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Determination of Phenomenological a-a-Potentials
from Scattering Data

by J. Benn and G. Scharf
Physik-Tnstitut der Universitat Ziirich

(1. XI. 66)

Summary. By means of the Gelfand-Levitan solution of the inverse problem in the scattering
theory a-a-interaction potentials were calculated from the experimental phase shifts.
The potentials obtained in this way reproduce exactly the given phases.

I. Introduction

The problem of determining unique interaction potentials from scattering phase-
shifts, the so-called inverse problem, has attracted large interest in nuclear physics.
The problem has been solved mathematically by the fundamental work of GELFAND
and LeEviTAN [1]. However to our knowledge this mathematical solution has never
been applied to a real collision problem [2]. Potentials are usually determined by
fitting parameters in a given analytic expression. This method of calculation may be
convenient, but there is a serious drawback in that the results depend on the choice
of the particular shape of the potential. Consequently each author gets his “own”
potential. In contrast, if one uses the Gelfand-Levitan theory, it is possible to calcu-
late unique potentials, which reproduce exactly the given phases.

In the following work this is demonstrated for the case of a-a-scattering. The
theory to be used is the version of MARCHENKO [3]. Since the original theory is related
to short range potentials a modification due to the Coulomb interaction is necessary.
The method is described in the next section.

The a-a-problem is favourable for this analysis for several reasons: By the direct
measurement of the 8Be ground state [4] the last gap in the low energy elastic scatter-
ing phase shifts has been closed. Therefore fairly good experimental phase values over
the whole interesting energy region are now available. Owing to the spin 0 of the o-
particle only scalar potentials must be considered. Since low energy inelastic channels
do not occur, the scattering at low energies may be described by the relative motion
of the two a-particles without internal excitation. Then at larger distances the long
range part of the nucleon-nucleon-interaction plays the most important role in the
a-a-interaction. The potential model gives interesting information to this direct
interaction. At shorter distances nucleon exchange between the two a-particles
contributes strongly and makes the effective potentials /-dependent.

The theoretical background will be given in the second section. In the third section
details of the calculation and the results are presented. The last section is devoted
to a discussion of the results.
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II. Theoretical Background

We start by writing down the main relations of the Gelfand, Levitan, Marchenko
theory, which will be used later. For details of the theory we refer to [3, 51.

First let us consider S-scattering by a short range potential V(7). Let f(%,7) and
f(— k,#) be solutions of the radial Schrodinger equation

a2 B2
[oi =V +Rp =0 (55 =1) (1)
defined by the asymptotic conditions
lim %7 f (L k) =1, (2)
These solutions form a fundamental system; hence a regular solution ¢(%, 7) satisfying
@(k, 0) =0

can be written as a linear combination

ot 1) =t ) — 12D sk R0,

(= £, 0)
From (2) we find the asymptotic behaviour
Cikr RO iy |
@k, 7) ~ e — f(fi—k“())) g 7 —> 00 (3)
and from this the connection with the phase shift (k) and the S-matrix S(%) respec-
tively: f(k, 0) 2 6(k)
k0 Sk = : (4)

It is a very important feature of the theory, that f(k, #) possesses a representation
f(k, 7) = e~ 4 f K(r, ) e di (5)

by means of a so-called orthogonalizing kernel K(r, ¢), which is independent of k.

Inserting (5) into (1) one obtains by partial integrations among other things the
lati

e — 2280y (6)

The inverse problem is therefore reduced to the determination of K(r, 7).
For K(r, t) various integral equations can be derived. The one suited best for our
purpose is the Marchenko equation, which follows from Parseval’s equation for the
b 7): >
K(f,zf)zjF(t+x)K(r,x)dx+F(t+r) 0<r<t (7)
with

Fit) = 5 f [S(k) — 1] &% dk. (8)

In this relation it is assumed that no bound states occur. Through (4) the scattering
phase shift §(%) appears directly in (8). Consequently equations (8), (7) and (6) form
the solution of our problem. Equation (7) is a Fredholm integral equation for K(z, )
as a function of ¢ with 7 entering as a parameter. Hence for every point, where the
potential is to be determined, an integral equation (7) has to be solved.
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In case of the a-a-scattering the above relations cannot be used without modifi-
cations, since we deal with charged particles and therefore the long range Coulomb
potential is superposed to the nuclear potential. Consequently it is not the phase
d(k) appearing in (4), which is experimentally measured, but rather phases d;(%) rela-
tive to Coulomb waves, which are defined as follows: Let F(r, p) be the regular and
G,(n, o) the irregular Coulomb function of angular momentum /, where ¢ = & - » and
7 = 2 e%/k. Then

W, 0) = ¢ (G £ 0 F) (9)

1s the incoming resp. outgoing Coulomb wave, where o,(») is the Coulomb phase. Now
the regular scattering solution 9, behaves asymptotically as

p, ~ ™) — &0 P cul T = ik, 7) . (10)

07 are the experimentally measured phases. The phase d(k) to be used in (4) and (8)
resp. can be obtained from the §7(%) for every / in the following way:

Let R be chosen so large, that for » >> R the nuclear potential can be completely
neglected in comparison with the Coulomb potential. Now we calculate the phase
d(k), which would produce a potential being identically zero for » > R and equal to
the sum of Coulomb, centrifugal and nuclear potential for » < R. Matching the
logarithmic derivatives of (10)

d c . sin 6? ) G’l + COS 65 ) F;
2 g yilk, 7) = — 07+ Gy+cos 07 - Fy Y
and (3)

d
<, logw(k, v) =k ctg (6 + kr)
at the point R, one obtains:

tg(a(k) +k‘R) E ’ Ft_;_tgréif;G[;R* Fl-q-tgé‘j-G; lQ:kR.

_ 1 Fi+tgdiG, | _ Fi+tgd- G (._ d) (12)

The phased(k) so determined can be directly used in (8) for every angular momentum.
We then calculate for » < R the sum of the nuclear, centrifugal and Coulomb poten-
tial. Apart from the evident arithmetical convenience this procedure offers consider-
able advantages from the physical point of view. The inclusion of the Coulomb
potential is desirable, since its calculation for shorter 7 is uncertain due to the finite
size of the a-particle. The inclusion of the centrifugal potential for higher / values
diminishes the strong attraction of the nuclear force. As a consequence the calcula-
tion becomes easier. If R is greater than the range of the nuclear force, the result may
depend on R only by numerical inaccuracy.

The phases for all energies from zero to infinite enter into the Fourier transform
(8). Therefore one has to find a physically acceptable way to extrapolate to high
energies. The procedure is obvious looking at the curves of d(%) calculated according
to (12) (see Fig. 1). All phases for energies up to 35 MeV go over into well-defined hard-
core phases. From the slopes of the tangents through the origin we find reasonable
values of the hard-core radius R, of about 1.2 fm. The comparison between the points
of contact at 34-35 MeV with the lowest inelastic threshold at 34.73 MeV [*He («, 9)

18
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’Li] shows, that we may justly consider the a-particle as not internal excited up to
this energy. The hard-core phase
Opore = — B * R,

core

can te subtracted from the phases (k) and the potential is calculated only for the
region R, <7 < R.

k) F/Rad]

12r

100 200 300 350 EuslteV

7 8 9 10 11 12 13kd0"?
fem)

Figure 1

“Ideal” phases 0(k) related to the cut-off potentials for ! = 0,2. The straight lines show the
hard-core phases.

In case of the S-phase even the low energy values have to be treated with care.
Below E,,, = 400 keV the very sharp Be® ground state resonance has to be considered.
Unfortunately we do not know correct phase values in this region. We only can fit
two parameters (position and width of the resonance) in an appropriate theoretical
expression. For the purpose of extrapolating towards zero energy one might use the
effective range theory [6]. But the validity of this theory in the neighbourhood of the
sharp resonance is a priori doubtful. We therefore choose a different approach. We
use a rigorous representation of the phase due to REGGE [7]. The S-phase shift of a
potential of finite range R can be written in the following form:

N’
2 kN k
o(k) = — kR — Zarc g +Earc tg - +2arc tg R (13)
The sums run over all poles of the S-matrix, the first one over all bound states at
energies E, = — x>, the second one over all virtually bound states at E, = — x,*

and the third one over all resonances at &, = &V + ¢ 2 ; &), k® > 0. In view of
(13) we transform (12) as follows:

0(k) = — kR + arc tg (F + 5 ~-——1——) = — kR + arctg 2 + arctg H (14)
F  F2 ctgde(k) +G/F F
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with R - — (15)
F*+ F?  ctgdc + G|F+ F[F (F2+ I'%)

The first two terms in (14) are caused by the cut-off Coulomb potential alone, the

third one represents the contribution of the nuclear potential. Since below 400 keV

apart from the very sharp 8Be ground state only pure Coulomb scattering has been

found experimentally [8], we may assume, that in this region only one pole of the

S-matrix contributes to H. We take its parameters from the ground state data E,,

I'T4]. Inserting 5 ] )2
) = arc tg Eio-—?
into (15) and taking the Coulomb functions at the position of the ground state, we
have A-T2
H = E,+B-Tj2—F® (16)
with : |
R PR
24+ F? |g R F o F(F2+F) g,k
Hence by cutting off the Coulomb potential, the ground state shifts to lower energies
B is ti ; ”
(B is negativ) E,— E,+ B é (17)
and becomes wider "—A-T. (18)

From (13), (14), (15) we now have the following expression for the S-phase

T k2 &,

Eé—k2 (Eﬂ - kg) ] (19)

0(k) = — RR 4 arc tgl;— + arc tg
which we use below 400 keV.

III. Treatment of the Data, Results

The experimental data on which the calculation was based are taken from [4, 8
and 9]. We have independently determined the effective S-, D- and G-potential. The
experimental points were always connected by smooth curves. In order to test the
influence of the experimental errors we have chosen lower and upper limiting curves
as inferred from the errors and have repeated the calculation with these datas. The
calculations were made on the CDC 1604/1604-A computer of the ETH-Rechen-
zentrum, Zurich.

The evaluation of the formulae (6), (8), (12), (19) followed standart procedures.
The Coulomb function program was composed by methods given in [10]. The integral
equation (7) was transformed into a linear algebraic system, the solution of which is
also possible on smaler computers, if one makes use of an iterative procedure. In this
respect the Gauss-Seidel-method was successful, whereby one takes in the zeroth
approximation the solution of the last equation stepping in » from larger to smaler
distances. Concerning the solution of (7) it is convenient to choose the cutoff radius R
as short as possible. We have taken R = 7 fm for the D- and G-potential. In case of
the S-potential on the other hand the ground state width increases if R decreases
according to the increase of 4 in equations (16), (18). This implies that the ground
state pole moves to higher imaginary parts and therefore becomes less predominant
compared with the other poles due to the nuclear potential. Under these circumstan-
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ces our one-pole-approximation becomes quite bad and therefore R should not be

chosen too short in the case of the S-phase. We have taken R = 15 fm.
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All potentials were tested by numerical integration of the Schrédinger equation.
The phase values obtained agree with the input data (see Fig. 2 and 3) up to an
error less than 1.5 degrees (also in case of the G-potential!). The computation of the
sharp ground state causes some difficulty. Only its position can be calculated directly.
The calculation of its width I" however would require a much greater arithmetical
accuracy. Therefore we have determined /" from equation (17) by looking for the
passage of the last term in (19) through #/2. Our potential gives E, = 92.08 keV and
I'="7.18 eV compared with the experimental values: E, = 92.12 4 0.05 keV and
I'=68 + 1.7 eV [4].

V(r])k
MeV,
[e4_

r
[FERMI]

\

°\D//
D/
/ Figure 4

! = 0 potential together with ‘‘lower’ (squares) and ‘“‘upper’’ (cycles) values due to the errors of
the experimental phases.

Numerical values of the potentials (see Fig. 4 and 5) are listed in Table 1. The
Coulomb potential is always included, but the centrifugal potentials were substracted.
The given errors are related to the experimental errors. They were found by calcula-
tion with the phase values from the limiting curves as inferred from the experimental
errors. Particularly the outer part of the tail, the transition into the Coulomb poten-
tial 1s sensitive against small variation of the phases (see Fig. 4). At distances larger
than 7 fm we found pure Coulomb force. For the G-potential no errors were calculated,
because this potential is physically not very significant, although it is mathematically
correct. We shall return to this point in the next section. The D-potential seems to
show no smooth transition into the hard-core at 1.43 fm. But this is only due to the
subtraction of the centrifugal barrier.
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Figure 5

I = 0, 2, 4 potentials together with ““lower” values of the / = 2 potential due to the errors of the
experimental phases.

Table 1
S-Potential D-Potential G-Potential
Radius » V(7) Radius » V(r) Radius » V()
(fm) (MeV) (fm) (MeV) (fm) (MeV)
1.2037 + o0
1.3037 +4.329
1.4037 3.862 1.4307 + 0
1.5037 3334 + .5 1.5307 —31.607 + 5.0
2.769 —28.912 1.6049 + oo
2177 —26.652 1.7049 —201.25
1.564 —24.705 1.8049 —182.03
0.9299 —22.978 1.9049 —147.23
2.0037 0.2736 + .2 2.0307 —21.406 + .5 2.0049 —107.08
—0.4046 - —19.939 — 70.322
—1.103 —18.547 — 42.253
—1.804 _ —17.208 — 26.335

—2.491 —15.914 — 19.263
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S-Potential D-Potential G-Potential
Radius » V() Radius » V(7 Radius # V()
(fm) (MeV) (fm) (MeV) (fm) (MeV)
2.5037 —3.148 + .05 2.5307 —14.660 + 1.5 2.5049 16.391
—3.761 —13.447 16.651
—4.314 —12.278 18.027
—4.793 —11.159 19.496
—5.180 —10.092 20.031
3.0037 —-5.460 4+ .1 3.0307 — 9.084 + .8 3.0049 20.044
—5.626 — 8.135 18.547
—-5.676 — 7.247 16.048
—5.611 — 6.421 12,913
—5.435 — 5.655 9.558
3.5037 —5.158 + .04 3.5307 — 4947 + 4 3.5049 6.454
—4.795 — 4.295 3.838
—4.369 — 3.693 1.924
—3.907 - 3141 0,7177
—3.420 — 2.633 0.1677
4.0037 —2.920 + .02 4.0307 — 2.166 4 4 4.0049 0.1318
— 2417 - 1.737 0.4280
—1.920 — 1.343 0.8742
—1.445 — 0.9816 1.285
—1.007 — 0.6510 1.547
4.5037 -0.6110 4 .1 4.5307 — 0.3493 + 2 4.5049 1.565
—0.2578 — 0.0753 1.347
+0.0541 + 0.1720 0.9254
0.3286 0.3932 0.3894
0.5620 0.5886 0.1574
5.0037 0.7512 + .3 5.0307 0.7585 + .5 5.0049 0.6301
0.9012 0.9029 0.9461
1.017 1.022 1.087
1.103 1,115 1.045
1.161 1.183 0.8681
5.5037 1.194 4+ .3 5.5307 1.225 4 .5 5.5049 0.6149
1.204 1.242 0.3540
1.197 1.234 0.1555
1.182 1.202 0.0547
1.156 1.146 0.0804
6.0037 1.121 4+ 1 6.0307 1.069 £ .5 6.0049 0.2131
1.079 0.9711 0.4259
1.034 0.9244 0.6713
0.9889 0.8986
0.9465 1.077
6.5037 0.9098 + .3 6.5049 1.177
0.8806 1.207
0.8591 1.143
0.8465 1.058
0.9300
7.0049 0.8222
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IV. Discussion .

Comparing the S- and D-potential obtained (Fig. 4 and 5) the strong /-dependence
at shorter distances is most striking. This was already found in earlier phenomeno-
logical studies [11], but without great quantitative certainty. The outer attractive
part of the potentials depends only little on /, especially if one takes the experimental
errors into account.

This situation can be understood with help of the cluster model [12]. In this model
the a-particles are assumed to be in the ground state and unpolarized. The interaction
results from the nucleon-nucleon-interaction which operates between nucleons of the
two clusters. Apart from the Coulomb force the a-a-interaction then consists of a
direct part and an ecxhange part. The direct interaction is independent of /, local
attractive and has a wider range than the /-dependent non-local exchange interaction.
If the former is identified with the tail of our potentials, one gets some informations
about nuclear forces.

Starting with a simple nucleon-nucleon-potential of Gaussian radial shape

V) =Vy e

and assuming a ground state wave function of Gaussian spatial part

et (= 8 E ). ru= 17 et
\ P>

for the a-particle, which is justified by electron scattering experiments [13], one can
immediately calculate the direct a-a-potential. The result is again of a Gaussian form
[14]:

. 4 9 —3/2 ar? . N
Vaa(f) = 16 VO (]_ —+ ?Qa ) exp (mm) == Vl (4 5

/

where g, = 3/4 /2 § is the r.m.s. radius of the a-particle. Fitting the tail of our D-
potential by a Gaussian potential we obtain

b = 1,75 - 104" gai=2 V= — 58,0645 MeV .
With ar.m.s. radiusg, = 1.52 fm [13] of the a-particle this gives for the V-N-potential
a = 3.8 - 10% cm~2 Vo= —11.6 MeV .

The agreement with the values used in [15] a = 4.6 x 10% cm=2, VV, = — 72.98 MeV
1s bad. It seems that a more accurate treatment of the nuclear force is necessary. This
could be done using better phenomenological potentials.

The G-potential shows oscillations. Since this potential gives the correct phase
shift, the calculation must be correct. Probably these oscillations are caused by the
fact that the G-phase becomes different from zero only above 10 MeV and its main
contributions come from energies between 25 and 45 MeV, where only few somewhat
inconsistent experimental phase values exist. Because already inelastic processes
occur in this region the application of the two-body-potential model becomes doubt-
ful. This is also indicated by the fact, that the hard core approximation for the G-
phase in contrast to the S- and D-phase is quite bad. The straight line of the hard
core phase must intersect the ideal phase d(k), which shows that the a-particle is no
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longer tight. We have tried to calculate the G-potential assuming in the outer region
the slope as given by the D-potential. This too gives no physically reasonable poten-
tial.

From the present work we get the impression, that the Gelfand-Levitan theory
is quite appropriate for application of the potential model in a most general and rigo-
rous manner. Since spin-dependent potentials can also be treated in case of particles
with spin, the analysis of various other elastic processes seems to be possible in this
way. Applications of the results to the C*2-problem are in progress.
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