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Analytische Losung eines idealisierten Stripping- oder
Beugungsproblems

von Sergio Albeverio

Seminar fiir theoretische Physik ETH, Ziirich

(22.TX. 66)

Abstract: The explicit analytical solution of a model previously discussed by R. JosT is given.
The model can be interpreted as describing an idealized quantum mechanical stripping process
(in which two particles moving each in one dimension and forming together a bound state via a
d-function interaction are smashed against a wall which repels one of the particles perfectly)
or the diffraction of a plane electromagnetic wave by a wedge of angle 45°, formed by a plane
perfectly reflecting mirror and an infinitely thin dielectric plane sheet of infinite dielectric constant,
the incident wave being a surface wave linear polarized with its electric vector parallel to the
edge of the wedge. A construction of the solution is carried through using a theory of difference
equations with periodic coefficients which has been given by R. Jost. The solution is first obtained
in terms of abelian integrals and thetafunctions for a hyperelliptic surface of genus 3 and then
reduced to an expression involving only elliptic quantities.

1. Einleitung. Beschreibung des Modells

Eine befriedigende allgemeine mathematische Theorie der Streuung von beliebig
vielen Teilchen ist selbst im nichtrelativistischen Falle noch nicht vorhanden. Nur
fiir Zweiteilchenprozesse, d.h. fiir die Potentialstreuung, kann man mit einigem Recht
eine Ausnahme zu dieser negativen Feststellung machen (siehe z. B. [1]%)). Im Falle
von Dreiteilchenprozessen sind vor kurzer Zeit einige wichtige Fragen geklart worden,
die Unitaritdt der S-Matrix wurde z. B. bewiesen [2]: aber z. B. zur analytischen Struk-
tur derselben und zur Ableitung von Dispersionsrelationen liegen nur Ansétze vor.
Neben der Untersuchung solcher allgemeiner Fragen im Falle von Mehrteilchenpro-
zessen mit Kriften aus gewissen allgemeinen Klassen ist es auch von Interesse, spe-
zielle Modelle (bestimmte Anzahl Teilchen mit speziellen Kriften) zu untersuchen,
welche einerseits typische Schwierigkeiten der allgemeinen Probleme enthalten,
anderseits exakt l9sbar sind und deshalb eine nihere Einsicht in die Struktur dersel-
ben Probleme liefern kénnen. Die vorliegende Arbeit beschiftigt sich mit einem sol-
chen Modell. Dieses gehért zu einer Klasse von Modellen, die urspriinglich von
W. HEISENBERG in Beziehung mit seinen Arbeiten iiber die Eigenschaften der S-Matrix
[3, 4] vorgeschlagen wurden, als einfachste Mehrkorperprobleme (Dreikoérperpro-
bleme), bei denen die typischen Schwierigkeiten der breakup-Prozesse bereits auf-
treten. Wir wollen nun diese Klasse von Modellen beschreiben und die Untersuchun-
gen erwihnen, die iiber solche Modelle oder Modifikationen hievon bereits angestellt
worden sind.

1) Die Nummern in eckigen Klammern verweisen auf das Literaturverzeichnis S. 183.
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Man betrachte zwei Teilchen der Masse m, welche sich in einer Dimension be-
wegen, mit dem Ursprung durch ein anziehendes (oder abstossendes) d-Potential
einzeln wechselwirken und ferner miteinander ebenfalls durch ein anziehendes (oder
abstossendes) d-Potential wechselwirken. Der Hamilton-Operator eines solchen Sy-
stems lautet:

2 2 2
H= g (oi—% 5‘1%) — A 8(x) — Bo(xy) — C 6 (3, — %) (1.1)
wobei x;, x, die Koordinaten der Teilchen und 4, B, C reelle Konstanten sind. Beim
Studium der Bewegung eines solchen Systems hat man mit den tiblichen Schwierig-
keiten eines Dreikorperproblems zu tun (man kann ndmlich z.B. die am Ursprung
bindenden Krifte als Wechselwirkungen der 2 Teilchen mit einem dritten, unendlich
schweren, im Ursprung sitzenden Teilchen auffassen).

In der Allgemeinheit (1.1) ist das Problem bis jetzt ungelost. K. WILDERMUTH
(1949) [5] hat fiir den Spezialfall 4 = 0 die erste und die zweite Born’sche Ndherung
(beziiglich dem als Stérung aufgefassten Term Co(x; — x,) in (1.1)) ausgerechnet:
ein bei der Zeit ¢t = — oo einfallendes gebundenes Teilchen kann entweder elastisch
gestreut oder zertrimmert werden; das Verhalten der Amplituden in 2. Ndherung als
Funktion der Energie in der Nihe der break-up-Schwelle ist wesentlich durch die
Niherung bedingt, so dass die in diesem Zusammenhang aufgestellten Vermutungen
von WILDERMUTH iiber das Verhalten der exakten Streuamplitude zu widerlegen
sind (H. M. NUssSENZVEIG [6]). DaNos (vgl. E. L1EB und H. KoppE [7]) hat den Spe-
zialfall A = B = — oo, C > 0 von (1.1) d.h. das durch den Hamilton-Operator

e 0?

g e
0x3} 023

H— _”32{

2m

}_Ca(%_xz), C>0
und die Randbedingung fiir die Wellenfunktion
Plxg, %) =0 fiir 2 =%,=0

definierte Problem betrachtet. Dieses Problem fiithrt zu einem trivialen Ergebnis:
ein einfallendes, gebundenes Teilchen wird nur elastisch gestreut, kann aber nie zer-
trimmert werden. (Eine weitere, ebenfalls zu einem trivialen Ergebnis fiihrende
Spezialisierung von (1.1) ist gegeben durch 4 = B und C = — oco: vgl. H. M. NUSSEN-
ZVEIG [6] und MORSE-FESHBACH [8, S. 17091f.]).

Chronologisch anschliessend an die Untersuchungen von DANoOS ist eine Arbeit
von R. JosT [9] zu erwdhnen, welche die Grundlage fiir unsere eigene Arbeit bildet.
Wir wollen jetzt das durch JosT betrachtete Modell ausfiihrlich beschreiben und dann
zwel weitere Modelle erwdhnen (LieB-KoppE [7] und H. M. NussenNzVEIG [6]), die
sich daran anschliessen : damit haben wir dann auch die kleine Geschichte der Modelle,
die direkt im Zusammenhang mit dem Hamilton-Operator (1.1) stehen, ausgeschopft ).

2) Wir wollen jedoch zwei Familien von Untersuchungen nicht unerwédhnt lassen, die sich mit
etwas dhnlichen Problemen beschéftigen: einerseits Untersuchungen iiber gewisse speziellen
partielle Differentialgleichungen, die in anderen Gebieten der mathematischen Physik wie in
der Hydrodynamik und in der elektromagnetischen und akustischen Beugungstheorie, auf-
treten (siehe z.B. [15]), anderseits eine Reihe von Arbeiten die eine exakte Lodsung fir Zwei-
und Dreiteilchenstreuprozesse mit bestimmten speziellen Zweiteilchenwechselwirkungen ver-
schwindender Reichweite erstreben (siehe [31] und die dort angegebene Literatur).
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Das durch Jost betrachtete Modell kann mit Riicksicht auf (1.1) durch 4 = — oo,
B =0, C > 0 charakterisiert werden. Es beschreibt also ein idealisiertes Deuteron,
bestehend aus 2 Massenpunkten (1) («Proton») und (2) («Neutron»), welche sich in
einer Dimension bewegen und sich durch ein §-Potential

V(xg,29) = —CO(x,—2%,), C=>0 (1:2)

anziehen; das Proton wird ausserdem durch eine im Ursprung x; = 0 gelegte Wand
vollstindig reflektiert, was durch die Randbedingung

$(0, %) = 0 (1.3)

ausgedriickt wird. Wir werden weiter unten andere mdogliche Interpretationen des
Modells angeben. Zunichst aber wollen wir die wesentlichen Ziige des Modells weiter
verfolgen. Nach dem Spiegelungsprinzip ersetzen wir die Randbedingung (1.3), indem
wir das Potential (1.2) an der Geraden x; = O spiegeln und die Losung der stationdren
Schrédingergleichung

h2 02 0?
{‘ 2o (o5t T o)
—ClO G+ )0l —m) +0 (- %+ 20+ m)p=cp (14
der Symmetriebedingung
w(xl, xZ) + /t/)(-* %1, x2) =0 (15)

unterwerfen. Dabei ist € die Stufenfunktion:

06 =1 falls £€>0 und 6§ =0 fir £<0.

Mit den neuen Koordinaten &, »

1 1
=7 &—mn, x2=7(§—§—77) (1.6)
und den Abkiirzungen
me m C
h2 = E ] h2 — l (1-7)

schreibt sich (1.4)

(b 200 d0n) + B0) 8EN] + B} p =0, il

N,

wobei (1.5) in
wE ) + 9, &) =0 (1.9)
ibergeht. )

Durch (1.9) wird die Lésung von (1.8), die nur in x; = & — % > 0 «physikalisch» ist
(wenn wir ein von x; = + oo einfallendes Deuteron oder Proton voraussetzen), in die
ganze (&, n)-Ebene fortgesetzt.

Wir kénnen (1.8) auch auffassen als Schrédingergleichung eines einzigen Teilchens,
das sich in 2 Dimensionen bewegt. Die positiven & und » Achsen (7', T") erscheinen
dann als schmale und tiefe Kanile und die ganze Winkelhalbierende (S) als idealer
Spiegel. Einer ein- oder auslaufenden Welle im Kanal T entspricht ein ein- oder aus-
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T &

Figur 1

laufendes «Deuteron», einer 2-dimensionalen auslaufenden Welle ein auslaufendes
«Proton» und «Neutron», d.h. ein Prozess, in dem ein Deuteron am Ursprung zer-
schlagen wird. Aus der bekannten Bindungsenergie in einem §-Potential ergibt sich,
dass ein- und auslaufende «Deuteronen» nur vorkommen kénnen, falls die Energie E
der Ungleichung

E>— (;)"’ (1.10)

geniigt. Eine Dissoziation des «Deuterons» kann natiirlich nur erfolgen, wenn £ > 0
ist.

Nun wollen wir zu den weiteren Interpretationen des Modells iibergehen. Zunichst
bemerken wir, dass die Gleichungen des Modells auch in der Form

(00—; + ‘a‘z; +H)U=0, B=E, (1.11)
tim [T 6,0 - 1 €, —9)] - —2u¢ 0, (1.12)
UE 8 =0 (1.13)

geschrieben werden kénnen (um den Zusammenhang mit den fritheren Gleichungen
zu finden, braucht man nur § = x, + x,, % = %, — %, zu setzen).

Seinun ¢ die Richtung, die zusammen mit &, % ein orthogonales Koordinatensystem
definiert: (1.11) kann unmittelbar als Gleichung fiir die Amplitude U einer in der
{-Richtung linear polarisierten ebenen elektromagnetischen Welle aufgefasst werden,
welche sich im Vakuum fortpflanzt:

E=(0,0,§), B=(B,B,0), EEnt)=UEn e .

Um nun die Gleichung (1.12) zu deuten, stellen wir uns vor, zwischen den Ebenen
n = — 0, n = + d sei eine diinne, homogene Platte der Dicke 26, der Dielektrizitatskon-
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stante &’ und der Permeabilitit u angebracht; dann gilt innerhalb der Platte

o* FEU=0"
Lo + s + 17}

:l/ﬁ’k
7

Zwischen den 2 parallelen, die Platte begrenzenden Ebenen hat man dann den Sprung

mit

Mo M —0- k'afusn

Lasst man nun d - 0 und gleichzeitig ¢’ - oo so dass ¢'0 = y konstant bleibt, dann
strebt diese Gleichung gegen die Gleichung (1.12) mit A = ky/[)/ u.

Um schliesslich auch (1.13) zu deuten, braucht man sich nur die Ebene, welche die
Geraden { und & =7 enthilt, durch einen unendlich diinnen perfekten Spiegel (Leiter
mit unendlich hoher Leitfdhigkeit) bedeckt vorzustellen: denn dann gilt E = 0 fiir
n = & also eben (1.13).

Wir fassen zusammen: man kann dem in Frage stehenden Modell auch die
Interpretation geben einer linear polarisierten ebenen elektromagnetischen Welle,
welche durch einen aus zwei unter 45° stehenden unendlich diinnen ebenen Platten
bestehenden Keil gebeugt wird ; dabei besitzt eine der Platten eine unendliche Dielek-
trizititskonstante, die andere eine unendliche Leitfihigkeit und die gemeinsame
Kante steht parallel zum elektrischen Vektor der einfallenden Oberflichenwelle.
Da die Fille, wo eine exakte Losung eines Beugungsproblems mit Nichtmetallen
bekannt ist, sehr spirlich sind, wire es interessant zu untersuchen, ob durch dhnliche
Methoden wie diejenigen, die zur Lésung des soeben beschriebenen Modells fiihren,
auch kompliziertere Probleme der Beugung an Nichtmetallen behandelt werden kon-
nen. Bevor wir zur Lésung des Modells iibergehen, wollen wir noch zwei Arbeiten
erwihnen, die sich an dasselbe Modell anschliessen.

R. JosT hatte in der erwdhnten Arbeit [9] das Problem auf eine (nach einer
eigenen, allgemeinen Theorie [10]) im Prinzip explizit 16sbare Differenzengleichung
reduziert: er ging aber nicht bis zur tatsdchlichen expliziten Bestimmung der Losung
weiter. Angeregt durch die Arbeit von JosT, betrachteten LiEB und KopPPE [7] ein
vereinfachtes Modell, welches durch den Hamilton-Operator

k2

H:___(_oz 02

2m 03&% 0x3

351) — €0 (w1 + %) 6 (1 — %)

beschrieben wird (vergleiche mit (1.4)!): dieses Modell fithrt natiirlich auf eine ein-
fachere Differenzengleichung als diejenige von JosT und kann auch, jedenfalls was
die « Streuwahrscheinlichkeiten» anbelangt, relativ einfach gelést werden. Es ist aller-
dings zu bemerken, dass dieses Modell schlecht als Modell eines (idealisierten) « Strip-
ping-Prozesses» gelten kann, wegen dem ausgesprochenen unphysikalischen Charakter
der Wechselwirkung, welche vom Vorzeichen der Koordinaten der Teilchen abhingt;
man kann aber fiir dieses Modell, analog wie friiher fiir dasjenige von JosT, eine Inter-
pretation im Sinne der Beugung elektromagnetischer Wellen geben: ndmlich durch
eine in der z-Richtung linear polarisierte elektromagnetische Welle, welche durch eine
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ihrer Polarisationsrichtung parallel stehende unendlich diinne Platte mit unendlich
grosser Dielektrizititskonstante gebeugt wird; im Unterschied zu frither wird die
Platte nicht durch zwei unendlich benachbarte zur z-Achse parallele Ebenen gebildet,
sondern durch zwei solche Halbebenen, deren Spuren in der zur z-Achse senkrecht
stehenden (x, y)-Ebene zwei (parallele, unendlich benachbarte) vom Ursprung aus-
gehende Halbgeraden sind. (Ferner fehlt, im Unterschied zu dem von R. JosT be-
trachteten Modell, der perfekte Spiegel).

Als weitere Modifikation des von JosT betrachteten Modells ist dasjenige von
NUSSENZVEIG zu erwiahnen. Dieses wird dadurch erhalten, indem man die d-Wechsel-
wirkung zwischen den Teilchen durch folgende Randbedingung ersetzt:

X _cCy (1.14)

fiir x, = x, d.h. y = 0, wobei C eine Konstante ist und 0/0n die Ableitung in Richtung
der Normalen zur Geraden x, = x, d.h. = 0 bezeichnet; die Randbedingung (1.3)
wird dagegen unverindert beibehalten.

Dieses Modell kann besser als dasjenige von L1EB und KoPpE als Modell einer ideali-
sierten Stripping-Reaktion gelten (solange man die Randbedingung (1.14) als ideali-
sierte Wechselwirkung zwischen den Teilchen akzeptieren kann [11]): es ist ferner
vollig explizit 16sbar. Man kann ihm ebenfalls eine Interpretation als Beugungssystem
geben, und zwar ganz gleich wie im Modell von JosT, nur dass die beugende Platte
unendlich grosser Dielektrizitdtskonstante durch eine gleichgestaltete Platte mit
grosser aber endlicher Leitfahigkeit zu ersetzen ist (so dass die Randbedingung (1.14)
gilt [12, 13], statt (1.12)): die Losungsmethode von NUSSENZVEIG ist der Methode
von W. E. WILL1AMS nachgebildet, der das Problem der Beugung einer elektromagne-
tischen Welle an einem Keil, dessen Kante parallel zum elektrischen Feld steht und
dessen Leitfihigkeit sehr gross aber endlich ist [14], gelost hat.

In unserer Arbeit werden wir fiir das erwahnte, durch Jost behandelte Modell
eine explizite analytische Losung angeben: bei der Ableitung derselben, sowie bei der
Angabe der physikalischen Grossen, werden wir uns stets auf die Interpretation des
Modells als «Stripping-Modell» beziehen ; es ist jeweils leicht, die entsprechenden Aus-
sagen in die Sprache der weiteren moglichen Interpretationen umzuformulieren.

2. Vorbereitungen zur Konstruktion der Losung des Strippingmodells

In diesem Abschnitt werden wir fiir uns wesentliche Teile der erwihnten Arbeit
von Jost [9] wiederholen und einige Punkte ausfiihrlicher gestalten.

2.1 Das Modell und die erste Form der Differenzengleichung

Wir haben bereits in 1. das Modell beschrieben: um es zu lésen, miissen wir die
Losungen der Gleichung (1.8)

02 0?2
(o + o + 210 8(0) + 60n) () + E}yp =0 @2.1)
bestimmen, welche der Randbedingung (1.9)
Y& ) -+ p(n, §) = 0 2.2

gentigen.
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Im folgenden betrachten wir ausschliesslich den Fall, wo allein ein «Deuteron» ein-
fallt. Wir transformieren zunéchst (2.1), (2.2) in eine Integralgleichung. Die Greensche
Funktion der Wellengleichung (4 + E) = 0 in 2 Dimensionen, welche der Aus-
strahlungsbedingung gentigt, lautet bekanntlich

in B (JEY& + ). (2.3)
Mit ihrer Hilfe formt sich die Schrédingergleichung (2.1) in die Integralgleichung

w(f,nzlffﬂ“ VEYE— &2+ )y, 0)a

* f BY(VEVE+ (7)) 90, 9) dyy  (24)

um. Nun verlangt aber (2.2)

so dass (2.4) in der Form

Pl ) = f (HO (JEYE -+ ) — B (JEYET (n—8p)) o) a& (2.6)

geschrieben werden kann.
Fiir @ selbst erhdlt man die homogene Integralgleichung

o= E [lap (& |- ¢ ) -0 GEfe T o ar. @

0

Falls E <0 muss Im JE > 0 gewdhlt werden, damit in (2.6) «geddmpfte zweidimen-
sionale Wellen» auftreten; falls E > 0 muss (2.7) als Grenzfall komplexer E mit
Im E > 0 und Im JE > 0 aufgefasst werden: wir setzen in diesem Fall

E=EFE+ia, a>0. (2.8)

JosT hat (2.7) unter Nachbildung der bekannten Methode von N. WiENER und E.HoprF
(siehe z.B. [15]) in eine Funktionalgleichung fiir die Funktionen

oo

Bp) = [ 7 B at (2.9)
0
Bp) = — [ &t B a (2.9)

verwandelt?).

3) Bei dieser Verwandlung sind in der Arbeit von JosT [9] zwei Druckfehler unterlaufen: in der
Formel (1.9) der erwidhnten Arbeit ist E durch VE zu ersetzen, so wie in (1.10) im Exponenten
das —Zeichen durch ein +Zeichen ersetzt werden muss.
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Sei
w(p) = (E—p)12, Imew >0 (2.10)
dann gilt
w ~ Ai[@p(p) — @lw
QD(?) . ’l/)(;b) — [?)(292)@(:)’( ()] . . (2.11)

Dabei ist ¢ in einer oberen Halbebene, die den Punkt }/E enthilt, regulir analytisch
und 9 in einer unteren Halbebene Im p << Im |/E, so dass (2.11) zunéchst in einem
Streifen gilt, aber natiirlich analytisch fortgesetzt werden kann.

2.2 Die funktionentheoretischen Eigenschaften der Losungen von (2.77)
Da ¢ in einer oberen Halbebene regulir ist, die J/E enthilt, ist

(1) @ regulir in p = |/E und p = 14/2 (beachte E, > — (1/2)?). Weiter ist o in der
Halbebene Im p < Im |/ E regulir, also ist insbesondere (achte wieder E, > — (1/2)2)

(2) v regulir in p:ml/E, p=4+k= il/;:j(t?f f = ——%.

Aus (1) und (2) und der Funktionalgleichung (2.11) folgt jetzt
(3) @ hat Pole (héchstens) 1. Ordnung in den Stellen

b Lk, ?:ﬁz‘;'
In der Tat folgt aus (2.11)
~ At ~ EE -
PO |1 = ] =P — gy Pl@) 2.12

Es ist w(+ k) = 7 4/2, also verschwindet die eckige Klammer links. Die Funktionen
rechts sind aber reguldr fiir p = 4 & wie aus 1) und 2) leicht folgt. Also hat ¢ in
P = 4 k einen Pol héchstens erster Ordnung. Weiter ist w(— ¢ A/2) = k also hat, wieder
aus (2.12), ¢ hchstens einen Pol erster Ordnung bei p = — ¢ 4/2. Als Laplacetransfor-
mierte fallen ¢ und ¢ in ihren respektiven Konvergenzhalbebenen nach Null ab. Es
gilt also

(4) glp) >0 fir p—oo in Imp>}E,
p(p) -0 fir p—>oc0 in Imp<|/f.

2.3 Die Uniformisierung der Funktionalgleichung (2.77)

Im Anschluss an Jost uniformisieren wir die Funktionalgleichung (2.11) durch
die Substitution

p=VEsin’ Z, o@p)=)Ecos’ Z, ImJE>0. (2.13)

Dabei soll Z = 1 dem Punkt p = |/E und Z = —1 dem Punkt p = — ) E aus Abschnitt
2.2 entsprechen. Schreibt man ¢(Z) = ¢(p) und »(Z) = (p) dann entsteht aus (2.11)

#(2) —9(2) = [9(2) — p.Z + V)] S 2 (2.14)
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wobei {, durch

cos —JZ—I— e, UL R, £1 (2.15)
definiert ist. (2.15) ldsst sich auch schreiben

Y(2) cos 5 Z = ¢(2) [Cos 2 Z—cosy 50] +o(Z+cosTg,. (216)

2
Nun ist aber p gemaiss 2.2 (2) reguldr in p = — }/E, hat also dort insbesondere keinen
Verzweigungspunkt. Im Hinblick auf (2.13) bedeutet dies, dass
py(—1+2Z)=9p(-1-2). (2.17)

Mit (2.17) lasst sich g aus (2.16) eliminieren. Freilich treten dann in der entstehenden
Funktionalgleichung auch ¢(— 1 — Z) und ¢(—Z) auf. Aber ¢ ist gemiss 2.2 (1) in
p = J/E regulir, also gilt auch '

p(l+2)=¢(1— 2) (2.18)

und diese Gleichung kann beniitzt werden, um ¢(— 1 — Z) durch ¢(3 4+ Z) und ¢(—Z)
durch (2 -+ Z) zu ersetzen. Dadurch entsteht die Differenzengleichung

cos 7 Z [p (Z + 4) — p(2)]
+cos 2 Lolp(Z+4) —9(Z+3)—p(Z+ 1) +9(2)]=0. (219)

Ausserdem ergibt 2.2 (1) zusammen mit (2.18)
(A.1) @ ist reguldr in den Punkten + {, + 1. Weiter folgt aus 2.2 (2) mit (2.18)
(A.2) @ hat Pole hochstens 1. Ordnung in den Punkten

+C—1, &, &+2, £&+3.

Nennen wir «abgeschlossener Periodenstreifen» die Abschliessung eines, einen offenen
einfach zusammenhidngenden Kern besitzenden, Fundamentalbereichs der Trans-
lationsgruppe ¢t Z = Z + 1, so sind die angegebenen Singularititen von ¢ die einzigen
in einem abgeschlossenen Periodenstreifen, der die Punkte (+{,— 1)+ 4,2=0,1,2,3
enthilt.

Schliesslich folgt aus 2.2 (2) und (2.17)
(B) o ist reguldr in den Punkten 4 {,, 4, — 1, 4§y — 2.
Ausserdem verlangen wir von den Lésungen ¢ und y
(©) lim g (s +iy) =0, lmp(+iy=0.

Es wird sich im ndchsten Abschnitt herausstellen, dass die relevante physikalische
Interpretation in der Funktion

~
~ ~

@) = o) — glo) (2.20)

enthalten ist. Dieser Funktion entspricht nach der Transformation (2.13) die Funktion

f(2) =¢(2) —@(Z +1). (2.21)
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f hat die Symmetrie
1 1
flz+2)+r(7-2)-0. (2.22)
Fiir f ergibt sich aus (2.19) und den Eigenschaften A, B und C die «integrierte»

Differenzengleichung

T

cos 5 8o [f(Z) + F(Z +1) + f(Z + 2)] — cos 7

Z[f(Z)+f(Z+1)]
3 sin% ZIfF(Z+D)+f(Z+2]=0. (2.23)

Diese Gleichung vereinfacht sich durch die Einfithrung der Funktion

WZ) = (cosg L — cos 5 Z) [f(Z) + f(Z +1)] (2.24)
zu
h(Z+1) =L R(Z)+h(Z+1)=0 (2.25)
mit
cos |2 g — 2 cosmf2 Z
{2) =~ cosmf2 £y — cosmf2 Z (2.26)
(2.24) liefert mit (2.23) die Gleichung
h(Z2—1) + ~(2)]
H2) =~ cosm/2 Ly (2.27)

Die Lésung von (2.25) muss den folgenden Bedingungen geniigen:

(B1) A(Z) +h(—2Z)=0

(B 2) & ist meromorph mit Polen an den Stellen + £, + %, & ganze Zahl

(B 3) A ist reguldr in 4 £,
h hat Pole héchstens erster Ordnung in + {,+ &, -+, — &, k=1,2,3,4
h hat Pole héchstens zweiter Ordnung in + §, + &, -, — #, k= 5,6,7, 8.

Ausserdem verlangen wir, dass
(B 4) lim A(x +:y) =0

y—00
1st.
JosT hat gezeigt, dass unter diesen Bedingungen (B 1) bis (B 4) % bis auf einen
konstanten Faktor bestimmt ist.

3. Das asymptotische Verhalten der Losung y¥(§, )
Unser Ausgangspunkt ist die Gleichung

v =4 [ [HO(EYE - o+ ) — B (VEYE 0 — 93] 0¢)

wobel p uns nur im physikalischen Gebiet & > # interessiert. Zur Diskussion des
asymptotischen Verhaltens fithren wir Polarkoordinaten ein

&= Rcos?¥, n= Rsind, —%<ﬂ<%. (3.1)



Vol. 40, 1967  Analytische Losung eines idealisierten Stripping- oder Beugungsproblems 145

Dabei ist die Richtung & = 0 singuldr, denn diese entspricht dem einfallenden
«Deuterony.
Die asymptotische Gleichung

H{Y(z) = ]/Z g inlt gie [1 + 0 (%)]

fithrt nun leicht zum asymptotischen Verhalten von g

T hi s SR

v =g A [ )50 0 )|

wobei ¢ + 0 vorausgesetzt ist. Ausgedriickt in f~(vermittels (2.20)) finden wir

p& ) =— ;_—IZ/Z%gmm 6;; [f(]/Esmﬁ +O(]/R|151n1‘}|>] (3.2)

y stellt also fiir E >> 0 eine auslaufende Kreiswelle dar, wihrenddem es fiir —A2/4 <
E < 0 exponentiell abnimmt. Dies ist in Ubereinstimmung mit der Problemstellung
aus 2.

Zur Untersuchung des Verhaltens lings der &-Achse (Fall ¢ = 0) verwenden wir
die Formel:

~ 1 ~ ~
Q1. Do) =4 e g [@(p1) — @iP2)]
in welcher @(p,, p,) die Fouriertransformierte von 9(&, n) darstellt:

+oo 400

Bt po) = [ [ dneier gl ).

-  —oo

Es gilt also

A i(p1E+ Da [‘79(?1) - ‘7(?2)]_
v = gge [ b1 [ dpie Rk

Durch Integration iiber eine der p-Variablen entsteht daraus

l d - —z —|n|w i — B
Y& 7)) = o waf(’) G(p) [e—PEInlo®) _ gilon—Islot)]

wobei der Integrationsweg C aus den Figuren 2, 3 ersichtlich ist.

£>0
4
L ! P—
_VF * Y +4 +\]//F
|+ Verzwejgungsschnitte
Figur 2

10
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£<
+HE
C -
-# ) +4
VE
| :Verzweigungssatnitts
Figur 3

Offenbar spielt fiir das asymptotische Verhalten bei & - + oo nur der erste
Summand der eckigen Klammer eine Rolle. Ausserdem kann der Integrationsweg C
in der unteren Halbebene verschoben werden, wobei die Residuen von den Stellen
+ % und, fiir E > 0, Schleifenintegrale um die Verzweigungsschnitte {ibrigbleiben.
Diese Beitrige von den Verzweigungspunkten aber stellen nichts anderes dar, als die
Fortsetzung der auslaufenden Kreiswelle auf die §-Achse. Als dominante Terme ver-
bleiben die Residuen, welche den Beitrag

P&, n) = e~ WAL (4 g~ikE 1 B kY (3.3)
liefern, wobei -
r=)E L (3.4)
und N
A= —i(Resf) (k) = —1i(Resf)({o),
B=—i(Resf) (—k) =—i(Resf) (— &) . (3.5)

Aus den vorstehenden Formeln ergibt sich die Wahrscheinlichkeit fiir die Aufspaltung
des «Deuterons», wobei das Proton einen Impuls p, mit dem Spielraum dp, besitzt, zu

4 — A | %71 ey 2 ap,
Wpy) dpy = 5e-V E+ {f [7 (V2 E— 43 - 751)] ’ V2E—pt’ (3.6)
wahrenddem die totale «Stripping-Wahrscheinlichkeit»
V2E
B

zf W(pl)dp1:1_‘A“

-
bl

(3.7)

mit A4, B aus (3.5), ist: | B/A | 2ist die Wahrscheinlichkeit eines elastischen Prozesses.

4. Konstruktion der Losung der Differenzengleichung (2.25) «in abstracto»
4.1 Zuriickfithrung der Differenzengleichung (2.25) auf eine Normalform
Die Differenzengleichung (2.25) lautet

W(Z+1)+ B (Z—1)=(2) hZ) . (4.1)
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Wir suchen von (4.1) meromorphe Losungen, die an gewissen singuldren Stellen Pole
erster Ordnung haben. Weiter ist {(Z) meromorph und periodisch mit der Periode 4.
Die Gleichung (4.1) fdllt unter eine Klasse von Differenzengleichungen, die R. Jost
mit Hilfsmitteln aus der algebraischen Geometrie diskutiert hat [10]. Wir folgen hier
der Arbeit von JosT. Zundchst bemerken wir, dass jede Lésung von (4.1) auch Lésung
der Gleichung

~ ~ ~ ~

mit
i - D i _ 2miZ
ZA(Z)__VELQ—,SV‘_H“ und ¥V =e¢ ’
43 -k A 22
a=—4cos' T Lo+ 8cot L Lo+ 1= -5 - 25 +1,

—cos2m by =8cost T Ly —Boost L L+ 1=t 4 2h 1 (43
f=cos2mi,= cost > Lo —8cos? - Lo+ 1= + 2% .

ist. Um dies einzusehen, schreiben wir (4.1) als System 1. Ordnung, indem wir den
Vektor h(Z) mit den Komponenten

h(Z)=h(Z—1), hy(Z)=h(Z) (4.4)
einfithren. (4.1) erscheint dann in der Gestalt
h(Z+1)=M(Z) h(Z) (4.5)
wobei
0 i |
M(Z) = ("_ 1 C(Z))' (4.6)
Aus (4.5) aber folgt
h(Z+4)=M(Z) h(Z) (4.7)
mit
MZ)=M(Z+3M((Z+2)M(Z+1)MZ). (4.8)

Nun ist Det M(Z) = 1 also auch Det IM(Z) = 1. Weiter ist 3t eine Wurzel des Sekuldr-
polynoms. Nun ist 2 4 = Sp It daher gilt

M(Z) — 24 +MYZ) =0 (4.9)
und nach Rechtsmultiplikation mit h
h(Z+4)—2AhZ) +h(Z—4) =0 (4.10)

also gilt insbesondere auch (4.2).
Umgekehrt kann man aus einer meromorphen Lésung von (4.2) immer eine Basis

von Loésungen zu (4.1) gewinnen. Sei 7 eine Loésung von (4.2) und
h(z)= ("2 %)
h(Z)

h(Z +4) = R(Z) hiZ) (4.11)

dann erfiillt h die Gleichung
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m(Z)_( LY (4.12)
—1 2A4(2)

wobel

Aber IR lisst sich rational auf 9t transformieren: denn 9t ist nichts anderes als die
Kowalewskische Normalform von 9.
Sel etwa

und setzt man

dann findet man

come-(°, 1)
“\—1 24/

Es ist also

~

€(2) h(2) = I(2)
eine Losung von (4.7), d.h. I erfiillt die Gleichung

L{Z+4)=M2)1(2). (4.7)
Wenn wir nun bilden

h(Z) = 1(Z) + MAZ)L(Z 4+ 1) + MY(Z) M (Z + 1)1 (Z +2)
LTMYZ)MA(Z+ 1) MY (Z+2)1(Z+3), (4.13)

so erfillt h offensichtlich wegen (4.8) die Gleichung (4.5). Die zweite Komponente
von (4.13) ausgeschrieben lautet

WMZ)=h(Z+3)+E(Z+)R(Z+D+[E(Z+3)E(Z+2) —11h(Z+1)
+EZ+N(Z+2(Z+1)—C(Z43)—C(Z+D]K(2)
L EZLDEZ+D =N Z-D 4+ EZ+- DRI —D +5(Z—3). HI4H

Das Fundamentalsystem besteht aus A(Z) und A(Z + 4), sofern A2 —1 + 0 ist;
denn wiére
h(Z+4) =n(Z) h(2) (4.15)

mit #(Z + 1) = x(Z), dann wire = meromorph. Aber % erfiillt, wie wir gesehen haben,
(4.2), daher gilte

m—2An+1=0. (4.16)
Aber (4.16) hat nur fiir A% =1 eine meromorphe Losung: denn nur dann kann
(A2 — 1)1 = 2}/ — o v? [08 — (o + f) v* + 1]102

rational sein, wegen a + f§ = 2 4 A%/4E? + -+ 2 (fiir alle endlichen, reellen Energien).
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Aus dem Ausdruck fiir 4 (4.3) ergibt sich jedoch, dass A = — 1 unméglich ist.

Der Fall A=1 (d.h. & = g d.h. E = — 3/16 /%) wurde schon von JosT behandelt.
In diesem Abschnitt haben wir unser Problem also reduziert auf die Losung der
Differenzengleichung (4.2). Schreiben wir noch

H(z) =n(Z), A@) = A(Z) (4.17)
mit
i=7
dann lautet (4.2) '
H(+1) —2A4()HE) +H(z—1) =0, (4.18)

wobei A die primitive Periode 1/4 hat, also die Spanne ein Multiplum der primitiven
Periode von A ist: das ist aber die von uns gesuchte Normalform. Im folgenden
nehmen wir stets 4 + 1 an, da der Fall A = 1 bereits von JosT erledigt wurde.

4.2 Allgemeines tiber die Losung der Differenzengleichung (4.18)

Zur weiteren Diskussion von (4.18) fithren wir den Translationsoperator ¢ ein.
¢ ist definiert durch

tF)(z)=F(z+1). (4.19)

Speziell ist £ z = z 4 1. ¢ erzeugt eine abelsche Gruppe von Translationen der z-Ebene
in sich. Unter einem Periodenstreifen verstehen wir einen Fundamentalbereich dieser
Gruppe, dessen offener Kern ein einfach zusammenhingendes Gebiet ist, etwa die
Menge y << Rez <1 + y. Der folgenden Diskussion legen wir einen bestimmten
Periodenstreifen zugrunde, der die Punkte 1/4 ({, + #)und1/4 (— ¢, + &), k= 0,1,2,3
enthdlt, aber sonst beliebig ist.

Die Differenzengleichung (4.18) lautet jetzt

(po#® — 21t + po) H=10 (4.20)
wobel

Po(v) =18 — 2804+ 1, pv) =v8—2avt+1 (4.21)

und v = exp (27 ¢ z) bedeuten. Zu beachten ist, dass die Koeffizienten p, unter ¢
invariant sind, dass also gilt

th,— pot, a=1,2. (4.22)
Nun liegt es nahe, das hyperelliptische Gebilde

F(o, 0): olo) w* — 2 pofv) @ + pofe) = O (4.23)
und das Uberlagerungsgebilde

Folz, @)1 polz) w2 — 2 p1(2) w + pol2) =0 (4.24)

von §(v, w) zu betrachten. {(z, w) ist iber den 4 Stellen (v = 0, w) und (v = oo, w)
von (v, w) logarithmisch verzweigt. Falls wir das an diesen Stellen punktierte Ge-
bilde mit §,(v, w) bezeichnen, ist §,(2, w) eine perfekte periodische Uberlagerung von
Folv, w). Die Decktransformationen von §,(z, w) werden durch einen Operator erzeugt,
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den wir wieder mit ¢ bezeichnen und der durch

t/) (w) =f (2 + 1, w) (4.25)

definiert ist. Nun verstehen wir unter dem Periodenstreifen dieser Erweiterung der
Definition von ¢ die Gesamtheit der Punkte von §,(z, @), die iiber dem festgelegten
Periodenstreifen der z-Ebene liegen.

Jetzt kénnen wir eine Losung von (4.20) wie folgt aus einer meromorphen Losung
der Differenzengleichung

tH=w$ (4.26)

gewinnen: wir setzen ausserhalb der Verzweigungspunkte von $,(z, w) tiber der
z-Ebene

H(z) = $(z, wy) + H(z, wy) - (4.27)

H hat dann eine wohlbestimmte meromorphe Fortsetzung in der ganzen z-Ebene und
es wird

H@E+1)+H((z—-1) = (v, + w1_1) H(z, wy) + (wy + w;l) Sz, wy) . (4.28)

Aber nach ViETA gilt w; ' = w, und w, + w, = 2 4, so dass (4.28) sich auf (4.18)
reduziert. Bei dieser Konstruktion heben sich Pole erster Ordnung von §) in den Ver-
rwergungspunkien weg. '
Wir wollen, um das richtige Verhalten der Lésung 4 von (2.31) fiir | Im z | > oo
schliesslich garantieren zu kénnen, das Verhalten der Losung von (4.26) «im Unend-
lichen» noch weiterhin einschrinken. Sei 7 eine lokale Uniformisierende zu einer Um-
gebung eines der 4 Punkte v = 0, v = co von §(v, w). Wir verlangen, dass in einer
passenden Umgebung ) von der Gestalt ist (logw(t) ist so gewédhlt, dass logw(0) = 0

bzw. logw(co) = 0 ist):
% = F(r) &'8v, (4.29)

wobel F in dieser Umgebung meromorph ist. Wir sagen dann, der betreffende Punkt
(v =0, w) bzw. (v = oo, w) sei eine «Stelle m-ter Ordnung von $», wenn F bei 7 = 0
eine Nullstelle -ter Ordnung oder einen Pol (— m)-ter Ordnung hat, je nachdem, ob
m oder — m nicht negativ ist. Wir subsummieren durch diesen Missbrauch der Worte
also die Punkte iiber v = 0, co unter die moglichen Nullstellen und Pole von $.
Anders ausgedriickt: wir erginzen §,(z, w) durch genau 4 Punkte zu einem «Pseudo-
gebilde» J(z, w).
Nun gilt offenbar das _

Lemma: Sind §, und $, zwei meromorphe Lésungen von (4.26), dann ist §,/$), eine
algebraische Funktion auf (v, w).

Beweis: Setzt man f = $,/9,, dann ist f periodisch, denn
tf=f, (4.30)

also ist f eine meromorphe Funktion auf §,(v, w). Wegen des Verhaltens (4.29) ist
aber f auf ganz §(v, w) meromorph.

Folgerung: Durch die Angabe der Nullstellen und Pole im Periodenstreifen ist §
bis auf einen konstanten Faktor genau bestimmt.
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Es ist nun angezeigt, die bekannte Divisorsymbolik der algebraischen Geometrie
zu verwenden. Ein Divisor4) a ist ein formales Produkt a = IJ P’ p,€ Tz, w),

m, € Z (Ring der ganzen Zahlen), {v} maximal abzéhlbar: d(a) = Z'm, heisst der Grad

des Divisors. Wir sagen, dass a ein Teiler einer Funktion $§) sei, falls, fiir alle », § an
der Stelle p, mindestens von der Ordnung #, ist. Die Multiplikation und Division
von Divisoren ist wie iiblich erklirt, wobei p® weggelassen (oder durch 1 ersetzt)
werden kann. Der Einsdivisor kann also beliebig als ],,I p? geschrieben werden. Wir

schreiben ferner a > 1 und nennen a einen «ganzen Divisor» falls alle m, > 0 sind,;
weiter schreiben wir b > a falls b/a > 1 ist. Der grésste Divisor ¢ der § teilt heisst
der exakte Divisor von §. a teilt § genau dann, wenn ¢ > a ist. Fiir die letzte Aus-
sage schreiben wir auch § > a oder, wenn a der exakte Divisor einer Funktion §, ist,
sogar § > $;.

Sei w der exakte Divisor von w und §, der auf den Periodenstreifen bezogene
exakte Divisor von §), §)_; der exakte Divisor von ) im durch ¢~ translatierten Perio-
denstreifen. Aus (4.26) folgt

by =w™ D, (4.31)

Nach diesen Vorbereitungen gehen wir schliesslich an die Lésung von (4.26).
Sei

o=dlog$ (432
dann ergibt (4.26)
to=dlogw+ o. (4.33)
Fiir ¢ machen wir den Ansatz
c=zdlogw+ o (4.34)
und finden
to=op. (4.35)

o ist also ein Differential auf (v, w). Aus der Meromorphie von §) und der Bedingung
(4.29) aber folgt, dass p ein Abelsches Differential 3. Gattung mit lauter einfachen
Polen auf (v, w) ist. o selbst soll ein Differential mit lauter einfachen Polen und
ganzzahligen Residuen sein. Es sind also die Residuen von p modulo 1 festgelegt und
o erfiillt seine Aufgabe hinsichtlich der Korrektur der Residuen von z d logw, wenn
o die Residuen von ¢ im Periodenstreifen ganzzahlig macht. p hat aber noch eine
globale Aufgabe, nimlich ¢ zum logarithmischen Differential einer Funktion auf

& (2, w) zu machen. Dazu ist notwendig, dass fiir jeden geschlossenen Weg y auf
Folz, w) die Periode

f ¢ =0 modulo 2mi (4.36)
¥

erfiilllt. Wieder ist es hinreichend, (4.36) nur fiir geschlossene Wege y im Perioden-
streifen zu erfiillen.

Diesen 2 Aufgaben entsprechend spalten wir g auf

0=+ 0y (4.37)

%) Fur diesen und andere im folgenden beniitzten Begriffe aus der algebraischen Geometrie und
Funktionentheorie verweisen wir auf [21] und [18].
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wobel g, so bestimmt ist, dass
g, =zdlogw+ o, (4.38)

im Periodenstreifen verschwindende Residuen hat.

Das ist méglich, denn die Residuensumme von z 4 logw im Periodenstreifen ver-
schwindet, da iiber jeder Nullstelle von p,(z) ((4.21)) genau eine einfache Nullstelle
und ein einfacher Pol von w liegen.

Jetzt liefert o; noch die falschen Perioden fiir geschlossene Wege im Perioden-
streifen. Mit u(y) bezeichnen wir die Multiplikatoren von ¢ am Wege y:

puly) = exp(a(y)) (4.39)
mit
aly) = [ - (4.40)
i
Natiirlich ist u(y) + 0 und bildet u(y) eine Darstellung der Homologiegruppe von
&(v, w). Zu jeder solchen Darstellung gibt es aber eine Funktion g auf der Klassen-
flaiche [18 1] ‘53- von (v, w), die genau die reziproken Multiplikatoren u—(y) besitzt,
Man kann dabei eine Anzahl s von Punkten von (v, w), die grosser oder gleich dem
Geschlecht p von §(v, w) also > 3 ist, beliebig vorgeben, in welchen g Pole erster Ord-
nung haben soll [18 f].

Da g iiber (v, w) gleich viele Pole wie Nullstellen hat, treten dann auch s Punkte
von (v, w) auf, in denen g Nullstellen hat. Nach der Theorie des Jacobischen Um-
kehrproblems kénnen s — $, also bei uns s — 3 dieser Nullstellen vorgegeben werden:
die ibrigen p, also 3, Nullstellen sind dann — i. A. eindeutig — bestimmt.

Unter den moglichen Wahlen der s-Pole und s — 3 freien Nullstellen werden wir
nun eine fiir unsere Zwecke besonders geeignete treffen. Zunichst fithren wir folgende
Bezeichnungen fir spezielle Punkte auf {(z, w) und (v, @) ein:

Pole von w iiber den Punkten

1 e 1 _
Y (o + &): a; > "4‘(_C0+k): ag >
Nullstellen von @ iiber den Punkten
1 1 _
T(C(,Jrk):r,j, -I(—Co-f—k):mk, ke Z;

Verzweigungspunkte von w auf §(v, w): v, v=1,2, ..., 8.

Weiter identifizieren wir die Punkte qf, rj7 fiir 2 =0, 1, 2, 3 mit den entspre-
chenden Punkten von (v, w) und verstehen unter v, und allgemein p auch Punkte
von &(z, w) die iiber den Verzweigungspunkten bzw. dem allgemeinen Punkt p von
§(v, w) liegen.

Ubertragen wir nun den Begriff des exakten Divisors auf multiplikative Funktio-
nen, so koénnen wir die Forderungen tiber g folgendermassen formulieren: g soll den
exakten Divisor

8 3 3 3
a=[]o [ [[x []3 (4.41)
r=1 k=1 =2 k=1
besitzen, wobei z;, £ =1, 2,3 drei durch das Jacobische Umkehrproblem bestimmte
Punkte sind.
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Die Angabe des exakten Divisors bestimmt aber g bis auf eine multiplikative
Konstante eindeutig: denn sind g, g, zwei multiplikative Funktionen mit denselben
Multiplikatoren und exakten Divisoren, so ist das Verhiltnis g,/g, eine meromorphe
Funktion ohne Pole und Nullstellen, also eine Konstante.

Setzen wir nun

0, =dlogg (4.42)

dann haben wir in o, iiber (4.34), (4.37), ein Differential, das allen Bedingungen
geniigt. Aus (4.32) bekommen wir dann eine Losung von (4.26), die wir mit £’ be-
zeichnen wollen; bezeichnet I)(') ihren exakten Divisor im Periodenstreifen, so gilt
By = g, wobei g durch (4.41) gegeben ist; ferner

h., > ( _U n;l) ()~ ) T )T, (4.43)

d.h. §’ hat maximal einen Pol erster Ordnung in je einem der Punkte iiber

1 1 3 1
Th-1, ~ -7 —Fl-1

und iiber simtlichen Verzweigungspunkten.
Uber den Punkten

1=

+ 50, T (LD, (Eh+2), 5 (&Gt

4
T EG=1), (862, 4 (£5-3)
4 4 ' g
aber ist §’ regulir.
Weiter gilt
d (logt ' — log$®’) = d logw, (4.44)
also
t$ =Kw$§' (4.45)

wobei K =+ O eine Konstante ist. Wir behaupten, dass K = 1 sein muss. Dazu be-
trachten wir einen der 2 Punkte iiber v = 0 und verwenden v als lokale uniformisie-
rende Variable. Es ist

6 =d (zlogw) — logw dz + f(v) dv, (4.46)

wobei f moglicherweise bei v = 0 (ndmlich, wenn eine oder mehrere der Punkte 3,
aus b, gerade mit dem betrachteten Punkt iibereinstimmen) einen Pol mit positivem
ganzzahligem Residuum hat.

Nun ist

logw = +2 VE—o; v2 4+ O(v?) (4.47)
und d 2 = (27 1)1 d v[v also, durch Integration
§ = Fl) o (4.48)

wobel F in einer Umgebung von v = 0 meromorph ist. §’ aus (4.48) erfiillt (4.45)
mit K = 1. Ausserdem haben wir nun auch die Bedingung (4.29) verifiziert.
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Zusammenfassung: Es wurde eine meromorphe Losung von (4.26) «in abstracto»
konstruiert, die (4.29) erfiillt und im Periodenstreifen zum exakten Divisor

8 3 3 3
bo=T[o" []e ] [ ] (4.49)
=1 k=1 1=2 k=1
gehort.
Sie ist gegeben durch:

b
9H'(p) = g(p) exp ( f zd logw + 91) : (4.49)

Po

wobei p = (z, w) der laufende Punkt auf $(z, @), p, ein beliebiger, fester Punkt aus
&(z, w), g eine bestimmte multiplikative Funktion und p, ein bestimmtes Abelsches
Differential 3. Gattung sind.

4.3 Konstruktion «in abstracto»r einer Losung H der Differenzengleichung (4.18) .

Eindeutigkeitssitze

Gemdss (4.27) bilden wir die meromorphe Funktion
H'(z) = 9'(2, wy) + (2, wa) (4.50)

wobei §’ die im vorigen Unterabschnitt 4.2 konstruierte spezielle Losung von (4.26)
ist.
Wir behaupten folgendes

Lemma: H 0. (4.51)
Beweis: Wire H' = 0 dann gilte

9'(z, @) = — H'(2, wy) (4.52)

also wire fiir den exakten Divisor von $’ im Periodenstreifen
8 3 3 \
o> (7o) (114 ot ) (1T o (#53)
v=1 =1 j=2

d(h) = 2

oder

im Widerspruch mit der Gleichung (4.49), welche

d(b;) = 0 (4.54)
impliziert.
H' hat keine Singularitidten in den Verzweigungspunkten und in den Punkten

(£ o+ N4 (L= (F=1,2), (£ Lo+ 3)/4, (+ &, — 3)/4 und einen Pol maxi-
mal erster Ordnung in 4 {,/4 — 1, — ({, + 3)/4.
Nun haben wir 2 Fille zu unterscheiden. Entweder ist H’ symmetrisch, erfiillt also

H'(z) = H'(— 2) (4.55)
oder H’ ist nicht symmetrisch

H'(z) = H'(z) — H'(—2) +0. (4.56)
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Fall (4.55): H'(z) ist reguldr in den Punkten

(+Cot+ R4, (& —R4, £=0,1,23.
Wir setzen
H(z) = (v —ov1) H'(3) . (4.57)
H(z) erfiillt dann :
H(— 2 =—H(2)
H(z) ist reguldr in (4§, + k)[4, (£ &y — k)[4, #=0,1,2,3
H(z) hat fiir Im z > 4 oo Entwicklungen

(a)
(b)
(c)
H(z) = vl [A*(v) &18? - BE(v) e~ *108"] ,

wobel A+, B+in v =0, A~, B~ in v = oo regulir sind und von nun an unter w die-
jenige Wurzel von (4.23) verstanden wird, deren Entwicklung in der Nihe von v = 0
bzw. v = oo lautet '

w=1+2 ]/ﬁ —avE? + O(v**) () bestimmt)

und logw durch ‘
logw = 2 ]/,8 — g vt? 4 OwEY)

festgelegt ist.

(c) folgt unmittelbar aus (4.47), (4.48) (und den ganz analogen Formeln, die in der

Nidhe von v = oo gelten).

Fail (4.56): Hier ist H" + 0. H" hat Pole héchstens erster Ordnung in den Punkten
-+ (£ + 3)/4. Nun bilden wir

H(z) = [v — g2t 3] [p-1 _ mi2Gt3] f(g) (4.58)

Das so gebildete H hat wieder die Eigenschaften (a), (b), (c). Somit haben wir fol-
genden Satz bewiesen:

Satz 1: Die Differenzengleichung (4.18) hat eine (nicht triviale) meromorphe
Losung mit den Eigenschaften (a), (b), (c). Die einzigen méglichen Singularititen
von H liegen in den Punkten 4 ({, + /), l€e Z, || > 4.

Wir wollen nun zeigen, dass die von uns konstruierte Losung von (4.18) die »* - : e
ist, welche gewisse Eigenschaften besitzt: dies wird uns spiter niitzlich sein. Dazu
beweisen wir 2 Sitze.

Wir bezeichnen im Folgenden mit % einen festen Periodenstreifen der z-Ebene,
der die Punkte

7= o+ R
und
2, =(—Co+ R4, £R=0,1,2,3
enthilt.
Es gilt nun der

Satz 2: Es gibt (bis auf eine multiplikative Konstante) hichstens eine einzige nicht
triviale Losung H von (4.18), welche folgende Eigenschaften besitzt:

(@) H (—2)=—H(2);

(b) H = 0 in den Punkten z = + 2 ;



156 Sergio Albeverio H.P.A.

(¢) H istin ganz P reguldr (ausgenommen im Unendlichen) und hat in den Punk-
ten + {,/4 + 1 hochstens Pole 1. Ordnung;
(d) fiir Im z > + oo gilt

+
H(z) = [-a;k +af +af v+ O(vg)] + [ 20 + O(z v?)]

und fiir I'm z - — oo gilt
HEz =[a";v+ay +af v+ O@w 3] + [b] z2v + Oz/v?)],

wobei a* |, af, ai, ..., bf, ... komplexe Zahlen sind.

Existiert tatsichlich eine nicht triviale Losung H mit den Eigenschaften a), b), c), d),
so ist ihre Konstruktion durch die Formeln (4.49"), (4.50), (4.56), (4.58) gegeben.

Beweis: Sind H,, H, Lésungen von (4.18) mit den Eigenschaften (a), (b), (c), (d),
dann zeigen wir zunidchst

wobei /T eine meromorphe Funktion von z der Periode 1 ist.

Um dies zu beweisen, betrachten wir die Wronskische Determinante der zwei
Losungen
_ (Hy(z) Hy(z+1)

WO =g Her1)

Als Folge der Voraussetzungen iiber H,, H,, gilt:
W(—z2)=—W(H+z, WEtl) =Wk

und folglich W(z) = F(v), wobei F meromorph ist. Fiir v = 0, v = oo ist I regular,
wegen d).

Da F die Gleichung F(v!) = — F(v) erfiillt, hat es die zwei Nullstellen v = £ 1.
F besitzt aber noch die zwel weiteren Nullstellen v — exp (4 27 z7); da F hoch-
stens nur zwei einfache Pole besitzt, nimlich in v = exp(4 27 7 {/4), und sonst
reguldr ist, muss es identisch verschwinden, was H, = I/ H, impliziert.

Wir zeigen nun, dass /1 eine Konstante sein muss.

Zunichst bemerken wir, dass /7 gerade sein muss, da H,, H, beide ungerade sind.
Wir bilden nun:

Hy(z) = I1(z) Hy(z) mit [1y(z) = o + B 11(2)

und wihlen die Konstanten «, § so dass:

() =a+BIE =0 far z= 4L,
Das ist stets moglich: denn entweder ist //({,/4) = 0 und dann wihlt man « = 0,
f =1, oder es gilt [1({y/4) + 0 und dann wihlt man o« = — [1({/4), f = 1.

Mit dieser Wahl gilt

H4@:§+k”:o,kez.
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Betrachtet man nun
1
Hy(2) = Hyle) + Hy (2 + ) (4.59)
und bildet man |
Hy(z) Hy(z+ 1)
W' (z) = |2 7
@ 'H4<z) Hy (@4 1)]
so gilt W’(z) = F'(v), wobei F’ sicher Nullstellen in v = exp (— 2x ¢ {y/4) und
v=-exp (27 ({o/4 + 3/4)) hat:
da aber F’ keine Pole besitzt, muss F' = 0 sein.
Also:
H,(z) = Rly) Hy(2) (4.60)
wobel R meromorph in v ist,
Aus (4.59) und (4.60) folgt:

m@+%%4mw_nm@.
Daher:
Hy(z+ 1) = [S(v)]* Hy(z2) mit S(v) = R(v) — 1,

und folglich, wenn S =+ 0:
Hy(z+4+ 1)+ Hy (z — 1) = [S(w)* + S{v)™*] Hy(2) . . (4.61)
Anderseits ist Hg eine Losung von (4.18), also
Hy(z+1) + Hy (2 — 1) = 2 A(v) Hylz) . (4.62)

(4.61) und (4.62) sind nur dann kompatibel, wenn 4 = +1:4 = — 1 ist aber un-
moglich und 4 = 1 widerspricht der Annahme am Schluss von 4.1. Daher muss
S = 0 sein, also R = 1, folglich H; = 0, also 11(z) = I1({,/4) = Konstante.

Somit ist aber auch Satz 1 gezeigt.

Die von uns «in abstracto» konstruierte Lésung H von (4.18) besitzt im Falle
(4.56) die Eigenschaften (a), (b), (c), (d) vom Lemma. Daher, im Falle (4.56), gibt
unsere Konstruktion die (bis auf multiplikative Konstante) einzige nicht triviale
Losung von (4.18) mit den Eigenschaften (a), (b), (c), (d).

Satz 3: Es gibt (bis auf eine multiplikative Konstante) hichstens eine einzige nicht
triviale Losung H' von (4.18) mit den Eigenschaften:

(a)" H'(2) = H' (— 2)

(b)" H' ist reguldr in P und hat in den Punkten -+ {y/4 + 1 hochstens Pole

1. Ordnung;

(c)' H'(z) > 0 fiir Im z > + oo.

Existiert tatsdchlich eine solche Lésung, dann ist ihre Konstruktion durch (4.49'),
(4.50) gegeben,

Beweis: Seien H, H, zwei Lésungen mit den Eigenschaften (a)’, (b)’, (c)".

Wir betrachten:

Hi(z) Hy(z+1)]
H,(z) Hy(z+1)"
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Es gilt, wegen der Differenzengleichung und der Symmetrie (a)’:
WEz+1)=W((E), WE—z2)=-—-—W({).

Ferner W(z) - 0 fiir Im z > 4 oc.

Daher: W(z) = F(v) und F(0) = F(oc) = 0. Da W ungerade ist, gilt auch F(1) = 0.
F hat aber hochstens einfache Pole in v = exp (4 27 ¢ {,/4) und ist sonst regulir.
Da F meromorph ist, muss F = 0, also

H,—ITH,,

wobei /] eine meromorphe Funktion von z der Periode 1 ist.
Wir behaupten nun, dass /7 eine Konstante ist. Bilden wir ndmlich analog wie
friher die Grossen

Hy(e) = IT(2) Hy(e) mit IT,(52) =0,
ferner
’ ’ ’ 1
H{(2) = Hye) — Hy (2 + )
und endlich
Hy(2) H;(z+1)]

F@:hm)mu+M'

F’ hat Nullstellen bei v = 0, v = oo und keine Pole: daher muss F' = 0; mit densel-
ben Argumenten wie am Schluss des Beweises von Satz 2 kann man daraus die
Konstanz von /7 herleiten. Die «in abstracto» konstruierte Lésung H' ((4.50)) besitzt,
im Falle (4.55), die Eigenschaften (a)’, (b)’, (c)’ von Satz 3: sie also die einzige Losung
mit diesen Eigenschaften.

4.4, Die der in 4.3 konstruierten Funktion H entsprechende Lisung h
der Differenzengleichung (2.25 = 4.1) und ihre Eigenschaften

Gemaiss (4.14), (4.17) entspricht der im letzten Unterabschnitt 4.3 konstruierten
Funktion H folgende Losung von (2.25 = 4.1):

WZ) = H(z+ )+ LEZ+ 3 H s+ 5) +EE+3)CEZ+2 - H (24 )
+B(EZ+3)Z+2L(Z+1)-(Z+3)—L(Z+1)]H{)

+EEZ+L@+1) —1H|( 1~)+§(Z+ 1)H(z—32-)+H(zui). (4.63)

S 4
Eine leichte Verifikation zeigt, dass %(Z) alle Bedingungen von 2.3 erfiillt. Fiir
das asymptotische Verhalten bei Im Z = oo ergibt sich dabei
WMZ) = v2 (c; + co Z) + O(v3) (4.64)

eine Abschitzung, die durch Jost [9, (2.26)] verwendet wurde.

Wir werden jetzt zeigen, dass die konstruierte Losung %4 nicht identisch ver-
schwindet.

Satz 1: Die durch (4.59) gegebene Losung /4 der Differenzengleichung (4.1)

WZ+ 1)+ b (Z —1) =L(Z) h(Z)
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besitzt in mindestens einem der Punkte

und in mindestens einem der Punkte

L=—(g+k, R=1,2,3

je einen Pol 1. Ordnung.

Korollar: h besitzt sicherin Z = 4 {, + 1,Z = + {, — 1 Pole 1. Ordnung.

Bewers des Satzes: Wir nehmen ad absurdum an, dass die Ordnung von % in
{o + k grosser als — 1 sei fiir £ = 1, 2, 3 und zeigen, dass dies zu einem Widerspruch
fithrt: der andere Fall — {, + % kann ganz analog behandelt werden.

Wegen (4.59) und wegen der Regularitit von 4 in §,, £, + % (B = 1, 2, 3) und dem
Umstand, dass {(Z) nur in Z = 4+ {, + 4n, ne€ Z singuldr ist, kann man aus (4.1)
folgende Gleichungen herleiten: ~

1 b Gala—1\ (H,

Cl Cs Cl Cs ) Hz) =0,
Cz C1 2 Cl 1 H3

wobel

G=C(C+4k, H=H(L+rHMA), #=1273.

Das System dieser 3 Gleichungen fiir H,, H,, H, besitzt aber nur die triviale
Losung H, = Hy = Hy = 0 d.h.

H(4 Lo+ h)j4) =0, k=1,23. (4.65)

Aus (4.65) folgt aber ein Widerspruch gegen die Sitze 2, 3 vom letzten Unterabschnitt
4.3: denn im Falle (4.56) besitzt H die Eigenschaften (a), (b), (c), (d) von Satz 2
(Unterabschnitt 4.3) und, wegen (4.65), wiirde aber dann auch die weitere Losung
von (4.18)

HO(z) = H(z) [v — 27 G+ -1 =1 _ g2ni[(Co+2)/4]]—1

dieselben Eigenschaften (a), (b), (c), (d) besitzen, was, nach dem Eindeutigkeitssatz 2,
unmoglich ist. Im Falle (4.55) hat H' = H/(v — v~1) die Eigenschaften (a)’, (b)’, (c)’
von Satz 3 (Unterabschnitt 4.3) und wieder auf Grund von (4.65) wiirde auch

HO'(z) = H'(z) [v — 32ﬂi[(¢n+2)f411—1 [v—l _ ani[(Cu+2)/4]J—1

dieselben Eigenschaften besitzen, gegen den Eindeutigkeitssatz 3. Somit ist die ab-
surdum Annahme widerlegt und der Satz gezeigt.

Beweis des Korollars: Der Satz besagt, dass # an mindestens einer der Stellen
Z ={y+ k und an mindestens einer der Stellen Z = —{,+ % (=1, 2, 3) Pole
1. Ordnung besitzt. Hat nun % einen Pol in {, + 3 bzw. — {, 4 3, so besitzt # wegen
der Differenzengleichung (4.1) auch in {, + 2 oder in {, + 1 bzw. in — {, + 2 oder
— {y + 1einen Pol 1. Ordnung. Aber aus einem Polin {, + 2 bzw. — {, + 2 folgt durch
die Differenzengleichung und die Regularitdt von /4 in {, die Existenz von Polen in
lo + 1 bzw. — {, + 1. Schliesslich durch die Schiefsymmetrie 4(Z) = — & (— Z) folgt,
dass % ebenfalls in — £, 4 1 Pole 1. Ordnung besitzt.
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Wir fassen nun die Ergebnisse iiber % im folgenden Satz zusammen:
Satz 2: Die Differenzengleichung (4.1)

cosm|2 {y— 2 cosm|2 Z
cosmf2 {y—cosm(2 Z

(Z+1)+h(Z2-1)=02Z)h(2), U(Z)=—
hat eine ungerade, nicht triviale meromorphe Losung, die ausserhalb der Punkte

Z=+C+1, leZ, |I|>0

reguldr ist und in + {, + 1, 4 {, — 1 sicher Pole erster Ordnung besitzt.
Fir ImZ - 4 oo gilt

h(Z) o eir niZ (Cl j: Cz Z) L 0 (BlL (3:”‘/2)2)

mit Konstanten C,, C,.

Diese Losung ist bis auf einen konstanten Faktor eindeutig?).

Wir haben aber in diesem Abschnitt 4 die Lésung «in abstracto» bereits konstruiert
durch ein Verfahren, das wir kurz zusammenfassen wollen, in folgendem

Satz 3: Die Losung 4 der Differenzengleichung (4.1), welche die Eigenschaften von
Satz 2 besitzt, ist gegeben durch (4.63), wobei H(z) seinerseits entweder durch

H(z) = (v —v7) (9'(z, 1) £ H'(, wy))

oder durch
H(z) = (v — e iz (Co+1)) (v—l _ 6ni/2(Co+1))
X (9'(z,21) + 'z, wg) — H'(— 2z, w1) — §'(— 2,w,))

gegeben ist, je nachdem, ob $'(z, w,) + H'(2, wy) = H' (— 2, wy) + O (—2, wy) oder
nicht. Die Funktion §’, welche % bestimmt, ist gegeben durch:

(z, )

f 2 dlogw' + Ql> , ((4.49")

(20, 0)

9'(z, w) = g(z, w) eXP(

dabei ist g, ein Abelsches Differential 1. Gattung auf der Fliche (v, w), welches
durch die Residuen von [ z d logw bestimmt ist, g eine multiplikative Funktion, die
zum exakten Divisor (4.41) gehort und die reziproken Multiplikatoren von
[ (zdlogw + g,) besitzt.

In den nidchsten Abschnitten werden wir uns mit der effektiven Konstruktion
von g und p; beschiftigen. Zunichst aber noch eine Bemerkung iiber die Losung des
physikalischen Problems.

Bemerkung: Wegen dem Zusammenhang (2.27) folgt aus Satz 2 (oder aus dem
Korollar von Satz 1), dass die Residuen der Funktion f an den Stellen Z = + {, nicht
verschwinden. Diese Residuen sind aber direkt verbunden mit der Wahrscheinlichkeit
eines elastischen Prozesses ((3.5), (3.7)): ihr Nichtverschwinden driickt den Um-
stand aus, dass bei simtlichen Energien elastische Prozesse moglich sind.

5) Die Eindeutigkeit wurde bereits von R. JosT [9] bewiesen.
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5. « Abstrakter» Ausdruck der Lésung durch abelsche Integrale
und Thetafunktionen vom Geschlecht 3

5.1 Bestimmung der multiplikativen Funktion g von (4.42)

In 4.2 haben wir die multiplikative Funktion g eingefiihrt: sie soll I) die rezi-
proken Multiplikatoren von o, = 2 d logw 4 g, besitzen und ferner II) Pole in den
Verzweigungspunkten v, (» = 1, 2, ..., 8) und Nullstellen in den Punkten v; (k =
1,2, 3),r; (7 =2, 3) der hyperelliptischen Riemannschen Fliche (v, w) haben. Wir
wollen hier eine Konstruktion von g geben. Zunichst aber einige Bezeichnungen und
Begriffe, die wir im folgenden stets beniitzen werden [18]. Sei ‘R eine beliebige alge-
braisahe d.h. kompakte Riemannsche Fliche vom Geschlecht $ und seien 2, =,

2y =Bu(n=1,2,.., p)die 2 p Zyklen einer kanonischen Zerschneidung X' von R,

so dass die Matrix der Schnittzahlen die Gestalt ( +OE B f) besitzt, wobei 0 bzw. E die

px p Null- bzw. Einheitsmatrix bezeichnen [18g]. Sei H,(R, Z) die erste Homologie-
gruppe von R: sie hat die Homologieklassen der Zyklen X, als Basis. Bekanntlich
existiert eine Dualitdt zwischen H; und der additiven Gruppe H'(R) der reguldren
harmonischen Differentiale, die durch die Paarung (H;, H') > C: [{, (e H, ye H,

¥
definiert wird (mit C bezeichnen wir den 1-dimensionalen komplexen Vektorraum).
Auf diese Weise gehoért zu 2 insbesondere eine Basis im komplexen Vektorraum H,
der abelschen Differentiale 1. Gattung, die durch die Normierung®) j ¢’ = w10,

(w,v=1,2,..., p) eindeutig bestimmt ist: {¢*} ist das System der (bezughch 2)
«normalen Abelschen Differentiale 1. Gattung». & = (z ¢ E, 7) mit 7}, = f ¢’ ist die

Periodenmatrix der ¢”: man zeigt, dass £ eine (reduzierte) Riemannsche Matrlx ist?).
Im folgenden werden wir oft eine Kongruenzrelation gebrauchen: sind ¢,, ¢, € C?
(wobei C? der p- dimensionale'komplexe Vektorraum ist), so schreiben wir €1 =6

genau dann, wenn ¢ = c¢f + w1 h* + Z g* 14 fiir gewisse ganze Zahlen %, g* (¢;, ¢,
i=1

sind genau dann einander kongruent, wenn sie dasselbe Element der Jacobischen
Mannigfaltigkeit

J®) =Cﬁ/{mh“+fg‘rﬁ]
A=1

darstellen) [20a]. .
Sei nun a = py+...p," ein Divisor von R. Wir betrachten die Abbildung u
welche durch -

" % |
~'m, [ @ (5.1)
=1 By _

6) Das ist die klassische Normierung: z. B. Riemany [17, 5.129] und Krazzr [19¢, 5.413].

7) Eine p x 2p-Matrix der Gestalt (1 ¢ E, T) wobei 7 eine beliebige nicht singulire symmetrische
P % p-Matrix ist, welche einen negativ definiten Realteil besitzt, (so dass i T ein Element der
p (p + 1)/2-dimensionalen Siegelschen oberen Halbebene ist), heisst allgemein eine « (reduzierte)
Riemannsche Matrix» [19a]: dabei braucht T keine zweite Periodenmatrix eines Systems von
normalen Differentialen 1. Gattung auf einer Riemannschen Fliche zu sein.

11
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definiert ist: dabei ist b, ein beliebiger fester «Basispunkt» fiir die Integrale auf ‘R.
u gibt eine Abbildung der Divisoren von R in J(R). Wir kénnen nun zu der Konstruk-
tion von g iibergehen. Diese beruht einmal auf folgendem Satz, der eine Verallgemei-
nerung des Abelschen Theorems ist [16]:

Satz 1: Seien m, v € C?, ferner g ein Divisor von R. Damit g exakter Divisor einer
multiplikativen Funktion mit den Multiplikatoren m* = exp (u;), #* = exp (v)),

A=1, ..., p auf der Klassenfliche R ist, ist notwendig und hinreichend, dass
1
u(q) =sV——TM. (5.2

Dieser Satz gibt einen Zusammenhang zwischen Polen, Nullstellen und Multiplika-
toren einer multiplikativen Funktion.
In unserem Falle ist

8 3 3 3
a=[To, []xi [T []3. (5.3)
r=1 k=1 j=2 k=1

wobel 3, 35, 33 unbekannt sind: ferner sind die Multiplikatoren m, n also die Gréssen
u, v vorgegeben. Die Gleichung (5.2) kann dann in der Form

U(3,3233) =¢C (5.4)

8 3 s 1 1
CZ“(H%H“:) ) 1)+é~~v—mr‘u
V= =12

k=

mit

geschrieben werden. Kénnen wir die unbekannten Stellen 3,, 3,, 33 aus (5.4) bestim-
men, so ist auch die gesuchte multiplikative Funktion g gefunden, wie wir in 4.2
bereits bemerkt hatten. Die Bestimmung von 34, 35, 35 aus (5.4) ist aber nichts anderes
als die Losung eines Jacobischen Umkehrproblems, da die rechte Seite von (5.4)
vollig bekannt ist. Nach RIEMANN [17, S.188, siehe auch SPRINGER [18e]] hat aber
ein Umkehrproblem unserer Form

u(3;13233) =¢,

wobel ¢ € C? bekannt ist, stets eine Losung und i.A. auch nur eine. Wir wollen nun
zeigen, dass wir tatsdchlich im allgemeinen Fall sind, d.h. dass (5.4) eine einzige
Losung 3, 3s, 33 besitzt.
Satz 2: Das Jacobische Umkehrproblem (5.4) besitzt eine einzige Losung 3, 32, 3a-
Beweis: Wir nehmen ad absurdum an, es gibe mehrere Losungen. Dafiir ist not-
wendig und hinreichend [18d], dass

2(313233) >0 (5.5)

wobei allgemein ¢ (3; 35 35) die Dimension des Raumes der Abelschen Differentiale
bezeichnet, deren Divisor ein Vielfaches vom Divisor 3, 3, 35 ist. Da wir uns aber auf
einer hyperelliptischen Flache §(v, w) befinden, ist (5.5) nur dann erfiillt, wenn zwei
der Punkte 3,, 3,, 35 libereinander liegen, d.h. wenn sie konjugiert sind beziiglich der
charakteristischen Involution I, der Fliche, welche v in v und w in w1 transfor-
miert [21].
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Man kann also nach der Ad-absurdum-Annahme (5.5) einen der Punkte 3;, 30, 33,
z.B. 3, beliebig wihlen: die anderen sind dann bestimmt und einer davon, z.B. 3,,
stimmt mit dem zu 3, im obigen Sinne konjugierten Punkt 3, iiberein. Zu jeder Wahl
von 3, gehort gemdss 4. eindeutig (bis auf multiplikative Konstante) eine multiplika-
tive Funktion g, und dariiber hinaus eine Losung H,, (4.50) der Gleichung (4.18).

Wir behaupten nun, dass zu zwei verschiedenen Wahlen p,, p, von 3; auch zwei
wesentlich verschiedene Funktionen Hy , H, gehéren. Wire namlich H, — C Hy, (C
konstant), so hitte man

55;31(2: @) + 55:,31(3: wy) = C (SD;;Z(ZJ wy) + 55;32(2, wz))
und folglich

(S0, — $0) (2, 01) = — C (S, — Hp) (2, w5) .
Dann hitte aber die Losung 5;31 — -5;;2 von (4.26) die 10 Nullstellen
r;r’ rét) réts q1+: q%t qét

im Periodenstreifen und nur 8 Pole: ihr wiirde aber eine multiplikative Funktion g
entsprechen, welche 10 Nullstellen und 8 Pole besitzen wiirde. Eine solche existiert
aber nicht. Also muss Hy =+ C H,_ fiir p, + p, fiir alle Konstanten C. Nun sind zwei
Falle moglich:

A) Fiir alle Wahlen von 3, gilt H, (— z) = H, (z). Sind p,, p, zwei verschiedene
Wahlen von 3,, dann gilt nach obigem H, + C H,_fiir alle Konstanten C, was in
diesem Falle gegen Satz 3 von 4.3 verstdsst: somit ist ein Widerspruch gegen die
Ad-absurdum-Annahme hergeleitet;

B) es gibt mindestens eine Wahl p von 3, fiir die H, (— z) # Hy(z). Dann gibt
es aber eine ganze Umgebung (p) in welcher diese Gleichung gilt: sind nun p,, p, €
U(p), so nach obiger allgemeiner Feststellung H, =+ C H, fiir alle Konstanten C
und folglich auch, gemiss (4.58), (4.56), H, + C H,, was in diesem Falle gegen
Satz 2 von 4.3 verstdsst: wieder ist ein Widerspruch gegen die Ad-absurdum-Annahme
erreicht und somit der Satz bewiesen.

Folgerung aus Satz 2: Die multiplikative Funktion g von (4.42) und somit die
Losung $’ der Gleichung (4.26), welche in die Konstruktion ((4.50) und ff.) der
Loésung H von (4.18) eingeht, ist eindeutig bestimmt (bis auf eine multiplikative
Konstante). Denn wir haben bereits in 4.3 bemerkt, dass der exakte Divisor g und die
Multiplikatoren g eindeutig bestimmen.

Wir gehen nun tiber zur Bestimmung von g: dazu brauchen wir den Begriff der
Thetareihe, den wir, im Hinblick auf das folgende, etwas allgemeiner formulieren
wollen®). Unter der allgemeinen Thetareihe (1.Ordnung) mit p Argumenten » und
den Charakteristiken g, h € C* versteht man [19a] die Reihe

e[;‘i] (0;7) —exp(lgTg+2'gv L 2mi'gh) 0w +T1g+nih;T) (5.6)
mit

B(v;r)zﬂ[Z](v;T):Zexp(fme+2tmv), (5.7)

8) Fur die Eigenschaften der Thetareihen und Funktionen siche allgemein [19].
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wobei die Summe iiber Z#, also iiber alle riumliche Gitterpunkte mit ganzzahligen
Komponenten, zu erstrecken ist: T ist eine symmetrische, nicht singuldre Matrix mit
negativ definitivem Realteil, dessen Elemente «Module» der Thetareihe heissen;
v € C?ist das «Argument» der Thetareihe. Diese Thetareihe stellt eine ganze Funktion
in den Argumenten v und Modulen 7 dar [19]. Als Matrix 7 kann insbesondere eine
zweite Periodenmatrix auf einer algebraischen Riemannschen Fliche R vom Ge-
schlecht p eingesetzt werden. Die Thetareihe stellt dann eine «multiplikative Funk-
tion» auf J(R) dar und ihre Multiplikatoren sind gegeben durch:

e[ﬁ] wtnig +Th;T)
—exp[— th' 2v +Th) + 271 ('g' g — 'h' h)]0 [i] (v;7).  (5.8)

Mittels der Abbildung u: R - J(R) ist 6 [i} ((p); 7), p € R eine multiplikative

Funktion auf R. Sei e ein beliebiges Element aus C?: man nennt

6]%] (o) —en) (5.9

die Riemannsche Thetafunktion zur Fliache R mit den Charakteristiken g, h und den
Parametern e. Ihre Multiplikatoren sind bestimmt durch diejenigen der 6 [z] :

am Querschnitt o, 0+ (u(p) — e; 1) = 0~ (ulp) — e; 1)
am Querschnitt §,:
0+ (u(p) — e;T) =exp(— 15 — 2u,(p) + 2¢,) 6~ (ulp) — e; 1), (5.10)

wobei 0+ den Wert von 0 auf 8,, 6~ den Wert auf ;! bezeichnen.

Im folgenden brauchen wir einige spezielle Aussagen iiber die Nullstellen der
Thetafunktion, die wir in folgendem Satz zusammenfassen:

Satz 3: Sei R eine algebraische Riemannsche Fliche vom Geschlecht p und D?
die Menge der ganzen Divisoren vom Grade p; seien ferner t, be D? und e e C?.
Dann gilt fiir die Riemannsche Thetafunktion zu R:

a) 0 (u(p) — e; 1) ist nicht identisch 0 auf R dann und nur dann wenn 6 einen
Nullstellendivisor t mit 4(.) = 0 besitzt: es gilt dann e = u(\) + K, wobei K der
Vektor der Riemannschen Konstanten ist (beziiglich gewédhlter kanonischer Zer-
schneidung & und Basispunkt by).

b) 6 (u(p) — e; 1) verschwindet identisch auf R dann und nur dann, wenn
e = u(b) + K mit ¢(b) > 1.

Fiir den Beweis dieser Aussagen verweisen wir auf J. LEwITTES [20] und auf die
Originalarbeit von B. RIEMANN [17], S.212.

Auf Grund von Satz 3 konnen wir folgenden Satz aussprechen, welcher den
Zusammenhang des Jacobischen Umkehrproblems mit den Thetafunktionen aus-
driickt: ‘

Satz 4: Das durch die Kongruenzen

U@ 3) =¢
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definierte Jacobische Umkehrproblem hat fiir gegebene, allgemeine ¢ € C? eine ein-
zige Losung 3, ... 3,: das ist der Nullstellendivisor der f-Funktion

0 (ulp) — e; 1)

mit e = ¢ + K (dieser Nullstellendivisor ist unabhingig von der Wahl des Basis-
punktes fiir u, K!)

Fiir den Beweis dieses Satzes verweisen wir auf A, KrRAZER [19 c] und E. B. CHRI-
STOFFEL [28]. Wegen Satz 2 kénnen wir Satz 4 auf unseren Fall anwenden: die -
Funktion

0 (u(p) — ¢ — K; 1) (5.11)

wobei ¢ durch (5.7) gegeben ist, verschwindet nicht identisch, sondern genau in den
3 Nullstellen 7, von g (5.3).
Neben (5.14) betrachten wir nun folgende Thetafunktionen:

0 (u(p) — utf 1 1) — K; 1); 0 (up) — u@y ;) —K: 1),
0 (u(p) — u(v, v, 05) — K; 7); 0 (u(p) — uloy 050, — K; 7)
0 (u(p) — u(v,05) — K; 7). - (5.12)

Dabei wihlen wir stets v, als Basispunkt. Alle diese Thetafunktionen verschwinden
nicht identisch sondern, nach Satz 4, in je 3 Punkten, ndmlich in der Reihe

{r v v}, {e7 v v}, {vyvyvs}, {vg, 05,06}, {07, 0, 0;}).

Berticksichtigen wir nun diese Eigenschaften und die Multiplikatoren (5.10), so
kénnen wir leicht die Richtigkeit folgenden Satzes einsehen:

Satz 5: Die (bis auf multiplikative Konstante) einzige multiplikative Funktion g
(4.42), welche die am Anfang dieses Unterabschnittes wiederholten Eigenschaften I
und II besitzt, ist gegeben durch '

gp) = exp (= u(p) p) [[g e (5.13)

=1

wobel p € F(v, w) und

8 3 3
et) e Ku( [Tn, [[ 1617 [[ )] + 5 o= 5k T K:
\r=1 k=1 1=2
e2) =uf )+ K; eB) =ul;r)+K;
J@) = uv,vy) + K; f(2) =u(pyv;0¢) + K; f(3) = u(v;0) + K.

Dabei sind g, v entgegengesetzt gleich den Perioden von ¢; = 2 4 logw + p, an den
Riickkehrschnitten { «, }, { 8, } und als Basispunkt ist stets v; gewahlt.

5.2 «Abstrakter Bestimmung des Differentials p,

Wir erinnern an die Bedeutung vom Differential 3. Gattung g,: bei der Konstruk-
tion (4.) der Lésung vom Modell hatte g, die Aufgabe, die Residuen vong; = z d logw +
0, (4.38) im Periodenstreifen (4.2) auf der Fliche (2, w) (4.24) zu O zu machen.
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Die Pole von z logw auf §,(z, w) sind die Nullstellen und Pole von w, also mit den
Bezeichnungen von 4.2 und im in 4.2 zugrundegelegten Periodenstreifen, welcher
die Punkte tiber 2 = 1/4 (4 {, + &), £ =0, 1, 2, 3 enthilt:

t;, t, (Nullstellen) und g5, q; (Pole) (k=0,1,2,3). (5.14)
k 9k » Gk
Verlangen wir nun, dass
Resp, = —zFf antf, Resg,=+zfanqy (k=0,1,2,3) (5.15]
mit
1

ferner, dass g, sonst reguldr auf §(v, w) ist, so hat ¢, lauter verschwindende Residuen
im Periodenstreifen, wie man leicht verifiziert, auf Grund von (4.23).

Durch unsere Forderungen ist aber g, bis auf ein additives Differential 1. Gattung
eindeutig bestimmt. Da zu jedem g, gemiss dem letzten Unterabschnitt eine (einzige)
multiplikative Funktion g existiert, welche die erwiinschten Eigenschaften besitzt,
koénnen wir p; so normieren, dass seine simtlichen Perioden an den zweiten Riickkehr-
schnitten 8, ... 8, verschwinden (4,(¢,) = [ 0;; u = 1... p); dann kdénnen wir schreiben:

Bu

3 3 3
. + ot — %) _ 1 Fr o LAY af a5
91 _k;()‘ (zk Hr’;i{c* + Zk ﬂr;i) - 4 Cok;(: (Hrf- Ht%) + 4£k(nt£z +Hr£)» (517)
wobei allgemein /7] das (beziiglich dem gewdhlten kanonischen System von Riick-
kehrschnitten) normale Abelsche Differential 3. Gattung bezeichnet, welches einen
Pol in q mit residuum + 1, einem Pol in p mit Residuum — 1 besitzt, sonst reguldr ist
und verschwindende Perioden an den zweiten kanonischen Zyklen 8, ...f, hat

q
(daraus folgt, dass die Perioden von /] an «, durch 2pf @* gegeben sind). /1] kann

auf einer beliebigen hyperelliptischen Fliache in einfacher Weise explizit angegeben

werden: ist ‘
2p+42

u2:ﬂ(v—vj)

j=1
die Normalform der hyperelliptischen Fldche R, so haben wir

IT} = &(q) — e(p) ——= >4, [e(a) — e(P)] ¢, (5.18)

wobei g# die normalen Abelschen Differentiale 1. Gattung auf R sind, beziiglich einer
kanonischen Basis 2 = {a; ... a,; ;... 8, } und

&(3) (v, w) = }.,(“(U)Jru(_@_)_) I

2\ To=0i) ) ul)
4,(60) = [ <6
Pu

In unserem Falle ist » = 3 und es gilt, wie man aus (4.23) leicht sieht,

=18 —(a+pB)vr+1. (5.19)



Vol. 40, 1967  Analytische Losung eines idealisierten Stripping- oder Beugungsproblems 167

Daher hat man aus (5.17), (5.18), (5.19) folgenden Ausdruck fiir g,:

k=0

. 1

+ 4 G Xk [lad) + zlai) — 41 ' CF (5.20)
k=1 _

mit

u(a) dv s - —

x(a) = o) u()’ (€k)u = f [x(a) £ x(az)] -
'61“

Dabei wurde verwendet, dass v(qF) = v(r£) und u(q;) = — u(ry) wegen

w = [p1(0) + 2/ B — a2 u(v)]/py(v) (5.21)

was aus (4.23), (5.19) folgt.
Neben (5.18) kann man auch einen Ausdruck fiir /7§ durch Thetafunktionen an-
geben:

d 0 (u— ;
I == = (log ¥ (i —elgy : T)) dv , (5.22)

wobel
e(3) = u@3) +uP,p) +K, 3=0q,9

und py, Py € R nur den Bedingungen 7(q p, ps) = #(p Py ) = O unterliegen, sonst be-
liebig sind: mit anderen Worten, keine zwei der Punkte q, p,, p, liegen iibereinander
(iber der v-Ebene) sowie auch keine der Punkte p, py, p,.

Wenden wir (5.22) auf unseren Fall an, so bekommen wir:

3

Lo > d lg[ﬂ(u—e(qz);r) H(u—e(r;z):'f)]

Ql:Thoﬁ 0 (u—e(ty); 1) 0 (u—e(gy); 7)
1y, d 0 (u—e(at): T) 6 (u—elqp); 7)
+ 4,§ k18 [ 0 (u—e(f); ) 0 (u—elry); 1) ] 5.23)

mit
e(3) = u@3) + ulv,) + K, 3=qf,1;.

Dabei haben wir als Basispunkt wie friither den Verzweigungspunkt v, genommen und
fiir die freien Punkte p,, p, (vgl. (5.22)) v,, v, eingesetzt.

Wir fassen nun die Ergebnisse dieses Abschnittes zusammen: es wurden ein Aus-
druck (5.13) fiir die multiplikative Funktion g und zwei Ausdriicke (5.20) und (5.23)
fiir das Differential p, gegeben, welche gemiss 4.4, Satz 3, die Losung /4 der Differen-
zengleichung (4.1) des Modells bestimmen. In den nichsten Abschnitten wird unsere
Aufgabe darin bestehen, die hier angegebenen Ausdriicke fiir die Losung einerseits
wirklich explizit zu machen und anderseits sie zu vereinfachen (Reduktion auf ellip-
tische Grossen).
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6. Die Module von § (v, w) und die Reduktion der Thetafunktion
auf elliptische Thetafunktionen

6.1 Struktur der Riemannschen Fliche (v, w)

Die in den Formeln fiir g (5.13) und g, (5.23) auftretenden Thetafunktionen ge-
héren zur Riemannschen Flidche (v, w) (4.23). Diese hat, wie bereits bemerkt,
Geschlecht 3 und ist hyperelliptisch. Die zugehorige Thetafunktion kann, wie wir in
diesem Abschnitt zeigen werden, auf elliptische Thetafunktionen reduziert werden,
auf Grund einer speziellen Symmetrieeigenschaft der Fliche (v, w), die wir jetzt
beschreiben wollen.

Zundchst bemerken wir, dass man stets statt §(v, w) die iiber (5.19), (5.21) biratio-
nal dquivalente Fliche §(v, #) betrachten kann, welche durch (5.19) definiert ist (die
meromorphen Funktionenkérper der beiden Flichen sind einander isomorph).

Die charakteristische Involution 7, der hyperelliptischen Flichen wird auf (v, »)
durch die konforme Abbildung ausgedriickt, welche den Punkt (v, %) in (v, — u)
transformiert. Neben diesem fiir den hyperelliptischen Fall charakteristischen Anto-
morphismus I, besitzt (v, #) noch weitere konforme Abbildungen in sich, d.h. kon-
forme Automorphismen, ist also eine im Sinne von F. KLEIN «regulire Riemannsche
Fliche» (Riemannsche Fliche mit «singuliren Modulen» in der Terminologie von
A. Hurwitz und F. SEVERI [26], [24], [18h]). Die Automorphismen von (v, ),
die verschieden von I, sind, bilden eine «Diedergruppe» T, = {3,, 7}, welche aus der
zyklischen Untergruppe der Ordnung 4, 3, = {e, 4, d2, d®} besteht, welche durch das
Element

d: (v, ) > (v, £ u) (i=)—1) (6.1)

erzeugt wird, und aus der Involutionsgruppe 3, = {¢, j}, welche durch
. 1
70 (v, u) — (—5_ , +u v4) (6.2)

erzeugt wird: man sieht ndmlich leicht, dass alle Elemente von D, die Gleichung
(5.19) invariant lassen. Infolgedessen werden die Verzweigungspunkte v;, ..., g von
&(v, u) (und F(v, w)) durch die Elemente von D, untereinander vertauscht: wir wihlen
folgende Numerierung der Verzweigungspunkte:

v, = (v,,0) mit vkzvoexp[ij(k—l)] E=1,3,57,

b, = (v,0) mit o, — exp[if (k — 2)] E—2,4,68, (6.3)

Yo
wobei v, die Wurzel von v® — (« + f§) v, + 1 ist, welche fiir reelle Energien, d.h. reelle
«, B, reell ist und zwischen O und 1 liegt.

Wir bemerken, dass §(v, #) das im birationalen Sinne allgemeinste hyperellip-
tische Gebilde vom Geschlecht 3 ist, welches die zyklische Gruppe 3, als Auto-
morphismengruppe besitzt: denn das allgemeinste «3,-symmetrische» Gebilde hat
die Form

Ut = yo v+ y vt +
mit komplexen Koeffizienten y,; durch die Cremona Transformation

(v, %) — (0" = 7 v, u' = u)
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geht diese Gleichung in #'2 = v'8 + 9 v'* + y, mit y, = y,/y/? iiber, welche immer
noch nur 3,-symmetrisch ist; diese geht ihrerseits durch die weitere Cremona-Trans-

formation
N

= '[y3")

in die Gleichung #"2 = v"8 + 9/ v* + 1 iiber, mit y; = y;/yL?: diese ist aber D,
symmetrisch und hat dieselbe Form wie die Gleichung (5.19) von (v, ). Es ist diese
spezielle 3,-Symmetrie unserer Fliche (v, u), welche uns ermoglicht, die Lésung
des Stripping-Mod