont le même générateur (constant)
L(s) T sur A. Par l'unicité, Vt s Ut s d'où A B par le théorème de Stone.

2. Constantes d'un mouvement

Soit G un groupe de Lie, supposé d'abord connexe qui opère (éventuellement
d'une manière triviale) sur l'ensemble 27 des 3-plans du genre espace. On suppose que
les opérations T : a -> Ta conservent le parallélisme des 3-plans a.

Dans la suite, lorsque G est connexe, nous entendrons toujours par représentation

projective de G une représentation globale du revêtement universel G de G dans P(H),
ce qui est équivalent à la donnée d'un homomorphisme local continu de G dans P(TT)
défini sur un voisinage connexe de l'élément neutre ([3], théorème 3, p. 49).

Soit XI un mouvement qui vérifie les conditions a), b), du no 1.

Une représentation continue K : T -> TtT de G dans le groupe J)(H) telle que

1) XItt, Ta "¦T l*r,(r T^T

pour toute paire (x,a), x a + a, sera dite constante de type G de XI-

La donnée d'une représentation projective ï? de G est équivalente [1] à la donnée
d'une représentation unitaire R^ d'un groupe Gx qui est une extension de G par un
groupe isomorphe au tore S1.

Soient X un élément de l'algèbre de Lie L(GX) de Gx, esX le groupe a un paramètre

correspondant et e's x RlM)(esX), Ax étant le générateur autoadjoint de Stone de

R{-u\esX). Par un théorème de L. Gârding [5] il existe un sous-espace D dense dans H
transformé dans lui-même par les opérateurs Ax, invariant par e x, et tel que Ax
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soit essentiellement autoadjoint sur D ([10]). En outre, l'application X -> i Ax définit
une représentation de L(GX) dans l'algèbre des endomorphismes de D.

Nous appellerons les opérateurs autoadjoints Ax les observables définies par la
constante R de type G ou aussi observables de type G. Eventuellement, on désignera
R et ses observables Ax par le même terme. Dans le cas où R est définie par une
représentation unitaire R, Ax est à une constante scalaire additive près le générateur
autoadjoint de R(esX). Il en est ainsi en particulier si G est le groupe SL(2, C) ou
SL(2, C) inhomogène. Pour SL(2, C) cela tient au fait général [1] que les représentations

projectives d'un groupe semi-simple sont induites par des représentations
unitaires.

Si G est le groupe des translations a: a -> a + a, une constante de type G définie

par une représentation unitaire R sera appelée une énergie-impulsion de Xl- Nous
iPnoterons aussi Ra e a, où Pa est le générateur de Stone du groupe à un paramètre

P-sa e "¦

Une constante de moment d'impulsion sera une constante de type SL(2, C), où
SL(2, C) opère de manière évidente sur 27 et sur M4 (en laissant un point 0 fixe).

Lorsque G n'est pas connexe, une représentation globale R de G dans le groupe
U'(H) (à deux composantes connexes) des transformations unitaires et antiunitaires
de H, ou dans le groupe p'(H) U'(H)IS, sera aussi par définition une constante de

XI si l'on a la même relation 1) que précédemment.
Soit encore G un groupe qui opère trivialement sur 27, R : a -> Ra une constante

de Xl de type G: on peut 1'appeller une charge généralisée si les opérateurs unitaires ou
antiunitaires Ra définis par les rayons Ra commutent avec toutes les observables Ax
de XI-

Dans la suite les différents groupes que nous considérons sont toujours connexes.
Une constante de type SL(2, C) inhomogène détermine en particulier une

constante d'énergie-impulsion par restriction au sous-groupe des translations, et différents

moments d'impulsion équivalents par restriction aux sousgroupes isomorphes
à SL(2, C) (et conjugués entre eux).

Aux no 4, 5 et 6, nous aurons à considérer des constantes associées à un groupe en
un sens plus général que nous allons définir.

Soit G un groupe qui opère (éventuellement d'une manière triviale) sur 27 en
transformant en elle-même chaque famille de 3-plans parallèles, et tel que A G A'1 G

pour les rotations A laissant un point 0 fixe (A élément de SL(2, C)).
Soient Xl un mouvement, 71(a) : T -> RT(cr) une représentation projective de G

donnée pour chaque a, et soit M : A -> MA un moment d'impulsion de XI '¦ XIat,ao —

Ma Xlti„MA1, avec les relations

a) R(o-) R {a+b)
b) nATA->(Aa)=MAnT(e)MA-1,
c) UTrtTa=nT(a)UT^nT(a)-1.

Nous appellerons constante de type G de Xi, covariante relativement à M,
l'ensemble R des représentations 71(a) de G muni des relations a), b), c). Si G est le groupe
des translations, si 71(a) est définie par une représentation unitaire R(a) de G, la
constante R de type G sera dite énergie-impulsion covariante relativement à M.
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3. Autres conditions pour les générateurs
Dans la suite, un mouvement est encore supposé vérifier les conditions a), b) du

no 1, mais des générateurs sont définis sous des conditions différentes de D 1), 2), 3).
Nous n'énoncerons pas de théorème général d'unicité. Par contre, nous établirons

deux théorèmes d'existence et d'unicité (Théorèmes 3.1. et 3.2.) pour un mouvement
qui possède des générateurs et une constante d'énergie-impulsion donnés. Eventuellement,

on peut se donner encore d'autres constantes à part celle d'énergie-impulsion.
Supposons
(L) qu'il existe des représentants unitaires Ua+Xy(J (définis localement ou globalement)

continus de (a, x), avec Vaa E, et des opérateurs autoadjoints L(a) dont la
restriction à un sous-espace dense Aa de H soit essentiellement autoadjointe, tels que
pour cp dans Aa

lim 1/s (U„+ - E)(p iLa(a)cp i(n, a) L(a)cp

où la limite de gauche est une limite faible.
Les opérateurs La(a) seront dits générateurs de XX en a sur Aa, associés aux

représentants unitaires Ua+X a, et générateurs au sens fort si la limite précédente est forte.
Théorème 3.1. Supposons donnés des opérateurs autoadjoints Ma(a) pour tout

a de 27 et toute translation a, une représentation unitaire R : b -> è 'du groupe G

des translations, un sous-espace Aa dense dans H pour tout a de 27, avec les conditions
a-d:

a) Ma(a) est essentiellement autoadjoint sur Aa, Ma(a) 0 si a + a a, Mb(a) cp

est linéaire en b ftour cp dans Aa.

b) le domaine de Pa contient Aa et è " Aa Aa+a ftour tout a et tout a de 27;

c) ftour tout a et tout a de 27, l'oftérateur Ma(a) — Pa est autoadjoint et sa restriction
à Aa est essentiellement autoadjointe; l'exponentielle e a "est continue de (a, a);

d) Ma (a + b) è b Ma(a) e
' b + /ua(a, b) E où fxa(a, b) est une fonction réelle

linéaire en a.
Alors il existe un et un seul mouvement d'énergie-imftulsion R: a -> e " et de

générateurs Ma(a) au sens de (L). Ceux-ci sont même des générateurs au sens fort et sont
associés aux représentants unitaires

_ JsPaJHMaW-pa)
v <j+s a, a

ou aussi

V e "e

Va+sa a e "e" (" " "' (n normale à a, n2= 1)

L'aftftlication S (a) : a ->¦ è ' a " "' induit une reftrésentation -projective du groufte
G des translations a ftour tout a de 27.

Démonstration de l'existence. Nous montrons d'abord qu'il existe un mouvement
%9 d'énergie-impulsion R : a -> e a et de générateurs Ma(a).

Soit n na une normale à a telle que n2 1. La condition 3.1.a) entraîne Ma(a)
(n,a)Mn(a).

Posons

t) y _<>P»i>(M„W-Pn)
L> Va+sn,tT — ö e

f a+a,(T ' CT±{n,a)n,(T >
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et montrons que les opérateurs Va+saa. sont des représentants unitaires d'un mouvement

te.

Il suffit, tenant compte de 1), 2) de vérifier que V(T+(r+s)nilT+sn VlT+sn:IT, r, s réels,
appartient au même rayon unitaire de 7)(H) que Va+{r+s)ni(T. (La continuité de T90.+a,0.

est une conséquence immédiate de l'hypothèse 3.1 c) et de la dernière relation 2).
Par 3.1. b) et d) et pour cp dans Aa+h

(Ma (a+b)- P> eiP" (Ma(a) - Pa) e'^cv + pia(a, b)cp

Comme Ma (a + b) — Pa et Ma(a) — Pa sont essentiellement autoadjoints sur
Aa.+b, respectivement Aa, et que e-' * A(T+h Aa, on déduit de cette égalité que

Ma (a+b)-Pa= eiP" (Ma(a) - Pa) e~iP" + xia(a, b) E et

3) e'W+<» - Pa) J*/«. "> eiPb J (MaM - Pa)
g

~ ^b
_

De là, on obtient
V V Jr>'n{a'sn) y(T+(r+s) /i, cr+5 n * CT+.Ç n,<r (r+{r+s)n, a

ce qui montre que les opérateurs Va+ayCr sont des représentants unitaires d'un mouvement.

On a ensuite

y W„ - E)<p e'" 1/5 (eiS(Mn^-Pn) _ E)(p + 1/s {e"Pn _ E)(p

et si cp est dans A a, les deux termes de droite ont les limites fortes, pour s -> 0,

i (Mn(a) — Pn) cp et i Pn cp, de somme iMn(a) cp. Par la définition 2) de V(T+atKr, ceci
entraîne que Ma(a) (n, a) Mn(a) satisfait (L) au sens fort, ce qui établit l'existence
d'un mouvement de générateurs Ma(a) et, d'après 3), de constante R.

Avant de démontrer l'unicité de X9 et les autres conclusions du théorème 3.1., nous
montrons qu'un mouvement qui possède une constante R associée au groupe des

translations, ne dépend que de R et de la donnée, pour tout a, d'une représentation
projective S (or) : a -> Sa(a) du même groupe.

Proposition 3.1. Soit R : a ->- Ra une représentation ftrojective du groufte G des

translations de M4. Un mouvement X9 de constante R associée aux translations, c'est-à-dire tel

que

"t+x,<t+x ~ "x vTlCr rlx

est de la forme

2) 1W=ßaS»
où S(a) : a -> Sa(a) est une reftrésentation ftrojective de G ftour chaque a de 27, telle que

3) TlbSa(<y)7iy Sa(a + b),

Sa(a) est continu en (a, a), et

4) Sa(ö-) R(r1sio- + fl o-.

Réciftroquement, si les reftrésentations ftrojectives R et S(a) de G satisfont ces relations
3) et 4), et si $a(a) est continu en (a, a), l'équation 2) définit un mouvement de constante R.
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En effet, si X9 est un mouvement de constante R, en posant X9a+a,„ 7\a Sa(a),
les relations 1) et X9„+a+b, a+b V<r+b,<r= f„+<.+», <r entraînent 3) 4) et Sa(a) Sb(a)

Sa+b(a). La continuité en a de Sa(a) est évidente.
Réciproquement, si S (a) : a -> S„(<7) et R : a -> R0 sont des représentations projec-

tives de G avec les propriétés 3) et 4), Ra Sa(ff) ne dépend que de a et a + a par 4)
et définit un mouvement X9„+„,„¦ continu en (a, d), qui par 3) possède la constante R
associée à G.

Corollaire 3.1. Tout mouvement X9TI(r X9(r+sa,(T de constante R associée à G ftossède

ftour chaque a des représentants unitaires de la forme

Vcr+sa,a- — e e

On a en effet X9a+sa,a 7\sa Ssa(a), et comme des représentations projectives telles

que s -> Um, s -> Ssa(a) d'un groupe à un paramètre sont induites [1] par des
représentations unitaires, Qa et Ta seront les générateurs de Stone de celles-ci.

Soit maintenant Xf?j„= X^a+s{n,a)n,a un deuxième mouvement qui satisfait aux
hypothèses du théorème 3.1. et montrons qu'il est identique à celui dont l'existence
est établie plus haut, autrement dit, si V£\_snta sont des représentants unitaires de

^a+sn.o qui définissent le générateur M„(a) sur Aa, ils appartiennent au même rayon
îsP„ i

que e "e
D ' après les propositions et corollaire 3.1., on a V[2\ s M> „

;sPnS(sTn+«M)

une fonction réelle, avec a(0) 1, qui, comme Tn, dépend de a. Paur cp dans Aa,

f dans H, on aura donc

lim 1/s ((elsP" ei{sT"'ais)) - E)cp, f) i (Mncp, f)
s—5-0

ce qui entraîne, comme 1/s ((ets n — E) cp,f) a la limite i(Pn <p,f), que la limite de

l/s ((eisP- e'(sT» + a(s)> - e"P") cp, f) est i ((Mn(a) - P„)<p, f)

On a encore

1/s ((ei$P" e^sT" + ^ - esP»)cp, f) 1/s ((,!'(sT" + a(s)) - E)cp, e'UP"f)

et la limite de cette dernière expression est aussi celle de

1/s (yT" + «is)ï - E)<p, f) 1/s (ea{s) - 1) (esT* cp,f) + 1/s ((eUr» - E)<p,f)

car 1/s e" " (e " " a ' ' — E) cp convergeant faiblement est borné, (e
's " — E) f

converge fortement vers 0, donc 1/s ((«*'* "+<x{s'>
— E) cp, (e~'s " — E)f) aune limite nulle.

Si en particulier/ est dans le domaine de Tn, le deuxième terme de droite de la
dernière égalité a la limite i(<p, Tnf), donc le premier terme a aussi une limite, et en
supposant en outre (cp,f) 4= 0, ce qui est toujours possible, on voit que 1/s (<?îa(s> — 1)

a une limite i A, A étant réel. En définitive, si cp est dans Aa, et/dans le domaine de

Tn,

(cp,Af) + (cp,TJ) ((Mn(a)-Pn)cp,f).
Par la définition de l'adjoint d'un opérateur, ceci implique que A + Tn est une

extension autoadjointe de Mn(a) — P„ restreint à Aa. Comme Mn(a) — Pn est
essentiellement autoadjoint sur A^, on a A + Tn Mn(a) — Pn.
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Ainsi V-2)+sn a et es "«"' " "> sont des représentants unitaires d'une même
X9

Pour démontrer les autres conclusions du théorème 3.1., supposons choisie pour
chaque a une direction aa a non parallèle à a, continue en a et telle que aa+x aa,
et soit r(b) la forme réelle linéaire en b définie par a + b a + r(b) a.

En posant
T/(3) T/(3)

a-r-b, a o+r(b) a, a

et
T/(3) _ ;sFa MMa^-Pa)

on vérifie, comme dans le cas particulier aa na n0 que V{3)+bi0 définit un mouvement

qui satisfait aux hypothèses du théorème 3.1. Par l'unicité de X9T,a, on en déduit
t s P ì siM (g) P \ '

que e " e
y a "' sont des représentants unitaires de X9a.+sa,(T, et par la proposition

3.1., en faisant s 1, que l'application a -> «*' " "' induit pour chaque a de
27 une représentation projective des translations.

Remarque 3.1. X9T,a a les propriétés de continuité et de différentiabilité énoncées

au no 1, si on ajoute aux hypothèses du théorème 3.1., que Aa A ne dépend pas de

o-, que e*' "" ~ "' est continu de (a, a) et laisse invariante et que Ma(a) e*' a° ~~ "' cp est

continuen(o-,a).Eneffet,lesreprésentantsunitairesFCT+;tj0.= e' " e' "'* ' "°'~ "'ont
les propriétés D 2), 3) du no 1, car la limite forte, pour s -> 0, de 1/s (Va+x+sai<r — Va+X:0)cp

est
i(n,x)P -i{n,x)P T.i(n,a)e " M„(a) e " V„+tiff<p.

Ceci est aussi continu de (a, x), et la propriété b) du no 1 est évidente.
On peut aussi énoncer un théorème d'existence et d'unicité pour des mouvements

qui possèdent une constante d'énergie-impulsion et des générateurs satisfaisant aux
conditions D 1), 2), 3) du no 1. L'unicité est déjà garantie par le théorème 1.1. La
démonstration utilisera essentiellement la proposition 1.1.

Théorème 3.2. Soit a -> è " une reftrésentation unitaire des translations a. soient

Ma(a) des oftérateurs symétriques dans H qui déftendent de a et a, définis sur un domaine

commun A, avec les ftroftriétés:
a) le domaine de Pa contient A et e a transforme A en lui-même;
b) Ma(a) (n, a) Mn(a) (n est une normale à a telle que n2 1);

c) Ma(a) a une extension autoadjointe Ma(a), Ma(a) — Pa est autoadjoint, e "

A=A, eis{M"[a)~P^ A=A et Ma(a) ei^"ia)~P^
cp est continu de (a, a);

d) Ma (a+b) eiP"Ma(a) e~iP" + ga(a, b)E, où ga(a, b) (n, a) gn(a, b) est une
fonction réelle.

Alors il existe un et un seul mouvement X9 d'énergie-impulsion R : a -> etPa et de

générateurs Ma(a) sur A au sens de D 1), 2), 3) du no 1, associés aus représentants
unitaires

isP„ is[MAa)-P„\T/ — p a * \ a> ' ai

L'aftftlication S(a) : a -> i^ " "' induit ftour chaque a de Z une reftrésentation
ftrojective du groufte des translations a.
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Démonstration. Par l'hypothèse c) et la proposition 1.1., les extensions

autoadjointes Ma(a), Ma(a) — Pa sont uniques et b) entraîne alors que

Mb(a) (n, b) Mn(a)

teuts autoadjoinrs
ga(a, b)E sont des extensions d'un même opérateur symétrique sur A, et comme les

exponentielles«"' "c

proposition 1.1. que

Par la propriété d), les opérateuts autoadjoinrs Ma (a + b) et e b Ma(a) e
b

des extensions d'un mêr

exponentielles elSl " et e1 b e" a laissent A invariant, on en déduit encore par la

Ma (a+b) eF"Ma(a) «"*'» + ga(a, b) E

iP*Soit Aa le domaine de Mn(a), donc aussi de Ma(a) (n, a) Mn(a) : on a e b Aa
~ iPA^jj. Ainsi Ma(a), J,,. et la représentation R: b -> e b satisfont aux hypothèses du

théorème 3.1., d'où l'existence d'un mouvement X9 de générateurs Ma(a) au sens

de L) (fort) sur A^, de constante R, et la propriété indiquée de S(a).

On peut prendre Va+sa>a e" "«"' " "' comme représentantes unitairs de X9

et ceux-ci transforment A en lui-même. Mais X9 a aussi les générateurs symétriques
Ma(a) au sens de D 1), 2), 3) sur le domaine constant A. Ceci se vérifie comme à la fin
de la remarque 3.1. en considérant la limite forte de

i/s /y — yJ-/°' V r a+x+sa, a r c(T-Vx, a!

pour cp dans A. Enfin le théorème 1.1. assure l'unicité du mouvement X9 du théorème
3.2.

Remarque 3.2. Si l'on a une représentation unitaire R' : (a, A) -> R\a,A) du groupe
SL(2, C) inhomogène et les hypothèses 3.1. a), b), c), mais au lieu de 3.1. d) une identité

d') MAa (Aa + b) R[iiA) Ma(a) R\;,A) + va(a, A,b) E

où Aa, Aa sont les transformés de a, a par A de SL(2, C), et va(a, A, b) est une fonction
réelle linéaire en a, et des sous-espaces denses Aa de H tels que AAa+a R'^^A^,

iP '
en prenant pour R la représentation a -> e " R^ t) les conclusions du théorème
3.1. permettent d'établir immédiatement l'existence et l'unicité d'un mouvement
X9Tia. de générateurs Ma(a) qui possède une constante R' de type SL(2, C) inhomogène,

iP tet en particulier, à part la constante d'énergie-impulsion R: a -> e a R^ ^, les

différentes constantes de moment d'impulsion équivalentes associées par R' aux sous-

groupes conjugués à SL(2, C) dans SL(2, C) inhomogène.
De même, sous les hypothèses 3.2. a), b), c), et d') ci-dessus au lieu de 3.2. d), il

existe un mouvement unique de générateurs Ma(a) au sens de D 1), 2), 3) du no 1,

et les mêmes constantes déterminées par la représentation R'.
Remarque 3.3. Soient 71(a) : a -> 7la(a) des représentations projectives données

pour chaque a de E, et N une représentation unitaire de SL(2, C), satisfaisant aux
relations qui définissent une constante covariante au no 2. La famille de 3-plans
a + a parallèles à a étant fixée, soit s -> etsT^ un groupe unitaire à un paramètre qui
par passage au quotient U(H) -> p(H) induit la représentation projective s -> 7lsn(a)
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(n normale k a, n2 1), et notons R : a -> eP" «*<"•*> rM. Si Ma(a) et e'Pa satisfont
aux conditions du théorème 3.1. et si Ma(a) est covariante relativement à TV:

MAa (Aa) Na Ma(a) Tv 71 + pca (a, A) E

où pia(a, A) est réelle et linéaire en a, en raisonnant comme dans la démonstration du
théorème 3.1., on obtient l'existence et l'unicité d'un mouvement de moment N, de

constante 71(a) covariante relativement à N et de générateurs Mn(a).

4. Variations d'un mouvement

Soit X9(1) un mouvement au sens des conditions a) b) du no 1. Si A '¦ a -> A„. est

une fonction à valeurs dans p(H), définie sur l'ensemble 27 des 3-plans du genre
espace, %9?}a AT TP^ff Aâ1 est aussi un mouvement. La fonction A sera dite variation,
et on dira que X9(2) s'obtient en faisant varier 19(1) de A-

Proposition 4.1. a) 19(x) et T9(2) étant deux mouvements il existe une variation A
telle que X9r% AT Vr?a Aax ¦ En particulier tout mouvement X9 est de la forme 1PTj0.

XlT -Aa •

b) Suftftosons que X9{1\ X9<2} aient des générateurs resftectifs L£\a), L{2l*(a) sur D{X),

D^ au sens de (L) du no 3, associés à des représentants unitaires {locaux ou globaux)
Va+a.a, ^a+a.a continus de (a, a) et que D{2] A'„ D£\ A'a étant un reftrésentant
unitaire de Aa ¦

Alors, il existe des représentants unitaires A(T+sa de A^+sa ^s 1ue Sî f es^ dans

Dl2\ 1/s (Aa+sa A~x — E)cp ait une limite faible, lorsque s -> 0, égale à

i(Fa2\a)-A(TFx\a)A;x)cp.
Pour démontrer 4.1. a), soit O un point de Mt, et a étant donné soit a0 le 3-plan

par O parallèle à a. En posant Aa %%, XS$l„, on obtient X9:2>„ AT X9r1]a Aa1-
Pour 4.1. b), si V£\.sai<r et V[2)+satlT définissent les générateurs Là1](a) et L[2)(a) sur

D{X) respectivement D{2), comme V(2)+sara. peut s'écrire Aa+sa V£lsa,„ A~x en choisissant
convenablement les représentants unitaires A(r+sa, Aa de Aa+Sa> Aa et que Aa+sa est
alors continu en s par nos hypothèse, l'identité, pour cp dans D*,2',

y (Vfya ^E)cp= 1/s (Aa+sa A;x-E)<p + 1/s Aa+sa (V^sa>a- E) A;1 cp

donne la conclusion 4.1. b).
Remarque 4.1. Si la différence L{2)(a) — A^L^^a) A"1 est essentiellement

autoadjointe sur D{2) AaD(x) 4.1. b) montre que son extension autoadjointe est un
générateur au sens de (L) du mouvement AT A"1.

Notons ancore que si L£\o) resp. Ld2)(a) de 4.1. b) sont des générateurs de tS>(1)

resp. T?'2' au sens de D 1), 2), 3) du no 1 sur le même domaine constant A, que les

représentants unitaires de Aa transforment en lui-même, on voit par la même identité
que dans la démonstration de 4.1. b) que le mouvement AT Aa1 a toujours des
générateurs Lf\a) - Aa L<£\o) A~x au sens de D 1), 2), 3) sur A.

Energie-imftulsion d'un mouvement varié. Considérons deux mouvements XX, 19 sur
H. Soit Aa une variation telle que 19T;0. AT XlT,a A"1 et supposons que Xl7,a et
X9T,„ possèdent des représentants unitaires respectifs UT:tT, VTt(T et des générateurs
associés La(a), L'a(a) sax A^ et A'^A^ respectivement, A'„ appartenant au rayon
unitaire A„-



448 J. Poncet H. P. A.

Par la proposition 4.1. b), on obtient une relation (pour Aa convenable)

L'a(a) Aa(La(a)+Ka(a))y1
valable sur AITAa, et i Aa Ka(a) A~x cp est la limite faible, pour s -> 0, de

lls(AtT+saA;1-E)cp
avec cp dans A^A^. Ka(a)xp, pour xp dans Aa, est alors la limite faible de

1/s (A;1 A„+sa - E)xp A-xAa+sa 1/s (E - A;xsa AJxp.

Supposons l'opérateur Ka(a) essentiellement autoadjoint sur son domaine Aa et
notons fa(a) son extension autoadjointe K*(a). fa(a) sera dit générateur à droite du
mouvement Aâ1 AT au sens de (L) surZl^ si Aafa(a) A~x est un générateur de Ar Aa1
sur Aa, au sens de (L) défini au no 3, ou, ce qui revient au même par la dernière égalité
et la continuité de Aa+sa, si — fa(a) est un générateur au sens de (L), que nous appellerons

aussi générateur à gauche, de A^1 Aa sur Aa. On définit de même un générateur
à droite au sens de D 1), 2), 3) sur un sous-espace A. Aux théorèmes et propositions
donnés jusqu'ici, correspondent évidemment des énoncés analogues lorsqu'on y
remplace générateurs à gauche par générateurs à droite.

Xl et Ja(a) étant donnés, soit R: a -> e " une énergie-impulsion de XX-

La variation A„-, donc aussi X9T,a, est déterminée si JJa) est tel que

Ja (a + b) e'Tb Ja(a) e-iT" + va(a,b) E

(va(a, b) réelle) et remplit les autres conditions qui par le théorème 3.1. en font un
générateur à droite de Aa1 AT au sens de (L). Soit a0 un 3-plan qui parcourt les 3-plans
du genre espace par O dans M4. On aura, comme expression possible pour A~x Aan+a:

Aa, Aaa+a ~ 6 e

Aa Aaii+a est une solution qui ne dépend que de la donnée initiale Aaa, et l'application

c -> e*' c c' induit une représentation projective c -> Sc(a) du groupe des

translations par le théorème 3.1.

R désignant la représentation projective induite par R: c -> e °71'(a) celle qui
est induite par l'application

on vérifie immédiatement les relations 1), 2), 3) ci-après et la proposition 4.2.

Proftosition 4.2. Les trois relations :

1) %(a)=A<TSc(o)Aa-1

2) ^M^'S.WRr1
3) Sb (a + c) % Sb(a) K1
entraînent

R' (a+b) R» R'(o-o)

a Vr+c, a+c Ar+C XlT + c, a+c Aâlc A) K, X^o)-1 ¦

R'(cr0) R' (a0 + b) est donc une constante de X9 associée au groupe des
translations si R'(ff0) ne dépend pas de a0, ce qui n'est pas nécessairement le cas.
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Supposons maintenant que va(a, b) 0 et que

S(a0):X-+eW") + T'*>

soit une représentation unitaire des translations (qui induise S(a0)). On a alors, en
posant R'x(a) Aa Sx(a) A~x:

R'x(a) eiT™ Aa S„(a) A~x R'x(a0)

et
R'(a) induit 71'(a)

Prenons A(Ta E. Si Xi a une constante de type SL(2, C) inhomogène qui détermine

R-.c^-è c par restriction aux translations et le moment M : A -> MA de XI,

A étant mis pour (0, A) et laissant le point 0 fixe, si /a(cr) possède encore la propriété
de covariance relativement à M :

JAa(Ao) MAJa(o)M-Ax

alors TV (a) R'(cr0) est une constante d'énergie-impulsion de 19 covariante relativement

à M (n° 2), et 19 a même moment d'impulsion M que Xl-

Comme Jx(a0) (n, x) Jn(a0) par définition (n normale à a0, n2 1), les composantes

T'a(a0) suivant des directions a telles que (n, a) 0, a2 — 1, c'est-à-dire les

composantes de l'impulsion, sont égales aux composantes de l'impulsion Ta de XX,

tandis que l'énergie T'n(a0) est égale à Tn + Jn(a0).
Plus généralement, si va(a, b) n'est pas nulle et si

Ja(Aa) MA Ja(a) MA x + ga(a, A) E

ga(a, A) réelle, les relations 1), 2), 3), de la proposition 4.2. et les conditions initiales

A^^E entraînent que le mouvement varié 19 à le même moment d'impulsion M que
XX et une constante TV (g) associée aux translations, covariante (no 2) relativement à la
représentation M.

Le théorème 4.1.) résume ce qui a été démontré jusqu'ici dans ce no 4.

Théorème 4.1. Soient R: a -> e " une représentation unitaire des translations, Ja(a)
une famille d'opérateurs autoadjoints satisfaisant aux conditions qui en font (par le
théorème 3.1.) des générateurs à droite d'un mouvement, au sens de (L) sur Aa:

a) le domaine de Ta contient Aa et è aArT Aa+a;
b) la restriction de Ja(a) à Aa est essentiellement autoadjointe, fa(a) (n, a) f„(a) ;

c) fa(a) + Ta est autoadjoint, sa restriction à Aa est essentiellement autoadjointe,

r " a) esf continu de (a, a) ;

d) Ja (o+b) eiT"Ja(a) e^iTb+va(a, b), va(a, b) réelle.
Soient Aa- Ar~x le mouvement (unique par le théorème 3.1.) de générateurs à droite

Ja(a) au sens de (L) et de constante R associée aux translations, et XX un mouvement de

même constante R.
Alors si 19TttJ AT XlT,a. Aa1 et si S(a) : a ->- Sa(a) est la représentation ftrojective

induite ftar a -> e'( «(a)+r«) la reftrésentation 71'(a) : a -> 7l'a(a) Aa $a(a) Aâ1 a les

ftroftriétés :

R' (a+ b) 71'(a) X9T+Cia+C %(a) 19T,a %(a)~x,
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R' (a) est une constante covariante relativement à un moment M (no 2) du mouvement
varié 19T,a AT XlT,a Aâx si XX a une constante de tyfte SL(2, C) inhomogène qui définit
R et un moment d'imftulsion M de XX ftar restriction aux translations resft. à un sous-

groufte SL(2, C), et si ftour A dans ce sous-groufte, JA a(Aa) MA fa(a) Mj1 + ga(a, A),
(ga(a, A) réelle), sous les conditions initiales Aa.o E, a0 ftassant ftar un ftoint 0 fixe
ftar les rotations A.

Remarque 4.2. a) Si XX possède les générateurs La(a) au sens de L) sur A„ et si la
restriction de La(a) + fa(a) k Aa est essentiellement autoadjointe, l'adjoint de

' Aa(La(a) + W)) A;x
est un générateur de X9 au sens de L) sur AaAa.

b) Ajoutons qu'en supposant Aa A et en imposant à Ta, Ja(a), Ta + JJa) des

conditions semblables à a), b), c), d) du théorème 3.2. (pour Pa, Ma(a), Pa — Ma(a)
respectivement) on obtient une variante du théorème 4.1. qui s'énonce de manière
évidente: les opérateurs symétriques Ja(a) sont alors des générateurs à droite de

A~x AT au sens de D 1), 2), 3) du no 1.

c) Lorsqu'on ne suppose pas l'existence de générateurs pour XX et Aä1 AT, mais
seulement l'existence d'une constante commune R associée aux translations, on peut
toujours poser les relations 1), 2), 3) de la proposition 4.2., dont on déduit un mouvement

varié AT XlT a Aä1= X9T a et des représentations projectives TV (a) : a -> 7l'a(a)

telles que TV (a + b) 71'(a) et X?T+C, a+c %(a) X9T, a %(a)~x.
Cela donne en particulier la proposition 4.3.
Proposition 4.3. Supposons que XX otit une constante de tyfte SL(2, C) inhomogène

qui définit la constante d'énergie-imftulsion R et le moment M: A -> MA de XX (A
désignant les rotations qui laissent un point O fixe).

Alors les relations 1), 2), 3) de la -proposition 4.2. jointes à la relation

SAb(Aa) MAS„(o)MAx,

et les conditions initiales Aa, 3 pour tout aa de 27 par O, entraînent que le mouvement
varié X9T, „ AT XlT, „ Aä1 possède une constante

TV(a):a-^7ll(a)=A!TSa(a)Aa-1

covariante relativement à M.

PARTIE II

5. Produit tensoriel de mouvements

H{1), H[2i étant deux espaces d'Hilbert, H 7J(1) ® H{2) désignera l'espace d'Hilbert

défini par l'espace préhilbertien Hw ® rï(2) muni de la forme hermitienne (x,f)
telle que

(f®g,h®j) (f,hyxHg,j)w,

(f, A)(1), (g, /)(2) étant les formes hermitiennes de Hm et iî(2) respectivement.
Soient A, B des opérateurs bornés sur Hw resp. H{2) et A ® B l'extension fermée

de A ® B à H.
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Si Xlw, K(2) sont des mouvements sur Hw et iP2) respectivement, U[x}a, tT^des
représentants unitaires de ceux-ci, les opérateurs UTi „ U{xia ® Ux2)a sur H sont des

représentants unitaires d'un mouvement XI- Xl sera dit produit tensoriel de K(1) et
"U<2> et sera noté Xi K(1) ® Xl(2) où XlT,a Xl{x)a ® Ki2)n- (Le produit tensoriel de plus
de deux mouvements se définit de manière évidente).

Généralement, le produit A ® S de deux éléments /4 de p(Hm), B de p(Jï(2))
sera par définition l'élément de p(H{x) ® j?*2') de représentant unitaire A ® B, A, B
appartenant aux rayons unitaires A, B respectivement.

Lorsque Xl{1) possède la constante R'1» : a -> R™, Xl{2) la constante R(2> : a -> R*2',

Il W1' ® K<2) peut s'écrire par la proposition 3.1.

TW (Ri1» ® %2)) (Si» ® Si») R. S»
où

R R<1)®R(2):«^Ri1)®Ri2),

S(<r) SS®Si2):«^Si1,W®Si2)(cr)
sont des représentations projectives, et R : a -> Ra est une constante de K associée

au groupe des translations.
Plus généralement, une constante de K(1) et une constante de même type de XX(2)

déterminent une constante de Xl{1) ® *U<2) qu'on appellera leur produit tensoriel.
Si XXW et Xl{2) ont les générateurs respectifs Max{-(a), M{2)(a) au sens de (77), sur A(X),

A{2\ posons
Mi1'2»(a) Max\a) ® E{2) + JE« ® Mf (a)

£(1) et £(2) désignant les opérateurs identités de Hm, Ì7(2) respectivement ;

MJt1,a)(cr) est considéré comme opérateur symétrique sur A{x) ®A[2). Soient Pj,1»,

Ff> les projecteurs spectraux (qui dépendent de a et a) des opérateurs autoadjoints
Màx)(a) resp. Mf>(a). Les opérateurs autoadjoints L^ff), Li2)(ff) dans H H^ ® 27<2)

dont les projecteurs spectraux sont Pi,1' ® £(2» resp. £(1) ® Ff\ sont des extensions de
Max)(a) ® £(2) resp. E'1' ® Mi2)(o-), et l'opérateur symétrique L{X)(a) + L{2\a) est une
extension de M{x-2)(a). Comme les projecteurs Pj,]) ® £(2) commutent avec les projecteurs

iï(1) ® F{2\ ^(a) et La2\a) sont fonctions d'un même opérateur autoadjoint.
L(x)(a) + L{2\a) possède alors une extension autoadjointe La(a) (7, p. 342) qui est un
générateur de Xlw ® Xl{2) sur Aa A{x) ® zi*2» au sens de (L) si sa restriction M<,1,a)(<r)

à ,/]„. est essentiellement autoadjointe.
D'autre part, si M^cr), M{2)(a) sont des générateurs de XlP, "U<2) au sens de D 1),

2), 3) surZl(1), Zl(2) respectivement, Xl{1) ® Xl[2) a les générateurs M*,1,2»(a) dans le même
sens sur A Aw ® A{2), et c'est le seul mouvement qui possède ces générateurs sur A

par le théorème d'unicité 1.1.
Si /P1» iP2>, Xl{1) Xli2), le produit U™a ® C/W du représentant unitaire [/£>„ par

lui-même transforme en eux-mêmes les deux sous-espaces Hm ®s Hm et Hm ®a H(X)

formés respectivement des éléments symétriques et antisymétriques de l'espace
/P1' ® iP1', d'où l'existence de deux mouvements notés XXm ®s Xlm et *U(1) ®a Xlix) sur
les sous-espaces complétés Hm ®s H1 et J7(1) ®a Hm de H TP1* ® H(2\ Comme pour
le produit tensoriel de deux mouvements, la donnée de générateurs de Xla> détermine
sous certaines conditions des générateurs de Ha) ®s Xl(x) ou Xla) ®a XXm- C'est toujours
le cas si Xlm a des générateurs au sens de D 1), 2), 3) du no 1.
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On définit de manière évidente les produits symétriques R(1> ®s R(1) et antisymétrique

R(1) ®a R(1) d'une constante R(1) par elle-même. Ce sont des constantes de
Wx) ®, Wx) resp. W» ®a Um-

Soit XX un produit de plusieurs mouvements qui peut être symétrique ou
antisymétrique en des facteurs égaux, et formons de même les produits de leurs constantes
de type donné.

Soit Aa- une variation d'un tel produit XX '¦ on appellera générateur d'interaction un
générateur à droite de Aj1 AT-

Construction de générateurs d'interaction

Supposons le mouvement unitaire r/(,), i 1, 2, muni de la constante P(,) : (a, A)
-> Pja,/i) de type SL(2, C) inhomogène. Soient P(î) une énergie-impulsion et Mw un
moment induits par P(,), c'est-à-dire

R": (a, 1) -> P<1»;1) Ä» MW: (0, A) - F<*> „ M?,
et

P P'« ® P<2>, P P(« ® P<2>, M M<D ® M"<2>

les constantes correspondantes de U Um ® U2. Soient encore O le point de M4
fixe par les rotations (0, A), et a0 les 3-plans de 27 passant par O.

Nous allons montrer qu'il existe U, des variations unitaires Aa (avec les conditions
initiales Aas>= E) de U et des générateurs d'interaction correspondants ]a(a), tels que

VT^ ATU^A-X

ait une constante d'énergie-imftulsion R'(a) covariante relativement à un moment M de

U, avec les ftroftriétés :

1) R'n(a) - donc aussi f„(a) - ne commute pas avec Rn (n na normale àa,n2 1),

2) il n'existe pas de représentation unitaire de SL(2, C) inhomogène qui induise la
classe des représentations R'(a) ftar restriction aux translations.

Supposons d'abord les représentations P(,), P(t), M(,) données. Pour Um nous
prenons le mouvement défini par

UT®
7T(») _ Ï?M — p «

a+sn, a sn

qui a les générateurs au sens de (L)

Mf(a) (*, a) 7f
sur le domaine Af A%e Af de Tf, et les constantes F®, R&, M«. Le produit
U rj«1» ® c7<2» est de la forme

et possède les générateurs
La(a) (n, a) T„

au sens de (L) sur le domaine Aa — Aa+C A„ de T„.
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Fixons maintenant un 3-plan t0 par O, de normale n0, n2o 1. Pour construire des

opérateurs Aa et Ja(a) d'un type assez général, satisfaisant à 1) et 2), on peut utiliser
un opérateur autoadjoint et positif B° tel que

a) le domaine de B° contient le domaine A„ de T„ ;' iIq ila'
b) B° + Tm est autoadjoint sur A„t;
c) Ra B° R°~x J3° si (n0, a) 0, MA B° Mâx= P° si A n0 n0.
Ces relations entraînent l'existence d'une fonction a -> B(a) telle que

B(x0) B°, MA B(a) MA x B(Aa), B (a + b) Rb B(a) Rbx,

donc aussi

B(Aa) + T„Aa MA (B(a) + Tn) MA\ B (a + b) + Tn<j Rb (B(a) + T„J Rb~x.

Si l'on pose fa(a) (n, a) B(a), avec n «„., on vérifie directement que c'est un
générateur (fort) à droite, au sens de (L) sur le domaine Aa An de Tn, d'un mouvement

(qui est unique par le théorème 3.1. et qui n'est pas défini comme U par un

groupe unitaire s -> etsT)

A a -n-cr+a ~ e e

et que pour An E, Va+a, „ Aa+a U„+a, „ A~x a l'énergie-impulsion R'(a) R'(a0)
(a a0 + c) covariante relativement à M, définie par

P» R'a(a0) eT'^] eHn'a) ^{a')+T'-) eiT-W.
Si donc P(i), M(i) et B° sont donnés, il suffira de vérifier que R'(a) satisfait aux

conditions 1), 2), ce que nous ferons, l'énergie Tn étant positive, en utilisant essentiellement

le fait que B° est choisi positif et de bonne inférieure non nulle. L'énergie

7»o) />o) + Tn

est positive si Tn l'est, puisque fn(a0) B(aQ) est unitairement semblable à B°.
Pw, M(,) sont donnés de la manière suivante.
Soient afi aq les deux hypersurfaces p2 m2, ft° > 0, q2 m2, mx, m2 4= 0, et d ap,

daq les mesures invariantes correspondantes, H{X), Hi2) les espaces d'Hilbert associés
à ces mesures. Hw s'identifie à l'espace des fonctions de carré sommable f(ft)
f(ftx, ft2, ft3) pour la mesure ljft0 d3ft, de même pour iP2', et Hm ® iï(2) H est associé

à la mesure d ap,q d apd a„. Rm et M(1) sont définis par

*?'(/) (P) =e'pa HP). M$(f) (ft) f(A-x ft)

de même pour P(2), M{2), d'où en particulier

Ra(f) (ft, q) (Pi1' ® Pi2) (/) (ft, q) ei[p+q)a f(ft, q) eT"f

Ta étant comme jusqu'ici le générateur de Stone de s -> Rsa, par la dernière relation

Ta est ainsi l'opérateur de multiplication par (ft + q) a.

t0 étant fixé comme précédemment et de normale n0, n2 1, soient nx, n2, n3 trois
vecteurs orthonormés dans t0 tels que V Tnj, j 0, 1, 2, 3, soit l'opérateur de
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multiplication par ft' + qh Nous désignons par X ou pi les retations (dans SU(2)) de

Mi qui laissent O et n0 fixes, et par a le vecteur (a1, a2, a3) si a (a0, a1, a2, a3).
Soit oc : (ft, q) -> (r, s) une transformation inversible (qui s'identifie à une transformation

inversible de ap X aq) telle que r1 + s1 ft' + q', i 1, 2, 3, a(0, O) 4= (O, O)

et que le déterminant fonctionnel
à (£. |)
à{P. q) '

son inverse, et les fonctions r°lfta, ft^jr", s°lq°, <7°/s°, soient bornés et positifs. Ils s'ensuit

que l'opérateur
A(c,):f(ft,q)^j(c,)(ft,q))

est borné sur H ainsi que son inverse A (a)-1: on a en effet

|j ^(a)/j]2<C|/|[2
où C est la borne supérieure de

ò(p, q)

6=d(r's)=J^r°s0(P0)-1(^-1'
l'adjoint de A (a) est

A(x)* 0.4(a)-1: /(w, v) -> 6(u, v) f(x~x(u, v)),

et comme 0-1 et .4(a)* sont bornés, A^f l'est aussi. De telles transformations a
existent, par exemple

+ Va e-{pi)2 s' q1 - x\2e'^2 ,i 1, 2, 3

iTA(a) et A (a.)* commutent avec e a si x0 + a x0, ce qui provient du fait que

r' + s1 T1 ft' + q' pour i 1,2,3
isT°

mais ne commutent pas avec e

Soit
A° f MxA(cx.)MrxdX

où dX est la mesure invariante sur SU(2). A0 est borné et commute avec les opérateurs

Mx et i ° si Xx0 — x0 t0 + a, il en est donc de même de l'opérateur positif A0* A0.
Mais A0* A0 ne commute pas avec P°, ce que nous allons vérifier.

Si V est un voisinage compact de (0, 0) et cp la fonction caractéristique d'un
ensemble compact qui contient la réunion des ensembles X a X~x pi or1 /jTx V, où X, pi

parcourent SU (2), les restrictions à V des fonctions (éléments de H)

(T° A0* A°<p) (ft, q) et (,4°* A0 7» (ft, q)

sont égales respectivement à

(ft°+q°) f 6(iift,piq)dXdii et / 6(/ip, piq) g0 (X a X~x pi tx.-1 pt~x (p, q)) dX dpi

avec
g°(u, v) u°+ v°, pi(ft, q) (pift, piq)

et sont continues sur V.
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Ces deux fonctions sont des éléments différents dans H si elles diffèrent dans V,
ou encore, par la continuité de leur restriction à V, si elles diffèrent en (O, O). Or il
existe X, pi tels que

X ot. X~xpi a"1 prx (0, 0) X a Xrx pi a"1 (0, 0) 4= (0, 0)

ou
X~x pi a"1 (0, 0) 4- a"1 (0, 0)

puisque arx(0, O) 4= (O, O), ce qui a pour conséquence

(mx + m2) J 0(0, 0) dXdpi< f 0(0, 0) g0 (X oc X~x pi or1 (0, 0) dX dpi

et

(T°A°* A°<p) (0, 0) < (A0* A° T» (0, 0)

en tenant compte du fait que g°(ft, q) ft° + q° a un minimum mx + m2 en (O, O).
Donc A0* A0 ne commute pas avec T°.

L'opérateur B° A0* A0 satisfait aux conditions a), b), c). Mais il en existe d'autres,

positifs, bornés ou non, de borne inférieure non nulle, vérifiant a), b), c) par
exemple A0* A0 + e E et A0* A0 + s T° avec e > 0.

Soit donc B° un opérateur positif, borné ou non, de borne inférieure non nulle,
vérifiant a), b), c), et soit Ja(a) (n, a) B(a).

Comme P,„ eisT° et

R'snJx0) es^{r°) + T»°ï=e's{B°+T°i

ne commutent pas, il reste seulement à voir que R'(a), ou la représentation semblable

R'(r0) : a -> R'a(x) <,»>..«><*'+n eiT>-(«,«)»= eiT'.™

n'est pas la restriction d'une représentation de SL(2, C) inhomogène au sous-groupe
des translations.

Soit X : (a, A) -> X(a>A) une représentation de SL(2, C) inhomogène telle que
X(a, 1) Ra(x0). Si D est un domaine de Gàrding pour la représentation X, on a

Xm2)=2),T;DCD,
Soit P'»' T'nj, j 0, 1, 2, 3, c'est-à-dire

T'° B°+ T°, T'1 T', i 1, 2, 3

L'opérateur A"(0 ^ P'° A^, considéré sur D, est de la forme

(a, T) a0 T'° - (a,T)
où

ao ^ 1> ao — *2 L « («0' ai< a2> a3) -4(1' 0» 0, 0)

- (a, T) axTx + a2 T2 + a» P3.

Si y (> mx + m2) est la borne inférieure de l'opérateur positif B° + T° T'° sur
D, c'est aussi celle de X{0<A) T'° X^XA) égal à (a, T') a0 B° + (a, T) sur D; l'opérateur
(a, T) a0 T° + ax T1 + a2 T2 + a3 T3 est une restriction de Ta, et son domaine
contient D par la dernière identité ; la borne inférieure de (a, T) considéré comme opérateur

symétrique positif sur D est > mx + m2; en effet mx + m2 est celle de Ta sur son
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domaine, puisque cet opérateur est unitairement semblable à P°. Si donc ò > 0 est
la borne inférieure de B° sur D, on aura

y > a0 ò + mx + m2

ce qui est impossible car a0 > 1 peut être arbitrairement grand, donc Xial\ ne peut
pas être égal à R'a(x0).

Le raisonnement précédent démontre évidemment la proposition suivante :

Pro-position 5.1. Soit a -> e1*«1' eia,T^ eta*T' eia*T' une représentation unitaire, qui
est une restriction au sous-groupe des translations a de Mt d'une représentation de

SL(2, C) inhomogène. On suftftose T° positif. Si B° est un oftérateur ftositif, de borne

inférieure non nulle, tel que T° + B° soit autoadjoint et commute avec e*"'71 ftour j
1, 2, 3, alors la reftrésentation a -> ela«(r°+-B°) e"*lT1 ela*T2 e,a'TS ne -peut pas être une
restriction d'une représentation de SL(2, C) inhomogène au sous-groupe des translations.

Si mx m2, on peut montrer d'une manière analogue qu'il existe une variation Aa
du produit P7(1) ®s Um où P7(1) ®a Um (ou d'un produit plus général symétrique ou
antisymétrique en des facteurs égaux) et un générateur d'interaction tels que l'énergie-
impulsion R'(a) du mouvement varié satisfasse aux conditions 1) 2).

Pour mx m2, l'espace Hm que nous avons considéré est l'espace des états à une
particule d'un champ scalaire libre, Hm ®s Hix) celui des états à deux particules.
Généralement, si TV > 2 on construit facilement, sur les espaces ff'"1 à N particules
d'un champlibre de spin quelconque ([11], p. 103), une variation A^ des mouvements de

la forme UH+tni„ Rffl et un générateur d'interaction correspondant, tels que
l'énergie-impulsion du mouvement varié satisfasse à 1), 2). Si on a un nombre fini de telles
variations Aix\ en passant à la somme hilbertienne H des JP'V), on obtient une variation

A^ du mouvement unitaire U(r+ln> a= Rtn, R étant l'énergie -impulsion a -> F^Vl
du champ libre, et une énergie-impulsion R'(cr) du mouvement varié qui satisfait à

1), 2) et qui est covariante relativement au moment M : A -> MA H{0>A) du même
champ libre.

Si on a deux champs libres xpx(x), xp2(x) sur la somme hilbertienne Hx des sous-

espaces H^ï, respectivement la somme hilbertienne H2 de sous-espaces F2N\ et les

mouvements correspondants

U i, a-+sn,a ^i.sn' * 1. *
on peut procéder de manière analogue sur des sous-espaces flW) (au lieu des flW
précédents) de somme H, avec ff<M>-v» H[M> ® H™ (ou H[Mï <§s H[N\ ou H[M1 ®a

H^î si xpx(x), xp2(x) sont identiques), H Hx® H2 (ou Hx ®s Hx, ou Hx ®a Hx), pour
construire une variation A a de U Ux ® U2 (ou Ux ®s Ux, ou Ux ®a Ux) telle que
l'énergie-impulsion R'(a) du mouvement varié ait encore les mêmes propriétés.

Nous montrerons au paragraphe suivant que la donnée de la variation Aa implique
assez généralement une certaine transformation des distributions xpx(x) ® E2, Ex ®
xp2(x).

6. Application H,A°) et N-distributions

A chaque a dans l'ensemble E faisons correspondre un ensemble Ba d'opérateurs
de l'espace hilbertien H. Soit B la réunion des B^ et soit XX un mouvement. Nous
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supposons que Ba XXa,
T BT XlT, a. Si F est dans Ba, nous notons F7 l'opérateur

XlT, a F XXv, t dans BT. En particulier Fa F. L'ensemble des opérateurs FT sera noté
(F) : on a (F) (FJ) (FT) ; c'est la classe de F dans B pour la relation d'équivalence
Xr XlT, a Xa Up, définie par XX entre éléments Xa, XT de B (Xa dans Ba, XT dans

BT,x a + c).

Nous supposerons toujours, lorsque des classes (F) sont données dans B, qu'il
n'existe qu'un mouvement XX qui les définit; ce sera le cas si les B^ sont unitairement
irréductibles, c'est-à-dire: si W est unitaire et W Xa W"1 Xa pour tout A^de Bat
alors W est scalaire.

Soit alors H : T -> 7\T une représentation projective d'un groupe G qui opère
(éventuellement d'une manière triviale) sur 27 en conservant le parallélisme des 3-

plans. Si

BT(r 7lTB<rrir1

et si en outre les classes (F) définies par XX sont permutées entre elles par les applications

(F)->nT(F)7iT1

alors TV est une constante de type G de XI-

En effet, soient F'Tir= Ht Fa- ^r1 les éléments de la classe Ht (F) Ht1': °n a

Htt.To- ^ Ta Uto-.Tt ^ Tx
et

nTuT,afiTx F'^nTU^riT1 =- f'Tt

pour tout P; ainsi les deux mouvements UTr, Ta et Ht lira Wt1 définissent les mêmes
classes dans B pour chaque T et sont donc identiques par nos hypothèses, et H est

une constante de type G de Xl-

Inversement, si H est une constante de type G de XX telle que BTa Ht Ba Ht1,
G opère sur les classes (F) de Xl par les applications (F) -> Ht (F) TXt1-

Soit encore 3(a) J- (a + c) une constante covariante relativement à un moment
M : A ¦> MA de U- Si MA Ba Mt1 BAtT et ?T(<r) Ba JT(a)~x BT<I, et si (X) est

une classe pour XX, les opérateurs

Kr ?r (ff) xr ?r (^)-1. (T a + c)

sont aussi les éléments d'une classe.

Aa étant une variation de XX, les classes (Y) définies par AT XlT,^ Aâ1 dans
l'ensemble C réunion des ensembles Ca Aa B^ Aa1 sont en correspondance biunivoque
avec les classes (X) de XX dans B, par l'application

I(AJ:X<T^Y<r=A<rXvA-1

qui sera dite application d'interaction.
N-distributions. Nous désignons par S„. l'espace de Schwartz [9] (Vol. II) des fonctions

à décroissance rapide sur l'élément a de Z et par S(Mt) l'espace analogue sur
M4. Si/,, est dans Sa. r a + sn (n na, n2 1), la fonction fx fa + sn sera par
définition la fonction de ST telle que/T (x + sn) =/„(*).
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Pour chaque cr nous considérons une famille Ea de distributions
C'a': fa!) "*" <Pa(f<r)> (/ dans l'ensemble d'indices /) sur cr, notées aussi cpf(x), à valeurs

opérateurs de domaine commun D et satisfaisant aux conditions suivantes :

1) q$(fa) D est dans D et
h->(<PlJ](ÜK,h2)

est tempérée pour hx, h2 dans D ;

2) il existe un mouvement XI, et un seul, tel que UTi(T D D (Ur,a représentant
unitaire de XlT „.) et

uT,acp^(uu,,T çp^(fT)

(les opérateurs X§ 9?j/'(/J forment donc des classes pour XX dans l'ensemble P de

ces opérateurs) ;

3 a) pour chaque direction n n^, n2 1, et chaque / dans /, il existe une
distribution g -> xp{ïï(n, g) D sur M4, notée aussi xp{j)(n, x), à valeurs opérateurs de domaine
D, telle que ipV)(n, g) D soit dans D et

g^(xp^(n,g)hx,h2)

soit tempérée pour hx, h2 dans D, et il existe un sous-espace S(n) dense dans S(Mi) tel
que pour y dans S(n), h dans D et tout /, la fonction cp{j\_sn (yja + sn) h de s soit inté-
grable et

xp{j)(n, y) h J cp^+$n (y\a + sn) hds;

((y j cr + sn) signifie la restriction de y à a + sn) ;

b) xp'-J^n, x) et S(n) déterminent univoquement cp^]+tn(x) pour tout t, par les égalités

de 3a) (autrement dit, si cp'{j)(x) satisfait 1, 2, 3 a) pour les mêmes D, xp(j)(n, x) et

SM, alors <p%n(x) =cp^+ln(x)).
L'intégrale de 3 a) ne change évidemment pas si on remplace a par ex + c.

Comme S(n) est dense dans S(Mi), g -> (xp{j)(n, g) hx, h2) est déterminée par les

valeurs qu'elle prend sur S(n).
Les conditions 2) et 3) ont pour conséquence que si S(n) est invariant par les

translations g(x) -> g (x + a), si R : a ->- Ra est une représentation unitaire telle que
RaD D et xpW (n, x + a) Ra xp^(n, x) R~x, alors on a aussi cp%a (x + a) Ra
cp{p(x) R~x d'où le fait que XX est induit par un mouvement unitaire de la forme
üa+sn,o- Rsn- De même on obtiendrait d'autres constantes de XX (de moment M,
d'énergie-impulsion covariante relativement à M, ou de type charge) en utilisant
d'autres propriétés d'invariance ou de covariance de la famille des distributions
xpWfo, x) et des S(n). Inversement RaD Detcp{p+Cl (x + a) Rtt cp^(x) P^entraînent
xp^ (n, x+ a) Ra xp^(n, x) R~x.

Définissons maintenant une N-distribution.
Définition 6.1. Soit N un ensemble sur lequel SL(2, C) opère et M une représentation

unitaire de SL(2, C). A chaque élément a de N, on fait correspondre une
représentation projective

R(oc) : a ~> Ra(oc)
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des translations de M4, et un ensemble fini de distributions g ->c4,- (a, g) sur M4,
i 1, 2, m, notées aussi ci;(oc, x), à valeurs opérateurs de domaine D, telles que
g -> (çf>i(a., g) hx, g2) soit tempérée pour hx, h2 dans D. On suppose

NJ - MAD D,7la (a) D D, 0, (oc, g) D est dans D

N2) 7ìAa(Aa) MA R» M2\h(A«. Ax) "£X(,4) M^ft(oc, x) Mj1
^M+^RJäl^MlRJ«)-1, *

où .4 -> (Sit(^4)) est une représentation de degré w de SL(2, C).
Dans ces conditions, nous appelons l'ensemble fini cf> de ces distributions c£,(oc, x)

une N-distribution; M sera dit un moment d'imftulsion de cf>, l'application R : a -> R(oc)

sera une constante de cf> covariante relativement à M, ou aussi V énergie-imftulsion de
<^ si R(oc) provient d'une représentation unitaire R(a) des translations.

Si MA F(aA), Aa a pour tout A et tout a, Pa(oc) Pa F(a>1), où F : (a, A) ->
^(«,4) est une représentation de SL(2, C) inhomogène, et^,(a, x) <f>,(x), les relations
TVi), TY2) sont de celles qu'on impose à un champ [11, chap. 3]. Généralement, on

pourra ajouter à Nx) et N2) des conditions d'irréductibilité de l'ensemble des opérateurs

ç6,(a, g) (pour chaque a), analogues à celles d'un champ. (Voir par exemple [11]).
N sera dorénavant l'ensemble des directions n, n2 1. Soit ci(*'(«, x) un système

de TV-distributions (indexées par k dans K). On suppose que celles-ci ont une énergie-
impulsion commune R(n), covariante relativement à un même moment M, et qu'il
existe des q>$ (x) qui satisfont aux conditions 1) à 3) plus haut en prenant la famille
des $*'(», x) (i 1 mk, k dans K) pour la famille des tp^(n, x), et pour S(n) des

sous-espaces de S(Mt) invariants par les translations et permutés entre eux par les

applications g(x) -> g(A~xx) (S(A n) comprenant les fonctions g^^1 x) si g(x) est dans
S(n)). XX est alors induit comme on sait par le mouvement unitaire U(T+smtT= Rs(n).
Cela étant, on appellera les çbk(n, x) des N-champs si en outre les tp$(x) sont telles que
TV3) tous les commutateurs [cp{P(fa), çs^ (#„)]_ - ou bien tous les anticommutateurs
Wi](fa)> 9}ai(ga)]+ ~ sont nuls si fff[x) g„(x) 0 pour x dans a.

Aq. étant une variation unitaire de U telle que AaD — D (et An E), par l'application

d'interaction correspondante

I(AJ : <$ (fa) -> Aa cpf (/„) A~x cp'jfj

on obtient de nouvelles distributions cp'a(x) sur a qui satisfont à 1), 2) pour les mêmes
S(n) et Ar UT: a A~x au lieu de UT: a>

mais il n'existe pas nécessairement de xp'm(n, x)
correspondantes telles que 3a), 3b) soient aussi vérifiées (en prenant les cp'^(x) pour
les cp{i)(x)). Cependant, en partant d'un champ xp(x) de spin 1/2, auquel cas D H,
nous allons montrer qu'il existe une application I(A a), un N-chamft xp'(n, x) de même
moment M, et d'énergie-impulsion R'(n), covariante relativement à M, possédant les

mêmes propriétés 1), 2) que R'(a) R' (a + c) du no 5:
1') Rn(n) ne commute pas avec Rn

2') R'(n) : a -> R'a(n) n'est pas une restriction au sous-groupe des translations
d'une représentation de SL(2, C) inhomogène.

La propriété 2') montre en particulier que le TV-champ xp'(n, x) n'a pas l'énergie-
impulsion d'un champ local de Wightman.



460 J. Poncet H. P. A.

Une construction analogue serait possible en partant de deux (ou plus) champs
libres de spin demi-entier xpx(x), xp2(x) sur Hx, H2 respectivement; plus précisément,
la famille des distributions xp®(n, x) xp{')(x) serait formée des distributions

fi,Jx) ®E2,Exêy>2>a(x)

à valeurs opérateurs sur H Hx® H2 (éventuellement Hx ®a H2 si xpx(x), xp2(x) sont
identiques).

Si l'on partait de champs libres tels que D 4= H, une construction d'une application

I(AIT), des A-champs correspondants et de R'(n) telle que 1') et 2') soient vraies,
est possible mais plus compliquée.

Remarque 6.1. Comme la construction de A^ et de R'(n) sera semblable à celle du
no 5, où on écrivait P'(cr) R' (a + c) au lieu de R'(n), on peut remarquer ici déjà
qu'on aura

R-a(n) eiT-™ e'{n'a)(J«M+T»î eiT"~M«, („ «^ n\
si Ra etTa est l'énergie-impulsion de xp(x) et /„(cr) un générateur à droite de A~x AT.

Pour (n, a) 0 et An n on aura aussi

K(n) Ra, MARaMAx=Ra

d'où, une représentation (a, A) -> Ra MA de SU(2) inhomogène. Désignant parcp^x),
cp'a(x) les distributions déterminées sur chaque a de normale n sous les conditions 1),
2), 3) de ce no 6 par xp(x) et xp'(n, x) respectivement, on voit que cpa(x) et xp'a(x) seront
toutes deux invariantes par cette représentation de SU(2) inhomogène:

cpa (Ax + a) S(A) MA Racpa(x) R~x MAX

cp'a (Ax + a) S(A) MA Racpa(x) R~x Mjx

pour (n, a) 0, An n, A -> S(A) étant une représentation spinorielle de degré
quatre de SL(2, C), restreinte ici à un sous-groupe SU(2) de SL(2, C).

Par les dernières égalités, si xp'(n, x) était indépendant de la direction n et
représentait un champ auquel serait applicable un théorème de Haag (11, théorème 4.14,

p. 162), Aa serait constante et I(Aa) triviale. Il en est tout autrement si l'on demande
seulement que le résultat d'une application d'interaction, comme on la définit ici,
soit un A-champ.

Construction de xp'(n, x) et de I(Aa).

Soit at, la surface ft2 (ft0)2 - (ft1)2 - (ft2)2 - (ft3)2 M2, ft0 > 0, et dap sa mesure
invariante. On note ft le vecteur à trois composantes (ft1, ft2, p3).

Nous définissons d'abord le champ xp(x) et les distributions correspondantes cpa(x).

Pour simplifier, nous choissisons un champ xp(x) particulier, mais on raisonnerait de

manière analogue dans un cas plus général.
Soit H l'espace d'Hilbert des paires de fonctions g(p) (gß(ft)), ß 1, 2, muni de

la forme hermitienne

(g, A) / dap Hft) p/M g(ft)
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avec (cf. [11], p. 23)

P ZK T"> T° O.Tl O. *2 C~S). r3 (i_î).

Nous noterons g(ß, ft) pour gfi(p).
On a une représentation F de SL(2, C) inhomogène sur H donnée par

(F(aiA)g)(p) e'**Ag(A;x).

Pour définir ces distributions, nous utilisons des opérateurs bornés r\m,m= 1,2...,
sur un autre espace d'Hilbert H, formant avec les adjointes ?7* une représentation
irréductible des relations d'anticommutation, pour laquelle existent un «nombre» et
un état du vide [6].

Soit gk(p) (gk(ß, ft) une base orthonormée de H. Si f(p) 1/(2 n)2 J" e-ipx f(x) dx
est la transformée de Fourier def(x) dans $(Mi), soit xp~(f) l'opérateur égal à

Zck(*. f) r,H avec ck(cx, f) / dap f(ft) £ (PlM)aß gk(ß, ft)
k ß

Montrons que cette série a un sens.
Soient Ex(ft), E2(ft) des vecteurs propres normes de ftjM, sx(p), e2(ft) les valeurs

propres correspondantes, et

g*(p) hxk(ft) Ex(ft) + h2k(ft) E2(ft) ;

on peut choisir Ex(ft), E2(ft) continus presque partout sur ap; (sx(ft))xl2 hxk(p), (s2(p))xl2

h2k(ft) sont alors deux bases orthonormées de l'espace L2(dap) qu'on peut même supposer

identiques. Comme pjM est positive, et

Bi(P) + e2(ft) 2 ft*\M, sx(ft) e2(ft) 1

on en déduit, par les propriétés de décroissance à l'infini def(ft), que 27|cA(a,/)|2 con-
k

verge et que /27|ct(oc,/|2)W2 est inférieure à la norme, dans L2(dap), d'une fonction

f(ft) u (oc, ft) restreinte à ap, où

«(a, ft) (bx(P)Y>2 Ex(cx, ft) + (s2(ft))x>2 P2(a, ft) ;

27 ck(<x,f) Tjk converge en norme sur H et définit ainsi un opérateur borné de norme

inférieure à /27| ck(a, f) [2\l/2 donc inférieure à celle de f(ft) u (oc, ft) dans L2(dap) :

Il vä(/)ll< il f(P)u(*.P) Il

*p.
| j F(ft) | \a désignant la norme dans L2(dap) de la restriction de F(ft) à ap.

Comme \\f(p) «(oc, p) \\a tend vers zéro si /tend vers zéro dans S(Mi), la
distribution / ->xp^ (f) est tempérée.

Par cette définition de xp^(f), on peut maintenant écrire symboliquement

xp-(x) (1/2 n)2X! àap e-'*" (ftjM) r,k gk(ft)
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Soit encore, de manière analogue,

xp+(x) (1/2tt)2£fdape+i**Ç (ftjM) gk(ft)
k

avec Ç i x2 (_°J), et soit
<W-(x)\

xp(x) xp-(x) © xp+(x) - ip+

Les propriétés d'invariance de xp(x) relativement à SL(2, C) inhomogène se vérifient

immédiatement et tiennent au fait que si (V)jk est une matrice infinie unitaire,
les opérateurs

Vi=Z (F);* % ' %* Z (Viik vi
k k

forment une nouvelle représentation des relations d'anticommutation avec le même
état du vide, et qi'il existe W unitaire sur H, qui ne dépend que de (V)ik: tel que
rj'i W r\i W~x rji* W r\* W*1. En outre, [xp(x), xp(y)}+ 0 pour (x — y)2 < 0 se

vérifie facilement (en remarquant par exemple qu'on peut exiger pour tout p

E2(ft) C Ex(ft) C E2(ft) - Ex(ft))

Nous définissons maintenant cp~,a+sn(x) et S(n), qui avec xp~(x) satisfont aux
conditions 1) à 3) de ce no 6.

Fixons n na et soient (x°, x1, x2, x3) des coordonnées telles que cr soit le plan
x° 0 et n (1, 0, 0, 0). S(n) sera le sous-espace de S(Tkf4) engendré par les fonctions
de la forme g(x) b(x°) B(x) et leurs translatées g (x + a), b(x°) et B(x) étant à
décroissance rapide sur R et R3 respectivement.

Nous écrirons çp~s(x) pour cp~,a+sn(x). Posons

ç£> (B) (ll2n)xl2Z^fdcpe~i^'B(ft)Z(PIM)aßgk(ß,p)

ou

B(p) (1/2 7t)3'2 / ëtl B(x) d3x

Cette série converge en norme pour tout x°. Les sommes partielles, donc aussi sa

somme, sont bornées par

K(B) (ll2n)xl2\\ B(ft) u(*,ft)\\ap,

et K(B) est indépendant de x° et tend versO si B(x) tend versO dans $(R3), ce qui
entraîne que B -> cp~Xi(B) est une distribution tempérée sur R3 pour tout x°.

Par les propriétés de transformation des r/k,

Vâ,x'+s(B) Vscp-xa(B)Vr1

avec Vs unitaire, donc cp~x<,(B) est continue en x°. En multipliant les sommes
partielles de la série représentant cp~x*(B) par b(x°), on obtient des fonctions de x°
inférieures en norme à K(B)\b(x°)\ auxquelles s'applique le théorème de Lebesgue
([2], chap. IV), d'où

/ H*°) <Pl* (B) dx^=^rik f dap b(P°) B(P) £ (ftlM)aßgk(ß, p)
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OU

/ <P«,a+sn {ë(x) \a + sn)ds xp-(g(x))

Par la définition de çp~i!T+sn(x), on a une identité analogue à cette dernière pour
xp~ (g (x + a)), et de même pour xp* (g (x + a)). Donc 3a) est vérifiée. La continuité de

cp~xc(B) en x? et 3 a) entraînent alors 3b).
La condition 2) est vérifiée par le fait que D H et que les fonctions sur ap de la

forme B(ft) u(a, ft) engendrent un sous-espace dense dans L2(dap), l'irréductivilité de

l'ensemble des rjk entraînent celle de l'ensemble Ba des opérateurs cp^a (B(x)), et
l'unicité de U, qui est ainsi donné par Ua+sat a Vs Rsn: où Ra F(a, 1) est l'éner-
gie-impulsion de xp(x).

Soit Aa une variation unitaire de U, et

I(Aa) : cptjx) -Ç& (*) A„çp±a(x) A-x

l'application d'interaction correspondante. Soient

V>'*(n, ë(x)) v4~(w> b(x°)B(x)) / cp'-s(g(x) | a + sn) ds / b(s) cp'~s(B(x)) ds

où

g(x) b(x°) B(x), cp'-s(x) q>'-a+sn(x)

et une identité analogue pour xp'x+ (n, g(x)). Cette intégrale a un sens car ç>'a~ (B(x))
est continue et bornée uniformément en s. Comme

ih'-(n,g(x))\\<K(B)f\b(s)\ds
xp'~ (n, b(x°) B(x)) est une forme bilinéaire séparément continue sur S(R) X S(R3) qui
détermine par le théorème des noyaux ([4]) une distribution tempérée xp'~ (n, x) à
valeurs opérateurs sur H; ces distributions et ü'x<a AT U'B A~x et les mêmes S(n)
satisfont aux conditions 1), 2), 3), ce qui se vérifie comme plus haut pour xp£(x),
<PÎ,a(x)-

Si AT est déterminée par un générateur à droite fa(a) de A~x AT (A~x Aa+snn'est
pas un groupe à un paramètre s comme Uai a+sn et U'„ia+Sn)i qui a les mêmes propriétés

de covariance relativement à P et M du champ xp(x) (avec Ra F(Uil), MA F(0iA))
qu'aux numéros 4 et 5, les distributions xp'^ (x) sont covariantes par M, si A(Ta E,
et

Ä'(w) /*>' ^"HJn^ + Pn) eiTa-(n,a)n_

'+/ \ / y (n'x)
D'où finalement des A-champs

xu'(n, x) xp ~(n, x) © xp'+(n, x) | r•,r r \V {n,x
d'énergie-impulsion R'(n) covariante relativement à M.

Il faut encore montrer qu'il existe effectivement des variations Aa telles que R'(n)
remplisse les conditions imposées 1'), 2').

L'espace H sur lequel opèrent les r\k est somme hilbertienne d'espaces H{N> definis
comme suit :

Hm est l'espace à une dimension engendré par l'état du vide ci0, H1 est l'espace H
utilisé plus haut, et H(N) sera le produit antisymétrique complété de N facteurs Hm.
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En posant que

Vkx Vk2 " '
VkN <f>o

est le produit antisymétrique (élément de H(N)) de N fonctions gk.(ft), j 1 A,
gk(ft) formant la base orthonormale de H H{x) introduite plus haut, on définit les

opérateurs r\k sur H. Ces produits antisymétriques forment une base orthonormale de
/P-v>.

La représentation unitaire F: (a, A) -+F(fitA) relativement à laquelle xp(x) était
invariante provenait de la transformation gk(ft) -> e't"1 A~x gk(Aft) qui se transposait
aux r\k:

Vk ~> £'{a,A) Vk E (a, A) '•

sur Ha\ F se réduit donc à F{aiA) : h(ft) -> e-'f" A-1 h(Aft).
Cela étant, une construction de Aa et R'(n) analogue à celle du no 5 est maintenant

possible sur TP2) (plus généralement sur TPA), A > 2 voir les remarques de la fin du
no 5) au moyen d'une application A (oc) qui transforme un élément de H(2) de la forme

h(ß, Y> P, q) ~ K?> ß> q. P) en h(ß, y, x(ft, q) - h(y, ß, «.(q, ft)

où oc est une transformation inversible de ap x aq identique à celle du no 5.

Le raisonnement restant le même, nous pouvons énoncer le résultat suivant :

il existe un N-chamft xp'(n, x) de même moment M que le chamft donné xp(x), d'énergie-
imftulsion R'(n) covariante relativement à M, et qui -peut être obtenu par une aft-plication
I(Aa) à -partir de xp(x). La classe des reftrésentations R'(n) : a -> Ra(n) n'est -pas
équivalente à une restriction d'une représentation unitaire de SL(2, C) inhomogène au sous-

groupe des translations.
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