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Zur Formulierung der mathematischen Theorie der natiirlichen
Linienbreite?)

von Ketill Ingdlfsson

Mathematisches Institut, Universitit Ziirich

(26. IX. 66)

Summary. The Quantum Field Theory, defined in an infinite space and developed on the ideas
of V. Fock and K. FRIEDRICHS, gives the foundation for a general method of solution for quantum
field problems. The Laplace transform of the time dependent state vector in the Schrédinger
picture is proved to be a solution of the Laplace transform of the wave equation. The conditions
for the identity of the inverse transform of that solution with the original state vector ard also
some other rules for the Laplace transformed space will be derived. The method of solution con-
sists then in the following procedure: 1) The Laplace transform of the wave equation is solved;
2) The solution is retransformed. — The well known physical problem of the emission of light from
an excited electron in a bound state and the corresponding calculation of the line width is to be
treated by means of this method. The following discussion shows, that the conditions for the solu-
tion are fulfilled, if we use the ordinary Hamiltonians in a Hilbert space, corresponding to lowest
order perturbation theory. At the end, the calculation of this sclution is briefly pointed out. A
connection to the method of HEITLER and Ma is easily found. The use of a Hilbert space, corres-
ponding to general perturbation theory is sketched.
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Einfiihrung

Eines der wichtigsten Probleme der modernen Feldtheorie besteht im Mangel an
mathematisch einwandfreien Losungsmethoden. Als ein Beitrag zu der Diskussion
um dieses Thema soll im folgenden eine allgemeine Losungsmethode besprochen
werden, die auf der Laplacetransformation von Zustandsvektoren im Hilbertraum
beruht. Die Grundlage dazu bildet die Feldtheorie im unendlichen Raum. Als eine
Anwendung dieser Methode wird die formale Losung fiir die Auswertung jener Wahr-
scheinlichkeitsamplituden untersucht, die fiir eine Theorie der natiirlichen Linien-
breite erforderlich sind. Dieser Teil der Arbeit wird in einem mgélichst einfachen
Hilbertraum ausgefiihrt.

Zuerst gehen wir allgemein von einigen wichtigen Sédtzen iiber den Raum Laplace-
transformierter Zustandsvektoren aus. Die Feldzustinde sollen als Ldsungen der
iiblichen Wellengleichung hervorgehen. Die grundlegende Annahme der S-Matrix-
theorie, die adiabatische Hypothese, wird hier vermieden, da wir keinen « Randwert»
zu negativ unendlicher Zeit betrachten. Wir nehmen einen Anfangszustand zu einer
endlichen Zeit an, die wir gleich O setzen.

Wenn wir den Anfangsvektor ¥(0) nennen, kénnen wir die zwei Schritte unserer
Losungsmethode wie folgt beschreiben:

(1) Die Laplacetransformierte Wellengleichung

(g + 17 H) ¥lg) = #(0), Refg) >0 (1)
wird in bezug auf den Laplacetransformierten Zustandsvektor ‘.T’(g) gelost.
(i) Der Zustandsvektor ¥(¢) wird durch die iibliche Zuriicktransformation

&4 io00

W — L f eet Plg)dg, >0 @)

&E—100

berechnet.

Das Definitionsgebiet des Energieoperators H sei jetzt mit D(H) bezeichnet. Die
Sdtze iiber die Laplacetransformierten Feldvektoren kénnen dann in dem, was sie
wesentliches tiber die Losungsmethode (i)/(il) auszusagen haben, in dem folgenden
Hauptsatz (A) zusammengefasst werden:

(A) Wenn ¥(0) ein Vektor des Hilbertraumes ist, gibt es immer eine Losung der

Laplacetransformierten Wellengleichung (1). Wenn die Bedingung

¥(0) € D(H)

auch erfiillt ist, so ist durch die Umkehrtransformation (2) ein Zustandsvektor

Y(t) definiert, der die zeitabhingige Schrodingergleichung erfiillt und fiir £ > 0

gegen ¥(0) strebt. _

Wenn der Laplacetransformierte Zustandsvektor ¥(g) fiir ein physikalisches Problem
bekannt ist, nennen wir das Integral (2) die formale Lésung des Problems.

Die Quantentheorie der Wellenfelder wurde in letzter Zeit von verschiedenen
Autoren so formuliert, dass sie im unendlichen Raum exakt begriindet ist. In einer
kiirzlich erschienenen Abhandlung hat B. L. vAN DER WAERDEN [1] im Anschluss an
V. Fock [2] und K. FriEDRICHS [3] und auf Grund der Distributionentheorie von
L. ScuwaRrtz [4] die wesentlichen Ziige der Theorie zusammengefasst. Es wird eine



Vol. 40, 1967 Die mathematische Theorie der natiirlichen Linienbreite 239

mathematisch einwandfreie Formulierung der Quantentheorie gegeben, die sich weder
der tiblichen Periodizitdtsbedingungen (Feld im « Kasten») noch der indefiniten Metrik
bedienen muss. Der Inhalt dieser Abhandlung, besonders der Abschnitt {iber die
Quantisierung des elektromagnetischen Feldes, wird fiir das folgende als bekannt
vorausgesetzt.

In der Untersuchung dieses Themas von vAN DER WAERDEN wurden ausschliess-
lich freie Felder behandelt. In der vorliegenden Arbeit aber sollen Probleme unter-
sucht werden, in denen Wechselwirkungen zwischen Teilchen und Strahlungsfeld
auftreten. Es werden somit die Felder zusammengesetzter Systeme formuliert. Der
Energieoperator wird in den Operator der «freien» Energie und den Wechselwirkungs-
operator aufgeteilt, der in der Literatur meistens als ein Storungsglied aufgefasst
wird. Die Ausfithrung der Lésungsmethode (i)/(ii) lasst somit eine Auswertung im
Sinne der Stérungsrechnung erwarten. Zur vorhin erwidhnten Anwendung der Lo-
sungsmethode wird ein Hilbertraum formuliert, dessen Zustandsvektoren nur eine
minimale Anzahl Teilchen beschreiben koénnen. Das Lésungsverfahren entspricht
dann einer Stérungsrechnung niedrigster Ordnung?).

Im folgenden wird ein MaBsystem gewahlt, in dem ¢ = % = 1 ist. Vektoren des
Impuls- oder des Ortsraumes, z. B. ¢ oder x, werden 1.A. ohne besondere Vektorbe-
zeichnungen geschrieben, und das Skalarprodukt beider Vektoren schreiben wir gx.

Im ersten Kapitel wird die Theorie der allgemeinen Lésungsmethode (i)/(ii) for-
muliert. Als ihre Anwendung wird im zweiten Kapitel die formale Lésung jener Zu-
standsvektoren untersucht, deren Auswertung die natiirliche Linienbreite der spon-
tanen Lichtemission begriindet. Das Problem wird nichtrelativistisch und in einem
Hilbertraum behandelt, der einer Stérungsrechnung erster Ordnung entspricht. Die
Herleitung der formalen Losung ist dann leicht auszufithren und die Aufgabe sie
auszuwerten wird auf das Studium einer einzigen Funktion I’ (g) zuriickgefithrt. Wir
zeigen, dass die Auswertung vollstindig durchgefiihrt werden kann. Im dritten Kapi-
tel wird ein kurzer Ausblick auf die relativistisch invariante Theorie gegeben, sowie
auf Zustandsvektoren, die eine unbeschriankte Anzahl Teilchen berticksichtigen kon-
nen.

KAPITEL I
Allgemeine Betrachtungen zur Begriindung der Losungsmethode

§ 1 Die Laplacetransformation von Zustandsvektoren im Hilbertraum

Die Vektoren ¥ des Hilbertraumes R seien Zustandsvektoren genannt, wenn sie
physikalische Vorginge, die sich in einem System von Teilchen verschiedener Art
abspielen, vollstindig beschreiben. Im Schrédinger-Bild der Feldtheorie seien die
Zustandsvektoren ¥s(f) Losungen der Wellengleichung

.0 . .
i W —HW . (1)

Diese Losungen kénnen durch die Anwendung des unitdren Operators e~*#? angegeben
werden. Im Sinne der Theorie der Spektraldarstellung linearer Operatoren definieren

%) In einer weiteren Arbeit wird die Einschrinkung des Hilbertraumes fallengelassen. Die Sto-
rungsrechnung bekommt dann eine neue Form.
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wir (siehe J. voN NEUMANN [5])
+o0
g | g gmll (2)

— 00

Hier bedeutet E(A) die zum Operator H gehorende Zerlegung der Einheit. Der Opera-
tor (2) ist unitdr und somit auf den ganzen Hilbertraum definiert:

D~y = R.

Zu einem bestimmten Anfangszustand des Teilchensystems, ¥/(0), kann die Lésung
der Wellengleichung (1) immer in der Form

Ps(t) = ¢ P(0) (3)

angegeben werden. Wenn ¥/(0) im Definitionsgebiet von H liegt, kann man aus (3)
umgekehrt auf die Wellengleichung (1) schliessen.

Fiir die Laplacetransformation von Vektoren im Hilbertraum in bezug auf die
Zeit benutzen wir die folgende Definition:

Es sei g = & + 7 x eine komplexe Zahl. Man bilde das Integral

Plg) = [ st P d.

Die Laplacetransformierte ¥(g) des Vektors ¥(¢) existiert dann und nur dann, wenn

ihre Norm N ¥(g) endlich ist, d. h. wenn sie auch als ein Vektor des Hilbertraumes
gelten kann.

Wir setzen nun voraus, dass der Parameter der Laplacetransformation g einen
positiven Realteil hat, d. h. dass & > 0ist. Die folgenden Sitze kénnen dann bewiesen
werden:

I) Jeder Vektor ¥(¢) im Hilbertraum R, dessen Norm N ¥(¢) als Funktion der
Zeit beschrankt bleibt und der fiir alle positive Zeiten eine stetige oder stiickweise

stetige Funktion der Zeit ist, besitzt eine Laplacetransformierte ¥(g).

IT) Wenn der Vektor ¥(f) zum Definitionsgebiet des Operators H gehort, so gilt
das gleiche fiir die Laplacetransformierte des Vektors.

III) Wenn ¥5(¢) eine Losung der Wellengleichung im Schrédinger-Bild ist, so ist

ihre Laplacetransformierte 1.T’S(g) eine Losung der folgenden Gleichung:

(g + i H) Ws(g) = P(0), fir Y(0) = lim ¥Ps() .

t—0

Die Gleichung wird als die Laplacetransformierte Wellengleichung bezeichnet.

IV) Wenn der Raum aller Vektoren H ¥s(g) mit L(H) bezeichnet wird, so ist
L(H) C D(H). _

V) Wenn ¥(0) zum Definitionsgebiet des Operators H gehért, und wenn ¥*(g)
eine Losung der Laplacetransformierten Wellengleichung ist, so ist dieser zweite
Vektor die Laplacetransformierte der Losung der Wellengleichung im Schrédinger-
Bild, die den Anfangswert ¥(0) hat. Diese Losung ergibt sich dann durch die Aus-
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wertung des Infegrals

1 E4ico _
() = 5 feg”ffs(g) de .
&—ico

Die Giiltigkeit des ersten Satzes folgt aus der Abschitzung,

N ¥(g) = f / e g8 (P(t), W(t)) dt’ dt
0 0

£ eI | (W), V(b)) | dt dt
//

[0 o Je o]
< f f g€+t
0 0

Wenn die Norm N ¥(#) fiir alle positive Zeiten endlich bleibt, ist auch die Norm

N ?(g) endlich; damit ist der Satz I) bewiesen. Aus der Losung (3) der Wellenglei-
chung folgt, dass die Norm der Zustandsvektoren N ¥5(¢) = 1 fiir alle Zeiten ist.
Damit gilt fiir ihre Laplacetransformierten, dass

1
s SupN (1) .

we) |- | e e a <

= 1
N W) <

d. h. dass ihre Norm umso kleiner wird, je weiter wir nach rechts in der komplexen
Parameterebene gehen. Wenn HY eine endliche Norm besitzt, so gilt infolge I) das

gleiche fiir H¥. Weil nun der Operator H zeitunabhingig ist, kann man behaupten,
dass

HY-HY

ist; damit ist der Satz IT) bewiesen. Nun multipliziere man beide Seiten der Wellen-
gleichung (1) mit e~ ¢¢ und integriere iiber die Zeit von 0 bis co. Da eine Losung P5(f)
der Wellengleichung differenzierbar ist, muss sie auch stetig sein und besitzt somit

infolge I) eine Laplacetransformierte Y_f_‘(g) Bei dieser Umformung der Wellenglei-
chung iiberzeugt man sich, dass fiir &£ > 0

lim e~2¢ ¥s(t) = 0

{—o00

ist, und man erhilt die Laplacetransformierte Wellengleichung; damit ist der Satz
ITI) bewiesen. Der Operator H kommutiert mit dem unitidren Operator e~ *#¢, Damit
folgt aus (3), dass ¥(¢t) € D(H), wenn ¥(0) € D(H) ist. Dann ist aber auch infolge

II) ¥*(g) € D(H) und infolge III) H ¥*(g) € D(H); damit ist der Satz IV) bewiesen.

Den Vektor ‘I_fs(g) kann man infolge der Laplacetransformierten Wellengleichung
durch den Ausdruck

Ps(g) = (g + 1 H)™ ¥(0) (4)
angeben, was wiederum die Laplacetransformierte der Losung (3) ist, wenn ¥ € D(H)
ist. Damit ist der erste Teil des Satzes V) bewiesen. Aus der Literatur iiber die Theorie

16
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der Laplacetransformation?®) zitieren wir jetzt einen Satz iiber die Umkehrtransfor-
mation, den wir auf Elemente des Hilbertraumes leicht iibertragen: In jedem end-

lichen Zeitintervall (77, 7,) sei die Schwankung des Vektors ¥s(¢) beschrinkt, d. h.
die Summe

oz =D Pt) — Pt )| 2 =ty <t <. . <t_ <t =T,
i=1

sei fiir jede Zerlegung z des Zeitintervalles beschrinkt. Dann ist die Umkehrtransfor-
mation ausfiithrbar und die Zurticktransformierte im Satz (V) ist der urspriingliche
Vektor.

Die Losung der Wellengleichung ist auf jeden Fall stetig differenzierbar. Wir diirfen
dann den Mittelwertsatz auf jeden der Vektoren ¥5(¢) in dem Intervall (T, T,) an-

wenden. In jedem der kleinen Intervalle £,_, <t< ¢, (i=1, ..., #) gibt es ein ¢,
fiir welches folgendes gilt,

| Ws(t) — Pslt,y) | = | o) | (8 — tia) -

Weil die Ableitung Y.f‘(t) stetig ist, muss der absolute Betrag des Vektors im ganzen
Intervall beschrankt sein. Es sei z. B.

EEOESS

Wir kénnen dann die Summe ¢(z) wie folgt abschitzen:

7

ot) = ST @) | (6 —tin) SN —tiy) =N (G —T)) .

1=1 i=1

Daraus folgt, dass die Bedingung im obenstehenden Satz erfiillt ist; damit ist der
Satz V) bewiesen.

In einer Theorie der Halbgruppen beschrdnkter, linearer Operatoren iiber einem
lokal konvexen, linearen, topologischen Raum haben E. HILLE und K. Yosipa [8]
eine neue Grundlage zur Herleitung der Ergebnisse dieses Abschnittes gefunden. Sie
haben Gleichungen diskutiert, die unser Leraplacetransformierten Wellengleichung
und ithrer Umkehr (4) entsprechen. (Siehe Anhang.)

§ 2 Die Darstellung von Zustandsvektoren und Operatoren infolge der Entwicklung zu-
sammengesetzter Felder nach Teilchenzahl

Die Satze des ersten Abschnittes wurden allgemein fiir den abstrakten Hilbert-
raum hergeleitet. Im folgenden soll nun die Struktur des von uns benutzten Raumes
niher festgelegt werden. Die Entwicklung der Felder nach Teilchenzahl wird begriin-
det, und wir sehen, wie die Operatoren des Hilbertraumes durch die elementaren
Grundoperatoren ausgedriickt werden kénnen. Dadurch wird es uns moglich, noch
weitere allgemeine Aussagen iiber die Ausfithrung der Losungsmethode (i)/(i1) anzu-
geben.

3) Fur die weitere allgemeine Diskussion um die Laplacetransformation siehe CARSLAW und
JAEGER [6] oder vaN DER PorL und BREMMER [7].
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Wir betrachten zuerst ein System von Photonen und Teilchen, die in ihren unter-
schiedlichen Eigenschaften durch verschiedenen Felder dargestellt werden konnen.
Jedem dieser Felder, deren Anzahl etwa « sei, ordnen wir einen Hilbertraum zu.
Diese einzelnen Hilbertraume kénnen so definiert werden, wie es B. L. VAN DER WAER-
DEN in seiner Arbeit getan hat, die im folgenden als «Q. W.» zitiert wird.

Der Raum R/ des j-ten Feldes besteht aus allen Funktionenfolgen

¢ = (g - PDs ) (1)
deren Norm

N =Ny, @

endlich ist. Der Ausdruck (g), soll hier simtliche Impulse und andere dazugehérige
Bestimmungsgrossen von # Teilchen darstellen. Im Falle des Elektron-Positron-
Feldes soll somit (g) die drei Bestimmungsgréssen (p, s, ), d. h. den Impuls p, die
Spinrichtung s und das Energievorzeichen ¢, bezeichnen, wihrend im Falle des elek-
tromagnetischen Feldes (¢) die zwei Bestimmungsgréssen (%, 7), d. h. den Impuls &
und die Polarisationsrichtung 7, bezeichnet. Die einzelnen Funktionen ¢, miissen in
den Argumenten

@n=(g" ..., ¢

symmetrisch fiir das Bosonenfeld und antisymmetrisch fiir das Fermionfeld sein. Die
Zustidnde des gesamten Systems konnen nur dann von den richtig normierten Vek-
toren ¢/ beschrieben werden, wenn die Wechselwirkung der Teilchen jeder Sorte mit
den anderen ausbleibt.

Wenn die Wechselwirkung eintritt, kénnen die Zustéinde des Systems aber auf
einen Hilbertraum R der zusammengesetzten Felder bezogen werden. Der Zustand
eines Feldes, das n; Teilchen von der Sorte 1 bis #n, Teilchen von der Sorte « enthilt,
seil durch die endlich normierte Wahrscheinlichkeitsamplitude

Wn, ..... Ny ((9'1)11,1’ LR (qa)na) (3)
gegeben. Wie oben stellt (g,),, die Bestimmungsgréssen von #; Teilchen des i-ten
Feldes im Impulsraum dar. Wenn wir jeder Zahlenfolge #,, ..., n, eineindeutig eine

natiirliche Zahl m zuordnen, kénnen wir eine allgemeine Funktion in den gleichen
Argumenten wie Wnach (3) mit v, n,) Dezeichnen. Der Hilbertraum R besteht

,,,,,

dann aus allen Funktionenfolgen

Vo= (Yo Wi - s W -+ ) (4)

deren Norm als endlich vorausgesetzt wird. Die Funktionen (3) und (4) sollen auch
von der Zeit abhdngen kénnen.

Nach J. voN NEUMANN [5] kénnen wir den Hilbertraum R als einen sogenannten
Produktraum der « kleinen Hilbertrdume R/ auffassen. Die diesbeziiglichen Beweise
von Neumanns, die zwei Feldern gelten, konnen sofort auf mehrere Felder ausgedehnt
werden. Der Raum R/ wird durch das vollstindige System orthonormierter Vektoren

{i (4; =1, 2, ...) aufgespannt. Wir ordnen wieder jeder Zahlenfolge /;, ..., /, einein-



244 Ketill Ingdélfsson ' H. P. A.

deutig die Zahl m zu und bilden die Produktvektoren

«©

gIm(ll ..... ly) :H ¢j - (5)

Jeder Vektor stellt eine Folge von a-fachen Funktionenprodukten dar. Die Produkt-
vektoren bilden fiir simtliche m eine vollstindige Schar orthogonaler Vektoren im
Raum R. Durch die Summe

V= Zum v, (6)

kénnen wir somit jeden Vektor des Raumes R ausdriicken. Umgekehrt ist jeder Vek-
tor von der Form (6) ein Element von R, wenn die Summe

3Lt
endlich ist.

Die Menge der Funktionenfolgen (4), die bei einer maximalen Teilchenzahl fiir
jede Art, #*™, ..., #”**, abgebrochen werden, stellt den Hilbertraum R(m™**) dar.
Der einfachste solcher Rdaume gibt die Grundlage zur Auswertung der natiirlichen
Linienbreite im zweiten Kapitel. Wenn die Teilchenzahl nicht eingeschriankt wird,
nennen wir die Vektoren vollstindig. Die vollstindige Ausfithrung der Loésungs-
methode (1)/(ii) fithrt dann zu Renormierungsaufgaben.

Durch die Beriicksichtigung der Beziehungen (5) und (6) kann nun die Wirkung
der Grundoperatoren der einzelnen Hilbertrdume R/ auf Vektoren im grossen Hil-
bertraum R verstanden werden. In R haben wir dann 2 - « solche Operatoren, die
wir hier einheitlich bezeichnen wollen: Es sei ¢;(¢) der Vernichtungsoperator und
¢i(g) der Erzeugungsoperator, die auf das j-te Feld wirken. Durch die folgende
Schreibweise kiirzen wir zwei wichtige Produkte ab:

m

(@™ =cr(q) ... (@) .- (gs) - (g5
cH@)" = ey (g52) - c5(ge) - o) - cfq) -

Die Argumente des zusammengesetzten Feldes kiirzen wir in der selben Art ab:

(‘?)m = ((gl)nl’ % oy (ga)nm) b
Wir betrachten jetzt einen Operator 4;,, der den Vektor ¥ zu ¥ tiberfiihrt:

V=4, V. (7)

Von dem Operator wird verlangt, dass er auf einen iiberall dichten Teilraum des
Hilbertraumes definiert ist. Die Bezeichnung Gr soll angeben, dass er durch die
Grundoperatoren der o Felder ausgedriickt werden kann. Nun sind die Grundopera-
toren bekanntlich nicht als eigentliche Operatoren, sondern als Distributionen zu
verstehen. Das bedeutet, dass in der Form der Operators Ag, eine Integration iiber
die Impulse (g) enthalten sein muss. Um die Struktur des Operators zu ermitteln,
kénnen wir von ihm einen Integraloperator ableiten, der auf den Vektor ¥ die gleiche
Wirkung hat wie er. Zuerst fithren wir ¢,, den Zustandsvektor des Vakuums, ein:

do=(1,0,0,...).
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Dann bezeichnen wir mit A die Gesamtheit der Funktionen

a((@™)(@)") = (ny! ...y Ly Lo m )TV (Bo, ()" A, (@)™ Bo) . (8)

Diese Funktionen bilden den Kern des Integraloperators. Die Gesamtheit 4 ist ana-
log einer Matrix, aber die einzelnen Matrixelemente hingen ausser von den diskreten
Zahlen n; (=1, ..., «) noch von den Teilchenkoordinaten (g)™ und (¢')" ab. Wir
werden die durch (8) definierten a((g)™/(¢')™') trotzdem «Matrixelemente» und ihre
Gesamtheit «Matrix» nennen. Aus (7) kénnen wir dann fiir eine Funktion des Vektors
Y’ die folgende Gleichung ableiten:

v [ g g a(@"/@)") v ©)

Das Definitionsgebiet D(4;,) wird durch die Forderung bestimmt, dass die Norm
N A;, ¥ endlich sei. Wir erhalten somit den Satz:
VI) Der Operator 4, ist auf den ganzen Hilbertraum definiert, d. h. D(4;,) = R,

wenn das Integral
X[ 1Al dgdg (10)
endlich ist. :

Das Integral ist so zu berechnen, dass iiber das absolute Quadrat der Matrixele-
mente nach sowohl den Zeilen- wie auch den Spaltenargumenten integriert und sum-
miert wird. Umgekehrt ist aber die Konvergenz des Integrals (10) nicht eine Folgerung
aus D(4;,) = R. Im Folgenden wird die Bezeichnung Gr am Operator weggelassen,
ausser wenn seine konkrete Abhidngigkeit von den Grundoperationen betont werden
soll.

In der Abhandlung Q. W. hat vaN DER WAERDEN die Zustandsvektoren der ein-
zelnen Felder, ¢, auf zweierlei Arten dargestellt, indem die Argumentenrdume der
Vektorfunktionen entweder der Ortsraum (x-Raum) oder der Impulsraum (¢-Raum)
sind. Wir sprechen deshalb hier von der {#}- und der {g}-Darstellung des Hilbert-
raumes. Mit Riicksicht auf die bekannten Transformationsgesetze, nach welchen
Zustandsvektoren, Operatoren und Wellengleichung ins Dirac-Bild (Wechselwir-
kungsbild) iibergehen, kénnen wir feststellen, dass die in Q. W. eingefithrten Zustands-
vektoren in der {x}-Darstellung auf das Schrédinger-Bild und in der {g}-Darstellung
auf das Dirac-Bild bezogen sind.

Wir kénnen die Laplacetransformation auf die Wellengleichung im Dirac-Bild
ausiiben, so wie wir es im ersten Abschnitt im Schrédinger-Bild getan haben. Dabei
erhalten wir, wie zu erwarten ist, die gleiche Laplacetransformierte Wellengleichung.
Wir zeigen das, indem wir zuerst die folgende Laplacetransformation jeder Funktion
vh((g)™, {) eines Zustandsvektors im Dirac-Bild ausfithren:

o0

@) g +iom = [ e R ((g)m 1) de

0

Die Grosse w™ stellt hier die Energie aller derjenigen Teilchen dar, die in 9% vertreten
sind%). Wir unterscheiden weiterhin das Schrédinger-Bild und das Dirac-Bild durch

%) Fiur die Bedeutung der Energien w in kontinuierlichen Feldern siehe Q. W.
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das Hinzufiigen der oberen Indices S und D. Es folgt fiir jede Vektorfunktion die
Identitat

(@)™ g+ iom) =y, (@™ g). (11)

Wenn jede Komponentengleichung der Wellengleichung im Dirac-Bild mit ¢~ (€+¢«™!
multipliziert wird, und w™ die zur betreffenden Gleichung gehérende Energie ist,
integrieren wir iiber die Zeit von 0 bis oo und erhalten aus der Gesamtheit aller dieser
Gleichungen die Laplacetransformierte Wellengleichung in der schon bekannten
Form. Im folgenden werden die Wahrscheinlichkeitsamplituden im Schrédinger-
Bild berechnet. Von der Identitit (11) wird dann Gebrauch gemacht, wenn parallele
Resultate im Dirac-Bild gewiinscht werden.

Im allgemeinen Hilbertraum, der durch die Entwicklung der Felder nach Teil-
chenzahl dargestellt wird, entspricht die Laplacetransformierte Wellengleichung einer
Anzahl Gleichungen folgender Art:

(g +iwm) o)™ g)
+i [ Zam g b (@"0)) pl(@)™.8) = wal@™0) . (12)

Wenn die Zustandsvektoren vollstindig sind und die Wechselwirkung 4; solcher Art
ist, dass sie die Teilchenzahl stets dndert, wird die Anzahl der Gleichungen (12) unbe-
schriankt, die zur Bestimmung der Amplituden nétig sind. Wenn aber der Hilbert-
raum R (™) benutzt wird, kénnen wir unter Umstdnden aus den Gleichungen (12)
ein exaktes Resultat erhalten, ohne eine unendliche Reihe aufsummieren zu miissen.
Das einfachste Beispiel solcher Auswertung wird im nédchsten Kapitel diskutiert.

KAPITEL II
Die natiirliche Linienbreite

§ 1 Die Formulierung der physikalischen Aufgabe

Das vorliegende Kapitel bringt eine Anwendung der schon getroffenen mathe-
matischen Vorbereitungen in der Quantentheorie der Wellenfelder. Die Theorie der
spontanen Lichtemission von einem angeregten, im Atom gebundenen Elektron wird
im Sinne des ersten Kapitels neu formuliert. Die spektrale Intensitidtsverteilung und
die damit verkniipfte natiirliche Linienbreite soll ausgewertet werden.

Fiir die quantentheoretische Behandlung dieser Aufgabe steht wie gewohnt die
Berechnung von Wahrscheinlichkeitsamplituden im Vordergrund. Die alte Stérungs-
theorie lieferte dafiir ein System von Differentialgleichungen, die durch geeignete
Vereinfachungen gelést wurden. In diesem Sinne haben WEISSKOPF und WIGNER [9]
die Aufgabe untersucht. Fiir die gesuchte Intensitdtsverteilung der emittierten Strah-
lung haben sie den folgenden Ausdruck bekommen:

d
J(w) dw = o, Ey; (a)—wo)a;—kyzlél ) (1)

Die Halbwertsbreite y in dieser Resonanzformel ist die gesuchte natiirliche Linien-
breite. Bei der Annahme von zwei moglichen Elektronenzustidnden ist y die totale
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spontane Ubergangswahrscheinlichkeit des Elektrons pro Zeiteinheit, und w, ist die
betreffende Energiedifferenz. Die klassische Elektrodynamik ermittelt genau den
gleichen Ausdruck wie (1) fiir diese Intensititsverteilung.

Die bis jetzt genauesten Resultate aus der Theorie der natiirlichen Linienbreite
stammen aus den Arbeiten von HEITLER [10, 11, 12], MA [11], ArNous [12, 13] und
Z1IENAU [13]. Sie haben ihre Untersuchungen im Zusammenhang mit der Theorie der
allgemeinen Dadmpfungsphdnomene ausgefithrt. Die Auswertung der natiirlichen
Linienbreite mit der Anwendung der Laplacetransformation ist von A. MEssiaH [14]
und G. KALLEN [15] diskutiert worden. MEssiaH behandelt allgemein die Laplace-
transformation von Operatoren, was in dieser Arbeit nicht zur Sprache kommt.
KALLEN leitet einen Teil der formalen Losung her, die wir in diesem Kapitel kennen-
lernen werden. Die Anwendung der Laplacetransformation in der vorliegenden Arbeit
kniipft an ein dhnliches Verfahren in einer Dissertation von MARIANNE FRIEDRICH
[16] an. Frl. FRIEDRICH geht von einem Feld in einem endlichen Volumen ¥V’ aus,
macht dann in der Laplacetransformierten den Grenziibergang V' - oo, wihrend hier
von Anfang an der unendliche Raum zugrunde gelegt wird.

Die Formulierung der physikalischen Aufgabe besteht nun darin, dass die Form
der Vektoren bestimmt wird, die den hier besprochenen physikalischen Fall beschrei-
ben kénnen. In dem vorliegenden Kapitel soll ein solcher Teilraum des Hilbertraumes
bestimmt werden, der einer Stérungsrechnung erster Ordnung entspricht. Wir unter-
suchen das Verhalten eines angeregten Atomelektrons, das im Begriffe ist, ein Photon
zu emittieren. Es muss somit der Zustandsvektor eines Systems, zusammengesetzt
von einem Elektron im Felde des Atomkerns und von hochstens einem Photon, for-
muliert werden.

Wir behandeln im folgenden zuerst das diskrete Elektronfeld auf eine Art, die
der Formulierung der kontinuierlichen freien Felder in der Abhandlung Q. W. ent-
spricht. Der Vektor des zusammengesetzten Feldes folgt dann direkt aus den Ergeb-
nissen des Kap. I, § 2. Der Hilbertraum R#¢ sei aus Vektoren gebildet, die das Elek-
tron-Positron-Feld allgemein beschreiben. Von diesen Vektoren betrachten wir solche,
die nur ein Teilchen beschreiben, und deren Vektorfunktionen ¢(x, ») Lésungen der
Dirac-Gleichung %) '

(bo—Prop — Py —eV) px,») =0 (2)
sind. Nun kann jede solche Vektorfunktion als ein Wellenpaket
@, v) = (2 n)”mzf Qn;p,s, &) xlx, v, t|p,s, e d¥p (3)

aufgefasst werden. Die Ausdriicke y stellen die Spinorfunktionen
gx, v t]p,s,e)=C, (s € gt px — o)
dar. Die Wahrscheinlichkeitsamplituden ¢(n; p, s, ¢) kénnen wir schreiben als

P(n; s, €) = uln; p, s, &) @7l 4)

5) Die Schreibweise der Dirac-Gleichung kniipft an Q. W., Seite 952, an.
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wenn die Funktionen u (n; , s, €) so bestimmt werden, dass der zeitunabhingige
Ausdruck

Zf u(n; p, s, €) Cs, &) eP* d3p

eine Losung der Eigenwertgleichung der Energie mit dem Eigenwert E, ist. Aus dem
Ausdruck (3) sehen wir, dass fiir jedes feste # ein Vektor in der {g}-Darstellung,

b, = (P(n; P, 5, 8)) (5

gegeben ist, der ein Teilchen mit der Energie | £, | beschreibt. Wegen der Entartung
der Energieeigenwertzustidnde ist er nicht durch V eindeutig bestimmt. Die Gesamt-
heit der Vektoren ¢, fiir jedes # bildet den Raum R?*”. Die Summe aller R?*” bildet
wiederum einen Unterraum von R#¢. Wenn wir die zeitunabhingigen #-Funktionen
betrachten, bedeutet dies folgendes: Wir beschrinken uns auf den Teilraum des
Funktionenraumes, der von den Funktionen » (n; p, s, €) aufgespannt wird, d. h. wir
lassen das kontinuierliche Spektrum ausser Betracht. Wir kénnen nun, wie aus der
Theorie des wasserstoffdhnlichen Atoms bekannt ist, ein System von orthonormierten
Vektoren herleiten.

Uin,f) = (%(nf)(?b’ S, 8)) ’

die durch das Potential V' eindeutig bestimmt sind und den Funktionenraum {u (n
., s, &)} aufspannen. Die Anzahl der méglichen Zahlen f fiir ein bestimmtes # ist gleich
dem Grad der Entartung. Eine Funktion u(n; p, s, &) kann also durch jede Linear-
kombination

u(n; p, s, €) = Y @, ) up(p, s, € (6)
]

angegeben werden, wenn die Summe
2 e
n, f

endlich ist. Die Summierung tiber # ist fiir diese Bedingung né6tig, damit der Ausdruck
(3) fiir das Wellenpaket auch einen Sinn hat. Wir fithren nun eine neue Spinorfunk-
tion ein,

x.(n, %, 8) — (27) 3’22f W s (b 5, €) gl v,8) | prs,€) d¥ . (T)

Wenn wir dann die Beziehung (6) fiir u(n; p, s, ) unter der Beriicksichtigung von (4)
in den Ausdruck (3) einsetzen, erhalten wir fiir die urspriingliche Vektorfunktion
die Linearkombination

2 P, f) x,(n 1, %, 1) (8)
Aus der Definition (7) folgt, dass die Norm des betreffenden Vektors durch die Summe
N @(x, v) Z’\ 9)

gegeben ist. Die Ausdriicke (8) und (9) zeigen uns, dass der gebundene Zustand in
einer {nf}-Darstellung neben der {x}-Darstellung gegeben werden kann. Wir stellen
deshalb folgendes auf Grund der bisherigen Herleitungen fest:
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Die zum Hilbertraum R#¢ gehdrenden Vektoren

¢ = (W(x’ 'V)) (10)

bilden in der {x}-Darstellung einen Teilraum von R?¢, den wir R??" nennen wollen.
Dieser Teilraum stellt die Gesamtheit der gebundenen Zustdnde dar. Die einzelnen
Vektoren des Raumes werden in der {g}-Darstellung durch eine Linearkombination
von den Vektoren ¢, nach (5) angegeben. Das bedeutet, dass der Raum R?¢V als die
Summe der Teilriume R?¢" aufzufassen ist.

RPeV — ZRﬁe/n

Die Vektoren ¢ werden in der {# f}-Darstellung durch die Wahrscheinlichkeitsampli-
tuden g(xn, f) beschrieben,

¢ = (g ) (11)

Alle Vektoren der Form (11), die eine endliche Norm besitzen, bilden in dieser Dar-
stellung somit den Raum R?°¢V.

In diesem Raum werden nun Grundoperatoren wirken kénnen, a*(x,») in der
{x}-Darstellung und a*(n, f) in der {nf}-Darstellung®). Der Zusammenhang der
Grundoperatoren beider Darstellungen wird durch die folgenden Beziehungen gege-
ben

a=(x, v) :Zf‘cr(n, fAn, 1, x,8), (12)
at(x,v) =2f‘a+('n, D xsin, f,x 0 . (13)

Der Hilbertraum R¢ soll aus Zustandsvektoren des elektromagnetischen Feldes
gebildet werden, die hochstens ein Photon beschreiben kénnen. Wir kénnen dann
infolge der Ergebnisse des ersten Kapitels den Vektor des zusammengesetzten
Systems von Elektron und Photon in der Form

V= (poln, f:0) , piln, [ &, 55 2)) (14)

als ein Element des Produktraumes R?¢V* ¢/ bilden. Dabei haben wir die {» f }-Darstel-
lung von R?¢V gebraucht. Der Index 0 bedeutet kein Photon, der Index 1 ein Photon,
und # bezeichnet die betreffende Elektronenergie.

§ 2 Die formale Losung der Wellengleichung

Im folgenden soll die Laplacetransformierte Wellengleichung gelést werden und
die Zustandsvektoren im Schrédinger-Bild durch das Integral der Zuriicktransforma-
tion formal angegeben werden. Gleichzeitig soll die Bedingung fiir exakte Losbarkeit
auf Grund der Satze im Kap. I hergeleitet werden.

Der Zustandsvektor (14) aus dem letzten Abschnitt ist aus Feldfunktionen herge-
leitet worden, die zu dem Dirac-Bild gehoren. Der Vektor kann aber in gewohnlicher
Weise ins Schrédinger-Bild transformiert werden. Wir betrachten somit in diesem

6) Siehe zum Vergleich Q. W., S. 955, (17)/(18), fiir das kontinuierliche Feld.
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Bild die Laplacetransformierte des Vektors in der Form

V= (pan.f.8) . Wk 0)} (1)

Die Laplacetransformierte - Wellengleichung wird jetzt auf die iibliche Art in der
Matrixdarstellung aufgefasst?). Mit Anwendung der Vektorform (1) erhidlt man dann
die folgenden Gleichungen,

(& + ¢ w,) yo(n, /. 8) +i2h n, fln' ) po(n', [, 8)

+1f n fln, FLR Y LR Y ) R =y, 1,0) . (2)
,f,

(g + Z (O)n + CUk)) ai(n; f: k: ¥, g) + ’Lth(%, f: k: 7/%’: f’) @S(%', f,: g)

n’, '

4 z'th,.(n, Lok ok, v gsn) FOR, 7, ) &k — i, f, k7, 0) . (3)
I,’/

Fiir die Herleitung dieser Gleichungen hat man davon Gebrauch gemacht, dass der
Operator der ungestérten Energie, H;,, die Form

s - [ X0 b%(k, 1) bk, 7) d% + F o @l f) a(o (4)

nf

hat, und dass somit #H, diagonal ist. Die Zahl w, ist die Energie des gebundenen Elek-
trons, (w, = E,), und w, ist die Energie des Photons (in unserem MafBsystem gleich
| &)

Jetzt wird iiber das Wesen des Wechselwirkungsoperators vorausgeschickt, dass
dieser auf jeden Fall immer die Teilchenzahl dndert. Damit wird fiir alle #f und »'f’

hiln i f') = h(n fhrjw B ) =0 (5)

und aus den Gleichungen (2) und (3) fillt je ein Summand weg. Man darf auch von der
Wechselwirkung fordern, dass sie eine Senkung der Elektronenenergie nur bei der
Emission eines Photons und die Hebung dieser Energie nur bei der Absorption eines
Photons zulasst.

Um die folgenden Rechnungen zu vereinfachen, wird ferner angenommen, dass
die Elektronquantenzahlen des Systems, d. h. nf, nur zwei verschiedene Wertepaare
annehmen konnen, etwa #, f; und #,f,8). Die beiden Paare unterscheiden wir mit dem
Index m, der dann nur zwei Werte, 1 und 2, annehmen kann. Die entsprechenden

7) Die Absorptionsoperatoren, die man zur Bildung der Matrixelemente braucht, sind a—(nf) fir
das Elektronfeld der diskreten Zustinde (Kap. II, § 1) und b—(%7) fiir das elektromagnetische
Feld (Q. W., 5.960). Die allgemeine Form der Gleichungen (2) und (3) haben wirim Kap.1, §2 (12)
angegeben.

8) Wenn wir einen Anfangszustand mit einer bestimmten Spinrichtung annehmen, so bleibt diese
bei der Lichtemission erhalten, d. h. sie bestimmt einen Teilraum des Hilbertraumes, in dem
sich der weitere Prozess abspielt. In so einem Teilraum kénnen wir den Grundzustand als nicht
entartet und den angeregten als dreifach entartet betrachten. Die Polarisierung des emit-
tierten Lichtes unterscheidet dann drei getrennte Fille, von denen jeder der obenstehenden
Annahme entspricht.
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Energiewerte des ungestorten gebundenen Elektrons sind dann w, und w,, wenn w,
die héhere und w, die tiefere Energie ist. Wir schreiben somit im folgenden das zwei-
wertige m allein statt #f als Argument in Operatoren und Funktionen.

Wir wenden nun die Anfangsbedingung

Po(1,O) =1, 9(2,0) = y(1, &,7,0) =9, (2, 4,7,0) =0 (6)

an. Sie bedeutet, dass zur Zeit ¢ = 0 das Elektron im hoheren Energiezustand sei,
und dass dann kein Photon anwesend sei. Aus den Gleichungen (2) und (3) werden
unter diesen Voraussetzungen die folgenden vier Gleichungen hervorgehen:

(8 + 7 ) oL, g) + 1 thi(l/Zx Rov)wi2, K, 7, g) d% =1, (7)
vo(2,8) =0, (8)

yi(l, k7,8 =0, &)

(& + 7 (0 + @) Yi(2, b, 7, 8) + 1 hi(2, &, 7/1) (1, 8) = 0. (10)

Aus (8) und (9) folgen die Losungen

Yo(2,8) =0, (11)
Wi, ko, t)=0. | (12)

Wir fithren jetzt die Funktion
/‘2 |:+1t/fwiw; A3k (13)

ein, setzen (10) in (7) ein und bekommen fiir die Laplacetransformierten der iibrigen
zwei Wahrscheinlichkeitsamplituden durch die Anwendung der Definition (13) die

Ausdriicke
1

yoll, g) = PRI (14)

i hi(2, k, #[1)
(g+i(wytwy)) (g+7 w3+ 1w,g)

Yi(2, k7, 8) = (15)
Wenn man annehmen darf, dass das Integral I', (g) absolut konvergiert, bilden die
Ausdriicke (8)/(9) und (14)/(15) die richtige und bei den gegebenen Voraussetzungen
die einzige Losung der Laplacetransformierten der Wellengleichung. Wir nehmen
jetzt an, dass der Realteil von g positiv sei, d. h. £ > 0, und schitzen den absoluten
Betrag der Funktion (13) fiir ein beliebiges, reelles w ab:

LTRi(1)2, B, 7)) 2 4 | RaL)2, B, 7 a7
‘ [Z g+z(w+wk» dk f2]g+z cu—i—a)kf | dk

< f S h[2, ) P (16)
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Wir beweisen dann den Hauptsatz
(B) Das vorliegende physikalische Problem hat bei den Voraussetzungen, die in
diesem Kapitel iiber die Form des Zustandsvektors und tiber die Beschaffenheit
der Wechselwirkung gegeben wurden, dann und nur dann eine Lésung in der
Form der Zuriicktransformation, wenn das Integral

J X1
endlich ist.

Wegen der Abschitzung (16) muss I’ (g) absolut konvergieren, wenn das Integral
(17) endlich ist. Damit sind die Ausdriicke (14)/(15) sicher die Losung der Laplace-
transformierten Wellengleichung. Die Konvergenz von (17) ist aber auch die notwen-
dige und hinreichende Bedingung dafiir, dass der Anfangsvektor ¥(0), der durch (6)
gegeben wird, zum Definitionsgebiet des H-Operators gehére. Wenn dies erfiillt ist,
gibt esnach dem Satz (V) im Kap. I, §1 eine und nur eine Lésung der Wellengleichung,
die den Anfangswert ¥(0) hat, deren Laplacetransformierte durch (14)/(15) gegeben
wird, und die durch die Zuriicktransformation ausgewertet werden kann. Infolge des
Satzes VI) im Kap. I, § 2 diirfen wir auch andere Anfangszustidnde als (6) anwenden,
sofern sie aus D(H,) stammen. Damit wird der Hauptsatz (B) auf (A) zuriickgefiihrt.

Die zurticktransformierten Wahrscheinlichkeitsamplituden bekommen die fol-
gende Form

1/2, k', ") |2 a3k

(17)

Etioo
Wi =17 | e % (18)
E—do0 Schrédinger-
. e (= i) RE(1J2, b, ¥) Bild
¥i(2, &, 7, 1) = 2ni ) il = g P e AT dg. (19)

Die zwei tibrigen Wahrscheinlichkeitsamplituden des Schrédinger-Bildes verschwin-
den nach (11) und (12).

Durch die Anwendung der Beziehung (11) in Kap. I, § 2 erhalten wir im Dirac-Bild
die entsprechenden Lésungen zu (18) und (19) in der Form

Etico
D _ 1 t !
wo (1, 7) = Znig f ¢ g+ 1 (w,—wy)(8) ag (20)
| —1 Dirac-Bild
) £+100 ( h*(1/2 E oy
D _ gt —H 2 dg . 1
Y@kt =5 f et (- wy—w) T8 P 2

E—ioo

In den Lésungen (18)/(19) und (20)/(21) integrieren wir lings einer zur imagindren
Achse parallelen Linie in der rechten Halbebene der komplexen g-Ebene. Die Nenner
der Integranden konnen nicht verschwinden, da der Realteil der Funktion I (g)
positiv fiir ein reelles @ und ein positives & ist.

Im néchsten Abschnitt wird gezeigt, dass die obenstehende Forderung iiber die
Konvergenz des Integrals (17) von demjenigen Wechselwirkungsoperator erfiillt ist,
den man der iiblichen nichtrelativistischen Darstellung der Quantentheorie entneh-
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men kann. Die Anwendung eines relativistischen Wechselwirkungsoperators, der im
Kap. IIT formuliert wird, zeigt, dass in dieser Beziehung die gleiche Forderung erfiillt
wird. Damit kénnen wir allgemein sagen, dass die formale Losung mit Riicksicht auf
die bekannte Formulierung der Quantentheorie die exakte Losung ist.

§ 3 Die Anwendung einer nichtrelativistischen Wechselwirkung

Wenn wir auf Grund der formalen Losung der Wellengleichung, (18)/(19) oder
(20)/(21) im letzten Abschnitt, exakte Lésungen auswerten wollen, muss der Wechsel-
wirkungsoperator in der Abhingigkeit von den Grundoperatoren bekannt sein. In
diesem Abschnitt wird dafiir ein nichtrelativistischer Operator gewihlt.

Fiir die Potentiale des Strahlungsfeldes wird die Coulomb-Eichung verlangt, d. h.

divA =¢=0. (1)

Von dem Strahlungsfeld hat man hier das skalare Kernfeld, ¥, ausgeschlossen, weil
dies zur Energiedarstellung des Hy-Operators beitrigt. Man setzt nun die folgende
Funktion W als denjenigen Teil der Hamiltonfunktion an, der fiir die Wechselwir-
kung zwischen dem Strahlungsfeld und einem Fermion mit der Ladung e verant-
wortlich ist9).

CW— _ & T
w M(p,A)+2MA. 2)

Von dieser Funktion kann man sofort zu einem Operator, Wy,(x), tibergehen, der auf
die Wellenfunktion des Elektronsin der {x}—Darstellung wirkt. Der kanonische Impuls

p wird durch
R B
(- a —im e

und das vektorielle Potential A durch das folgende Integral ersetzt

1 1 ! ’ ’ ’ ’ ’ TN r ’
AGrZWf;ka,{b‘(k,r)A(k,r)+b+(k,7)A’*‘(k,f)}dak~ 3)

Hier ist die Bedeutung der A’s wie folgt19):

A(k, 7) = C(r) & Fx—r? | (4)

Wegen der Coulomb-Eichung wird der Index der Polarisation, 7', nur die Werte 1 und
2 annehmen. Der zweite Summand des Ausdrucks (2) ist quadratisch in der Kopplung.
Er ist somit sehr unwesentlich verglichen mit dem ersten Summanden und wird des-
halb weggelassen. Der Operator Wj,(x) soll auf Wellenfunktionen im Schrédinger-
Bild wirken. Es wird angenommen, dass der Operator Ag,, wie er in der Darstellung
(3) und (4) gegeben wird, im Dirac-Bild sei. Diesen Operator erhdlt man dann im
Schrédinger-Bild, wenn ¢ = 0 gesetzt wird. Man fithrt die Bezeichnung

A5, = Ag, (t = 0) (5)

%) Fir das Elektron ist also ¢ negativ. Wir halten uns hier an die in der Literatur iibliche Vor-
zeichenwahl.

10) Fir die Erklarung der Vektoren C(#) sei auf Q. W., S. 961 hingewiesen.
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ein und bekommt infolgedessen den Operator W,,(¥) in der Form

iy X ©)

Wegen der Coulomb-Eichung nach (1) ist es klar, dass die folgende Vertauschungs-

relation gilt,
3

2[5 4oni] =0 7
Nun braucht man einen Wechselwirkungsoperator, der auf Zustandsvektoren in der
Impulsdarstellung wirken kann. Dazu werden die abgeleiteten Spinorfunktionen
X.(m, x, t) benutzt, die als Losungen der Dirac-Gleichung des Elektrons im Kernfeld
hergeleitet wurden, und die Wahrscheinlichkeitsamplituden und Grundoperatoren
in der {x}-Darstellung und in der {# f}-Darstellung verkniipfen. Man fiihrt nun in
Ubereinstimmung mit (5) die Bezeichnung

Xi(m’ x) = x::(m’ %, t = O) (8)

ein und erhilt mit der selben Begriindung wie oben die Grundoperatoren fiir das
Schrédinger-Bild durch die Beziehungen

Z a=(m) %, (m, x) (9
2 a*(m) x," (m, %) . (10)

-+

Q

Nach der Definition der abgeleiteten Spinorfunktion ist es klar, dass ihre Norm bei
einer endlichen Anzahl diskreter Zustiande, etwa #, auch endlich ist, d. h.

Ny, = / Zx m, x) A (m, x) d3% = n . (11)

Der Wechselwirkungsoperator H;;, wird jetzt in der Form

He, = | X} () Woylo) a,() o (12)
eingefiihrt, und kann somit wegen (9) und (10) als
He = 3 [ 4700, 5) Woplo) 250m, ) dox a(om') a~(m) (13)

geschrieben werden. Nun wird der Ausdruck (6) fiir den Operator Wp,(x) in die Form
(13) unter der Berticksichtigung von (7) eingefiihrt, und man bekommt den Wechsel-
Wirkungsoperator H,;, in der folgenden endgiiltigen Form:

H. = / 2 Z_wk {fom',m, k,7) a+(m’) b=(k,v) a=(m)
+ f(m', m, — k,7) at(m’) bH(k,7) a~(m)}. (14)



Vol. 40, 1967 Die mathematische Theorie der natiirlichen Linienbreite 255
Die Funktion f (m', m, &, r) ist hier durch die Definition

’ i x 0 .
fom', m, k, v) = (27)-32 —= Le /ZC R a5 ol 06) % Yo (m, x) d3x (15)
eingefithrt worden. Wir wollen jetzt diese Funktion als die Kopplung der Wechsel-
wirkung bezeichnen. Wenn sie nach (15) berechnet wird, bekommen wir infolge der
Definition von %5(m, x)

fom', m, k,7) = (2m)-32 = fZ (m) (P + &, s, 8) uem(p, s, €) d3p . (16)

Der unter dem Integral (16) stehende Ausdruck sowie der fiir f(m', m, — &, 7) ent-
sprechende Ausdruck koénnen auf die iibliche Weise durch den Impulsverlauf darge-
stellt werden:

% ®
"\'\%\' X id
» p bzw. ‘4 " (17)
) o ——h &

/ ‘\\
Die Impulserhaltung, die in dem Integranden von (16) offensichtlich wird, bedeutet
nicht, dass die Energie fiir die gesamte Zustandsinderung mk - m’ oder m — m'k
erhalten bleibt. Man sieht jedoch sofort aus der Bedeutung der Funktionen u,
(p, s, &), dass ohne die Anderung des Elektronzustandes kein Photon emittiert oder
absorbiert werden kann, weil dann das Integral in (16) verschwindet, d. h.

/ 2 b,y (b = 5, 8) ) A% = 0 (i =1,2). (18)

Die weitere Diskussion der Kopplung nach (16) lassen wir weg und stellen folgendes
fest: Wie im letzten Abschnitt erkldrt wurde, nehmen wir nur zwei mogliche Quanten-
zahlenpaare des Elektrons an, die wir mit der Zahl m unterscheiden (m = 1 oder 2).
Wenn die entsprechenden Energieniveaus so numeriert sind, dass w (m = 1) >
w (m = 2) ist, geben die Auswahlregeln folgendes iiber die Kopplung bekannt:

’

flm',m, k,7v) =0 fir m <m,
fom', m, —k,v) =0 fir m' >m. (19)
Die Auswertung der Matrixelemente %; folgt aus den Beziehungen

1

W12, ) = e [0 2 7).
B2, B, 7[1) = 25_ f2,1, —k, 7). | (20)

Wir wollen nun erfahren, ob die Bedingung fiir die Lésbarkeit unserer Aufgabe
nach dem Hauptsatz (B) mit der Anwendung des vorliegenden Wechselwirkungs-
operators erfiillt sei, d. h. ob das Integral

jZIh 1/2kr12d3kﬁ/2—-—|f12k7)|2 (21)
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konvergiert. Wenn das der Fall ist, darf man mit Sicherheit behaupten, dass die
Auswertung der Wahrscheinlichkeitsamplituden nach der formalen Ldsung mit der
Anwendung dieses Operators durchgefiithrt werden diirfe. Das Integral (21) kénnen
wir in der Form

J S| [ o axf 22)
schreiben, wenn wir die Abkiirzung
o(x) = (27) —3/2 ie ZC ()Zj X2, %) (23)

anwenden. Wegen der Beziehung (11) kénnen wir annehmen, dass die Spinorfunktio-
nen )(m, x) und ihre Ableitungen ausserhalb eines grossen Volumens klein sind und
exponentiell gegen Null streben. Das Quadrat des absoluten Betrags der obenste-
henden Funktion ¢(x) iiber den ganzen Raum integriert ist daher endlich. Wir
wollen dies Quadratintegral C nennen. Jetzt spalten wir das Integral (22) in ein
Teilintegral iiber eine grosse Kugel, | k| < K, und ein Integral iiber das Aussere,
| k| > K, auf. Fiir das erste Teilintegral bekommen wir die Abschidtzung

/‘Zd?'k /de/| ) [2d3x = 27 K2C. (24)

k| <K

Das Integral ist somit fiir ein endliches K beschrdnkt. Fiir das Aussengebiet wenden
wir die folgende Abschidtzung an:

f z Pr [ giks gix) a3 12<% f sk f ¢ikx (x) do || (25)
| & | > K ’
Die inneren Integrale haben die Form
B = | et o) dx, (26)

wobel @(x), wie oben gesagt, eine Funktion mit endlichem Quadratintegral ist. Das
Quadratintegral der Fouriertransformierten ¢(k) ist also auch endlich. Deshalb ist

1 ~ 8a2C .
wff;’|<p(k)|2d3k< o <e, (27)

%] >K

womit die Konvergenz des ganzen Integrals (22) gesichert ist.

Die endliche Norm (11) hat noch eine andere wichtige Konsequenz. Die Matrix-
elemente des Wechselwirkungsoperators, %; miissen bekanntlich selbstadjungiert
sein. Man kann nun allgemein beweisen, dass die folgende Beziehung fiir die Kopplung
gilt,

fm', m, k, r) = f*(m, m', —k, 7), (28)

woraus die Selbstadjungiertheit infolge (20) sofort geschlossen werden kann. Der
Beweis erfolgt in bekannter Weise durch Integration, wobei zu beriicksichtigen ist,
dass die Spinorfunktionen im Unendlichen verschwinden.
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§ 4 Die Auswertung der formalen Losung

In der formalen Losung der Wellengleichung spielt die Funktion I” (g) eine wichti-
ge Rolle. Das Verschwinden dieser Funktion fithrt zu einer stationidren Losung der
Wellengleichung. Die Funktion bestimmt also den zeitlichen Verlauf des vorliegenden
physikalischen Prozesses. Im Schrédinger-Bild miissen wir fiir den unteren Index der
I-Funktion nur o = w, beriicksichtigen. Um die Formeln zu vereinfachen, fiihren
wir die neue komplexe Variable

zﬁg*{*'f:wz (1)

ein. Indem wir die Darstellung des Wechselwirkungsoperators vom letzten Abschnitt
anwenden, schreiben wir die /-Funktion in der neuen Variablen wie folgt:

@1, 2, k1) |2
FG /2 ka 241wy ) (2)

Die formale Losung im Schrédinger-Bild ist dann

gt wal §+ioo 1

1/"0(1! t) = 2 i j e=t P (wl—w2)+Fo(z) dz) (3)
E—ico
. eﬂ"“z‘f. E+5o0 (— i) h*(1)2, b, )
"/)1(2» By t) LT e*t (241 ) (241 (wy—y) + T4(2) s (4)
&— 100

Nun zeigen wir, dass das Integral (2) fiir alle 2z, die nicht auf der negativen imagi-
naren Achse liegen, konvergiert und eine analytische Funktion von z darstellt. Es sei
z ein Punkt und 4 > 0 der Abstand von z zur negativen imaginiren Achse, wenn z
in der unteren Halbebene liegt, sonst sei 4 der Abstand des Punktes vom Nullpunkt.
Dann ist

o1 ] 1
e, ST

()

also ist der absolute Betrag von (2) kleiner als das Integral

fZ 71,2, &, 7)

dessen Konvergenz im letzten Abschnitt schon bewiesen wurde. Das Integral (2)
konvergiert gleichmissig in jedem Gebiet A > ¢ und stellt somit eine analytische
Funktion von z dar.

Nun betrachten wir das Verhalten der Funktion I'(z), wenn wir uns der negativen
imagindren Achse nidhern. Wir schreiben z = & 4 ¢ #. Fiir § = 0 divergiert das Inte-
gral (2), wenn n < 0. Wir kénnen aber immer noch den Hauptwert des Integrals
bilden. Wir erhalten nach kurzen Auswertungen, dass

. (6)

3

i i) =~ flim T i) g
n<0 n<0 .

17
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ist, und dass der erste dieser Grenzwerte gleich der Summe
. | hi(1)2, k, 7) |2 2
_sz;’ e d3k+nf2) 1/2, &, 7) ] W,

ist. Mit dem ersten dieser Integrale wird folgendes gemeint:

op = —17

g_rg) /dwkz(n+w f21f|2d52+~ dewk} (9)

—n+|é|

Die Existenz des Hauptwertes (9) kann bewiesen werden, wenn wir die Abhéngigkeit
der Kopplung f(1, 2, %, ) von dem Faktor ei** beriicksichtigen, wie im letzten Ab-
schnitt, getan wurde.

Die Funktion I'y(z) hat, wie wir jetzt gesehen haben, einen Schnitt auf der nega-
tiven imagindren Achse und einen Verzweigungspunkt im Nullpunkt. Der Sprung der
Funktion in die positive Umlaufrichtung an dem Schnitt ist infolge (7) und (8)

S() = 2 Re lim_ r(§+zn~:nf2|f12kr|zwk iQ. (10)

wg = —1
7]<O

Es gibt nun zwei Methoden zur Auswertung der Integrale (3) und (4):

1) Man ldsst & > 0 gehen und erhilt das Fourier-Integral von HEITLER und Ma
[11], das in der ersten Niherung die Formel von WiGNER und WEISSKOPF [9] ergibt.

2) Man setzt die /~Funktion, definiert durch die Formel (2), iiber die negative
imagindre Achse mit Hilfe der Sprungfunktion (10) in die linke Halbebene analytisch
fort. Damit kann man den Schnitt vom Nullpunkt nach links auf der negativen
reellen Achse ziehen. Nun verlegt man den Integrationsweg so weit wie moglich in
die linke Halbebene. In ihrer Dissertation hat MARIANNE FRIEDRICH [16] gezeigt,

Y

|
|
!
!
!
i
|
!
|
|
t
|
|
|
|
|
|

-iK
2
wie die /-Funktion durch die Addition einer Sprungfunktion, definiert fiir Frequen-
zen bis zu einer festen oberen Grenze, analytisch fortgesetzt werden kann. (In unserer
Arbeit entspricht das fiir die Funktion S(x), dass w, = — 5 << K sein soll.) Sie hat
dann nachgewiesen, dass die Losung als die Summe von 3 Bestandteilen betrachtet
werden kann: P = Residuum eines Poles, 4,, A, = Integral iiber grosse Frequenzen,

B = Integral um die negative reelle Achse (siehe Bild). Die Integrale tiber C; und G,
geben im Unendlichen keinen Beitrag.

ZA
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Wir wollen nun zuletzt in Anschluss an die Beziehung (8) das Residuum um den
Pol, P, angeben. Wir fiihren zuerst die folgenden Bezeichnungen ein:

wo = (,01 T (1)2 > (11)
—-----—ﬂfZ’ (1/2, &, 7) Pwk| (12)
o= w.,
_ | hi(1)2, k, 7)
Awy = sz — t Bk (13)
Dann stellen wir fest, dass & = — y/2, und 7, = — (wy — Adw,) die Koordinaten des

gesuchten Poles sind. Wenn wir die Losung der Integrale (3) und (4) in der ersten
Néaherung gleich dem Residuum um den Pol, P, setzen, erhalten wir die bekannten
Ausdriicke von Wigner und Weisskopf:

wi(l, 1) = g~ o —dw)i ,— (y/2)t , (14)

s . h¥(1/2, k, 7) —i(wy Fawp)t  —i(w, —Adwg)t ,— (p/2)t
Vil kr b = e dag i) v AN

Fir die Intensititsverteilung der emittierten Strahlung bekommen wir die Formel (1)
Seite 246 bis auf die Anderung, dass das Maximum der Intensitit um Aew, verschoben
wird (¢line shift»).

KAPITEL III

Der Ubergang zu einer vollstindigen relativistisch invarianten Theorie

§ 1 Die Quantisierung und die Formulierung des Wechselwirkungsoperators

Wir betrachten wieder die Wechselwirkung zwischen Elektronen und dem elektro-
magnetischen Feld. Fiir die Potentiale des Strahlungsfeldes rechnen wir mit der
halbdefiniten Metrik, die durch die Lorentz—Eichung

divA + ¢ 0 (1)

bestimmt wird ). Das skalare Feld ¢ enthilt nicht das Kernfeld V, das ein Bestand-
teil der ungestorten Energie ist. Wir setzen die folgende Funktion, W (%), als denjeni-
gen Teil der Hamiltonfunktion an, der fiir die Wechselwirkung verantwortlich ist.

(%) = e{¢ — (a, A); . (2)

Die «;’s (i = 1, 2, 3) sind numerisch gegebene vierreihige Matrices. Wenn wir mit der
Darstellung der Dirac-Gleichung rechnen, wie sie im Kap. II, §1, (2) aufgestellt
wurde, ist fiir jedes ¢

®; = f0;. 3)

Wir betrachten das skalare Potential mit der imagindren Einheit multipliziert als
die vierte Komponente des Potentialvektors 4,,

A, —id. (4)

1) Q. W., Seite 956-957.
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Der Ubergang zum Operator Wy,(x) geschieht indem man das Viererpotential quan-
tisiert.

1 ) Al 1 1 ' ’ ’ ’ ! ro ’
Ao, = g | B BB T) AR ) R AW R (9
Hier bedeutet A4,(%, #) auch einen Vierervektor fiirv =1, .., 4:
Ak, 7) = Clp) &=, ©

Wir schreiben dann den gewiinschten Operator, Wp,(x), in der Form

3
Wopl) = —e1i 4, + 3 o; Ag,f (7)
=t

Wir wollen jetzt zur zweiten Quantisierung iibergehen, d. h. zur Quantisierung
des Fermiionfeldes. Durch die Anwendung dieses quantisierten Feldes und des Ope-
rators Wy,(x) bekommen wir dann den Wechselwirkungsoperator H; durch die Grund-
operatoren in der Impulsdarstellung ausgedriickt. Wie in der nichtrelativistischen
Untersuchung machen wir hier die Annahme, dass der Operator W,(x) im Schré-
dinger-Bild fiir £ = 0 zu suchen sei. Wir fithren somit die Bezeichnung

&, = 4, (t=0) (8)

ein und wenden den Operator in der folgenden Form an:

Wople) = —¢ li A, + Do, 45} )
j=1

Wenn man mit der Funktion W (x) oder dem Operator W,(x) rechnet, muss natiirlich
beachtet werden, dass beides vierreihige Matrices sind. Man schreibt die Matrix-
elemente von W mit kleinen Buchstaben.

W(x) = {w(x),,} , (10)

Wor(®) = {w005(*) u»} - (11)

Den Operator (9) kann man noch einfacher schreiben, wenn ein Tensor dritter Stufe
0,,, eingefiithrt wird.

u
O,uui = (Ocﬂv)z' (i =1,2, 3) )
Oppa=—16,,, (12)

Dann kann man statt (9) folgendes schreiben:

"
Wop(%) 4y = e;;‘OHM 4, - (13)

Wie in der nichtrelativistischen Formulierung machen wir jetzt Gebrauch von den
abgeleiteten Spinorfunktionen y$(m, x), indem wir die Grundoperatoren in der {x}-
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Darstellung, a,(x) und a;(x), anwenden. Dann erhalten wir fiir den Wechselwirkungs-
operator H;

fza wO,ﬁ ,u,v v( )de

- f X°F(m', %) Woy(%) 1, Ay (m, %) dP at(m') a=(m) . (14)

yvmm

Diesen Ausdruck kann man auch folgendermassen schreiben

a3k
o= | T
xA{f(m’, m, k, v) at(m’) b=(k, ) a=(m) + f(m', m, — k, ¥) at(m') bt(k, 7) a= (m)}, (15)

wenn die Funktion f(»', #, &, r) wie folgt definiert wird:
fom', m, k) = f ZCA0) ¢4 43, ) Oy il ) B2 (16)

Man nimmt nun an, dass das Elektron nur zwei Energiewerte annehmen kann.
Die Auswertung der Wahrscheinlichkeitsamplituden, die zum Thema der natiirlichen
Linienbreite gehoren, wird dann nach der formalen Lésung durchgefiihrt, die im

letzten Kapitel hergeleitet wurde. Ihre Auswertung ist nach Hauptsatz (B) erlaubt,
wenn das Integral

f T hi(1/2, B, 1) |2 d% (17)

konvergiert. Die Elemente der Wechselwirkungsmatrix sind jetzt formell auf die
gleiche Art von der Kopplung abhingig wie vorhin,

h(1)2, b, 7) = 1/_ 1,2, k), b2, kr/l) = V 21 ko))
und das Integral (17) wird wie folgt:
1 ) a3k s 2
T 62/ D - wk /Z‘C,1 ) eikx M m', %) O,,, X5m, x) A% | . (19)

Da die Spinorfunktionen y3(m, x) endlich normiert sind, wird dies Integral sicher
konvergieren, und zwar aus den gleichen Griinden, die schon im Kap. IT, § 3, erklért
wurden. Die Form der Lésung ist genau die gleiche, die vorhin berechnet wurde. Fiir
eine numerische Berechnung der Linienbreite oder der Linienverschiebung muss man
aber die neue Form der Kopplung, (16), beriicksichtigen.

§ 2 Vollstindige Zustandsvektoren

Wenn die Anzahl Teilchen fiir die Vektoren des elektromagnetischen und des
Elektron-Positron-Feldes nicht eingeschrinkt wird, erhalten wir Zustandsvektoren
des zusammengesetzten Feldes, dessen Funktionen die Form

W, £ (B, 5, 8,y > (R 7))
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haben. Die Anzahl Elektron-Positronen schreiben wir #,, und diejenige der Photonen
n,. Der entsprechende Energieoperator wird auf der Grundlage des letzten Abschnit-
tes formuliert. Wir kénnen unsere Annahme tiber die zwei moglichen Zustdnde des
gebundenen Elektrons behalten. Die Laplace-transformierte Wellengleichung hat
dann zunichst zwei Typen von Gleichungen zur Folge, die bis auf ein Korrekturglied
mit den Gleichungen (2) und (3) im Kap. I1, § 2 identisch sind. Dann folgen aber unbe-
schriankt viele Gleichungen zur Bestimmung dieses Gliedes (Storungsrechnung). Wenn
die Bedingung unseres Hauptsatzes (A) erfiillt ist, muss es eine mathematisch ein-
wandfreie Auswertung nach diesem Schema geben.

Anhang

E. HiLLE und K. Yosipa [8] haben die analytische Theorie von Halbgruppen
beschriankter, linearer Operatoren iiber einen Banachschen Raum, B, untersucht.
Fiir die allgemeinsten Operatoren dieser Art, die den Bedingungen

T@4s)=T%HTE), TO) =1

geniigen, haben sie die infinitesimale Erzeugende A des Operators 7'(s) durch die
Beziehung
Ax=1lims' (T(s) —I)x; x€B

s—0

definiert. Sie beweisen, dass das Definitionsgebiet D(A4) in einem lokal konvexen,
linearen, topologischen Raum X dicht liegt. (*) Die Laplacetransformation

oo

Cnx=/ne—”5T(s)xds; xeX, n reell >0,

0

fiihrt zur Gleichung
ACx=n(C,— I)x; xeX, (1)
aus welcher die Aussage
R(C) C D(4) ' (2)

folgt, wenn R(C,) den Raum aller Elemente C, x» darstellt. Die obenstehende Behaup-
tung (*) folgt aus (2) sowie aus der Beziehung

IimC x=x; xeX.

n—>0

Nun wird bewiesen, dass der Operator nl — A fiir » > 0 eine Inverse R(n; 4) =
(n I — A)7! besitzt; diese hat die Form

Rn;A)x=n1C x fir xeX. (3)
Den Operator D, definiert man durch die Beziehung

D, T(t)x =lmh (T(t+ 4~ T()x fir xeX,
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wenn die linke Seite existiert. Es kann nun bewiesen werden, dass die Gleichung
DTl x=AT@H)x; t=0, (4)

fiir x € D(D, T(¢)) und x € D(A) gelten kann.

In den Aussagen (1), (2), (3), (4) und (*) ist ein Teil der Satze des ersten Kapitels
enthalten. Auf der Grundlage der Theorie von Hille und Yosida kénnen die restlichen
Séatze des ersten Abschnittes hergeleitet werden.
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