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Zur Formulierung der mathematischen Theorie der natürlichen
Linienhreite1)

von Ketill Ingólfsson
Mathematisches Institut, Universität Zürich

(26. IX. 66)

Summary. The Quantum Field Theory, defined in an infinite space and developed on the ideas
of V. Fock and K. Friedrichs, gives the foundation for a general method of solution for quantum
field problems. The Laplace transform of the time dependent state vector in the Schrödinger
picture is proved to be a solution of the Laplace transform of the wave equation. The conditions
for the identity of the inverse transform of that solution with the original state vector and also
some other rules for the Laplace transformed space will be derived. The method of solution consists

then in the following procedure: 1) The Laplace transform of the wave equation is solved;
2) The solution is retransformed. - The well known physical problem of the emission of light from
an excited electron in a bound state and the corresponding calculation of the line width is to be
treated by means of this method. The following discussion shows, that the conditions for the solution

are fulfilled, if we use the ordinary Hamiltonians in a Hilbert space, corresponding to lowest
order perturbation theory. At the end, the calculation of this solution is briefly pointed out. A
connection to the method of Heitler and Ma is easily found. The use of a Hilbert space,
corresponding to general perturbation theory is sketched.
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Einführung
Eines der wichtigsten Probleme der modernen Feldtheorie besteht im Mangel an

mathematisch einwandfreien Lösungsmethoden. Als ein Beitrag zu der Diskussion
um dieses Thema soll im folgenden eine allgemeine Lösungsmethode besprochen
werden, die auf der Laplacetransformation von Zustandsvektoren im Hilbertraum
beruht. Die Grundlage dazu bildet die Feldtheorie im unendlichen Raum. Als eine

Anwendung dieser Methode wird die formale Lösung für die Auswertung jener
Wahrscheinlichkeitsamplituden untersucht, die für eine Theorie der natürlichen Linienbreite

erforderlich sind. Dieser Teil der Arbeit wird in einem mgölichst einfachen
Hilbertraum ausgeführt.

Zuerst gehen wir allgemein von einigen wichtigen Sätzen über den Raum Laplace-
transformierter Zustandsvektoren aus. Die Feldzustände sollen als Lösungen der
üblichen Wellengleichung hervorgehen. Die grundlegende Annahme der S-Matrix-
theorie, die adiabatische Hypothese, wird hier vermieden, da wir keinen «Randwert»
zu negativ unendlicher Zeit betrachten. Wir nehmen einen Anfangszustand zu einer
endlichen Zeit an, die wir gleich 0 setzen.

Wenn wir den Anfangsvektor ¥/(0) nennen, können wir die zwei Schritte unserer
Lösungsmethode wie folgt beschreiben :

(i) Die Laplacetransformierte Wellengleichung

(g + i H) W(g) W(0) Re(g)>0 (1)

wird in bezug auf den Laplacetransformierten Zustandsvektor W(g) gelöst,
(ii) Der Zustandsvektor W(t) wird durch die übliche Zurücktransformation

£ + »'oo

nt)=^Yi f ee'V(g)dg, i>0 (2)

berechnet.
Das Definitionsgebiet des Energieoperators H sei jetzt mit D(H) bezeichnet. Die

Sätze über die Laplacetransformierten Feldvektoren können dann in dem, was sie

wesentliches über die Lösungsmethode (i)/(ii) auszusagen haben, in dem folgenden
Hauptsatz (A) zusammengefasst werden :

(A) Wenn f(0) ein Vektor des Hilbertraumes ist, gibt es immer eine Lösung der
Laplacetransformierten Wellengleichung (1). Wenn die Bedingung

W(0) e D(H)

auch erfüllt ist, so ist durch die Umkehrtransformation (2) ein Zustandsvektor
W(t) definiert, der die zeitabhängige Schrödingergleichung erfüllt und für t -> 0

gegen f(0) strebt.
__

Wenn der Laplacetransformierte Zustandsvektor W(g) für ein physikalisches Problem
bekannt ist, nennen wir das Integral (2) die formale Lösung des Problems.

Die Quantentheorie der Wellenfelder wurde in letzter Zeit von verschiedenen
Autoren so formuliert, dass sie im unendlichen Raum exakt begründet ist. In einer
kürzlich erschienenen Abhandlung hat B. L. van der Waerden [1] im Anschluss an
V. Fock [2] und K. Friedrichs [3] und auf Grund der Distributionentheorie von
L. Schwartz [4] die wesentlichen Züge der Theorie zusammengefasst. Es wird eine
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mathematisch einwandfreie Formulierung der Quantentheorie gegeben, die sich weder
der üblichen Periodizitätsbedingungen (Feld im «Kasten») noch der indefiniten Metrik
bedienen muss. Der Inhalt dieser Abhandlung, besonders der Abschnitt über die
Quantisierung des elektromagnetischen Feldes, wird für das folgende als bekannt
vorausgesetzt.

In der Untersuchung dieses Themas von van der Waerden wurden ausschliesslich

freie Felder behandelt. In der vorliegenden Arbeit aber sollen Probleme untersucht

werden, in denen Wechselwirkungen zwischen Teilchen und Strahlungsfeld
auftreten. Es werden somit die Felder zusammengesetzter Systeme formuliert. Der
Energieoperator wird in den Operator der «freien» Energie und den Wechselwirkungsoperator

aufgeteilt, der in der Literatur meistens als ein Störungsglied aufgefasst
wird. Die Ausführung der Lösungsmethode (i)/(ü) lässt somit eine Auswertung im
Sinne der Störungsrechnung erwarten. Zur vorhin erwähnten Anwendung der
Lösungsmethode wird ein Hilbertraum formuliert, dessen Zustandsvektoren nur eine
minimale Anzahl Teilchen beschreiben können. Das Lösungsverfahren entspricht
dann einer Störungsrechnung niedrigster Ordnung2).

Im folgenden wird ein Maßsystem gewählt, in dem c % 1 ist. Vektoren des

Impuls- oder des Ortsraumes, z. B. q oder x, werden i.A. ohne besondere
Vektorbezeichnungen geschrieben, und das Skalarprodukt beider Vektoren schreiben wir qx.

Im ersten Kapitel wird die Theorie der allgemeinen Lösungsmethode (i)/(ü)
formuliert. Als ihre Anwendung wird im zweiten Kapitel die formale Lösung jener
Zustandsvektoren untersucht, deren Auswertung die natürliche Linienbreite der
spontanen Lichtemission begründet. Das Problem wird nichtrelativistisch und in einem
Hilbertraum behandelt, der einer Störungsrechnung erster Ordnung entspricht. Die
Herleitung der formalen Lösung ist dann leicht auszuführen und die Aufgabe sie

auszuwerten wird auf das Studium einer einzigen Funktion -Tw(g) zurückgeführt. Wir
zeigen, dass die Auswertung vollständig durchgeführt werden kann. Im dritten Kapitel

wird ein kurzer Ausblick auf die relativistisch invariante Theorie gegeben, sowie
auf Zustandsvektoren, die eine unbeschränkte Anzahl Teilchen berücksichtigen können.

KAPITEL I

Allgemeine Betrachtungen zur Begründung der Lösungsmethode

§ 1 Die Laplacetransformation von Zustandsvektoren im Hilbertraum

Die Vektoren W des Hilbertraumes R seien Zustandsvektoren genannt, wenn sie

physikalische Vorgänge, die sich in einem System von Teilchen verschiedener Art
abspielen, vollständig beschreiben. Im Schrödinger-Bild der Feldtheorie seien die
Zustandsvektoren Ws(t) Lösungen der Wellengleichung

i^Ws HWs. (1)

Diese Lösungen können durch die Anwendung des unitären Operators e~'Ht angegeben
werden. Im Sinne der Theorie der Spektraldarstellung linearer Operatoren definieren

2) In einer weiteren Arbeit wird die Einschränkung des Hilbertraumes fallengelassen. Die
Störungsrechnung bekommt dann eine neue Form.
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wir (siehe J. von Neumann [5])
+00

e-iHi f e-iu dE(X) (2)

— 00

Hier bedeutet E(X) die zum Operator H gehörende Zerlegung der Einheit. Der Operator

(2) ist unitär und somit auf den ganzen Hilbertraum definiert :

D(e~im) R

Zu einem bestimmten Anfangszustand des Teilchensystems, W(0), kann die Lösung
der Wellengleichung (1) immer in der Form

¥*(*) e-"" V{0) (3)

angegeben werden. Wenn ¥(0) im Definitionsgebiet von H liegt, kann man aus (3)

umgekehrt auf die Wellengleichung (1) schliessen.
Für die Laplacetransformation von Vektoren im Hilbertraum in bezug auf die

Zeit benutzen wir die folgende Definition :

Es sei g i + i x eine komplexe Zahl. Man bilde das Integral

W(g) /' e-" ¥(t) dt.

Die Laplacetransformierte ¥(g) des Vektors ¥(t) existiert dann und nur dann, wenn
ihre Norm N ¥(g) endlich ist, d. h. wenn sie auch als ein Vektor des Hilbertraumes
gelten kann.

Wir setzen nun voraus, dass der Parameter der Laplacetransformation g einen

positiven Realteil hat, d. h. dass | > 0 ist. Die folgenden Sätze können dann bewiesen
werden :

I) Jeder Vektor ¥(t) im Hilbertraum R, dessen Norm N ¥{t) als Funktion der
Zeit beschränkt bleibt und der für alle positive Zeiten eine stetige oder stückweise

stetige Funktion der Zeit ist, besitzt eine Laplacetransformierte ¥(g).
II) Wenn der Vektor ¥(t) zum Definitionsgebiet des Operators H gehört, so gilt

das gleiche für die Laplacetransformierte des Vektors.

III) Wenn ¥s(t) eine Lösung der Wellengleichung im Schrödinger-Bild ist, so ist

ihre Laplacetransformierte ¥s(g) eine Lösung der folgenden Gleichung:

(g + i H) Ws(g) ¥(0) für ¥(0) lim ¥*(t)

Die Gleichung wird als die Laplacetransformierte Wellengleichung bezeichnet.

IV) Wenn der Raum aller Vektoren H Ws(g) mit L(H) bezeichnet wird, so ist
L(H) C D(H).

V) Wenn ^(0) zum Definitionsgebiet des Operators H gehört, und wenn fs(g)

eine Lösung der Laplacetransformierten Wellengleichung ist, so ist dieser zweite
Vektor die Laplacetransformierte der Lösung der Wellengleichung im Schrödinger-
Bild, die den Anfangswert W(0) hat. Diese Lösung ergibt sich dann durch die Aus-
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Wertung des Integrals
f + ioo

Vs{t) Yffi f eg'&{g)dg.
£ — too

Die Gültigkeit des ersten Satzes folgt aus der Abschätzung,

oo oo

A/ W(g) f f e-?*' e'gt (¥(f), ¥(t)) dt' dt
0 0

oo oo

£ [ [ e-i(t + t">
| (¥(f), ¥(t)) | dt' dt

o o

oo oo

£ f f e-|(( + n || ¥(t') || ¦ [I ¥(t) || dt' dt rg — SupA7 ¥(t)
0 0

Wenn die Norm N ¥(t) für alle positive Zeiten endlich bleibt, ist auch die Norm

N ¥(g) endlich; damit ist der Satz I) bewiesen. Aus der Lösung (3) der Wellengleichung

folgt, dass die Norm der Zustandsvektoren A7 ¥s(t) 1 für alle Zeiten ist.
Damit gilt für ihre Laplacetransformierten, dass

N ¥(g) <: Y

d. h. dass ihre Norm umso kleiner wird, je weiter wir nach rechts in der komplexen
Parameterebene gehen. Wenn H¥ eine endliche Norm besitzt, so gilt infolge I) das

gleiche für H ¥. Weil nun der Operator H zeitunabhängig ist, kann man behaupten,
dass

H¥=H¥
ist; damit ist der Satz II) bewiesen. Nun multipliziere man beide Seiten der
Wellengleichung (1) mit e-e' und integriere über die Zeit von 0 bis oo. Da eine Lösung ¥s(t)
der Wellengleichung differenzierbar ist, muss sie auch stetig sein und besitzt somit

infolge I) eine Laplacetransformierte ¥s(g). Bei dieser Umformung der Wellengleichung

überzeugt man sich, dass für | > 0

lim e-*' ¥'(t) 0

ist, und man erhält die Laplacetransformierte Wellengleichung; damit ist der Satz

III) bewiesen. Der Operator H kommutiert mit dem unitären Operator e~'Ht. Damit
folgt aus (3), dass ¥s(t) eD(H), wenn ¥(0) e D(H) ist. Dann ist aber auch infolge

II) ¥<(g) e D(H) und infolge III) H ¥s(g) e D(H) ; damit ist der Satz IV) bewiesen.

Den Vektor ¥s(g) kann man infolge der Laplacetransformierten Wellengleichung
durch den Ausdruck

^^(g + iH)-^^) (4)

angeben, was wiederum die Laplacetransformierte der Lösung (3) ist, wenn ¥ e D(H)
ist. Damit ist der erste Teil des Satzes V) bewiesen. Aus der Literatur über die Theorie

16
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der Laplacetransformation3) zitieren wir jetzt einen Satz über die Umkehrtransformation,

den wir auf Elemente des Hilbertraumes leicht übertragen: In jedem
endlichen Zeitintervall (Tx, T2) sei die Schwankung des Vektors ¥s(t) beschränkt, d. h.
die Summe

n

a(z) =21 ¥%) - ¥%_x) \,z:Tx ta<tx<."< tn_x <t„=T2
t-1

sei für jede Zerlegung z des Zeitintervalles beschränkt. Dann ist die Umkehrtransformation

ausführbar und die Zurücktransformierte im Satz (V) ist der ursprüngliche
Vektor.

Die Lösung der Wellengleichung ist auf j eden Fall stetig differenzierbar. Wir dürfen
dann den Mittelwertsatz auf jeden der Vektoren ¥s(t) in dem Intervall (Tx, T2)

anwenden. In jedem der kleinen Intervalle ti^x £ï t < t{ (i 1, ...,») gibt es ein tt,
für welches folgendes gilt,

II «*(*,) - ¥(tt_x) || H ¥(l) | (ti - t{_x)

Weil die Ableitung ¥s(t) stetig ist, muss der absolute Betrag des Vektors im ganzen
Intervall beschränkt sein. Es sei z. B.

II ¥(t) || ^ N

Wir können dann die Summe a(z) wie folgt abschätzen :

n n

a(z) =E\^S (h) Ü & - tyi) ^ NE (h - h-i) N(T2- Tx)

i-l i-1

Daraus folgt, dass die Bedingung im obenstehenden Satz erfüllt ist; damit ist der
Satz V) bewiesen.

In einer Theorie der Halbgruppen beschränkter, linearer Operatoren über einem
lokal konvexen, linearen, topologischen Raum haben E. Hille und K. Yosida [8]
eine neue Grundlage zur Herleitung der Ergebnisse dieses Abschnittes gefunden. Sie
haben Gleichungen diskutiert, die unser Leraplacetransformierten Wellengleichung
und ihrer Umkehr (4) entsprechen. (Siehe Anhang.)

§ 2 Die Darstellung von Zustandsvektoren und Operatoren infolge der Entwicklung zu¬

sammengesetzter Felder nach Teilchenzahl

Die Sätze des ersten Abschnittes wurden allgemein für den abstrakten Hilbertraum

hergeleitet. Im folgenden soll nun die Struktur des von uns benutzten Raumes
näher festgelegt werden. Die Entwicklung der Felder nach Teilchenzahl wird begründet,

und wir sehen, wie die Operatoren des Hilbertraumes durch die elementaren
Grundoperatoren ausgedrückt werden können. Dadurch wird es uns möglich, noch
weitere allgemeine Aussagen über die Ausführung der Lösungsmethode (i)/(ii)
anzugeben.

3) Für die weitere allgemeine Diskussion um die Laplacetransformation siehe Carslaw und
Jaeger [6] oder van der Pol und Bremmer [7].
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Wir betrachten zuerst ein System von Photonen und Teilchen, die in ihren
unterschiedlichen Eigenschaften durch verschiedenen Felder dargestellt werden können.
Jedem dieser Felder, deren Anzahl etwa a sei, ordnen wir einen Hilbertraum zu.
Diese einzelnen Hilberträume können so definiert werden, wie es B. L. van der Waer-
den in seiner Arbeit getan hat, die im folgenden als «Q. W. » zitiert wird.

Der Raum RJ des /-ten Feldes besteht aus allen Funktionenfolgen

cpJ (9t 9l(q)n, (1)

deren Norm
oo

N^^EN9i (2)
M=l

endlich ist. Der Ausdruck (q)n soll hier sämtliche Impulse und andere dazugehörige
Bestimmungsgrössen von n Teilchen darstellen. Im Falle des Elektron-Positron-
Feldes soll somit (q) die drei Bestimmungsgrössen (p, s, e), d. h. den Impuls p, die

Spinrichtung s und das Energievorzeichen e, bezeichnen, während im Falle des

elektromagnetischen Feldes (q) die zwei Bestimmungsgrössen (k, r), d. h. den Impuls k
und die Polarisationsrichtung r, bezeichnet. Die einzelnen Funktionen cpn müssen in
den Argumenten

symmetrisch für das Bosonenfeld und antisymmetrisch für das Fermionfeld sein. Die
Zustände des gesamten Systems können nur dann von den richtig normierten
Vektoren t/>J beschrieben werden, wenn die Wechselwirkung der Teilchen jeder Sorte mit
den anderen ausbleibt.

Wenn die Wechselwirkung eintritt, können die Zustände des Systems aber auf
einen Hilbertraum R der zusammengesetzten Felder bezogen werden. Der Zustand
eines Feldes, das nx Teilchen von der Sorte 1 bis na Teilchen von der Sorte a enthält,
sei durch die endlich normierte Wahrscheinlichkeitsamplitude

Wni „a {(qx)ni, (qXJ (3)

gegeben. Wie oben stellt (q{)„. die Bestimmungsgrössen von nt Teilchen des î-'-ten

Feldes im Impulsraum dar. Wenn wir jeder Zahlenfolge nx, na eineindeutig eine

natürliche Zahl m zuordnen, können wir eine allgemeine Funktion in den gleichen
Argumenten wie Wnach (3) mit y>m(n ...,„ bezeichnen. Der Hilbertraum R besteht

dann aus allen Funktionenfolgen

¥= (xpo,ipx, ,y>m, ..-) (4)

deren Norm als endlich vorausgesetzt wird. Die Funktionen (3) und (4) sollen auch

von der Zeit abhängen können.
Nach J. von Neumann [5] können wir den Hilbertraum R als einen sogenannten

Produktraum der a kleinen Hilberträume RJ auffassen. Die diesbezüglichen Beweise

von Neumanns, die zwei Feldern gelten, können sofort auf mehrere Felder ausgedehnt
werden. Der Raum RJ wird durch das vollständige System orthonormierter Vektoren
(f>L (lj 1,2, aufgespannt. Wir ordnen wieder jeder Zahlenfolge lx, lx einein-
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deutig die Zahl m zu und bilden die Produktvektoren

*W..,y=/7f"- (5)
/=i

Jeder Vektor stellt eine Folge von oc-fachen Funktionenprodukten dar. Die Produktvektoren

bilden für sämtliche m eine vollständige Schar orthogonaler Vektoren im
Raum R. Durch die Summe

W EU^m (6)
m

können wir somit jeden Vektor des Raumes R ausdrücken. Umgekehrt ist jeder Vektor

von der Form (6) ein Element von R, wenn die Summe

271 «»Is
m

endlich ist.
Die Menge der Funktionenfolgen (4), die bei einer maximalen Teilchenzahl für

jede Art, n™ax, n™ax, abgebrochen werden, stellt den Hilbertraum R(mmax) dar.
Der einfachste solcher Räume gibt die Grundlage zur Auswertung der natürlichen
Linienbreite im zweiten Kapitel. Wenn die Teilchenzahl nicht eingeschränkt wird,
nennen wir die Vektoren vollständig. Die vollständige Ausführung der Lösungsmethode

(i)/(ü) führt dann zu Renormierungsaufgaben.
Durch die Berücksichtigung der Beziehungen (5) und (6) kann nun die Wirkung

der Grundoperatoren der einzelnen Hilberträume Rj auf Vektoren im grossen
Hilbertraum R verstanden werden. In R haben wir dann 2 ¦ oc solche Operatoren, die
wir hier einheitlich bezeichnen wollen: Es sei cf(q) der Vernichtungsoperator und
c+(q) der Erzeugungsoperator, die auf das /-te Feld wirken. Durch die folgende
Schreibweise kürzen wir zwei wichtige Produkte ab :

C-UT Cx(ql) - Cfq?) C-(ql) C"(£«)

c+(q)m £(£«) • • • ct(q\) ct(qT) - - - ct(q{)

Die Argumente des zusammengesetzten Feldes kürzen wir in der selben Art ab :

(q)m ((qi)ni. ¦¦¦•(qXJ-
Wir betrachten jetzt einen Operator AGr, der den Vektor ¥ zu ¥' überführt:

¥' AGr¥. (7)

Von dem Operator wird verlangt, dass er auf einen überall dichten Teilraum des

Hilbertraumes definiert ist. Die Bezeichnung Gr soll angeben, dass er durch die

Grundoperatoren der a Felder ausgedrückt werden kann. Nun sind die Grundoperatoren

bekanntlich nicht als eigentliche Operatoren, sondern als Distributionen zu
verstehen. Das bedeutet, dass in der Form der Operators AGr eine Integration über
die Impulse (q) enthalten sein muss. Um die Struktur des Operators zu ermitteln,
können wir von ihm einen Integraloperator ableiten, der auf den Vektor fdie gleiche
Wirkung hat wie er. Zuerst führen wir^0, den Zustandsvektor des Vakuums, ein:

&= (1,0,0,
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Dann bezeichnen wir mit A die Gesamtheit der Funktionen

4(q)ml(qV) K • ¦ • n„ \nf.'" »; !)~1/2 (c/>0, c~(q)m AGr c+(qT' fa) (8)

Diese Funktionen bilden den Kern des Integraloperators. Die Gesamtheit A ist analog

einer Matrix, aber die einzelnen Matrixelemente hängen ausser von den diskreten
Zahlen ni (i — 1, oc) noch von den Teilchenkoordinaten (q)m und (q')m' ab. Wir
werden die durch (8) definierten a((q)mj(q')m') trotzdem «Matrixelemente» und ihre
Gesamtheit «Matrix» nennen. Aus (7) können wir dann für eine Funktion des Vektors
¥' die folgende Gleichung ableiten:

y>'m= E [ dq'i ¦¦¦ dq'„> a((qri(qT) Wm, (9)

Das Definitionsgebiet D(AGr) wird durch die Forderung bestimmt, dass die Norm
N Aqt ¥ endlich sei. Wir erhalten somit den Satz :

VI) Der Operator AGr ist auf den ganzen Hilbertraum definiert, d. h. D(AGr) R,

wenn das Integral

Ef\A\2dqdq' (10)

endlich ist.
Das Integral ist so zu berechnen, dass über das absolute Quadrat der Matrixelemente

nach sowohl den Zeilen- wie auch den Spaltenargumenten integriert und
summiert wird. Umgekehrt ist aber die Konvergenz des Integrals (10) nicht eine Folgerung
aus D(AGr) R. Im Folgenden wird die Bezeichnung Gr am Operator weggelassen,
ausser wenn seine konkrete Abhängigkeit von den Grundoperationen betont werden
soll.

In der Abhandlung Q. W. hat van der Waerden die Zustandsvektoren der
einzelnen Felder, c/>, auf zweierlei Arten dargestellt, indem die Argumentenräume der
Vektorfunktionen entweder der Ortsraum (#-Raum) oder der Impulsraum (q-Ka.um)
sind. Wir sprechen deshalb hier von der {x}- und der {gj-Darstellung des Hilbertraumes.

Mit Rücksicht auf die bekannten Transformationsgesetze, nach welchen
Zustandsvektoren, Operatoren und Wellengleichung ins Dirac-Bild (Wechselwirkungsbild)

übergehen, können wir feststellen, dass die in Q. W. eingeführten Zustandsvektoren

in der {x}-Darstellung auf das Schrödinger-Bild und in der {çj-Darstellung
auf das Dirac-Bild bezogen sind.

Wir können die Laplacetransformation auf die Wellengleichung im Dirac-Bild
ausüben, so wie wir es im ersten Abschnitt im Schrödinger-Bild getan haben. Dabei
erhalten wir, wie zu erwarten ist, die gleiche Laplacetransformierte Wellengleichung.
Wir zeigen das, indem wir zuerst die folgende Laplacetransformation jeder Funktion
iPm((q)m> 0 eines Zustandsvektors im Dirac-Bild ausführen:

oo

V>Z((q)m. g + i «m) / e-^ + '^' WZ((q)">, t) dt
o

Die Grösse com stellt hier die Energie aller derjenigen Teilchen dar, die in ip% vertreten
sind4). Wir unterscheiden weiterhin das Schrödinger-Bild und das Dirac-Bild durch

") Für die Bedeutung der Energien m in kontinuierlichen Feldern siehe Q. W.
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das Hinzufügen der oberen Indices S und D. Es folgt für jede Vektorfunktion die

Identität
Wm((q)m,g + iMm) v>i((q)m>g)' (ii)

Wenn jede Komponentengleichung der Wellengleichung im Dirac-Bild mit e~ (s + lmm)t

multipliziert wird, und wm die zur betreffenden Gleichung gehörende Energie ist,
integrieren wir über die Zeit von 0 bis oo und erhalten aus der Gesamtheit aller dieser

Gleichungen die Laplacetransformierte Wellengleichung in der schon bekannten
Form. Im folgenden werden die Wahrscheinlichkeitsamplituden im Schrödinger-
Bild berechnet. Von der Identität (11) wird dann Gebrauch gemacht, wenn parallele
Resultate im Dirac-Bild gewünscht werden.

Im allgemeinen Hilbertraum, der durch die Entwicklung der Felder nach
Teilchenzahl dargestellt wird, entspricht die Laplacetransformierte Wellengleichung einer
Anzahl Gleichungen folgender Art :

(g + ico<»)y%t((q)»>,g)

+ i fEd3m'q'K ((q)ml(q')m'))f^((q')m''g)=Wm{(q)m'°) ¦ (12)

Wenn die Zustandsvektoren vollständig sind und die Wechselwirkung h{ solcher Art
ist, dass sie die Teilchenzahl stets ändert, wird die Anzahl der Gleichungen (12)
unbeschränkt, die zur Bestimmung der Amplituden nötig sind. Wenn aber der Hilbertraum

R (mmax) benutzt wird, können wir unter Umständen aus den Gleichungen (12)
ein exaktes Resultat erhalten, ohne eine unendliche Reihe aufsummieren zu müssen.
Das einfachste Beispiel solcher Auswertung wird im nächsten Kapitel diskutiert.

KAPITEL II
Die natürliche Linienbreite

§ 1 Die Formulierung der physikalischen Aufgabe

Das vorliegende Kapitel bringt eine Anwendung der schon getroffenen
mathematischen Vorbereitungen in der Quantentheorie der Wellenfelder. Die Theorie der

spontanen Lichtemission von einem angeregten, im Atom gebundenen Elektron wird
im Sinne des ersten Kapitels neu formuliert. Die spektrale Intensitätsverteilung und
die damit verknüpfte natürliche Linienbreite soll ausgewertet werden.

Für die quantentheoretische Behandlung dieser Aufgabe steht wie gewohnt die

Berechnung von Wahrscheinlichkeitsamplituden im Vordergrund. Die alte Störungstheorie

lieferte dafür ein System von Differentialgleichungen, die durch geeignete
Vereinfachungen gelöst wurden. In diesem Sinne haben Weisskopf und Wigner [9]
die Aufgabe untersucht. Für die gesuchte Intensitätsverteilung der emittierten Strahlung

haben sie den folgenden Ausdruck bekommen :

/(tu) dm <W„ — ; r-„- 577- (1)J K ' " 2 n (m-ma)2 + y2j4 v '

Die Halbwertsbreite y in dieser Resonanzformel ist die gesuchte natürliche Linienbreite.

Bei der Annahme von zwei möglichen Elektronenzuständen ist y die totale
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spontane Übergangswahrscheinlichkeit des Elektrons pro Zeiteinheit, und co0 ist die
betreffende Energiedifferenz. Die klassische Elektrodynamik ermittelt genau den

gleichen Ausdruck wie (1) für diese Intensitätsverteilung.
Die bis jetzt genauesten Resultate aus der Theorie der natürlichen Linienbreite

stammen aus den Arbeiten von Hehler [10, 11, 12], Ma [11], Arnous [12, 13] und
Zienau [13]. Sie haben ihre Untersuchungen im Zusammenhang mit der Theorie der
allgemeinen Dämpfungsphänomene ausgeführt. Die Auswertung der natürlichen
Linienbreite mit der Anwendung der Laplacetransformation ist von A. Messiah [14]
und G. Källen [15] diskutiert worden. Messiah behandelt allgemein die
Laplacetransformation von Operatoren, was in dieser Arbeit nicht zur Sprache kommt.
Källen leitet einen Teil der formalen Lösung her, die wir in diesem Kapitel kennenlernen

werden. Die Anwendung der Laplacetransformation in der vorliegenden Arbeit
knüpft an ein ähnliches Verfahren in einer Dissertation von Marianne Friedrich
[16] an. Frl. Friedrich geht von einem Feld in einem endlichen Volumen V aus,
macht dann in der Laplacetransformierten den Grenzübergang V -> oo, während hier
von Anfang an der unendliche Raum zugrunde gelegt wird.

Die Formulierung der physikalischen Aufgabe besteht nun darin, dass die Form
der Vektoren bestimmt wird, die den hier besprochenen physikalischen Fall beschreiben

können. In dem vorliegenden Kapitel soll ein solcher Teilraum des Hilbertraumes
bestimmt werden, der einer Störungsrechnung erster Ordnung entspricht. Wir
untersuchen das Verhalten eines angeregten Atomelektrons, das im Begriffe ist, ein Photon
zu emittieren. Es muss somit der Zustandsvektor eines Systems, zusammengesetzt
von einem Elektron im Felde des Atomkerns und von höchstens einem Photon,
formuliert werden.

Wir behandeln im folgenden zuerst das diskrete Elektronfeld auf eine Art, die
der Formulierung der kontinuierlichen freien Felder in der Abhandlung Q. W.
entspricht. Der Vektor des zusammengesetzten Feldes folgt dann direkt aus den Ergebnissen

des Kap. I, § 2. Der Hilbertraum Rpe sei aus Vektoren gebildet, die das
Elektron-Positron-Feld allgemein beschreiben. Von diesen Vektoren betrachten wir solche,
die nur ein Teilchen beschreiben, und deren Vektorfunktionen <p(x, v) Lösungen der
Dirac-Gleichung B)

(Po-ßxap-ß3p,,-eV)cp(x,v) 0 (2)

sind. Nun kann jede solche Vektorfunktion als ein Wellenpaket

(p(x, v) (2 nY3Ì2E [ <P(n'> P> s> e) %(x> v,t\p, s, e) d3p (3)
n,s,e J

aufgefasst werden. Die Ausdrücke % stellen die Spinorfunktionen

X(x,v,t \p,s,s) Cv(s,e)e,[px-mt)

dar. Die Wahrscheinlichkeitsamplituden cp(n; p, s, e) können wir schreiben als

(p(n;p,s,e) u(n;p,s,s) e*'(<°--E»)') (4)

5) Die Schreibweise der Dirac-Gleichung knüpft an Q. W., Seite 952, an.
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wenn die Funktionen u (n; p, s, e) so bestimmt werden, dass der zeitunabhängige
Ausdruck

E f u{n; p, s, e) Cv(s, e) etpx d3p

eine Lösung der Eigenwertgleichung der Energie mit dem Eigenwert En ist. Aus dem
Ausdruck (3) sehen wir, dass für jedes feste n ein Vektor in der {gj-Darstellung,

</>n (9'(n;p,s,e)) (5)

gegeben ist, der ein Teilchen mit der Energie | En | beschreibt. Wegen der Entartung
der Energieeigenwertzustände ist er nicht durch V eindeutig bestimmt. Die Gesamtheit

der Vektoren cf>n für jedes n bildet den Raum RP'ln. Die Summe aller Rpeln bildet
wiederum einen Unterraum von Rt"*. Wenn wir die zeitunabhängigen u-Funktionen
betrachten, bedeutet dies folgendes: Wir beschränken uns auf den Teilraum des

Funktionenraumes, der von den Funktionen u (n;p, s, e) aufgespannt wird, d. h. wir
lassen das kontinuierliche Spektrum ausser Betracht. Wir können nun, wie aus der
Theorie des wasserstoffähnlichen Atoms bekannt ist, ein System von orthonormierten
Vektoren herleiten.

U(n,f)= M.«.«)).
die durch das Potential V eindeutig bestimmt sind und den Funktionenraum {u (n ;

p, s, e)} aufspannen. Die Anzahl der möglichen Zahlen /für ein bestimmtes n ist gleich
dem Grad der Entartung. Eine Funktion u(n; p, s, e) kann also durch jede
Linearkombination

u(n; p, s, e) =£(p(n, f) uinf)(p, s, e) (6)
i

angegeben werden, wenn die Summe

E\<P(n't)Y
n,t

endlich ist. Die Summierung über n ist für diese Bedingung nötig, damit der Ausdruck
(3) für das Wellenpaket auch einen Sinn hat. Wir führen nun eine neue Spinorfunk-
tion ein,

J£>, /, *, t) (2 n)~3l2E f e^-En» U{nf)(p, s, s) X(x, v, t) \ p, s, e) d3p (7)
s,e

-J

Wenn wir dann die Beziehung (6) für u(n; p, s, e) unter der Berücksichtigung von (4)
in den Ausdruck (3) einsetzen, erhalten wir für die ursprüngliche Vektorfunktion
die Linearkombination

cp(x,v)=E<p (n- f) x,K /. *. o (8)
n, t

Aus der Definition (7) folgt, dass die Norm des betreffenden Vektors durch die Summe

N<p(x,v) =E\tP(n-fì I2 (9)

gegeben ist. Die Ausdrücke (8) und (9) zeigen uns, dass der gebundene Zustand in
einer {w/}-Darstellung neben der {%}-Darstellung gegeben werden kann. Wir stellen
deshalb folgendes auf Grund der bisherigen Herleitungen fest :
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Die zum Hilbertraum .7?*" gehörenden Vektoren

<f>=(<p(x,v)) (10)

bilden in der {#}-Darstellung einen Teilraum von Rpe, den wir RfeV nennen wollen.
Dieser Teilraum stellt die Gesamtheit der gebundenen Zustände dar. Die einzelnen
Vektoren des Raumes werden in der {(^-Darstellung durch eine Linearkombination
von den Vektoren cf>n nach (5) angegeben. Das bedeutet, dass der Raum RftV als die
Summe der Teilräume Rf"ln aufzufassen ist.

-Dp eV \~* -Dp ein

n

Die Vektoren <f> werden in der {«/}-Darstellung durch die Wahrscheinlichkeitsamplituden

(p(n,f) beschrieben,

<P=(<p(n,t)) (11)

Alle Vektoren der Form (11), die eine endliche Norm besitzen, bilden in dieser
Darstellung somit den Raum RpeV.

In diesem Raum werden nun Grundoperatoren wirken können, a+(x, v) in der

{x}-Darstellung und a+(n,f) in der {w/j-Darstellung8). Der Zusammenhang der
Grundoperatoren beider Darstellungen wird durch die folgenden Beziehungen gegeben

a-(x, v) =Ea~(n> /) X>- /- x- 0 - (12)
nf

a+(x, v) 2>+(". /) X>. /- x> t) ¦ (13)
nf

Der Hilbertraum Rel soll aus Zustandsvektoren des elektromagnetischen Feldes

gebildet werden, die höchstens ein Photon beschreiben können. Wir können dann
infolge der Ergebnisse des ersten Kapitels den Vektor des zusammengesetzten
Systems von Elektron und Photon in der Form

¥=(xpo(n,t;t),Wx(n,f;k,s;t)) (14)

als ein Element des Produktraumes RPeV+el bilden. Dabei haben wir die {«/}-Darstel-
lung von RPeV gebraucht. Der Index 0 bedeutet kein Photon, der Index 1 ein Photon,
und n bezeichnet die betreffende Elektronenergie.

§ 2 Die formale Lösung der Wellengleichung

Im folgenden soll die Laplacetransformierte Wellengleichung gelöst werden und
die Zustandsvektoren im Schrödinger-Bild durch das Integral der Zurücktransformation

formal angegeben werden. Gleichzeitig soll die Bedingung für exakte Lösbarkeit
auf Grund der Sätze im Kap. I hergeleitet werden.

Der Zustandsvektor (14) aus dem letzten Abschnitt ist aus Feldfunktionen hergeleitet

worden, die zu dem Dirac-Bild gehören. Der Vektor kann aber in gewöhnlicher
Weise ins Schrödinger-Bild transformiert werden. Wir betrachten somit in diesem

Siehe zum Vergleich Q. W., S. 955, (17)/(18), für das kontinuierliche Feld.
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Bild die Laplacetransformierte des Vektors in der Form

& fâ(*,f,g). W\(n,f,k,r,g)}. (1)

Die Laplacetransformierte Wellengleichung wird jetzt auf die übliche Art in der

Matrixdarstellung aufgefasst7). Mit Anwendung der Vektorform (1) erhält man dann
die folgenden Gleichungen,

(g + i con) fso(n, f, g) + iEh,(nt fln' /') ?o« /'• g)

+ i f E hi(n< tln'< f> k'< r') Yp\(n\ /'. k', r', g) d3k' f0(n, f, 0) (2)

(g + i K + «>*)) w\(n< A k- r> g) + iEhYn' Y k< rln'' f) ¥o(n't f. g)

n',f
i E h,(n, f, k, r/n', /', k', r') ip\(n,' /', k', /, g) d3k' xp\(n, f, k, r, 0) (3)
j n' r*f

Für die Herleitung dieser Gleichungen hat man davon Gebrauch gemacht, dass der

Operator der ungestörten Energie, H0Gr, die Form

Hoar I 2>* bfk, r) b-(k, r) d3k + E™n «> /) «-(» /) (4)
** r nf

hat, und dass somit ?/0 diagonal ist. Die Zahl co„ ist die Energie des gebundenen
Elektrons, (con En), und d)k ist die Energie des Photons (in unserem Maßsystem gleich
1*1)-

Jetzt wird über das Wesen des Wechselwirkungsoperators vorausgeschickt, dass

dieser auf jeden Fall immer die Teilchenzahl ändert. Damit wird für alle «/und n'f
h;(n fin' /') h,(n f k r/n' f k' r') 0 (5)

und aus den Gleichungen (2) und (3) fällt je ein Summand weg. Man darf auch von der

Wechselwirkung fordern, dass sie eine Senkung der Elektronenenergie nur bei der
Emission eines Photons und die Hebung dieser Energie nur bei der Absorption eines
Photons zulässt.

Um die folgenden Rechnungen zu vereinfachen, wird ferner angenommen, dass

die Elektronquantenzahlen des Systems, d. h. nf, nur zwei verschiedene Wertepaare
annehmen können, etwa nxfx und n2f2s). Die beiden Paare unterscheiden wir mit dem
Index m, der dann nur zwei Werte, 1 und 2, annehmen kann. Die entsprechenden

') Die Absorptionsoperatoren, die man zur Bildung der Matrixelemente braucht, sind a~(nf) für
das Elektronfeld der diskreten Zustände (Kap. II, § 1) und b~(kr) für das elektromagnetische
Feld (Q. W., S.960). Die allgemeine Form der Gleichungen (2) und (3) haben wir im Kap. 1, §2 (12)
angegeben.

8) Wenn wir einen Anfangszustand mit einer bestimmten Spinrichtung annehmen, so bleibt diese
bei der Lichtemission erhalten, d. h. sie bestimmt einen Teilraum des Hilbertraumes, in dem
sich der weitere Prozess abspielt. In so einem Teilraum können wir den Grundzustand als nicht
entartet und den angeregten als dreifach entartet betrachten. Die Polarisierung des
emittierten Lichtes unterscheidet dann drei getrennte Fälle, von denen jeder der obenstehenden
Annahme entspricht.
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Energiewerte des ungestörten gebundenen Elektrons sind dann cox und a>2, wenn cox

die höhere und co2 die tiefere Energie ist. Wir schreiben somit im folgenden das
zweiwertige m allein statt nf als Argument in Operatoren und Funktionen.

Wir wenden nun die Anfangsbedingung

W1 .0) 1 ¥>o(2,0) Vi(l, k, r, 0) vi (2, k, r, 0) 0 (6)

an. Sie bedeutet, dass zur Zeit t 0 das Elektron im höheren Energiezustand sei,
und dass dann kein Photon anwesend sei. Aus den Gleichungen (2) und (3) werden
unter diesen Voraussetzungen die folgenden vier Gleichungen hervorgehen :

(g + i «h) &(1. g) + i [EkY1!2- k'> r') fi(2, k', r', g) d3k' 1 (7)

¥o(2, g) 0 (8)

f{(l, *, r, g) 0 (9)

(g + i K + wt) ft(2, Ä, r, g) + i Ä,.(2, *, r/1) $(1, g) 0 (10)

Aus (8) und (9) folgen die Lösungen

y>0(2,0 0, (11)

V4(l, &, r, 0 0 (12)

Wir führen jetzt die Funktion

rjg)= fylAiYVY^YìYYdw (i3)7 ^ g+i(m + m¥)

ein, setzen (10) in (7) ein und bekommen für die Laplacetransformierten der übrigen
zwei Wahrscheinlichkeitsamplituden durch die Anwendung der Definition (13) die
Ausdrücke

~~s/o fc \_ -i hi(2, k, rjl) _.
Vil4 *• '. g) (j+i^+o.jXg+.^-i-r^)) • ilDj

Wenn man annehmen darf, dass das Integral /^(g) absolut konvergiert, bilden die
Ausdrücke (8)/(9) und (14)/(15) die richtige und bei den gegebenen Voraussetzungen
die einzige Lösung der Laplacetransformierten der Wellengleichung. Wir nehmen

jetzt an, dass der Realteil von g positiv sei, d. h. f > 0, und schätzen den absoluten
Betrag der Funktion (13) für ein beliebiges, reelles a> ab:

rjg) I
r z\Hi(ißk',r')\* d3k, <ry\hi(i,2k',r')\2 3k,

J Y g + i(m + mki) J ^ \g + i(m + mk>)\

T [E\ hAV2,k',r')\*d*k'. (16)
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Wir beweisen dann den Hauptsatz
(B) Das vorliegende physikalische Problem hat bei den Voraussetzungen, die in
diesem Kapitel über die Form des Zustandsvektors und über die Beschaffenheit
der Wechselwirkung gegeben wurden, dann und nur dann eine Lösung in der
Form der Zurücktransformation, wenn das Integral

fE\hi(V2,k',r') \2d3k' (17)
J r>

endlich ist.
Wegen der Abschätzung (16) muss Fu(g) absolut konvergieren, wenn das Integral
(17) endlich ist. Damit sind die Ausdrücke (14)/(15) sicher die Lösung der
Laplacetransformierten Wellengleichung. Die Konvergenz von (17) ist aber auch die notwendige

und hinreichende Bedingung dafür, dass der Anfangsvektor ¥(0), der durch (6)

gegeben wird, zum Definitionsgebiet des //-Operators gehöre. Wenn dies erfüllt ist,
gibt es nach dem Satz (V) im Kap. I, § 1 eine und nur eine Lösung der Wellengleichung,
die den Anfangswert ¥(0) hat, deren Laplacetransformierte durch (14)/(15) gegeben
wird, und die durch die Zurücktransformation ausgewertet werden kann. Infolge des

Satzes VI) im Kap. I, § 2 dürfen wir auch andere Anfangszustände als (6) anwenden,
sofern sie aus D(H0) stammen. Damit wird der Hauptsatz (B) auf (A) zurückgeführt.

Die zurücktransformierten Wahrscheinlichkeitsamplituden bekommen die
folgende Form

l + ioo

^(M) ^T / '"-t+i^^ (18)

| — ioo

£ + ioo

ws(2 kr t)-^- f fi*' (-i)hf(ll2,k,r)
$ — ZOO

Schrödinger-
Bild

Die zwei übrigen Wahrscheinlichkeitsamplituden des Schrödinger-Bildes verschwinden

nach (11) und (12).
Durch die Anwendung der Beziehung (11) in Kap. I, § 2 erhalten wir im Dirac-Bild

die entsprechenden Lösungen zu (18) und (19) in der Form

I + IOO

«P(l, t) -Y-r f e" =-i — dg (20)r0V ' 2 m J g + r-{mi-afg) 6 v '
^ — ioo

f+ ÌOO
Dirac-Bild

rfftA.r.O-^ f e** i-^nV2,k,r)
Tiy ' 2711 J g(g+i(mx-m2-mk) + r-a,k(g)) s v '

$ — too

In den Lösungen (18)/(19) und (20)/(21) integrieren wir längs einer zur imaginären
Achse parallelen Linie in der rechten Halbebene der komplexen g-Ebene. Die Nenner
der Integranden können nicht verschwinden, da der Realteil der Funktion 7^(g)
positiv für ein reelles co und ein positives i ist.

Im nächsten Abschnitt wird gezeigt, dass die obenstehende Forderung über die

Konvergenz des Integrals (17) von demjenigen Wechselwirkungsoperator erfüllt ist,
den man der üblichen nichtrelativistischen Darstellung der Quantentheorie entneh-
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men kann. Die Anwendung eines relativistischen Wechselwirkungsoperators, der im
Kap. III formuliert wird, zeigt, dass in dieser Beziehung die gleiche Forderung erfüllt
wird. Damit können wir allgemein sagen, dass die formale Lösung mit Rücksicht auf
die bekannte Formulierung der Quantentheorie die exakte Lösung ist.

§ 3 Die Anwendung einer nichtrelativistischen Wechselwirkung

Wenn wir auf Grund der formalen Lösung der Wellengleichung, (18)/(19) oder
(20)/(21) im letzten Abschnitt, exakte Lösungen auswerten wollen, muss der
Wechselwirkungsoperator in der Abhängigkeit von den Grundoperatoren bekannt sein. In
diesem Abschnitt wird dafür ein nichtrelativistischer Operator gewählt.

Für die Potentiale des Strahlungsfeldes wird die Coulomb-Eichung verlangt, d. h.

divA =0 0. (1)

Von dem Strahlungsfeld hat man hier das skalare Kernfeld, V, ausgeschlossen, weil
dies zur Energiedarstellung des i70-Operators beiträgt. Man setzt nun die folgende
Funktion W als denjenigen Teil der Hamiltonfunktion an, der für die Wechselwirkung

zwischen dem Strahlungsfeld und einem Fermion mit der Ladung e

verantwortlich ist9).

*- — &*) + £"• (2)

Von dieser Funktion kann man sofort zu einem Operator, Wop(x), übergehen, der auf
die Wellenfunktion des Elektrons in der {V}-Darstelhmg wirkt. Der kanonische Impuls
p wird durch

/_ _d_
__

._d_ _
d \

\ dxx ' dx2 ' dxa

und das vektorielle Potential A durch das folgende Integral ersetzt

Ac,r -y^ f?-yhv {b~{k'' r'] A{k'' ° + h+{k'' r'] A*{k'' r')} dW ¦ (3)

Hier ist die Bedeutung der A's wie folgt10) :

A(k,r) C(r)ei{kx-akt) (4)

Wegen der Coulomb-Eichung wird der Index der Polarisation, r', nur die Werte 1 und
2 annehmen. Der zweite Summand des Ausdrucks (2) ist quadratisch in der Kopplung.
Er ist somit sehr unwesentlich verglichen mit dem ersten Summanden und wird
deshalb weggelassen. Der Operator Wop(x) soll auf Wellenfunktionen im Schrödinger-
Bild wirken. Es wird angenommen, dass der Operator AGr, wie er in der Darstellung
(3) und (4) gegeben wird, im Dirac-Bild sei. Diesen Operator erhält man dann im
Schrödinger-Bild, wenn t 0 gesetzt wird. Man führt die Bezeichnung

Ahr AGr V 0) (5)

9) Für das Elektron ist also e negativ. Wir halten uns hier an die in der Literatur übliche
Vorzeichenwahl.

10) Für die Erklärung der Vektoren C(r) sei auf Q. W., S. 961 hingewiesen.
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ein und bekommt infolgedessen den Operator Wop(x) in der Form

^ i- 1 l

Wegen der Coulomb-Eichung nach (1) ist es klar, dass die folgende Vertauschungs-
relation gilt,

Nun braucht man einen Wechselwirkungsoperator, der auf Zustandsvektoren in der
Impulsdarstellung wirken kann. Dazu werden die abgeleiteten Spinorfunktionen
Xv(m: x< t) benutzt, die als Lösungen der Dirac-Gleichung des Elektrons im Kernfeld
hergeleitet wurden, und die Wahrscheinlichkeitsamplituden und Grundoperatoren
in der {#}-Darstellung und in der {n/}-Darstellung verknüpfen. Man führt nun in
Übereinstimmung mit (5) die Bezeichnung

Xl(m, x) Xv(m> x,t 0) (8)

ein und erhält mit der selben Begründung wie oben die Grundoperatoren für das

Schrödinger-Bild durch die Beziehungen

«,(*) =Ea~(w>> Xl(m>x) (9)
m

af(x)=£a+(m)yCv*(m,x). (10)
m

Nach der Definition der abgeleiteten Spinorfunktion ist es klar, dass ihre Norm bei
einer endlichen Anzahl diskreter Zustände, etwa n, auch endlich ist, d. h.

N Xl= I ElS*(m> x) Xt(m> x) dZx n (11)
J m,v

Der Wechselwirkungsoperator HiGr wird jetzt in der Form

HiGr fE<M WOp(X) aYX) d*x (12)

eingeführt, und kann somit wegen (9) und (10) als

HiGr E f t*(m't x) wop(x) %v(m> x) d*x «+(»') «"(w) (13)
m'mv -J

geschrieben werden. Nun wird der Ausdruck (6) für den Operator Wop(x) in die Form
(13) unter der Berücksichtigung von (7) eingeführt, und man bekommt den
Wechselwirkungsoperator HiGr in der folgenden endgültigen Form :

HiGr / E ~A==' {f(m' m> ktr) a+(m!) b~(k, r) a~(m)
•I m'mr V2 ">k

+ f(m', m, — k, r) a+(m') b+(k, r) a~(m)} (14)
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Die Funktion / (m', m, k, r) ist hier durch die Definition

f(m', m, k, r) (2 nf3'2 — f ECi(r) «'** Xl*(m' x) 4~ Xl(m- x) d?x (15)
IX I ".' ¦¦ tf#ir " JV J

eingeführt worden. Wir wollen jetzt diese Funktion als die Kopplung der Wechselwirkung

bezeichnen. Wenn sie nach (15) berechnet wird, bekommen wir infolge der
Definition von yfAm> x)

f(m', m, k, r) (2 nf3'2 =± f E(C(r)-P) ut') (P + k' s> £) UUP, «, «) *P ¦ (16)
" -J

s,e

Der unter dem Integral (16) stehende Ausdruck sowie der für f(m', m, — k, r)
entsprechende Ausdruck können auf die übliche Weise durch den Impulsverlauf dargestellt

werden :

^^*- P' bzw. P "¦"" (17)
lo p-

Die Impulserhaltung, die in dem Integranden von (16) offensichtlich wird, bedeutet
nicht, dass die Energie für die gesamte Zustandsänderung mk -> m' oder m -> m'k
erhalten bleibt. Man sieht jedoch sofort aus der Bedeutung der Funktionen m(to)

(p, s, e), dass ohne die Änderung des Elektronzustandes kein Photon emittiert oder
absorbiert werden kann, weil dann das Integral in (16) verschwindet, d. h.

/ EPh uU (p ± k> s>£) u^(p' s<e) d*p ° (*' ^2) • (18)
-J m

Die weitere Diskussion der Kopplung nach (16) lassen wir weg und stellen folgendes
fest : Wie im letzten Abschnitt erklärt wurde, nehmen wir nur zwei mögliche Quanten-
zahlenpaare des Elektrons an, die wir mit der Zahl m unterscheiden (m 1 oder 2).
Wenn die entsprechenden Energieniveaus so numeriert sind, dass co (m 1) >
m (m 2) ist, geben die Auswahlregeln folgendes über die Kopplung bekannt :

f(m', m, k,r) =0 für m' <fm

f(m', m, — k, r) 0 für m' > m (19)

Die Auswertung der Matrixelemente h( folgt aus den Beziehungen

hi(ll2,k,r)=-Y=f(l,2,k,r),
\2mk

hi(2,k,r\l) -^=-i(2,l,-k,r). (20)

Wir wollen nun erfahren, ob die Bedingung für die Lösbarkeit unserer Aufgabe
nach dem Hauptsatz (B) mit der Anwendung des vorliegenden Wechselwirkungsoperators

erfüllt sei, d. h. ob das Integral

' EI Â.'(l/2. *, r) I2 d»k fE^f I «L 2. k- ') I2 (21)
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konvergiert. Wenn das der Fall ist, darf man mit Sicherheit behaupten, dass die

Auswertung der Wahrscheinlichkeitsamplituden nach der formalen Lösung mit der
Anwendung dieses Operators durchgeführt werden dürfe. Das Integral (21) können
wir in der Form

E dAk '
cp(x) d3x

schreiben, wenn wir die Abkürzung

cp(x) (2 nf312 ~ECAr) Z',*(l. *)
K2/» ,,v

dxj
X',P. x)

(22)

(23)

anwenden. Wegen der Beziehung (11) können wir annehmen, dass die Spinorfunktio-
nen %s(m, x) und ihre Ableitungen ausserhalb eines grossen Volumens klein sind und
exponentiell gegen Null streben. Das Quadrat des absoluten Betrags der obenstehenden

Funktion cp(x) über den ganzen Raum integriert ist daher endlich. Wir
wollen dies Quadratintegral C nennen. Jetzt spalten wir das Integral (22) in ein

Teilintegral über eine grosse Kugel, \k\ < K, und ein Integral über das Äussere,
| k | > K, auf. Für das erste Teilintegral bekommen wir die Abschätzung

d3k '' ¦- ''" ' " fX~ f \cp(x)\2d3x 2nK2C.E- ¦ cp(x) d3x < (24)

1*1

Das Integral ist somit für ein endliches K beschränkt. Für das Aussengebiet wenden
wir die folgende Abschätzung an :

E-
\k\>K

eikx <p(x) d3x 2<K̂ 2Jd3k ' cp(x) d3x

Die inneren Integrale haben die Form

cp(k) / eikx cp(x) d3x

(25)

(26)

wobei cp(x), wie oben gesagt, eine Funktion mit endlichem Quadratintegral ist. Das

Quadratintegral der Fouriertransformierten <p(k) ist also auch endlich. Deshalb ist

7ZSC

K E \Ì(k)\2d3k<°^< (27)

|*| > K

womit die Konvergenz des ganzen Integrals (22) gesichert ist.
Die endliche Norm (11) hat noch eine andere wichtige Konsequenz. Die

Matrixelemente des Wechselwirkungsoperators, hit müssen bekanntlich selbstadjungiert
sein. Man kann nun allgemein beweisen, dass die folgende Beziehung für die Kopplung
gilt,

f(m', m, k, r) f*(m, m', —k,r) (28)

woraus die Selbstadjungiertheit infolge (20) sofort geschlossen werden kann. Der
Beweis erfolgt in bekannter Weise durch Integration, wobei zu berücksichtigen ist,
dass die Spinorfunktionen im Unendlichen verschwinden.
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§ 4 Die Auswertung der formalen Lösung

In der formalen Lösung der Wellengleichung spielt die Funktion rm(g) eine wichtige

Rolle. Das Verschwinden dieser Funktion führt zu einer stationären Lösung der

Wellengleichung. Die Funktion bestimmt also den zeitlichen Verlauf des vorliegenden
physikalischen Prozesses. Im Schrödinger-Bild müssen wir für den unteren Index der
/'-Funktion nur co m2 berücksichtigen. Um die Formeln zu vereinfachen, führen
wir die neue komplexe Variable

z g + i co2 (1)

ein. Indem wir die Darstellung des Wechselwirkungsoperators vom letzten Abschnitt
anwenden, schreiben wir die T-Funktion in der neuen Variablen wie folgt:

rM-w-fz-£iieggS-. m

Die formale Lösung im Schrödinger-Bild ist dann

e-i<o,t i + ioo
1

Vo(l. *) -y—~ f e*t—T^-, r,, dz, (3)ruv ' 2 n i I & z+% (mx-m2) + r„(z)
Ç — t OO

Wf2 kr t)- ^YYYY f +/°° (-WW.*.*) dz ,4)fx(Ak,r,t)- 2n. J ßZt {2+i0)k){:l+i{œi_W2) + r()(z))
dz. (4)

£ — too

Nun zeigen wir, dass das Integral (2) für alle z, die nicht auf der negativen imaginären

Achse liegen, konvergiert und eine analytische Funktion von z darstellt. Es sei

z ein Punkt und A > 0 der Abstand von z zur negativen imaginären Achse, wenn z

in der unteren Halbebene liegt, sonst sei A der Abstand des Punktes vom Nullpunkt.
Dann ist

1 "<4-. W
Î z+imk A

also ist der absolute Betrag von (2) kleiner als das Integral

^fE^k I/mm I2- (6)

dessen Konvergenz im letzten Abschnitt schon bewiesen wurde. Das Integral (2)

konvergiert gleichmässig in jedem Gebiet A > e und stellt somit eine analytische
Funktion von z dar.

Nun betrachten wir das Verhalten der Funktion ro(z), wenn wir uns der negativen
imaginären Achse nähern. Wir schreiben z i + i r\. Für i 0 divergiert das Integral

(2), wenn r\ < 0. Wir können aber immer noch den Hauptwert des Integrals
bilden. Wir erhalten nach kurzen Auswertungen, dass

lim+ oro (i + irp) - {lim_^ (f + i rf) )* (7)

17
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ist, und dass der erste dieser Grenzwerte gleich der Summe

ist. Mit dem ersten dieser Integrale wird folgendes gemeint:

<i 2 dÜ

-1- 1*1

lim /
K-KX> I 0

dcüi. 0)k

2 (n + mk) 2J\f\2dü+ / da>k

(8)

(9)

Die Existenz des Hauptwertes (9) kann bewiesen werden, wenn wir die Abhängigkeit
der Kopplung/(1, 2, k, r) von dem Faktor eik* berücksichtigen, wie im letzten
Abschnitt, getan wurde.

Die Funktion ro(z) hat, wie wir jetzt gesehen haben, einen Schnitt auf der negativen

imaginären Achse und einen Verzweigungspunkt im Nullpunkt. Der Sprung der
Funktion in die positive Umlaufrichtung an dem Schnitt ist infolge (7) und (8)

S(rj) 2 Re lim ^ (| + i rj) n E\ fi1' 2- k-

ti<0 T

du. (10)

Es gibt nun zwei Methoden zur Auswertung der Integrale (3) und (4) :

1) Man lässt f -> 0 gehen und erhält das Fourier-Integral von Heitler und Ma
[11], das in der ersten Näherung die Formel von Wigner und Weisskopf [9] ergibt.

2) Man setzt die /"-Funktion, definiert durch die Formel (2), über die negative
imaginäre Achse mit Hilfe der Sprungfunktion (10) in die linke Halbebene analytisch
fort. Damit kann man den Schnitt vom Nullpunkt nach links auf der negativen
reellen Achse ziehen. Nun verlegt man den Integrationsweg so weit wie möglich in
die linke Halbebene. In ihrer Dissertation hat Marianne Friedrich [16] gezeigt,

iAi

wie die /-Funktion durch die Addition einer Sprungfunktion, definiert für Frequenzen

bis zu einer festen oberen Grenze, analytisch fortgesetzt werden kann. (In unserer
Arbeit entspricht das für die Funktion S(rj), dass (ok— — rj < K sein soll.) Sie hat
dann nachgewiesen, dass die Lösung als die Summe von 3 Bestandteilen betrachtet
werden kann: P Residuum eines Poles, Ax, A2 Integral über grosse Frequenzen,
B Integral um die negative reelle Achse (siehe Bild). Die Integrale über Cx und C2

geben im Unendlichen keinen Beitrag.
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Wir wollen nun zuletzt in Anschluss an die Beziehung (8) das Residuum um den

Pol, P, angeben. Wir führen zuerst die folgenden Bezeichnungen ein :

cx>o cox — cx>2, (11)

-V n [E\ hi(1!2' *> r) I2 ml I
dÜ (12)

2 J r
[°>ft-<»o

A p { yVHiXßJffVLdzk. (13)

Dann stellen wir fest, dass i0 — y/2, und rj0 — (co0 — Aca0) die Koordinaten des

gesuchten Poles sind. Wenn wir die Lösung der Integrale (3) und (4) in der ersten
Näherung gleich dem Residuum um den Pol, P, setzen, erhalten wir die bekannten
Ausdrücke von Wigner und Weisskopf :

ips0(l,t) e-H«>i-*<•>.)t e-M2)t
t (14)

s,2 k t)
hf (1/2 kr) c-i(m, + <ok)t __ -ito-Aojt e-(vmt\ (15)T1K ' mk-(m0-Am0) + i(yl2) * i

Für die Intensitätsverteilung der emittierten Strahlung bekommen wir die Formel (1)
Seite 246 bis auf die Änderung, dass das Maximum der Intensität umzlcy0 verschoben
wird («line shift»).

KAPITEL III
Der Übergang zu einer vollständigen relativistisch invarianten Theorie

§ 1 Die Quantisierung und die Formulierung des Wechselwirkungsoperators

Wir betrachten wieder die Wechselwirkung zwischen Elektronen und dem
elektromagnetischen Feld. Für die Potentiale des Strahlungsfeldes rechnen wir mit der
halbdefiniten Metrik, die durch die Lorentz-Eichung

div.4. + ^=0 (1)

bestimmt wird11). Das skalare Feld<^ enthält nicht das Kernfeld V, das ein Bestandteil

der ungestörten Energie ist. Wir setzen die folgende Funktion, W(x), als denjenigen

Teil der Hamiltonfunktion an, der für die Wechselwirkung verantwortlich ist.

W(x) =e{cf>- (a, A)} (2)

Die a/s (i 1, 2, 3) sind numerisch gegebene vierreihige Matrices. Wenn wir mit der

Darstellung der Dirac-Gleichung rechnen, wie sie im Kap. II, § 1, (2) aufgestellt
wurde, ist für jedes i

oii ßxai. (3)

Wir betrachten das skalare Potential mit der imaginären Einheit multipliziert als
die vierte Komponente des Potentialvektors A,,

At i<f>. (4)

") Q. W., Seite 956-957.
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Der Übergang zum Operator Wop(x) geschieht indem man das Viererpotential quan-
tisiert.

4*. f^ fE y= ib~(k'' '') 4(*'. r') + b+(k', r') A*r(k', r')}d3k' (5)

Hier bedeutet Alk, r) auch einen Vierervektor für v 1, 4:

A„(k, r) C„Wfi,(^-ra*'). (6)

Wir schreiben dann den gewünschten Operator, Wop(x), in der Form

Wop(x) -e{iAGrt+E*iAGrA\. (7)

Wir wollen jetzt zur zweiten Quantisierung übergehen, d. h. zur Quantisierung
des Fermiionfeldes. Durch die Anwendung dieses quantisierten Feldes und des
Operators W0p(x) bekommen wir dann den Wechselwirkungsoperator//; durch die
Grundoperatoren in der Impulsdarstellung ausgedrückt. Wie in der nichtrelativistischen
Untersuchung machen wir hier die Annahme, dass der Operator Wop(x) im
Schrödinger-Bild für t 0 zu suchen sei. Wir führen somit die Bezeichnung

4>, AGrß 0) (8)

ein und wenden den Operator in der folgenden Form an :

WotW^-eli^+È*,^} (9)
\ ; 1 I

Wenn man mit der Funktion W(x) oder dem Operator Wop(x) rechnet, muss natürlich
beachtet werden, dass beides vierreihige Matrices sind. Man schreibt die
Matrixelemente von W mit kleinen Buchstaben.

W(x)={w(x)/tv}, (10)

Wop(x) {wop(x)ßv} (11)

Den Operator (9) kann man noch einfacher schreiben, wenn ein Tensor dritter Stufe

O^x eingeführt wird.

0,„, -(V)« (»"=1,2,3),

0,M =-**,„. (12)

Dann kann man statt (9) folgendes schreiben :

«<»(*),,. <È0r>x4*r (13)
x-i

Wie in der nichtrelativistischen Formulierung machen wir jetzt Gebrauch von den

abgeleiteten Spinorfunktionen %l(m, x), indem wir die Grundoperatoren in der {x}-
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Darstellung, av(x) und a+(x), anwenden. Dann erhalten wir für den Wechselwirkungsoperator

Ht Gr

HiGr / Eat(x) wop(x)ßv aAx) d3x

E Xs*(m'-x) wop(x)/iv Xt(m' x) d3xa+(m') a~(m) (14)
** tivmm'

Diesen Ausdruck kann man auch folgendermassen schreiben

„ f y^ d3k
HiGr =74 Y/IY" nn'r Y Ä wk

x {f(m', m, k, r) a+(m') b~(k, r) a~(m) + f(m, m, — k, r) a+(m') b+(k, r) a~ (m)} (15)

wenn die Funktion/(w', n, k, r) wie folgt definiert wird:

f(m', m, k, r) —p^ f ECYr) e""1 XS*(m'- x) °»vi Xl(™- x) d3x (16)

Man nimmt nun an, dass das Elektron nur zwei Energiewerte annehmen kann.
Die Auswertung der Wahrscheinlichkeitsamplituden, die zum Thema der natürlichen
Linienbreite gehören, wird dann nach der formalen Lösung durchgeführt, die im
letzten Kapitel hergeleitet wurde. Ihre Auswertung ist nach Hauptsatz (B) erlaubt,
wenn das Integral

fE I *?(l/2, k, r) \2d3k (17)
J r

konvergiert. Die Elemente der Wechselwirkungsmatrix sind jetzt formell auf die

gleiche Art von der Kopplung abhängig wie vorhin,

*,(l/2, k, r) -* /(1, 2, k, r) h{(2, k, r/1) —L, /(2, 1, - k, r) (18)
y2mk \l2mk

und das Integral (17) wird wie folgt:

(19)
(2*

1

e2 I' EyÜt f 27C» «'*¦ XSM. x) 0,vX %l(m, x) dAx
•J r k J x, fi,v

Da die Spinorfunktionen %sv(m, x) endlich normiert sind, wird dies Integral sicher
konvergieren, und zwar aus den gleichen Gründen, die schon im Kap. II, § 3, erklärt
wurden. Die Form der Lösung ist genau die gleiche, die vorhin berechnet wurde. Für
eine numerische Berechnung der Linienbreite oder der Linienverschiebung muss man
aber die neue Form der Kopplung, (16), berücksichtigen.

§ 2 Vollständige Zustandsvektoren

Wenn die Anzahl Teilchen für die Vektoren des elektromagnetischen und des

Elektron-Positron-Feldes nicht eingeschränkt wird, erhalten wir Zustandsvektoren
des zusammengesetzten Feldes, dessen Funktionen die Form

y>(n, f; (p, s, s) (k, r)
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haben. Die Anzahl Elektron-Positronen schreiben wir neP und diejenige der Photonen

nr. Der entsprechende Energieoperator wird auf der Grundlage des letzten Abschnittes

formuliert. Wir können unsere Annahme über die zwei möglichen Zustände des

gebundenen Elektrons behalten. Die Laplace-transformierte Wellengleichung hat
dann zunächst zwei Typen von Gleichungen zur Folge, die bis auf ein Korrekturglied
mit den Gleichungen (2) und (3) im Kap. II, § 2 identisch sind. Dann folgen aber
unbeschränkt viele Gleichungen zur Bestimmung dieses Gliedes (Störungsrechnung). Wenn
die Bedingung unseres Hauptsatzes (A) erfüllt ist, muss es eine mathematisch
einwandfreie Auswertung nach diesem Schema geben.

Anhang

E. Hille und K. Yosida [8] haben die analytische Theorie von Halbgruppen
beschränkter, linearer Operatoren über einen Banachschen Raum, B, untersucht.
Für die allgemeinsten Operatoren dieser Art, die den Bedingungen

T (t + s)= T(t) T(s) T(0) /
genügen, haben sie die infinitesimale Erzeugende A des Operators T(s) durch die

Beziehung
Ax lims-1 (T(s) - I) x; xeB

s—>0

definiert. Sie beweisen, dass das Definitionsgebiet D(A) in einem lokal konvexen,
linearen, topologischen Raum X dicht liegt. (*) Die Laplacetransformation

Cn x I n e~ns T(s) x ds; x e X n reell > 0

o

führt zur Gleichung
A Cn x n (C„ - I) x ; x e X, (1)

aus welcher die Aussage

R(QQD(A) (2)

folgt, wenn R(Cn) den Raum aller Elemente Cn x darstellt. Die obenstehende Behauptung

(*) folgt aus (2) sowie aus der Beziehung

lim C„ x x ; x e X

Nun wird bewiesen, dass der Operator nl — A für n > 0 eine Inverse R(n; A)
(n I — A)-1 besitzt; diese hat die Form

R(n ; A) x n-1 Cn x für xeX. (3)

Den Operator D, definiert man durch die Beziehung

DtT(t) x limh~1(T(t + h) - T(t))x für x e X
h—>0
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wenn die linke Seite existiert. Es kann nun bewiesen werden, dass die Gleichung

Dt T(t) x A T(t) x; t^O, (4)

für x e D(Dt T(t)) und x e D(A) gelten kann.
In den Aussagen (1), (2), (3), (4) und (*) ist ein Teil der Sätze des ersten Kapitels

enthalten. Auf der Grundlage der Theorie von Hille und Yosida können die restlichen
Sätze des ersten Abschnittes hergeleitet werden.
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