Zeitschrift:	Helvetica Physica Acta
Band:	40 (1967)
Heft:	3
Artikel:	Über die Existenz verschiedener Phasen im quasibinären System Bi2Se3-Bi2S3
Autor:	Neumann, G. / Scheidegger, R.
DOI:	https://doi.org/10.5169/seals-113770

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Uber die Existenz verschiedener Phasen im quasibinären System $Bi_2Se_3 - Bi_2S_3$

von G. Neumann¹) und R. Scheidegger

Aus dem Zentrallaboratorium der AG. Brown, Boveri & Cie., Baden/Schweiz

(22. XI. 66)

Zusammenfassung. Anhand der mit Hilfe des Bridgman-Verfahrens hergestellten Präparate wurde im quasibinären System Bi_2Se_3 - Bi_2S_3 das Phasendiagramm aufgenommen und der Verlauf der Gitterkonstanten in Abhängigkeit von der Zusammensetzung bestimmt.

In der Nähe des darstellenden Punktes von $\operatorname{Bi}_2\operatorname{Se}_3$ kann Selen – unter Beibehaltung der hexagonalen Struktur – durch Schwefel substituiert werden. Zwischen 6,6 Mol-% $\operatorname{Bi}_2\operatorname{S}_3$ und $\operatorname{Bi}_2\operatorname{Se}_2\operatorname{S}$ treten eine hexagonale und eine orthorhombische Phase nebeneinander auf. Das Zustandsdiagramm weist hier auf eine Mischungslücke hin. Im Bereich $\operatorname{Bi}_2\operatorname{Se}_2\operatorname{S}$ und $\operatorname{Bi}_2\operatorname{S}_3$ gibt es im wesentlichen eine lückenlose orthorhombische Mischkristallreihe. Während $\operatorname{Bi}_2\operatorname{Se}_2\operatorname{S}$ als Verbindung gesichert erscheint, muss die Existenz von $\operatorname{Bi}_3\operatorname{Se}_7\operatorname{S}_5$ und von $\operatorname{Bi}_2\operatorname{Se}_2$ bezweifelt werden.

Die Gitterdaten werden mit denen der im System Bi_2Te_3 - Bi_2S_3 auftretenden Verbindungen verglichen.

Einleitung

Das quasiternäre System Bi_2Te_3 - Bi_2Se_3 - Bi_2S_3 ist bisher vorwiegend nur in seinen Randbereichen untersucht worden.

Im Teilsystem Bi_2Te_3 - Bi_2Se_3 sind Bi_2Te_3 und Bi_2Se_3 isomorph. In diesem System liegen – wie das Phasendiagramm zeigt – eine kontinuierliche Folge fester Lösungen vor [1]. Diese sind wegen ihres halbleitenden Charakters besonders interessant und daher in neuerer Zeit ausführlich untersucht worden [2–7]. Die Teilsysteme Bi_2Te_3 - Bi_2S_3 und Bi_2Se_3 - Bi_2S_3 sind weniger bekannt. Ihre Randverbindungen sind nicht isomorph, so dass auch in weiteren Bereichen des quasiternären Systems mehrere Phasen nebeneinander vorliegen [8].

Im System $Bi_2Te_3-Bi_2S_3$ kennt man ausser Bi_2Te_3 und Bi_2S_3 auch die Verbindungen Bi_2Te_2S (als Mineral Tetradymit) [9–11] und $Bi_8Te_7S_5$ [12]. Sie kristallisieren rhomboedrisch und gehören wie Bi_2Te_3 und Bi_2Se_3 der Raumgruppe D_{3d}^5-R 3*m* an. Der synthetische Tetradymit besteht aus zwei hexagonalen Phasen. Eine kann dem Bi_2Te_3 zugeordnet werden, während die andere $Bi_8Te_7S_5$ entspricht. Über ihre Phasendiagramme ist von verschiedenen Autoren berichtet worden [13–15]; diejenigen des Systems $Bi_2Se_3-Bi_2S_3$ sind bis jetzt von BEGLARYAN und ABRIKOSOV [16] und D'YACHKOVA [17] aufgenommen worden. Sie entsprechen einander und zeigen zwei –

¹) Jetzt: Philips Zentrallaboratorium GmbH., Hamburg (Deutschland).

durch einen eutektischen Punkt getrennte – Bereiche, in denen sich Mischkristalle bilden. Aus dem unstetigen Verlauf der thermoelektrischen Eigenschaften und der Mikrohärte in Abhängigkeit von der Zusammensetzung haben Beglaryan und Abrikosov auf die Existenz der Verbindungen Bi₂Se₂S und Bi₂SeS₂ geschlossen. GRAM-BERG und NEUMANN [18] führten ähnliche Untersuchungen durch, die ebenfalls auf Bi₂Se₂S schliessen lassen, aber auch einen Hinweis auf Bi₈Se₇S₅ geben (unstetiger Verlauf des spezifischen Widerstandes in Abhängigkeit von der Zusammensetzung).

Die abweichenden Ergebnisse der genannten Autoren haben uns zu der vorliegenden Untersuchung veranlasst.

Kristallpräparation und Messverfahren

Für die Herstellung der Präparate liess man die stöchiometrisch eingewogenen handelsüblichen, 99,999% reinen (S = 99,99%) Elemente in evakuierten und abgeschmolzenen Quarzrohren (Vakuum $< 10^{-4}$ Torr) bei 440 °C reagieren. Anschliessend wurden die Reaktionsprodukte in einem Schwingungsofen 15 Stunden lang bei 850 °C homogenisiert und erstarrten dann während einiger Minuten gerichtet in den schräggestellten Ampullen. Hernach schmolz man die in weitere evakuierten Ampullen gebrachten Rundstäbe nach dem Bridgman-Verfahren um (Erstarrungsgeschwindigkeit 8 mm/h). Die endgültigen polykristallinen Präparate waren bei einem Durchmesser von 10 mm etwa 100 mm lang und enthielten bis zu einigen cm ausgedehnte Einkristallite.

Für die weiteren Untersuchungen kamen nur solche Proben in Frage, die ausreichend homogen waren. Sie wurden mit folgendem Verfahren ausgesondert: Aufnahme eines Profils des spezifischen Widerstandes bei 20 °C, 90°-Drehung des Probestabes um die Längsachse und Aufnahme eines zweiten Profils. Die entsprechenden Werte der beiden Messreihen wurden gemittelt und so über die Kristallitbereiche ausgeglichen. Als ausreichend homogen galten nur solche Präparate, deren spezifische Widerstände über die Stablänge weniger als 20% vom Mittelwert abwichen.

Zur Ermittlung der im System auftretenden Phasen wurden sowohl die Röntgenbeugung als auch die thermische Analyse eingesetzt.

Für die strukturellen Untersuchungen standen die unteren Hälften der Probenstäbe zur Verfügung; gearbeitet wurde mit der Zählrohr- und Filmtechnik (Zählrohrgoniometer Philips Typ PW 1051, Guinier de Wolff-Vierfachkamera, Debye-Scherrer-Kameras mit 114,6 mm und 57,3 mm Durchmesser; Aufnahmebedingungen: monochromatische CuK_{α}-Strahlung, 40 kV und 20 mA).

Die Präparatmittelteile wurden für die thermische Analyse pulverisiert und in Mengen von rund 30 g in evakuierte Quarzampullen eingeschmolzen. Die Temperaturmessung erfolgte mit Hilfe eines an den Erstarrungspunkten von Zn, Sb und Ag geeichten Ni-NiCr-Thermoelementes, dessen heisse Lötstelle, in einem dünnwandigen Quarzröhrchen steckend, in der Mitte der Schmelze angeordnet worden war. Ein registrierender Gleichspannungskompensator ermöglichte eine auf ± 1 °C genaue Temperaturangabe. Im Bereich 800–600°C betrug die Abkühlungsgeschwindigkeit 2 bis 3°C/min. Es wurden nur diejenigen Daten in das Phasendiagramm aufgenommen, deren Aufheizungs- und Abkühlungskurven die gleiche Umwandlungstemperatur aufwiesen.

Messergebnisse

Die Figur 1 enthält die röntgenographischen Auswertungen. Aus ihr geht hervor, dass die hexagonale Phase des Bi_2Se_3 bis zu etwa 27 Mol-% Bi_2S_3 nachweisbar ist. Im Diagramm ist sie allerdings nur bis zu 20 Mol-% eingezeichnet, da bei den höheren Gehalten die Reflexe der Zählrohrdiagramme so schwach und diffus sind, dass sie nicht mehr sicher ausgemessen werden können.

Gitterkonstanten der hexagonalen und der orthorhombischen Phasen im quasibinären System Bi₂Se₃-Bi₂S₃ in Abhängigkeit von der Zusammensetzung. ● nach GOBRECHT et al. [21], ⊙ nach KUSNETZOV et al. [20], ■ nach HOFMANN [19]. △ eigene Messungen.

Die orthorhombische Phase kann von rund 13 Mol-% Bi₂S₃ an sicher nachgewiesen werden (in Fig. 1 aus den gleichen Gründen wie oben ab ca. 18 Mol-% eingetragen). Zwischen Bi₂Se₂S und Bi₂S₃ existiert nur die orthorhombische Phase. Die Gitterkonstanten nehmen mit zunehmendem Bi₂S₃-Gehalt linear ab und folgen damit der Vegardschen Regel.

G. Neumann und R. Scheidegger

Die Fig. 1 enthält ferner Literaturdaten [19–21] für Bi_2Se_3 und Bi_2S_3 . Die Werte von EFFENDIEV et al. [22] für die äquimolare Mischung wurden nicht berücksichtigt, da sie von den übrigen Ergebnissen zu stark abweichen. Die strukturellen Daten der Verbindung Bi_2Se_2S sind in der Tabelle 1 zusammengestellt.

(hkl)	Intensität*)	d _{exp} in Å	d _{ber} **) in Å
020	≫100	5.888	5.85 ₀
120	50	5.220	5.214
210	15	5.168	5.16
220	41	4.10 ₀	4.10
130	$\gg 100$	3.701	3.69 ₃
310	60	3.64	3.642
021	6	3.346	3.342
230	35	3.227	3.227
320	38	3.204	3.20 ₆
040	14	2.925	2.925
?	15	2.891	
410, 301	7	2.792	2.792
240	68	2.60_{7}	2.607
420	23	2.577	2.58 ₀
041	14	2.374	2.376
141	23	2.326	2.32
421	15	2.170	2.17,
520	13	2.137	2.138
002	9	2.046	2.03 ₆
341	14	2.01_{2}	2.01,
151	20	1.998	1.998
530	14	1.97,	1.981
060	≫100	1.950	1.950
*) Int. = Peakhöhe-Untergru	nd; **) berechnet n	mit $a = 11,50$	Å, $b = 11,70$ Å, $c = 4,07$ Å

	Tab	belle 1	
Röntgendaten	der	Verbindung	Bi, Se, S

Im Gegensatz zu den röntgenographischen Resultaten ergibt sich aus dem in Fig. 2 dargestellten Phasendiagramm einerseits, dass die hexagonale Phase bis zur Zusammensetzung Bi_2Se_2S anwesend ist, und andererseits, dass die orthorhombische Struktur bereits bei 6,6 Mol-% Bi_2S_3 auftritt.

Zum Vergleich enthält die Fig. 2 auch das Phasendiagramm nach D'YACHKOVA [17], das mit dem von Beglaryan [16] im wesentlichen übereinstimmt. Der eutektische Punkt, sowie die Schmelztemperaturen, sind in unserem Diagramm eingetragen (\times). Ferner wurden auch die Ergebnisse von GOBRECHT et al. (21) für Bi₂Se₃ (\mathbf{O}) sowie von CUBICCIOTTI (23) (\mathbf{O}) und von GLATZ et al. (24) (\mathbf{A}) für Bi₂S₃ berücksichtigt.

Die Kombination der beiden Untersuchungsbefunde ergibt folgenden Aufbau des Zustandsdiagrammes: Zwischen 0 und 6,6 Mol-% bildet Bi_2S_3 mit Bi_2Se_3 eine feste Lösung (hexagonale Bi_2Se_3 -Struktur). Daran schliesst sich ein zweiphasiger Bereich an (hexagonal und orthorhombisch), der bei 21,5 Mol-% Bi_2S_3 und 679°C ein Eutek-

Phasendiagramm des Systems Bi₂Se₃-Bi₂S₃. × nach D'YACHKOVA [17], ● nach GOBRECHT et al. [21], ● nach CUBICCIOTTI [23] und ▲ nach GLATZ et al. [24]. ○ eigene Messungen.

tikum besitzt und durch die Verbindung Bi_2Se_2S begrenzt wird. Bi_2Se_2S selbst ist einphasig und orthorhombisch. Hierauf folgt eine schmale, nach oben unsicher begrenzte Zone (in Fig. 2 nur gestrichelt gezeichnet). Von da bis zur Zusammensetzung $Bi_8Se_7S_5$ scheint eine Mischkristallreihe zu existieren. In diesem Bereich sind die Wärmetönungen jedoch so gering, dass der Verlauf der Soliduskurve nicht in allen Einzelheiten gesichert ist. Zwischen $Bi_8Se_7S_5$ und 46,6 Mol-% Bi_2S_3 treten erneut feste Lösungen auf. Von da bis zum reinen Bi_2S_3 folgt eine lückenlose Mischkristallreihe, in der die von BEGLARYAN et al. [16] gefundene Verbindung Bi_2Se_2S liegt.

Diskussion

Die Selen-Schwefel-Substitution im System Bi_2Se_3 - Bi_2S_3 kann man sich vorstellen, wenn man mit BEGLARVAN et al. [16] vom Strukturmodell des Bi_2S_3 ausgeht. Das Bi_2S_3 ist mit Sb_2S_3 isotyp; nach HOFMANN [19] unterscheiden sich die Gitter nur geringfügig in den Gitterkonstanten und Metallatomparametern. Unter diesen Umständen dürfen die von KREBS [25] angestellten Überlegungen über die Bindungsverhältnisse des Sb_2S_3 auch auf das Bi_2S_3 übertragen werden (Fig. 3).

Im Bi_2S_3 bilden die Atome fadenförmige, aus Sechserringen bestehende Moleküle. Diese sind hauptsächlich durch Resonanzbindungen derart miteinander gekoppelt, dass zwei nebeneinander liegende «Fadenmoleküle» zu einem Band mit der Bruttozusammensetzung (Bi_2S_3)₂ verknüpft werden. In der Resonanzkette (Pfeile in Fig. 3) ist das S^I-Atom zentral eingebaut und sorgt für eine Faltung des Moleküls, während die S^{II}- und S^{III}-Atome bevorzugt an Bi-Atome gebunden sind und nur schwache Resonanzbindungen eingehen. Es ist daher zu erwarten, dass beim Ersatz des Schwefels durch Selen zuerst diese Plätze besetzt werden. Dadurch wird die Resonanz nur unwesentlich gestört, die Molekülfaltung bleibt erhalten und ausserdem bietet das Gitter an diesen Stellen den meisten Platz für den Einbau grösserer Atome an. Mit zunehmendem Se-Gehalt entsteht schliesslich Bi₂Se₂S, welches offenbar wegen der Sonderstellung des S^I-Atomes isotyp mit Bi₂S₃ ist.

 $\operatorname{Bi}_2\operatorname{S}_3$ -Gitter (analog dem $\operatorname{Sb}_2\operatorname{S}_3$ -Gitter nach KREBS [25], Sb ersetzt durch Bi). Links oben: Perspektivische Darstellung eines Gitterbereiches. Die Schraffur deutet die bandartige und gefaltete Atomanordnung an. Links unten: Darstellung der Bindungsverhältnisse innerhalb eines Bandes nach der Oktett-Theorie. Rechts: Darstellung des Gitters in kotierter Projektion auf die (001)-Ebene. *a* und *b* geben die Lage zweier orthogonaler Achsen an. Die römischen Ziffern kennzeichnen Atome in verschiedenen Bindungszuständen. Die Zahlen geben die Atomabstände in Ångström an. «Se» bezeichnen substituierte S-Atome als Beispiele (vgl. Text).

Werden weitere Se-Atome eingebaut, so müssen sie schliesslich auch die S^I-Positionen belegen. Dadurch geht die Faltung des orthorhombischen Gitters verloren, Vol. 40, 1967

und es bildet sich eine neue, hexagonale Phase aus. Mengenmässig ist sie zunächst dem Se-Angebot proportional. Die Präparate werden zweiphasig, indem neben orthorhombischen $\text{Bi}_2\text{Se}_2\text{S}$ eine hexagonale Struktur mit der mutmasslichen Formel $\text{Bi}_2\text{Se}_{2,8}\text{S}_{0,2}$ (entsprechend 6,6 Mol-% Bi_2S_3) vorliegt. Wahrscheinlich gibt es zwischen diesen beiden Zusammensetzungen eine Mischungslücke, die im Phasendiagramm der Fig. 2 wegen der zu kleinen Wärmetönung nicht deutlich zum Ausdruck kommt.

Unterschreitet der Bi_2S_3 -Gehalt 6,6 Mol-%, so kann man die entstehenden Kristalle als feste Lösungen von Bi_2S_3 in Bi_2Se_3 auffassen, indem die S-Atome statistisch auf alle Se-Plätze verteilt in das Gitter eingebaut werden.

Mit Hilfe dieser Modellvorstellung kann der Aufbau der Verbindung Bi₂Se₂S zwanglos erklärt werden. Es ist jedoch schwierig, auch die Zusammensetzungen Bi₈Se₇S₅ und Bi₂SeS₂ einzuordnen, denn zwischen Bi₂Se₂S und Bi₂S₃ ist zunächst stillschweigend eine statistische Verteilung der Se-Atome auf S^{II}- und S^{III}-Plätze vorausgesetzt worden. Man kann jedoch annehmen, dass die Differenzen in den Bindungsabständen der S^{II}- und S^{III}-Atome zu den benachbarten Bi-Atomen (Fig. 3) für unterschiedliche Bindungsenergien sprechen. Daher sind verschiedene Besetzungsdichten dieser beiden S-Plätze mit Se-Atomen denkbar, die in den Fällen Bi₈Se₇S₅ und Bi₂SeS₂ besonderen Ordnungszuständen entsprechen könnten. Die Röntgendiagramme haben jedoch keinen derartigen Hinweis gegeben, so dass zur Zeit nur die Existenz von Bi₂Se₂S als gesichert gelten darf. Bi₂Se₂S unterscheidet sich grund-

			$\mathrm{Bi_2Se_3} ext{-}\mathrm{Bi_2S_3}$			
Struktur-	Bi ₂ Se ₃	Bi ₂ Se ₂ S			Bi ₂ S ₃ **)	
daten	. (2 18		2 2		Lit. 19	Eigene Messungen
Raumgruppe	$D_{3d}^5 - R \overline{3}m^*)$?, (orthor	hombisch)		D_{2k}^{16} -Pnma	D_{2h}^{16} -Pnma
a	4.15	11.50			11.13	11.15
b		11.70			11.27	11.33
С	28.69	4,073			3.97	3.98
c/a	6.91 ₃	0.354			0.356	0.355 ₅
a/b	-	0.982			0.987	0.984
		8 2 ¹¹ 2.11	$\mathrm{Bi_2Te_3} ext{-}\mathrm{Bi_2S_3}$			
Struktur-	Bi ₂ Te ₃	Bi, Te, S		$\mathrm{Bi_8Te_7S_5}$	Bi ₂ S ₃ **)	
daten	-	Bi ₂ Te ₃ -	- Tetradymit-	Lit. 11	Lit. 19	Eigene
		Phase	Phase			Messungen
Raumgruppe	$D_{3d}^5 - R \overline{3}m^*)$?,*)	?,*)	?,*)	D_{2h}^{16} -Pnma	D_{2h}^{16} -Pnma
a	4.385	4.35 ₂	4.228	4.22	11.13	11.15
b		-	-		11.27	11.33
С	30.48 ₈	30.262	29.54 ₈	29.49	3.97	3.98
c/a	6.952	6.95_{3}	6.988	6.98 ₈	0.356	0.35 ₅
a b		-	-	_	0.987	0.984
*) C 33-Typ;	**) D5 ₈ -Typ.					

Τ	a	be	ell	e	2	

Gitterkonstanten (in Å) bekannter Verbindungen in den quasibinären Systemen Bi₂Se₃-Bi₂S₃ und Bi₂Te₃-Bi₂S₃.

legend vom $\text{Bi}_2\text{Te}_2\text{S}$. Der Tetradymit (vgl. Tabelle 2) ist hexagonal und tritt, wenn er synthetisch hergestellt wird, stets zweiphasig auf [8, 11]. Beide Phasen besitzen sehr ähnliche Schichtstrukturen. Eines der beiden Gitter entspricht den Vorstellungen LANGE's [10] vom natürlichen Tetradymit und hat die Schichtfolge -Te/Te-Bi-S-Bi-Te/Te-. Die Verbindung $\text{Bi}_8\text{Te}_7\text{S}_5$ ist eng mit diesem Aufbau verwandt. Die Schichten der anderen Phase sind grundsätzlich gleich wie im Bi_2Te_3 , doch sind die S-Atome statistisch auf alle Te-Plätze verteilt.

Für die Durchführung der präparativen Arbeiten danken wir den Herren ARNOLD, BÄCHLE und BATLINER, sowie Herrn CHECCACCI für die Mithilfe bei der Herstellung der Röntgenaufnahmen.

Literaturverzeichnis

- [1] MCHUGH, J. P., und Tiller, W.A., Trans. AIME 215, 651 (1959).
- [2] LACHANCE, M. H., und GARDNER, E. E., Adv. Energy Conv. 1, 133 (1961).
- [3] BLAND, I. A., und RASINSKI, S. J., Can. J. Phys. 39, 1040 (1961).
- [4] BIRKHOLZ, U., und HAAKE, G., Z. Naturf. 17a, 161 (1962).
- [5] MILLER, G. R., CHE-YU LI und SPENCER, C. W., J. Appl. Phys. 34, 1398 (1963).
- [6] NAKAJIMA, S., J. Phys. Chem. Sol. 24, 479 (1963).
- [7] BIRKHOLZ, U., und HAAKE, G., Z. Naturf. 18a, 638 (1963).
- [8] NEUMANN, G., und Scheidegger, R. (unveröffentlicht).
- [9] HARKER, D., Z. Krist. 89, 175 (1934).
- [10] LANGE, P. W., Naturwiss. 27, 133 (1939).
- [11] SOONPAA, H. H., Techn. Rep. Nr. 1, Cont. Nr. 1589 (14); Off. Nav. Res., Washington 1960.
- [12] SOONPAA, H. H., J. Appl. Phys. 33, 234 (1962); 33, 2542 (1962); J. Phys. Chem. Sol. 23, 407 (1962).
- [13] AMADORI, M., Gazz. chim. ital. 48 II, 42 (1918).
- [14] BEGLARYAN, M. L., und ABRIKOSOV, N. KH., Doklady Akad. Nauk. SSSR 129, 135 (1959).
- [15] GRAMBERG, G., und NEUMANN, G., Helv. phys. Acta 36, 810 (1963).
- [16] BEGLARYAN, M. L., und ABRIKOSOV, N. KH., Doklady Akad. Nauk. SSSR 128, 345 (1959).
- [17] D'YACHKOVA, J. B., Trudy Inst. Mineral., Geokhim. i. Kristallokhim. Redkikh Elementov No. 7, 150 (1961).
- [18] GRAMBERG, G., und NEUMANN, G., Phys. Verh. DPG 4, 116 (1964).
- [19] HOFMANN, W., Z. Krist. (A) 86, 225 (1933).
- [20] KUSNETSOV, V. G., und PILKANA, K. K., Russ. J. Inorg. Chem. 8, 624 (1963).
- [21] GOBRECHT, H., BOETERS, K. E., und PANTZER, G., Z. Physik 177, 68 (1964).
- [22] EFFENDIEV, G. A., und KARPISHNA, N. B., Uch. Zap. Azerb. Gos. Univ. Ser. Fiz.-Mat. i. Khim. Nauk (1960) No. 4, 73.
- [23] CUBICCIOTTI, D. J., J. Phys. Chem. 66, 1205 (1962); 67, 118 (1963).
- [24] GLATZ, A. C., und MEIKLEHAM, V. F., J. Elektrochem. Soc. 110, 1231 (1963).
- [25] KREBS, H., Z. Electrochemie 61, 925 (1957).