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The SU(6) Model and its Relativistic Generalizations

by H. Ruegg 1)

International Centre for Theoretical Physics, Trieste, and CERN, Geneva

W. Riihl
CERN, Geneva

and T. S. Santhanam 2)

International Centre for Theoretical Physics, Trieste

(11. X. 66)

atque eadem magni refert primordia saepe
cum quibus et quali positura contineantur
et quos inter se dent motus accipiantque.
Titus Lucretius Carus, De rerum natura

Preface

This article is devoted to a critical discussion of the ideas involved in the SU(6)
symmetry models. The main emphasis is laid upon the relativistic extensions of SU(6)
symmetry. The reason for this is twofold. The theory of static SU(6) symmetry is to a
certain extent closed and self-consistent. A deeper insight into the static symmetry
can be gained only after the dynamics of elementary particles has been better under-
stood. The application of the static symmetry is in addition limited to a very small
number of problems. Both features make this model not very interesting for further
theoretical investigations at the moment. The other reason is that there exists
already an extensive literature dealing with the static SU(6) model and the techniques
needed for computations in this model. In particular we refer the reader to the review
article of A. PA1s, Ref. [302].

Contrary to the static model, the relativistic extensions are aimed to apply to all
phenomena of strong interaction physics (bound states excluded) and even to electro-
magnetic and weak interactions in first order after a proper definition of spurions.
Since the discussion of SU(6) symmetries started, the belief has persistently been
expressed that such relativistic models cannot be defined consistently. Indeed, the
discussion of difficulties encountered in the relativistic models can be looked upon
as one of the purposes of this article. Such difficulties are the conflict with unitarity
or crossing symmetry of the S-matrix. But this criticism does not exhaust our pre-
sentation of these models. In our opinion the studies of relativistic extensions have .
well entailed a positive result: the invention and the exploration of the collinear and
coplanar subgroup symmetries. These groups are a priori not in conflict withany known

1) Present address: Institut de Physique théorique, Université de Genéve.
%) Present address: Matscience, Madras, India.
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principle imposed on the S-matrix. At least as the collinear group S[U(3) ® U(3)]
is concerned the predictions are throughout in excellent agreement with experiment
(with exception of the cases where SU(3) itself is already a bad symmetry).

The material is presented as follows. The article is divided into two parts and an
Appendix. In the first part we develop the physical ideas and the mathematical basis
involved in the different models. In the second part we apply the subgroup symmetries
systematically to the most important physical problems. We intended to give the
predictions in a form which is accessible even to experimental physicists not acquainted
with the notions of unitary symmetry. We have therefore written the results in terms
of observable amplitudes and not in terms of SU(3) invariants only. The Appendix
contains some tables of decompositions of representations, which might be useful.

Some of our readers will perhaps regret that the current algebra approach has been
skipped completely in our article. The current algebra approach is more restrictive
than the group approach displayed here, because it identifies the generators of the
algebra with specific observables, namely quark current densities and their space
integrals. This gives predictions which one cannot get from the other approach. On
the other hand, it is more general, because upon taking the matrix elements of the
commutation relations, one uses intermediate states which belong to reducible
representations of the algebra, as is done for example in the Adler-Weissberger
relations. If one tries to saturate the algebra with irreducible representations, one
gets of course the results of the group approach. If, however, one considers commu-
tators of densities, one gets in many cases additional restrictions which may even be
self-contradictory. For all these reasons the two approaches are not equivalent,
despite the fact that in special cases the same predictions may result. Anyway it
seems premature to include current algebras in a review of SU(6) symmetries.

We have also left out such work on SU(6) symmetries which is only concerned
with an investigation of symmetries of interaction Lagrangians without giving a
device to compute S-matrix elements which goes beyond a perturbative expansion
(see for example Ref. [272] and succeeding papers of these authors). Such models are
sometimes formally related to the models involving more than four momentum
components discussed in Section 3. Nevertheless, the interpretation of both types of
models is completely different and should not be confused.

The authors wish to express their gratitude to Prof. J. S. BELL for critical reading
of the manuscript and for many constructive suggestions. They thank Dr. A. KinL-
BERG for looking through the mathematical parts of the article. Two of the authors
(H. RuecG and T. S. SANTHANAM) wish to thank Prof. ABDUS SALAaM and the JAEA
for their kind hospitality at the International Centre for Theoretical Physics in Trieste.

Review articles on SU(6): [110, 302, 354] in English and [231] in Russian,
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PART I

GENERAL THEORY

1. Static SU(6) symmetry

1.1 The concept of static SU(6) symmetry
1.1.1 Symmetries, approximate symmetries and related notions

We regard symmetries as groups which possess a representation by means of
unitary operators in the physical Hilbert space. The physical relevance of symmetries
lies in the fact that the group elements leave the dynamics unchanged. If a Hamil-
tonian exists, we can express this invariance by saying that the Hamiltonian com-
mutes with the operators U(g) which represent the group elements

Ul HU(Q ™ = H.

If a scattering matrix S exists we can make the same statement for this operator.

Examples are known where this symmetry group is either of finite order or a Lie
group. In the latter case we may either assume the global group or its infinitesimal
part, the Lie algebra, as the structure which represents the physical symmetry. From
the mathematical point of view the Lie algebras are a more general notion. But it is
not clear today whether the algebras play the fundamental role in physics.

If a Hamiltonian exists, a symmetry algebra spanned by operators A, satisfies

[H,A]=0.

It is well known that this can be expressed as a conservation law
d
E A'i = O .

A subset of the operators 4; which corresponds to observables should be represented
by self-adjoint operators.

The applications which we have in mind in this paper will mainly concern the
S-matrix. Due to Schur’s lemma the scattering matrix can be decomposed into a sum



14 H. Ruegg, W. Riihl and T. S. Santhanam H.P. A.

of projection operators with coefficients. These coefficients are called invariant
functions, in special cases also form factors.

The distinction between kinematic and dynamic symmetries is, according to our
present state of knowledge, only a matter of definition. The geometrical space-time
invariance provides us with kinematic symmetries. The definition of dynamical
symmetries is on the other hand always connected with some dynamical assumptions.
All dynamical symmetries are valid only within some approximations, which in some
cases mean the neglect of relatively weaker interactions. In the case of isospin the
notion approximate seems clear. The deviations from physical reality of the predic-
tions and premises of the symmetry is of the order of the fine structure constant.
The unitary operators representing the group operators can only be defined on a
certain subspace of the physical Hilbert space, in which physics is believed to be
governed by the strong interactions. This subspace is defined in a Lorentz invariant
way.

In the case of the unitary symmetry SU(3) it is much more difficult to say what
the notion approximate means. The evidence for distinguishing between a semi-strong
and a very strong interaction which breaks or preserves the symmetry is not very
convincing. The current algebra approach which has recently been proposed?) and
which is still being investigated may perhaps provide us with a deeper understanding
of dynamical symmetries. For the reasons explained in the preface it is not our aim
to discuss this method here.

We come already very close to the familiarinterpretation of static SU(6) symmetry,
if we consider the hydrogen atom with its fine structure neglected. This means skipp-

ing terms of order
o : ~ o®

in the Hamiltonian. In this case the rotations of the spin of the electron form a group
SU(2),. This is an approximate symmetry to order «. Some authors (see e.g. Ref.
[302]) see a fundamental difference between this symmetry and say isospin symmetry
in the fact that the spin independence of the electromagnetic interaction is exhibited
only by the particular system of the hydrogen atom whereas the isospin symmetry
can be observed in all strongly interacting systems. In fact, it is known that for heavy
atoms the fine structure cannot be neglected.

Nevertheless, in our opinion there must not necessarily exist a fundamental
difference. It may well be that the applicability of isospin symmetry to all strongly
interacting systems is due to an over-all consistency requirement, to which the strong
interaction is submitted. Such an idea has been expressed in the technical form of
bootstrap methods. This restriction on strongly interacting systems may possibly
transmit the degeneracies from one system to another, say from the n's to the g’s
and nucleons etc.

Due to the common interpretation of SU(6) as a static symmetry its analogy with
the hydrogen atom symmetry SU(2), is intimate. Nevertheless the usual attitude
is to apply it to all static systems and to see if it works.

%) Because of the large number of publications on current algebras we give only two references of
general importance: Refs. [167] and [168].
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1.1.2 The definition of SU(6),

We denote the group corresponding to static SU(6) symmetry by SU(6),. By
definition this symmetry applies to systems of particles which are all at rest?). It is
sufficient to define the algebra of the group SU(6), in one representation, for which

we choose the fundamental vector representation of dimension six.We have (see Refs.
(185, 301, 353])

A, ,=4o,, 1=01,2...8, u=0,1,2 3, u=1=0excluded.

A; are Gell-Mann’s matrices, 0, are Pauli’s matrices with ¢, as the 2 x 2 unit matrix.
The product is meant as a Kronecker product, i.e. the first matrix has to be inserted
into the second. The operators 4, , apply to the spin variables, the 4, , operate on
the variables of unitary symmetry. This definition is consistent since for static sys-
tems the spin of the systems is the sum of the individual spins.

If we assume that the elementary particles are bound states of objects which
belong to single representations of SU(6),, (see the literature on quark models, parti-
cularly Refs. [43, 66, 99, 100, 112, 157, 262]), static symmetries are not necessarily
applicable to these bound states. From this point of view it seems rather natural to
treat the physical particles as if they belonged to reducible representations. Such an
ansatz 1s called supermultiplet mixing model (see Refs. [162, 290]). Since the main
consequence of this mixing hypothesis is an introduction of additional parameters
without providing us with new ideas about any problem involved in the SU(6) models
we shall not make use of it. Instead we assume that the physical particles form multi-
plets. Historically the existence of the symmetry was suggested partly by some known
multiplets of baryons and mesons, which fit quite nicely into SU(6), representations
(see Section 1.3).

We shall see that the masses of one supermultiplet spread over a wide range. This
is thought to be a consequence of the approximate nature of SU(6), symmetry. Since
all generators of SU(6), commute with the parity operator, each supermultiplet has
a common parity eigenvalue.

Contrary to the idea that the masses in a supermultiplet reflect symmetry break-
ing it has been suggested by several authors that a suitable chosen group could itself
imply a mass formula (this mass breaking is denoted “‘intrinsic’”’). In particular the
mathematical problem has been investigated whether a group G exists which con-
tamns the inhomogeneous Lorentz group and the internal symmetry group SU(3) or
SU(6) as subgroups and in which the mass operator of the inhomogeneous Lorentz
group has a discrete spectrum with more than one eigenvalue in at least one unitary
irreducible representation of the group G. A preliminary negative answer has been
given by O'RAIFEARTAIGH (Refs. [308, 309]). Since the mathematical discussion is
still going on, and its physical relevance is in addition not clear, we are not willing
to give an exposition of the different arguments here.

4) We must bear in mind the difference between the notion static and the notion of static mo-
dels. In the static models only the source is static, i.e. at rest. The notions static and non-
relativistic are also not synonymous. The common usage of non-relativistic is: inclusion of terms
in v/c up to first order. The Lorentz force in electrodynamics is non-relativistic.
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Further references on the general properties of static SU(6),: [89, 186, 229, 248,
268, 283, 297, 381].

1.2 Solutions for some mathematical problems involved in static SU(0) theory
1.2.1 Tensors and Young tableaux

The group SU(6) is defined as the group consisting of unitary 6 x 6 matrices, the
determinant of which is equal to one (unimodular matrices). It is a compact, simply
connected Lie group. For compact Lie groups all unitary irreducible representations
are of finite dimension and all finite dimensional representations are equivalent to
unitary ones (see Ref. [284], theorem 2 p. 438 and theorem 4 p. 440). All unitary
representations of SU(zn) can be given in the form of tensor representations. By ten-
sors we mean quantities

Vi i ... ly=1,2...1m,
which are transformed by the matrix 7, representing the element g of SU(n) as

_ fyige <k

Vi, = 7;;1'1;'2...{,6 v O
The matrix elements of T, are polynomials of degree & in the matrix elements of the
matrix g. The representation is irreducible if the indices satisfy certain symmetry
conditions?®). These are denoted by Young tableaux. Since in Section 4 we have to deal
with unitary representations of SL(n, C) we explain here a method to construct a

basis for tensor representations which will be helpful for our later deductions.
Let & be a matrix of SU(%),

£ = (&),

and consider the linear vector space of polynomials F(&) in the elements &Y of this
matrix. If we define the transformations

(T, F) (§) = F(& g)

where £g means the matrix product of the two matrices & and g of SU(%), this space
becomes a representation space. We specify now certain subclasses of functions F
which give us irreducible representations. First we introduce the variables

n—k+1,i, .n—k+1,1 n—k+1,1
£ 1 £ 2. £ k
L. . n—k12 4 n—~k+2,1 n—k-+2,1
Azlzz...zkm 5 15 25 k
(k) .
E?’L, il gn, i2 ... En, 7y

%) A short review of the properties of groups SU(n) is contained in Refs. [222, 190]. For a more ex-
tensive treatment we refer the reader to textbooks, such as Ref. [61], or to the original papers,
e.g. WEYL’s articles, Ref. [392]. WEYL’s papers are more useful for the physicist’'s purposes
than many modern treatises written by physicists themselves.
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Then we construct homogeneous polynomials which are homogeneous of degree f,
in the variables Z;,. The corresponding Young tableaux are written

o1+ fu—e + 0+ fo + f1 blocks
a1+ fu_o+ -+- + f, blocks

[, blocks

This construction of basis elements for an irreducible tensor representation can be
found in Ref. [392]. Instead of giving the Young tableau it is obviously sufficient to
know the (n — 1)-tupel (f,, fa, - . - f,—1)- Representations belonging to only one column
are called fundamental representations. They correspond to linear functions in a
single variable 4 ;. For £ = 1 we obtain

F(&) = 2 i Afn = 2 Yi g

and
(LF) €)=Y &g = (ghy) &"
or 1 "
Vi = & Vi
For & =n — 1 we define
4, = Eifiy in_y A?L{%i}'inml

and find
Fg) =2 v 4, v =y

This representation ¥ is contragredient to the representation y,. Indeed, the ex-

pression
&

Y Y
1s 1Invariant.

Since the notion of weights has become rather popular, we give the highest weights
of the representations in terms of the homogeneities f,:

M:%:‘kok

where
, k k k k k
Mk:(l_?’l_?'”’_?[’__ ﬁ?)

k times (n— k) times

The dimension of a representation is (see Ref. [392])

N:
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Here D is Vandermonde’s determinant,

D(x1, %g, %g ... %) = (%1 — %g) (%1 — %) (31 — ...

Particularly this yields
Dn—1,n—2...1,00=112!3!... (n — 1)!.
The arguments of the numerator determinant are |
ly=m,+n—-, [,=0,

n

where m, is the length of the s* row of the tableau
n—1
my = kZ, f k-

Instead of the parameters f, we can often make convenient use of the set of parameters
m,. Since these parameters are ordered in a decreasing sequence the notation of
tableaux can be shortened. We need to give only the number of times each non-
vanishing #, is contained in the (n — 1)-tupel.

Examples

|

= (212), — (322).

The highest weight of a representation is written in terms of ,
n—1
k=1

1 1 1 1 1
Ny, = ("“*n’ R R
?
kit place

From now on we shall throughout make use of the parameters m, in denoting Young
tableaux.

1.2.2 Decomposition of tensor products

The tensorial product of two irreducible representations belonging to the tableaux
m,, and m, is again a representation of SU(#), but is in general reducible. This faces
us with the problem of giving the irreducible representations contained in this pro-
duct. A solution of this problem (see Refs. [222, 61]) can be formulated as the follow-
ing tableau multiplication technique.
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We take one Young tableau as fixed and add to it the boxes from the second tab-
leau. Before doing this we label the boxes of the second tableau according to the rows

alalala]

If we add now the boxes of the first row labelled ‘a’ to the first tableau in all possible
ways, we must do this in such a manner that again a tableau results. To all the
tableaux thus gained we add the boxes of the second row, the third row etc., in each
step requiring that the resulting pattern has the form of a tableau (i.e. m;, > m,,).

From this set of tableaux thus obtained we eliminate many patterns
1) Those which contain equal labels appearing in a column;

2) Those with a number of rows bigger than #. We drop the columns of length # from
the tableaux.

3) We order the boxes of the tableaux. We start with the first row and take the boxes
in the order from right to left. Then we run through the second row from right to
left and so row after row through the whole tableau. This ordered sequence con-
tains boxes with labels and empty boxes. If we cut this sequence at any point,
the number of labels & must not exceed the number of a’s, the number of ¢’s the
number of &’s etc. counted from the start till the cut.

The resulting tableaux, which differ in form or in the places of the labels, each corres-
ponds to an irreducible representation contained in the tensor product.

Example
SU), (my, ms) = (3,0) = (3), (my, my) = (2, 1) = (21).

10 8
[TT] x iaf - lIlalal & - 2]
[ [&] |
D 4] o |a]a
Ll 0|
39 Al
_ [T1] g [
10 8
& [L1] g [
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1.2.3 Representations of the group SU(mn) reduced into representations of the sub-
group SU(m) ® SU(n)

The methods of reducing representations of SU(m#n) and SU(m + =) into irredu-
cible representations of SU(m) ® SU(x) are quite important for the application of
SU(6) theories. For the first problem this can already be inspected from the definition
of SU(6),. Splitting a representation of SU(6), into parts which are irreducible with
respect to the subgroup SU(3) ® SU(2), means a separation of spin and unitary
spin. This reduction is therefore a part of nearly every calculation performed with
the SU(6), group. On the other hand, the reduction of a representation of SU(6),
into representation of SU(3) ® SU(3) is needed in connection with the collinear sukt-
group (see Sections 2, 3 and Part II).

We start with the discussion of how the SU(m) ® SU(n) content of a representa-
tion of SU(mn) can be extracted; the other problem will be dealt with in Subsection
1.2.4. If we write the tensor indices of SU(mn) as index pairs, with the first index of
the pair corresponding to SU(m) and the other to SU(#%), the problem can be expressed
in the following manner. How can a tensor with a given simultaneous symmetry in
the pairs be decomposed into tensors which satisfy certain symmetries in the first
and second index of the pairs separately ? We give the answer in a way that, given
a representation of SU(m) ® SU(n), we can decide whether or not it is contained in
the representation of SU (m#n).

First we note that, if the number of boxes of the representation of SU(mn) is f,

n—1
f= 2 my,
k=1
the number of boxes of the representations of SU(m) or SU(#) can only be

flm) = fmodm, flm) =/, f) = fmodn, fln) = f.

We have therefore to fill up the two tableaux for SU(m) and SU(x) adding
«columns of length m respectively # until they possess f boxes. Then we form the
Kronecker product of the corresponding tensors which can be written as a tensor
bearing index pairs of number f. The indices in the pairs have still separate symme-
tries. We decompose this product into irreducible representations of SU(m#). Our
«question will be answered by yes or no if we know whether or not the given represen-
tation of SU(mn) is in this decomposition series.

This problem can be solved by applying the results for the Clebsch-Gordan
:decomposition of the tensor product of two representations of the symmetric group
2(f). Indeed, if we operate with the permutations of X(f) on the indices of a ten-
sor of rank f corresponding to a Young tableau with f blocks, we obtain an irre-
.ducible representation of the permutation group 2'(f). Therefore the first and second
1indices of the pairs give each an irreducible representation of 2(f). We have to find
the decomposition series of the product of these representations. This reduction of
the problem to a product decomposition problem of the symmetric group 2ZY(f)
makes sense only if tables for the latter decomposition are available. Some tab-
les (up to f = 8) can be found in Ref. [222]. They are not complete enough to cover
all interesting cases as the representation of dimension 405 of the group SU(6),,
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which has twelve boxes. We think it therefore to be most convenient, if we give
some tables at the end, which contain the interesting cases and which are calculated
recursively by straightforward methods (see the Appendix).

1.2.4 Representations of the group SU(m + #) reduced into representations of the
subgroup SU(m) ® SU(#x)

In this case we consider a tensor for the group SU(m + ) whose indices run from
1tom + n. We split the vector space of m + # dimensions into a direct sum of a space
with m and a space with #» dimensions, and let the first m values for the indices
correspond to the first vector space and the remaining » values to the second space.
We have to decompose a tensor of a given symmetry into tensors which are separately
symmetric in the first and second space.

Again we pose the problem in such a manner that we want to decide whether a
given representation of SU(m) ® SU(n) is contained in the representation of
SU(m + n) or not. As can be easily seen the answer to this problem is as follows. The
tableau of the representation of SU(m) can be arbitrarily enlarged by adding columns
of length m. Each such tableau with m rows is then considered as a tableau for the
group SU(m -+ n). We treat the tableau for the representation of SU(x) similarly.
We take then the tensorial product of these two representations of SU(m + #) and
decompose it in the fashion explained under Section 1.2.2. The representation of
SU(m) ® SU(n) considered is contained as often in a given representation of SU(m + n)
as it appears in any of the resulting tensor decomposition series.

Example
SU(6), SU(3) ® SU(3), representation (3) of SU(6).

Indeed, we try

(TT] ® o = [11]

The only other possibilities are

| 1]

® = [II] &.

But such examples where the effect of the newly introduced columns is to compensate
each other are not counted as independent.
Let us try now (2) ® (1):

M ® O - OTOe H-

—

There are again no further independent possibilities. The remaining two represen-
tations are treated analogously. A check of dimensions proves that the list is complete.
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1.2.5 Final remarks

We have thus seen that only the determination of the SU(m) ® SU(n) content
of a representation of the group SU(m#) is not quite simple. All the three problems
can also be solved applying the theory of characters.

Another problem which is of more academic interest is the problem how to identify
states in representations as eigenstates of certain operators. Since the physical role
of the twenty operators necessary in the case of SU(6) is not clear, and because the
representations of SU(6), which are needed in physical applications have a relatively
low dimension, it is not very helpful to identify states completely in this way.

Further references on Clebsch-Gordan coefficients for SU(6): [75, 97, 366).

1.3 Known supermultiplets for SU(6)
1.3.1 Baryons and antibaryons

If we decompose the representation (3) of SU(6), with respect to SU(3) ® SU(2),,,
we obtain

56 = (10,4) @ (8,2)

(see Table 1 in the Appendix) where the figures in the square bracket denote SU(3)
and SU(2), multiplicities. If we assume the eigenparity to be positive, we can fit the
known eight baryons of spin !/,* and the baryon resonances of spin 3/,* which form
a decuplet in SU(3) into this representation.

The tensors split according to

BA BC = Xocﬁy Dabc 4 18_1/2 (Eabd Eaﬁ Nf Zy . €ped gﬁy Ni ch = 8cad g'yoc Ng Xﬁ) §

Here y,,, is the Pauli spinor for spin 3/, for the group SU(2), and , correspondingly
the Pauli spinor for spin 1/,. In general we define (totally symmetric) SU(2), spinors
Xayog* * +a, 10T SPIN S = k/2, which are connected with spherical harmonics as

~ 28 1/2
Xs, s, = (S + 53) XIE_.;IZQ sl
i, 5,
times times
D,,. and N? are SU(3) tensors for decuplet and octet and are identified with physical
particles in the following way (see Ref. [169])

D11y Dyyp Dygy Dy N gle N ghe Y
D113 Dyog Dyoy 3-UR yH+ g2 y*0 3-1E y¥-
B D = 3-12 g0 3-1/2 g
D34 Q-
and
NN REOyced x )
Ny No N | = z- VRS

N N2 N3 \ g- =0 — 2671 A
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The physical states like $ and #, etc., are always normalized to one. While the SU(3)
® SU(2), content of representations of SU(6), can be determined by the general
methods discussed in Section 1.2.3, the normalization constants of the different parts
have to be fixed independently (the most interesting examples are given in the Appen-
dix Table 1). This can simply be achieved by computing the norm of the states
explicitly. We require

B45C B, pc= 1" Xapy D*®* D, + 2* %4 N N;.

Performing the calculation we find the value 18-12in front of the spin 1/, states which
was given above, the value 1 in front of the spin 3/, states is obvious.
We assign antibaryons to the contragredient representation (3%).

1.3.2 Mesons with negative parity

The adjoint representation [this means in general the representation (217—2)] has
dimension 35. It splits into the parts '

35=(8,3) ® (1,3) ® (8,1).
We assume that the eigenparity is negative. We can then assign the parts

(8,3) ® (1,3) to the nonet of vector resonances,

(8,1) to the octet of pseudoscalar mesons.

The tensor will have the form
1
M} = vz (55 P _::%;’30’2,& Vi[i,a) .
V and P correspond to the vector nonet and pseudoscalar octet and are identified
with the physical particles as

mvini
iy s -
VaVs V3
2—-1/2 QO + 6—1/2 @, e 3—1/2 ®o Q+ K*+
Q— . 2—1/"2@0 4 6-—1/2 W, + 3——1/’2 (p(] K*O ,
R+ KXo 2612 + 3-1/2
- 0 Po

PP P} 270 67 g i B+

PIPIP3| = g g0 4 612y KO

P; P‘g Pg K- K° —_ 2612 "

A question concerning the X, meson resonance of mass 958 MeV (sometimes it is
also called #’) remains open. This resonance lies well within the mass range of the
other mesons of the 35—-plet and has similar properties as the # particle. It suggests
that a reducible SU(6), multiplet of dimension 36, namely

35— 1~
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plays a specific role in the SU(6) symmetry approach. Such representations result
from certain dynamical models or from higher symmetry groups of the static type
which generalize static SU(6), like

S[U(6) ® U(6)] .
The latter group has a representation

(1) ® (19)

of dimension 36 which decomposes into 35 and 1 under SU(6),, if this group is defined
as a particular subgroup (see Section 3).

1.3.3 Residual baryon resonances

There are baryon resonances of spin 1/,~, 3/,~ and 3/,+ which are not members of
the 56-plet. It has been tried rather often to assign them to SU(6), supermultiplets.
Particularly the 3/,~ has been studied. In connection with the 3/,~ resonances the 70—
plet has been investigated. This representation possesses the content (see Table 1
in the Appendix)

70 = (10,2) ® (84) @ (8,2) ® (1,2) .

Therefore 3/, resonances fit into this representation if they form an SU(3) octet (see
Refs. [188, 301]. Such an octet has been proposed a long time ago as the y-octet (see
Ref. [175]). This y-octet consists of

N(1518), Y*(1520), Y*(1650), Z*(1816) .

But the situation is still rather unclear. The 70—-plet contains also a singlet of spin
1/,~ which could be identified with the resonance Y}(1405). (This resonance was
denoted f3-singlet in Ref. [175]).

We emphasize that evidence for assigning a certain set of phenomenological
resonances to an SU(6), supermultiplet comes not only from the spin-parity pro-
perties of these resonances but mainly from the decays, partly also from mass rela-
tions (see Section 1.4 below). Since for higher resonances the spins are in general also
big (3/,, ®/s, etc.) two-particle final states of stable particles as the baryon octet and
the pseudoscalar octet particles involve P-waves and higher orbital angular momenta.
These decays are therefore not accessible to static SU(6), theory. Only the 1/,~
resonance of the 70—-plet can decay into an S-wave state formed of 2 and . We shall
come back to the vertex of the 70 decay in Section 1.5.

1.3.4 Residual meson resonances

Meson resonances of spin 0—, 0+, 1+, 2+ are known which do not belong to the
35—-plet discussed above. The X, meson of spin 0~ has already been treated in Section
1.3.3. It is usually thought to be a singlet of SU(6),%). The O+ resonances are still
quite obscure objects. Only the %(730) is well defined, although recently some doubts
arose concerning its existence. Another object with 7 = 0 has been observed in the

6) The X, may mix with the #), see Part II, Section 5.1.
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missing mass spectrum of the neutron in a m—p reaction at about 700 MeV, see Refs.
[117, 133]. Nevertheless the 7 = 1 part is missing and the SU(6),, assignment is there-
fore still impossible. The situation with the 1+ resonances is somewhat better. There
exists with rather good evidence

D with I = 0 at 1285 MeV and
A, with I =1 at 1080 MeV.

But there is still no complete SU(3) representation.
Finally we have the nonet of spin 2+ resonances which was defined and investi-
gated in Ref. [177]. This nonet consists of the resonances

f  with I =0 at 1254 MeV,
f° with [ =0 at 1500 MeV,
A, with [ =1 at 1290 MeV,
K**with I =1/, at 1405 MeV.

(The masses are taken from Ref. [325]).
There are some doubts concerning the uniqueness of 4,, but at least part of it seems
to have the quantum numbers given here.

Two representations exist with a 2+ nonet in the SU(3) ® SU(2), decomposition
which have been considered as possible candidates: the representations of dimension
189 and 405. Their content is (see Table 1 in the Appendix)

189= (8@ 15®8@8®100 103)® (27®@ 8® 1,1),
405=027®8®15 @ 27083080109 103)® (27®8®@ 1,1).
They are both contained in the tensor decomposition of two 35--plets
35%35=1®35® 35@ 189 @ 280 @ 280 @ 405
but only the representation 405 is contained in the baryon-antibaryon product
5656 = 1@ 35 @ 405 @ 2695 .

The content of both representations differs only in the 27-plets of SU(3) and these
are indeed the critical resonances. A resonance with Y = 2 which could be member
of a 27-plet has so far been observed only once (see Ref. [136]). Provided it exists
and belongs to 27 of SU(3) it could not distinguish between 189 and 405 since it has
even spin and possibly spin 0. Therefore we have to discuss decays to get further in-
formation. But with respect to decays the same holds that we mentioned in the case
of baryons: since the decays of the 2+ resonances proceed mainly into states of two
pseudoscalar mesons or one pseudoscalar and a vector meson, the final states are
D-waves which we cannot handle with static SU(6), symmetry. (The problem has
been discussed by means of the collinear group SU(6), in Ref. [215]).

Further references on the SU(6) classification of particles and resonances: [60,
717, 88, 122, 126, 134, 183, 200, 320].
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1.4 Mass relations

1.4.1 General problems in mass relations for SU(6),,

The motivation for setting up mass relations is the success which these relations
had in the unitary symmetry scheme. Nevertheless, these mass relations of SU(3)
have never been completely understood. The puzzling problem was why the addi-
tive terms in the mass operator which break the symmetry need only be taken
to first order in a perturbative treatment, whereas the phenomenological mass
breaking is so big that the validity of any perturbative treatment seems to be
doubtful.

Mass relations are an implication of symmetry breaking. By definition the SU(6),,
symmetry is restricted to static systems. Breaking of SU(6), symmetry can therefore
be due to two effects: one which shows up even in static systems and another one
which reflects the fact that the systems is intrinsically non-static. An effect of the
first kind can be accounted for by an additive term in the mass operator which is
scalar with respect to SU(2),.

Let us for the moment assume that the known strongly interacting particles and
resonances can be considered as non-relativistic bound states of fundamental objects,
quarks, which are themselves degenerate multiplets of SU(6),. The SU(6), symmetry
may be broken in the second manner if the orbital motion in this bound state does not
vanish, and moreover, if a spin-orbit coupling is present in which the orbital angular
momentum 1s treated as a scalar under SU(6),. Such transformation property of the
orbital angular momentum is in the spirit of Wigner’s supermultiplet theory (Ref.
[393]). The symmetry breaking term in the mass operator is then a vector under
SU(2),, the mass formula contains the invariants J (J + 1), L (L + 1) and S (S + 1).
We emphasize that such derivations of mass formulas are strongly model dependent,
since only the parameter J is directly observable.

The extension of SU(6), to non-static systems in analogy to Wigner’s model is
not the only one possible. It may well be that the orbital angular momentum is itself
transformed as a vector under SU(2),.. In such a case the spin-orbit coupling would
lead to a scalar spurion. The kinetic energy part of the Hamiltonian would then also
become a scalar spurion.

1.4.2 Mass relations for baryons and mesons

A systematic approach of dealing with the masses in SU(6) . has been developed
in Ref. [44]. Since we want a correspondence of the SU(6), mass relations with the
analogous relations of SU(3), the symmetry breaking operators must have transforma-
tion properties under SU(3) of the trivial or the 7= Y = 0 component of the adjoint
representation. On the other hand they are ad hoc assumed to be scalar with respect
to SU(2),. Therefore we have either (8,1) or (1,1).

If a particle representation is given, the first order term in the perturbation series
for the mass is simply the expectation value of the mass operator between the states
of the representation and its complex conjugate. All those terms are included in the
mass operator which are self-adjoint and have transformation properties that permit
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us to couple it to the product of the particle representation and its complex conjugate.
For the baryons of the representation 56 there are contributions from

35, (8,1) .
405, (1,1) ® (8,1)

and from 2695, which have been neglected without justification (see Ref. [44]). Doing
this we obtain the relation

1
M=M+M,S(S+1)+MY + M, (I(I+1) - ¥?).

The term involving I (I + 1) which is necessary for cancelling the degeneracy of 2
and A, comes from the part (8,1),,. Besides the Gell-Mann-Okubo relations this
equation yields one additional prediction: the distances in the decuplet (~ 145 MeV)
can be predicted to be identical with those of the octet (~ 130 MeV). In the case of
35--mesons there are contributions to the mass operator from

two 35’s, (8,1),
189, (1,1) ® (8,1),
405, L)@ @1).

The argument for neglecting the representations 280 and 280 is that they are not
self-adjoint.

The formula obtained with this ansatz is too general to give any useful information
besides the Gell-Mann-Okubo relation for the ps-mesons. If we drop the octet term
of 189 we get one additional relation which is well satisfied (see Ref. [44]). But it is
impossible to drop in addition the singlet of 189.

The beautiful relation (see Ref. [301])

M(K*)? — M(o)* = M(K)? — M(m)*

can be obtained assuming that the octets of 189 and 405 do not contribute, see Ref.
[194].
1.4.3 Remarks

An attempt to obtain information about the 70— by means of mass relations has
also been made, see Ref. [45]. To get the mass relations with the ansatz explained in
Section 1.4.2 methods are used which involve some information about Casimir
operators of unphysical subgroups of SU(6),. These operators have no simple physical
meaning, (see the remark in section 1.2.5).

Further references on mass relations: [1, 81, 189, 203, 246].

References on the electromagnetic mass splitting: [79, 114, 121, 176, 247, 352,
383].

1.5 Application of static SU(6),, symmetry to S-matrix elements
1.5.1 The technique to construct invariant forms

Due to the definition of SU(6), symmetry we can apply it only to a very limited
number of problems:
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a) Strong vertices which couple a fixed number of particles that are all at rest in an
invariant manner; these invariant vertices imply relations only for the threshold
of amplitudes.

b) Current matrix elements for electromagnetic and weak interactions, taken between
single particle states of equal mass at rest.

In case b) a definite transformation property (spurion) of these currents has to be
assumed. As a leading principle we can rely on similar assumptions made in the unitary
symmetry scheme and on dynamic models (see the example of the electromagnetic
current discussed extensively below). The necessity for introducing such spurions
into the symmetry model arises, because the electromagnetic and the weak interactions
violate the symmetry,

As an example of how invariants are constructed from representations of SU(6),,
we quote the vertex for the decay of the 70—-plet into 56+ and 35~. The product of
56+ and 35— decomposes as

56x35=56370® 700 ® 1134

Since the 70-plet (tableau (21)) appears just once, the vertex is uniquely determined.
In tensor notation we obtain

fe E[A B]CBACD Mg:

where f 1s the coupling constant. This invariant can be used to find relations between
the decay amplitudes for the processes

S e S-wave,
3= 3+ _ i

- —> 5+ 07 (or 17) S-wave,
lw

= 12—+ + 07 (or 17) S-wave.

The amplitudes must be taken in the limit where the velocity of the final particles
iS Zero.

1.5.2 Strong interaction vertices, example: the BBM vertex

Let us consider the decay of a spin 3/,* resonance into spin /,* baryons and 0~
mesons. Parity conservation implies that only P-waves may occur. The threshold
behaviour is therefore trivial and we do not get any result. The same argument applies

to the process?)

1+ 1+ _ _
T—>¥277—|—0 \Orl )

if we regard both 56-representations as different so that the masses can be chosen
appropriately (positively real).

) See the discussion of this vertex in Section 3.2.3. We shall explain there how the well-known re-
sults for the D/F ratios at ¢> = 0 can be obtained. Here we state only that they are neither a
consequence of static SU(6), nor of the collinear group S[U(3) @ U(3)] in the strict sense. If
we do not introduce spurions we must continue analytically in the representations.
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The situation changes if we consider the annihilation channel BB - M. The
meson mass must then be twice the baryon mass. The result can be expressed in
terms of the vector coupling form factors a¥ and a® for the ps-octet and the charge
and magnetic form factors of the Sachs type for the vector mesons af, and a5, af’ and

aP. At the threshold we have

as a consequence of the definition of ¢, and «,. SU(6), implies
aP = 0,
2 acD — 3 a,f = O,
af + af’ = (.

In Section 3.2.3 and Part II, Section 5.2 we will find that the second relation is
independent of the meson mass.

1.5.3 Current matrix elements; example: the electromagnetic behaviour of baryons

The electromagnetic current is a very illustrative example to explain how SU(6),,
works and runs into troubles. The notion static is somewhat ambiguous for vertices
which involve an external field. The magnetic moment of a nucleon is certainly a
static property in the sense that it determines the energy of a nucleon at rest in a
static homogeneous magnetic field. Nevertheless, we shall see that the definition of
the spurion will bring in the non-static properties.

1.5.3.1 The charge. Only the static charge of the baryons is accessible to our
treatment. In SU(3) the charge operator is taken proportional to the generator

1 —
5 (g 3742 2y

of the group SU(3). On the other hand, the charge distribution is assumed to trans-
form as the U = 1, Y = 0 component of the octet. The reason for using the generators
themselves for the charge instead of a tensor operator as for the charge distribution
1s that the conservation of the generators of the symmetry group implies automatically
the conservation of charge. This argument suggests that we should take the charge
operator proportional to the generator of the SU(6), group

1 _
Co 5 (A + 3 1z Ag) .

Doing this we find a pure F-type coupling for the charge of the nucleons. This must
be viewed upon simply as a proof of the consistency of our definitions.

1.5.3.2 The magnetic moments. In SU(3) the magnetic moments are defined to
transform as a tensor operator belonging to the U = 1, Y = 0 component of the octet.
This implies that the moments are composed of an F- and D-type part. They are not
proportional to the charge.

To get a better feeling for what transformation properties could be expected in
SU(6),, we regard the physical particles again as bound states of some spin 1/,

a?
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particles, quarks, with similar properties as the nuclei. Then we obtain a magnetic
moment operator consisting of two parts, the spin contribution

M Zekgk—ok,

where ¢, is an eigenvalue of the SU(3) charge operator, and a contribution from the
convection

c_zzxkxjck 2MkL

The term j_, is the contribution of particle £ to the convection current. If SU(3)
1s good for quarks the Landé factors g, should all be equal. The spin contribution
reduces then to the operator
M, =5 1ol a3l in the gi tati
§ = {~2~ G (A3 + 8)} in the given representation
which is one of the generators of SU(6),.

If we neglect the convection term M, and take only the spin contribution, we have
an operator for the moment which is somewhat more restricted than the operator
used in Ref. [46]. These authors assume that the magnetic moment is only a tensor
operator of the representation 35 corresponding to the same component. Since for
the baryons this makes no difference, because the representation 35 is coupled only
once, all the results of Ref. [46] remain valid. Among these is the ratio for the magne-
tic moment of proton and neutron

B
=
(98]

#(n) 2

The convection term is intrinsically non-static. Gell-Mann (Ref. [170]) has suggested
that it should transform like the tensor product of the charge operator contained in
35 and the orbital angular momentum operator treated as the part (1,3) of 35. He
proved that out of this product only the part (8,3) of 35 can influence the 56 repre-
sentations®). The magnetic moment operator taken between two representations of
dimension 56 has therefore the structure of the U = 1, Y = 0 component of (8,3) of
35, as it was assumed in Ref. [46] in general.

We emphasize again, that the treatment of the orbital angular momentum as a
spurion in the static symmetry scheme is a new concept (in particular it deviates

8) GELL-MANN (Ref. [170]) considers in fact not the convection term but the total magnetic
moment and writes it

1
M:zfd%xxj(x).

In a non-relativistic model the current can be decomposed into a convection term and a con-
tribution from the magnetization

J(#) = Je(®) +Jm(x) -

Jm(®) =V x M(x) .
Introducing point particles and integrating by parts we obtain the expression for the magne-

tic moment used above. The tensor operator used by the authors of Ref. [46] is therefore the
special case of GELL-MAaNN's operator if the convection can be neglected.
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from the interpretation of SU(6), along the lines of Wigner’s supermultiplet model)
and means that we extend the domain of the static symmetry SU(6), to situations
where it was not defined in the beginning.

1.5.4 Concluding remarks

The semileptonic vertex can be treated quite similarly. With similar simplifying
assumptions as in Ref. [46] the authors of Ref. [47] obtain the weak D/F ratio

D|F = 3/2
and the value
G,/G,=—5/3.

Further references on the static electromagnetic properties of baryons: [6, 58, 83,
199, 228, 236, 254, 352].

2. Extensions of static SU(6), symmetry
2.1 Models defining an invariance against votations of the spin of individual particles
2.1.1 Introduction

We emphasize that there is no a priori need to extend static SU(6), symmetry
to apply to non-static situations. It could well be that physics exhibits only the static
symmetry. But even if experimental evidence were against a non-static extension,
which can certainly only be decided after we know how an extension looks and what
it predicts, it would be desirable to know how in non-static situations SU(6), sym-
metry is violated, this means: which spurions must be introduced. This twofold aim
of investigating extensions of the static symmetry reflects itself in the models we are
going to discuss. Indeed, we shall recognize later that some of the models (those dealt
with in Section 3) reduce the symmetry group to a subgroup if instead of only static
processes relative motions are permitted. Such models can be interpreted as broken
symmetries with a recipe of handling this breaking by means of spurions. On the
other hand the models discussed in Section 4 are real extensions, where the symmetry
group does not depend on the kinematics. As was claimed in the original papers Refs.
[185, 301, 353] static SU(6),, is a group which couples spin independence with unitary
symmetry. We could therefore think and this was the intention of Ref. [185], that
relativistic notions of spin will supply us in a very simple manner with relativistic
extensions of SU(6) symmetry (see Ref. [187]). In principle this is true, the difficulty
arises, however, if we want to draw physically reasonable conclusions from such models.
Before we go into details we shall repeat how spin can be defined relativistically.

2.1.2 Spin

From the point of view of Lorentz invariance the definition of spin is unique. The
theory of representations of the Lorentz group (Ref. [394]), tells us that the spin
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operators are identical with the generators of the little group. They are contained in
the four vector ‘
W 1

o 2 syvﬂ.c

PV Mﬂ.o a

In this expression p* are the infinitesimal translation operators, M*° are the genera-
tors of the homogeneous Lorentz group. On the space spanned by state functions
with positive timelike momenta we can define the unitary operator U[A(p)] which
represents the rotation free Lorentz transformation A(p), U(A(p)] [0 > =|p > .
Applying it to the vector operator W, we obtain

U(A~(p)) W, U(A(p) = &(A7) W,

= SM m
with S, = 0 and
[Si, Sel =284, S, .

If we couple these operators S,, 7 = 1, 2, 3, with the generators of SU(3) we obtain
the Lie algebra of SU(6),9).

If in addition to Lorentz invariance we know that a field exists which satisfies
a certain field equation, we have additional choices for the definition of spin opera-
tors. From now on we refer to a spin-!/, field which obeys the Dirac equation.

The Dirac equation deals simultaneously with states of positive and negative
energy. This allows us to define spin rotation groups with different correlations of
positive and negative energy contributions.

The study of these different possibilities of defining spin operators in Dirac theory
serves as an introduction to the spin rotation group SU(2),, appearing later in the
context of the collinear subgroups and clarifies the relation of this group to Foldy’s
definition of spin, SU(2), (Ref. [140]). In addition all these groups SU(2),, SU(2)y
and SU(2); can be used to define different models of spin independence of the type
discussed in Section 2.1.3. In particular the use of the spin group SU(2)y in this
context goes back to GURSEY (Ref. [187]).

Customarily one requires that the spin operators commute with the Hamiltonian
of the Dirac field

H=oa,p,+y,m, K = VYo V& -

This implies commutativity with the Lagrangian
L=y, pt—em.

The discussion is simplified after a Foldy-Wouthuysen transformation has brought
the Hamiltonian into diagonal form H’

H =Ey,, H=¢SH ¢S, E>O0.

In this system the spin operators can be chosen out of the set of matrices commuting
with v,

1 1
‘O‘k’ »z--yodk, kﬁ1,2,3.

%) We adopt this notation of the static symmetry group for this relativistically invariant
group. This is only a matter of convention.
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Out of this set of six operators we form two algebras SU(2), namely

I =0,+0 L » called SU(2); (see Refs. [140, 371])
and

) =0,+y,0,, called SU(2), (see Ref. [326)) .

Parallel and orthogonal refers here to the momentum. Since the FW-transform is not
uniquely determined by the condition H = H'’, we normalize it to be rotation freel?)

e =[2EE+m] P(E+m+y,p) .

Transforming back with this matrix into the system where the Hamiltonian was H,
we obtain the algebras SU(2); and SU(2)y in the form of vector operators 1/, &,

Qp=0,+ey,6,, Fy=0,+y,0.

Thus we recognize that Foldy’s spin operators are the Foldy-Wouthuysen transforms
of operators 1/, o;, whereas Wigner’s operators are Lorentz transforms of the operators:
1/, o,. If applied to particles at rest both sets coincide. The W spin, however, is differ-
ent from Wigner’s and Foldy’s spin even in the rest system: the transversal operators
appear with a different sign in the case of particles and antiparticles. The group
SU(2)y has recently been rediscovered in investigations of relativistic SU(6) models,
see Section 2.3 and Refs. [38, 261]).

2.1.3 Field theoretic models using the groups SU(6),, SU(6)z and SU(6)y

The idea underlying these models was first put forward by GURSEY, Ref. [187].
We formulate it as follows.

Let us consider a given system of N particles which bear indicesa = 1,2, ..., N,
and have momenta p,. We introduce spin rotation groups SU(2)%#* for each particle
« and a “‘mother” group SU(2). Each of the N groups SU(2)*#% is connected with the
mother by an isomorphism I(e, ,),

SU(2) —> SU(2)%?«,
CH )
such that a rotation belonging to the mother group induces an N-tupel of in general
different rotations in the daughter groups. Such N-tupels of rotations are assumed to

leave the dynamics unchanged. Obviously we can define an SU(6) symmetry in an
analogous fashion.

10) Let the Dirac equation be
(puvt —empy=0,py=FE >0,e =

-
Then we can define three different but related types of matrices:
1) the projection operator P, P2 = P, Pt =y, P y,,
P=(2m)(p,y# + em),
2) the Hermitian, rotation free Lorentz transformations A(p), A(p)~! = A(—p),
A= [2m(E + m)]7 2 (pyyry, + m),
3) the unitary, rotation free FW-transformations
e~iS = [2m (E + m)|"2(E + m + y% Pr).
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Because such models make a principal distinction between spin and orbital angu-
lar momentum, the definition of the symmetry has to specify what is to be considered
as an elementary particle bearing a spin and what as a system of particles carrying
a total angular momentum. This is done by basing the models on the theory of inter-
acting quantized fields. A set of quark fields is introduced which interact strongly,
the physical particles and resonances are interpreted as bound states formed out of
quarks. If the quarks are Dirac particles we may construct different models depending
on whether we use the spin group SU(2), or the groups SU(2); and SU(2)y. Indeed,
most of the authors prefer the latter groups (Refs. [187, 269]).

It is obvious that no definite predictions on coupling constants etc. are at present
possible in such models because of the lack of appropriate computation techniques.
Our further arguments in this Section are therefore limited to a criticism of the models
as a whole.

Let us make the following points which we shall discuss below.

i) The isomorphisms I(x, $,) have to be defined in a manner compatible with
Lorentz invariance.

ii) The model is defined only for a system of particles which all have time-like
momenta.

iii) The symmetry has been defined on separate subspaces H,; of the physical
Hilbert space which belong to fixed quark number # and antiquark number #.

Compatibility with Lorentz invariance means that the isomorphisms I(«, p,) are
submitted to the following minimal condition. We may eliminate the mother group
and obtain isomorphisms between each pair of daughter groups:

SU(2)% P« — —» SU(2)" 5,

1(B,8) 1(@bg)™

Such an isomorphism is then required to be independent of the Lorentz frame

I(a, po) I(B, pp) ™" = I(ot, ) 1(B, £) ™",

where p,, 4 go into Py, Pp via the same Lorentz transformation (rotations included).
Such a condition is satisfied if we generate the daughter groups out of the mother
group by Lorentz transformations: (in formal notation)

SU(2)*?a = Ay (SU(2) mother) for all o .

Here A"Ex’*ﬂa denotes the pure Lorentz transformation which transforms the mo-
mentum p,, into p,, and p,, is the momentum of the particle « in the centre of mo-
mentum frame of the whole N-particle system.

Such a definition violates, however, the condition of “separability’’. The notion
“separability’ is the same as known from any theory involving clusters of particles:
two subsystems which are separated by a spacelike distance which tends to infinity
do not influence each other. Such a property cannot hold for clusters the dynamics
of which are coupled to the centre-of-mass momentum through the symmetry. Com-

patibility with Lorentz invariance as formulated above is therefore in contradiction
with separability.
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If the compatibility condition is not satisfied (most of the models proposed are
of this type) the spin group depends on the frame of reference in which it is defined.
In order to maintain Lorentz invariance we have then to postulate invariance against
the whole continuous manifold of spin groups. As proved in Ref. [227] this implies
that all S-matrix elements taken between quark states the momenta of which are
non-collinear (in all Lorentz frames) must vanish identically.

Statement ii) and iii) imply that the field theory (if it exists at all) will have some
very unusual properties, The number of quarks and antiquarks must be independently
conserved by any symmetric operator. This implies that the field theory is non-
local (as was first observed in Refs. [269, 316]). Virtual particles do not appear.

Further reference on field models: [307].

2.2 Classification of groups which combine Lorentz invariance with internal symmetry
2.2.1 Introduction

The rotational subgroup SO(3) of the homogeneous Lorentz group L operates
on a particle at rest exactly in the same way as the spin rotation group SU(Z2), con-
tained in the group SU(6),. If the particle moves with momentum p, the operator

A(p) RATHp), ReSU@,,

(where A(p) transforms a particle at rest into a state with four momentum p) still
coincides with WIGNER’s operator

~

A(p) RA™Yp), ReSOB)CL, R=x~R,

which belongs to the homogeneous Lorentz group as long as we apply it to this one-
particle state of momentum $ only. The problem arises of investigating whether it is
possible to ascribe sense to products of operators of the inhomogeneous Lorentz
group and the group SU(6), in general. In other words, if a group G exists satisfying
the following conditions:

a) it contains the inhomogeneous Lorentz group P as a subgroup,

b) it includes as a subgroup the group SU(6), which plays the role of an internal
symmetry group,

c) the subgroup SU(2) of SU(6) if applied to systems of particles which are all at
rest coincides with the group of rotations SO(3) which is a subgroup of the homogene-
ous Lorentz group.

Properties a) and b) concern the group structure of G; condition c) guarantees the
correspondence with static SU(6), symmetry, it involves a physical interpretation
of the representations of the group G.

We discuss in the following paragraphs groups, which satisfy conditions a) and b).
We shall prove in Section 2.3 and Sections 3 and 4 that condition c) is fulfilled. Histo-
rically, the problem of finding an enlargement of the inhomogeneous Lorentz group
which includes a general semi-simple Lie group as internal symmetry group is older.
We treat first this more general problem and specify the internal symmetry group
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later. We shall refer always to Lie algebras instead of Lie groups but use the same
symbols for them1?). These algebras are restricted to be of finite dimension. We prefer
the language of Lie algebras in this context, because we are going to quote some
theorems contained in textbooks about Lie algebras. No physical reason is known
which favours algebras (see Section 1.1.1).

Let us formulate the problem once more. We investigate Lie algebras G which
contain the algebra P of the inhomogeneous Lorentz group and any semi-simple
algebra S as subalgebras. We try to classify all these algebras . The results we shall
obtain are due to O’RAIFEARTAIGH, Refs. [308, 309], they involve some earlier pro-
positions made by Mc. GLINN, MICHEL and others, Refs. [94, 139, 181, 191, 274, 275,
278, 300, 373]. At the end we introduce the algebra SU(6) for S and give some definite
examples for the algebra G which will be discussed thoroughly in the sequel.

2.2.2 Some mathematical results

Following the lines of Ref. [309] we make use of some theorems about Lie algebras
which can be taken from the mathematical literature (see Ref. [224]).

Levi’s theovem .

If G is a finite dimensional Lie algebra with radical R then there exists a semi-
simple subalgebra F of G such that

G=F X R.

(see the proof in Ref. [224], page 86).

Let us explain what this theorem means and where the problem of the proof lies.
For an invariant subalgebra (‘““ideal””) H of G we can form the chain of commutator
subalgebras (‘“‘derived series”). Each member in the series is an ideal of G and H.If
the series terminates at a fixed #, i.e. H" = 0, H is called a solvable ideal, in this
case H™=1) must be abelian. The intersection and the sum of two solvable ideals
give again a solvable ideal. The latter property allows us to take the union of all
solvable ideals, this is a maximal solvable ideal and is denoted radical. If the radical
of a Lie algebra vanishes, this Lie algebra is called semi-simple. The radical is ob-
viously uniquely determined.

The factor algebra with respect to the radical

g -
— =G

is semi-simple by construction. It is in general not a subalgebra of G. Indeed, we de-
compose the vector space of G into the direct sum (which is non-unique)

G=F@R.

1) 'We use the following product signs for groups and correspondingly for Lie algebras,
A® B: direct product, [4, B] =0,
A x B: semidirect product, [4, B]C B,

and the sum signs for vector spaces without reference to additional properties of these spaces
as Lie algebras: 4 @ B direct sum.
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This decomposition induces a mapping o of G onto F, with the property that, if
gcG, g—olgek,

we obtain after the mapping by the factor homomorphism
olg) =¢.
This yields in general

S(g1, g) = [0(g1), 0(ga)] — o((gr gal) € R .

The problem is to find a space E, with the property that S(g,, &) = 0. This is then
equivalent to ¥ = I being a subalgebra.

Levi’s theorem states that F, the Levi factor, can be found. This factor F is,
however, not unique. Indeed, F will be changed in general if we submit G to an inner
automorphism. The radical R remains unchanged (as any ideal). If any semi-simple

subalgebra F<Gis given, we can always find an inner automorphism such that F

goes over into F’ which contains F. This is the statement (somewhat weakened) of the
theorem of MALCEV and HARISH-CHANDRA (see Ref. [224], p. 92).

2.2.3 The classification of groups

The homogeneous Lorentz group L is semi-simple. With the help of the theorem
of MALCEV and HARISH-CHANDRA we bring its algebra into the Levi factor F. The
radical R is invariant with respect to F, this implies its invariance with respect to L.
The translations 7, are also invariant with respect to L. The intersection of R and
T,, RN T, is invariant under L. But 7 is irreducible under transformations in-
duced by L. Thus we have either

Ril;y=17, o8 ROI1;=0.
We can therefore distinguish between the four possibilities (see Ref. [309])
a) LCF, R=1,, b) LCF, R2T,, Rabelian,
c LCF, RDOT,, Rnon-abelian, d) LCF, RN T;=0.

We discuss these four cases one after the other.

In case a) the four-dimensional algebra of translations is invariant with respect
to transformations of F. It induces a fourdimensional representation of F, which is
the direct sum in the algebra sense of simple algebras. Only those simple algebras are
allowed among which one has a four-dimensional representation. Starting from this
argument it has been proved in Ref. [309] that the Levi factor F is a direct sum

F-F®E,

where the complex extension Z:“O of F, is either identical with CARTAN’s algebras 4; ®
A4, A4 or B,. The factor F, commutes with the translations, [F,, 7;] = 0. The algebra
of the physical Lorentz group L must then either belong to I7, alone or have ortho-
gonal projections on both F, and F,

Py (L) = Lo, Pp(L)=L

r r
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Here both components L, and L, are separately isomorphic to the algebra L. Therefore
Fy can be equal to SO(3,1), SO(4,1), SO(3,2), SU(2,2), SU(3,1), SO(5,1), SO(3,3).
If it is bigger than SO(3,1) it will be difficult to interpret. Let us assume there-
fore that

B =L;.

We shall later sometimes call the part L,, which commutes with the translations, the
spin rotation part of L.
If L, is empty we have obtained an algebra of the trivial type (concerning physical
applications)
HBX L) BE=P8E,

In general we have, however, L. =+ 0,

We now bring the algebra SU(6) into play. It can only be contained in F,. Accor-
ding to the postulate that the spin rotation subalgebra SU(2) of SU(6) should be
related to the subalgebra SO(3) of L, we identify SU(2) with the part SO(3) of L,.
This poses the problem of determining an algebra F,, which satisfies

FEDSU®6) DSU@2)
identical .
F D SL(2,C) D SU(2)

In addition we assume now that F. is simple. The smallest candidate for such an
algebra is
it = BLi0; &)
other possibilities are
F =Sp(6,6), F =SU(6,6) etc.

r

With these solutions for F, the complete algebra looks
(Lo X 13) ® SL(6, C) = (L x SL(6,C)) X T, = P x SL(6, C),

and correspondingly for the other algebras F,. Such models which have first been
proposed in Ref. [73] will be dealt with in Section 4.

In case b) the radical R is an abelian Lie algebra of more than four dimensions.
We may assume that it is irreducible under transformations of F. Otherwise we take
that part which contains 7, and is irreducible, and we are back in case a) or have an
irreducible space belonging to case b). The Levi factor F is a direct sum

F=][®F
k

and the question is how L and SU(6) are distributed over these constituents F. In
general we have orthogonal projections

PFk(L) =Ty PFk(SU(6)) = [SU(6)], ,

where some of the L, and [SU(6)], may be empty. In any case there must be one
index &, such that L, and [SU(6)], are not empty, since otherwise SU(6) would com-
mute with L. As a simple argument shows, this implies that the dimension of R is
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at least 36 (see Ref. [333]). The simplest assumption we can make is that F itself
is simple. Then we identify

FOSU®B) DSUE@) =S0B) C L.

Examples for such algebras are

F=SL6,C), F=Sp6,6), F=SU®b,H6),
R=1Ty or Thjpo, R=Ts, R=14.

These models are treated in Section 3. They have been proposed by many authors,
(Refs. [27, 69, 152, 208, 230, 286, 338] on SL(6, C) and Refs. [50, 51, 355, 356, 357,
358] on SU(6,6)). The additional translations introduced are difficult to interpret
physically. We must restrict them by subsidiary conditions imposed on their spectra.
These conditions are straightforward in the physical picture. They lie, however,
outside the group approach and may lead to contradictions with physical principles
(see the discussion in Section 3).

No use has so far been made of models belonging to class ¢). The theory of repre-
sentations for such algebras is already quite complicated. Even in the mathematical
literature few explicit examples for representations of such groups are known. (Unitary
representations of R are necessarily infinite dimensionall)

Case d) is used in so-called dynamical group models. They need also restrictions
on the spectra of the operators. No model is at present so far developed that definite
predictions could be made. The difficulties seem also to be technical. These dynamical
groups lie outside the scope of this article. An example for a simple algebra which
contains the inhomogeneous Lorentz algebra and the algebra SU(6) is SU(6,6). This
algebra contains even SL(6, C) X T, as a subalgebra. ‘

Further references on the combination of POINCARE invariance with internal
symmetry groups: [20, 42, 56, 96, 155, 174, 240, 259, 279, 280, 340].

2.3 Subgroup chains for SU(6) and S[U(6) ® U(6)]
2.3.1 Formulation of the problem

The examples of group models belonging to the classes a) and b) to which we shall
refer solely from now on, have some common features. First they all involve groups
of the type SL(6, C), Sp(6,6) or SU(6,6). For historical reasons we shall neglect the
group Sp(6,6), it can be treated quite analogously. We begin with a parametrization
of these groups.

The group SU(6,6) can be generated by a set of 143 matrices which can be thought

to be KRONECKER products of DIRAC’s matrices I, n =1, 2, ... 16 the phases of
which are adjusted to satisfy the symmetry requirement

Yol wyo=1 1,3 :
and of the nine Hermitian matrices 4;, 1 = 0, 1, ..., 8 known to generate U(3). We
write

I'y=T,%, A=1,2..143,  Iy,=12,isleft out.
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We use the symbols 4; also for the 12X 12 matrices I'y = 1- 4, and the symbols y,
for I'y =y - 1. If we refer to a representation of these matrices I'y we have always
(if no different statement is made) WEYL’s representation in mind.

0 1 11 0 0 g, 1
— (6) — (6) _ k(3)
'}’ - ’ - . ) -
’ (1(6) 0 ) o ( 0 —: 1(6)) Ve (”’ 0yl 0 )

and the familiar representation of the matrices 4,.
The elements of the group SU(6,6) satisfy then the pseudounitarity condition

U=y, U y,.

We can define subgroups of SU(6,6) by imposing certain additional conditions
on the generators I',. Let us require

Lyys=yps1,
or in terms of the group elements
Uys=ysU.
Out of the set of Dirac matrices I, only the following matrices remain
1
1’ Vs and Upv = 24 [y,u ’ V'v] b

The matrices o, span the algebra of SL(2,C). In matrix notation we infer from
U — (ﬂn /‘12) ’
a1 Moo
(’"' L) 0 ) (1”11 P‘Jz) _ (f“n 1”12) (’ Lig) 0 )
0 =t 1) \ Moy Use HUay Mag 0 —12 1,

Mg = Moy = 0.

that

The pseudo-unitarity of U implies in addition
+ —1
Hyi == fn -

The matrix U has therefore the final form

S0
U= (o (sfrl)'

These matrices constitute the group GL(6,C)/U(1)!?). The algebra of SL(6,C) can
therefore be spanned by the Kronecker products

SLV,?..:O-MV;"E.’i:O’l'-'S’
31‘)‘:7}52|
; tri=1,2...8.
= lz ,2...8

12) From det U = 1 = detS - (det S*)-1 it follows that det S is a real number.
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Let the generators of the Lorentz group be denoted as M ,,. Then for all the models
the following commutation relations hold
M,,,s;]=[M

uv?

v sP1 = 0.
t t

t . oy 11 i
[M/MJ’ ng,i] s = (g,ux Swg,i + gvg S,ux,i _ g,uo va,i — 8yx Syg,i) .

&

These relations express that the generators of SL(6,C) transform as scalars or tensors
of rank two under the Lorentz group. In the class b) the operators M ,, are moreover
identical up to a factor with sf, 5. But we abstract from this property and consider
only these commutation relations in this Section 2.3. If the models make use of the
group SU(6,6), we have in addition one operator s which is proportional to y; and
seventy-two operators

Sz,i:%lw Sz,iﬂi?’syﬂ Ay
where the subscript ¢ runs from 0 to 8. These transform like vectors under the Lorentz
group.

We are going to investigate in this Section 2.3 the consequences of these commu-
tation relations. We shall find that the tensor operator properties, which are obviously
more general than the detailed structure of the groups, have far reaching implications.
This forces us on the other hand to motivate these transformation properties with
more physical arguments and independently of the formal deductions of Section 2.2.
Indeed, in these abstract deductions the coupling of SU(6) to the Lorentz group

seemed to be based on some ad hoc assumptions. Our aim is also to gain a deeper
understanding of what we did there,

2.3.2 The spin operator algebra

In the static SU(6), theory the spin operators are identified with the generators
of SU(2), (see Section 1.1.2)

1
Sk == o

~0,, k=123,

Under rotations of the subgroup SO(3) of the homogeneous Lorentz group L they
transform as a three-vector operator

(M, 5] =121 Sp-

How can this transformation behaviour be generalized to relativistic situations?
Spin should transform then as a Lorentz tensor (see Ref. [73]). We require in addition
that the spin operators themselves form a Lie algebra. This is characteristic for the
approach discussed here which is opposite to models based on fundamental fields as
dealt with in Section 2.1. This requirement rules out such vector operators as W,
since its components do not form a closed algebra. Most natural is the use of the al-
gebra SL(2,C) with the commutation relations

[S,uv’ Sag] =—1 (gya Swg T gvg S,ua' m gyg Sye — 8vo S,ug) C
They form a tensor of rank two under transformations of the homogeneous Lorentz
group

[Mpw’ Sag] =—1 (g,ua' Svg + gvg S‘ua - g,ug Sys — 8vo s,ug) *
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We neglect the translation behaviour completely, because we want to deal with later
theories with subsidiary conditions.

If we couple now the generators of SL(2,C) with the generators of unitary sym-
metry, by extending the compact part SU(2) of SU(6) into the complex domain, we
obtain the algebra of SL(6,C) with the operators

¢ g5 P

S,uv,i’ R

Their transformation properties are expressed by the commutation relations of the
type given in Section 2.3.1.

2.3.3 Implications of the tensor operator behaviour of the SL(6,C) algebra

In this paragraph we shall use some heuristic notions and arguments which have
a physical background; we assume that particles with the familiar invariant proper-
ties (mass and spin) exist and that by a pure Lorentz transformation moving particles
with nonvanishing mass can be brought to rest. We should be able to prove that these
notions are reasonable if a definite group model is considered. Let us consider a
particle at rest. This state of motion is unchanged, if we apply to it the elements of
the subgroup SO(3) of the homogeneous Lorentz group. The algebra spanned by

S kI=1,23, i=01...8 s, i=1,2..8

is invariant under transformations of SO(3) and is itself a closed Lie algebra belonging
to SU(6). We can therefore define a symmetry of the type SU(6), by means of this
algebra, if we assume that the particles form degenerate SU(6) multiplets, that their
state of motion is unchanged if these compact operators of SL(6,C) are applied, and
that the multiplets span representation spaces for the compact algebra SU(6). The
dynamics can then be submitted to an SU(6), symmetry as long as the condition is
fulfilled that all particles participating in the process are at rest.

Having fixed the meaning of the compact part of SL(6,C) in this fashion, the re-
maining arguments are straightforward. Let us assume that we have a kinematical
situation with all particles moving in the direction of one spatial axis, say the third
axis, with arbitrary velocities. We can create these moving states by applying finite
transformations generated by the element My, Those generators of SU(6), which
commute with M, will still operate between states of the multiplets without changing
the state of motion. They form a subalgebra of SU(6), as can be inspected from the
commutation relations. It can be used to deduce restrictions on S-matrix elements
taken between states which are eigenstates of the momentum operator and for which
the momenta are collinear in one Lorentz frame. This subalgebra can be spanned by

t s
Si2,50 ;-

1f we use the linear combinations

S Esy), i=12..8

and

t
S12,0
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we see that this algebra creates the group product

SU(3), ® SU(3)_ ® U(1) helicity3)
or in other terms

S[UB), ® UB)_].

If the particles move in a plane, or are even more generally moving, only the eight
generators
s

are left; they generate SU(3), the unitary symmetry group. The three groups SU(6),,
S[U@3). ® U(3)_] and SU(3) are denoted the static, collinear and coplanar subgroup
of SU(6); all together they form the so-called subgroup chain. The decomposition
of the representation of SU(6), into those of the collinear and coplanar group can
be performed with familiar techniques (see Section 1.2.4 and the Tables given in
Appendix). The collinear subgroup was first discussed in Ref. [384].

We emphasize that invariance of the dynamics under the collinear and coplanar
subgroups does not follow in general from the invariance under the static group, but
must be postulated independently. This seems to be obvious for physical reasons.

2.3.4 Embedding SL(6,C) into SU(6,6)

We consider now SL(6,C) as the subgroup of SU(6,6), as was obtained in Section
2.3.1. The subgroup chains are different for SL(6,C) and SU(6,6). We start with the
compact subgroup S[U(6), ® U(6)_] of SU(6,6). We assume that physical particles
can be ordered into degenerate multiplets belonging to this group. For this we need
the invariance of this compact subgroup against transformations of the rotation
group. Let the generators of S[U(6), ® U(6)_] be 12 12 matrices. They are deter-
mined then by the condition

vol'a =14 .
They arel?)
OpA; and  pe0.,d;, B, 1=1,2,3]

i 1=0,1,...8,
A;, 1=1,2,,..8
In the form
S (L Lyouh, i=0,1,...8,
%(1iy0)zi, i=1,2,...8,
Vo Ao,

they generate the direct product of the groups SU(6)., SU(6)_ and U(l)yo. They are
indeed invariant against rotations.

13) In this article we also use the notion “helicity”” for the sake of brevity, in cases where we
correctly should use “‘component of angular momentum in a fixed direction”.

14) For the sake of simplicity we drop normalizing factors in front of the generators throughout
this Section 2.3. '
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The collinear subgroup is obtained as that part of this algebra which commutes
with My,. From the commutation relations we find as the set which satisfies this
requirement

O13di, YoOs Ay, Yo0Oushi, 1=0,1,...8,
Z-i, i:1,2...8.

They create a group of the structure SU(6). The SU(Z2) subgroup of this group is seen
to coincide with the spin group SU(2), discussed in Section 2.1.2. The collinear group
1s accordingly named SU(6)y .

Reactions in a plane spanned by the first and third axis can be submitted to a
symmetry algebra which commutes with M3 and M. Its generators can be expressed
by

Do Oy Ayw T=0;1..:8,

A, i=1,2...8.

The group has the structure S[U(3), ® U(3)_] where the SU(3), parts are created
by the linear combinations

1 .
2 (]_ i '}/00'31) }ui’ 1 = 1,2...8.

For general kinematics we obtain again the unitary symmetry. At least processes
with five particles are necessary for non-coplanar kinematics. The theory of represen-
tations for this chain is no longer trivial. We shall discuss it in the following paragraph.
The collinear group as a subgroup of SU(6,6) was first introduced in Ref. [261], see
also Ref. [264], the coplanar group in Ref. [103].

2.3.5 Representations of the group S[U(6), ® U(6)_] and their reduction into repre-
sentations of the collinear group

The representations of S[U(6), ® U(6)_] are tensor products of representations
of the groups SU(6),, SU(6)_ and U(1),,. They can therefore be described by two
Young tableaux with blocks | +]and [~ | and by an integral number N. The funda-
mental (quark) representations are usually denoted as (IV is still arbitrary, see below)

quark, (6,1) or [+],
pseudoquark, (1,6) or [,
antipseudoquark, (6,1) or

antiquark, (1,6) or

D] [+l [+
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Let us study their relations. In general the transition from one representation to
its contragredient one is mediated by the substitution of the generators

A — AT,
In this way we can obtain the representation (6_, 1),-N from the representation (6,1),N:

(L4 yo) o4 4 - (1+V§) Gf’{z)‘?

N
o] = 1o =

(1 4 vo) 4; = = (L+ye) A)

Yo - Vg
If we apply a similarity transformation B = C y, which has the property
By,B™'=yl, Cy,C'=—y,,

to the right-hand side set of operators we obtain the generators for the representation
(6,1) in the form

—

+ 5 L+ o) o A

- "(1+Y0)AE:

P
1
2

— %Yo-

The matrix y; and analogously the matrix C induces an outer automorphism of the
group S[U(6), ® U(6)_] which exchanges the role of U(6), and U(6)_,

1 -
(L + o) Ukz}%‘?’s b=

Vs 3
1
2

(1 — yq) o4y A
(1 + o) A 'Vs_l = (1 — o) Ais

YsVoVs = — Yo

We have thus proved: a quark representation (6,1),N goes under y; into a pseudo-
quark representation (1,6),-N.

Making use of these results we introduce an important new concept. So far the
matrix form in which we gave the generators of the subgroups S[U(6), ® U(6)_]
and SU(6),, was fixed by the defining representation of the group SU(6,6). In this
form the representations of the group SU(6)_ belong to “negative energy’’ eigenvalues,
i.e. to eigenvalues —1 of the matrix y, (see below). In physics only positive energies
appear. We search therefore for another matrix form for the generators such that
quark and antiquark representations take symmetric places in the formalism and
belong both to positive eigenvalues of y,. The matrix substitution we use is known

to accompany the charge conjugation transformation in the theory of the quantized
Dirac field.

Let # be the antiquark representation (1,6) (from now on we consider only quarks
and antiquarks). The substitution

| = m‘r—-

Vs

u,=Cluyy), Cly, C=—vy,
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brings the generators of SU(6)_ into the form

&5 (1 — »o) 0%, 4; ] G (1 + ) Ukl}”iT

N e
NN

+ -~
'}‘?(1—7’0))’5 J — 5 1 +y) A

It relates the representation (1,6) to the representation (6,1). We give generators for
antiquark representations now throughout in this #basis. In particular we are
interested in the form of the SU(6),, algebra in this basis. We find from

+ 0124, FYe0s A, +ye0sid, + 4
the algebra in the #_-basis
+01225T: —7’00312?’ —yoo‘g?,lf, —/1;.[.

The SU(6)y, algebra was given in this form in Ref. [261].

We come now to the eigenvalues of the matrix y,. The constraint y§ = 1 is alien
to a Lie algebra approach and can only be satisfied by certain representations. We
require that it is fulfilled on the four quark representations. Since v, is not contained
in the collinear group, its eigenvalues are conserved quantum numbers only in static
transitions. The eigenvalues belonging to the quark representations are 4 1. If we
ascribe an independent meaning to the factor y, in the generators y, g, 4; etc., these
eigenvalues can only be + 1 for quark and antiquark (see the entry N in the table
below).

N Q P - 6i/2n(N—Q)
quark +1 +1 +1

antiquark +1 -1 _—

2.3.6 Parity and an example

The parity operation is as usual connected with the matrix y,. This matrix belongs
to the algebra of S[U(6), ® U(6)_] but not to SU(6), since it changes the direction
of motion in three space. On general representations the parity is not proportional to
the eigenvalue of the generator y, since this eigenvalue would be the sum and not the
product of the eigenvalues of the factors in a tensor product. We must proceed in a
different fashion.

We enlarge the algebra of S[U(6), ® U(6)_] by adding the element “1” getting
the algebra U(6), ® U(6)_ and assume that the eigenvalue Q of this operator is + 1
on quarks and — 1 on antiquark representations. Parity can then be defined as

P = ¢if27r—1)

which applied to a representation with eigenvalues N and Q reduces to

P — (il27(N=0)
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On the mesons (6,6) we have N = 2, Q = 0 implying P = — 1, for the baryons (56,1)
we find N = Q = 3, P = + 1, and for the antibaryons (1,5?) we obtain finally N =
+3,0=—3,P=-—1.

Let us give an example for the reduction of a representation of S[U(6), ® U(6)_]
into representations of SU(6), on the one hand and SU(6)y on the other hand. For

baryons this decomposition is trivial since both groups coincide. A simple non-trivial

example are the mesons (6,6). We find in both cases

6x6=3501
and

33=083 @113,

2

The different assignments of these parts to physical states are
SU(6), SU(6)
..V Ve, P (8,3)
p# Vs, (8,1)

and similarly for the singlets. IV and P mean vector and pseudoscalar particles, res-
pectively.

The reduction problem is very complicated in general. Only the simplification for
representations of S[U(2), ® U(2)_], SU(2), and SU(2)y has been dealt with recently,
Ref. [204]. Fortunately the general problem is of no great practical importance. We
emphasize that Part IT of this work is devoted to a systematic study of the impli-
cations of these subgroup chain symmetries.

Further references on static S[U(6) ® U(6)]: (There are two versions of this group
appearing in the literature, a ““chiral” group and a “non-chiral”’ group. Only the latter
has been dealt with in this article.)
non-chiral group [8, 84, 130, 289, 386, 387]
chiral group (2, 32, 33, 34, 137, 168, 193, 310, 315, 364].

3. Relativistic SU(6) theories with finite multiplets
(Models with subsidiary conditions)

3.1 Representations for the inhomogeneous groups SL(0,C) X Ty and SU(6,0) X T3

3.1.1 The homogeneous groups SL(6,C) and SU(6,6) and their finite dimensional
representations

The groups SU(6,6) and SL(6,C) have been introduced in Section 2.3.1 in matrix
form. We shall refer to the notations defined there. We study now the finite dimen-
sional representations of these groups.

Representations of the group SU(6,6) can be obtained as for the compact group
SU(12) and any other group SU(#) in the form of tensors (see Section 1.2.1). The only
difference, which is, however, nonessential for our purposes here, lies in the fact that
these finite dimensional representations turn out to be non-unitary. Representations
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for the group SL(6,C) can be obtained by similar techniques with the important modi-
fication, that we have to distinguish between two different tensor bases. The one is
constructed by a matrix & (see Section 1.2.1)

§=£g, Af;fz”'ik &), &£,geSLE,C).

This basis is the analytic continuation of the basis used for the representations of
SU(6) (see Section 1.2.1). The other basis uses the conjugate matrix &,

E,:Eg’ A:;;Z"'ik (5),

and can be regarded as the anti-holomorphic continuation of the SU(6) basis. Corres-
pondingly our tensors will bear two types of indices, undotted and dotted ones. Their
symmetry can be defined by two Young tableaux.

Examples:

Yo — ’ y)fzb’ WZIJ = wga - N

-

v — | X S

As was shown in Section 2.3.1 the fundamental representation of SU(6,6) decomposes
into two representations of SL(6,C)

S 0
U= (0 (ST)—I)

or

If a tensor of SU(6,6)

with a certain symmetry of its indices is given, then the quantity

17’31 Pa B @AlAz'_‘Ak (Vo)AlBl--- (Vn)AkBk
transforms contragrediently:
'F/u" = T(U—I)T{U'
The expression
~A1A2”_Ak 'l/)AlAz‘“Ak

is therefore invariant.
Let us consider then a representation of SL(6,C), say w,. It is impossible to con-
struct an invariant form of this quantity g, and its conjugate y,. We learn, however,
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what we must do if we split the SU(6,6) invariant form into parts which are still
SL(6,C) invariant, namely

Py, =y, + oy, yt.

We must therefore in general double the representation of SL(6,C) to find an invariant

form, e.g.
Ya .
g = a
)

After this doubling we contract the indices by means of a metric matrix which can
be identified with v,:

- - 0 (5“ Wy - -
(wd,w)(éb ob)(w‘) = ¥ Y,

Another possibility of contracting the indices is to use the metric matrix y,y;. Both
types of invariants are real.

This doubling does not necessarily lead to a representation of SU(6,6) as can be
seen from inspection of the examples |

[0 va\ s (¥ O
wa:b—%(qp&bo )! Trl',a >(0 'lp;)-i )

since only the sum of both matrices can be considered as a representation of SU(6,6):

b .
B s (y)a QPc.t b) .
TIUA wa b ?/)g/

We can destroy the invariance of a given invariant form with respect to SU(6,6), say

vy bl

and maintain its SL(6,C) invariance by inserting an arbitrary number of y; matrices,
e.g.
v (vs)d v -

This corresponds to the substitution of the metric y,75 for y,. This way of writing
SL(6,C) invariants allows us to apply the techniques of Dirac matrices also to the
SL(6,C) group. The Pauli matrices are, however, not more difficult to manage.

The construction of invariant forms is intimately connected with the parity
transformation. For a fundamental representation of SU(6,6) we define the parity
operator by the generator y,. By this definition we guarantee that it coincides with
the correct operator on the representations of the subgroup SU(2, 2). We recognize
that doubling the representation of SL(6,C) is just what is necessary to make an
application of the y, operator possible to SL(6,C) representations. Therefore, in ge-
neral we take y, as the parity operator. In order to maintain the parity invariance
of a form which is invariant under SU(6,6) if we reduce the symmetry to SL(6,C),
the y; matrices must always be introduced pairwise.

4
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3.1.2 The group of translations

Let us consider the familiar four momentum #,. In the representation of Dirac
spinors it takes the form

p=(p,7") -

We assume that the momentum satisfies the following conditions: The four compo-
nents of , are real,
ppt=m>0, p>0.
A Lorentz transformation
by =4,
can be written in matrix form
Pt = L=V L

The Lorentz group is a subgroup of SU(6,6). We can re-interpret all the quantities
Yw L, p, Just introduced in terms of 12x 12 matrices. If instead of L we transform
with an arbitrary transformation U € SU(6,6), " will in general not be given as a
product of p, with the four matrices y#, but will be a linear combination of all the
143 matrices 1", (see Ref. [53])

143

P’=Z?5A FA s
4=1

In this manner we obtain a manifold of momenta starting from the four components
of physical momentum, which can be represented in a vector space of 143 dimensions.
Let us try to characterize this manifold. The property of pseudo-hermiticity

P ve="v0p i)
1s certainly invariant under transformations U € SU(6,6). Since the physical momenta
satisfy this requirement the complete manifold does. Another property is

=0, ii)

which is obviously also invariant and valid for the four-momenta. Further invariant
properties of the manifold are

pEAG = miss, i)
1v) 4 P 1s a positive definite matrix.

Let i), ii), iii) and iv) be satisfied. It can then be proved that a matrix U € SU(6,6)
exists which transforms ¢ “to rest”,

UlpU=mry,, with m >0,

(see Ref. [341]). This teaches us that the manifold is in a certain sense completely
characterized by these four conditions. '
The proof is simple. Consider a 12-dimensional vector space spanned by basis

vectors ¢,, €, . .. €;5 With the pseudo-norms
€1y0€1:+1,... 36 ')1066 :+1,
G2Vl =—1,... epyie——1
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If x is an eigenvector of p
p=4%,

% has a non-vanishing real pseudo-norm
0 < xy,p % =A%y,x implies x v, x + 0 and real.

The eigenvalue A is also real. We normalize x to + 1. Then we rotate the co-ordinate
system by means of a matrix U € SU(6,6)

’
=y i =
3k70 6m = €Yo €m >

so that x goes into e; or ¢;, depending on whether the pseudo-norm of x is + 1 or — 1.
In any case we obtain a block matrix for

U-1p U

with respect to the basis ¢, which has a form

) (o)

because y, U p U is Hermitian. By induction we proceed until we have obtained
either six eigenvectors of positive (and some of negative) pseudo-norm or six eigen-
vectors with negative (and some with positive) pseudo-norm. The remaining block
matrix is multiplied by y, and becomes then Hermitian. It can be diagonalized by a
unitary transformation U which necessarily commutes with y,. The matrix U there-
fore also belongs to SU(6,6).

We have thus obtained a diagonal matrix D,

D=U?1pU, UeSU(b,6)
with the properties
Di-o,
D5 DS, = m2 69,
vo D 1s positive definite .
They imply
D=my,, m=>0.

Let us now turn to SL(6,C). We write the matrix p% as

B __ p; ?baiw
B = (w zbs)‘

We know that p y# is antidiagonaland anticommutes with ;. These properties are
invariant under transformations of SL(6,C). If we therefore restrict the SU(6,6)
manifold of momenta to antidiagonal matrices we obtain a manifold for SL(6,C). It
consists of a set of pairs of 6x 6 matrices p,;, p+¢) and can be represented in a space
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of 72 dimensions. These matrices are both Hermitian and positive definite and satisfy
(we normalize det p = m¥)
bas PPe=m* 0 ,
75“.b Py = m? 5? .
Under a parity transformation they change their place.
These properties of the matrix pairs can again be shown to characterize the mani-

fold completely. By a transformation of SL(6,C) both matrices in the pair can simul-
taneously be brought to a form where they are proportional to the identity:

(S by (SN )5 = m du4
(ST)é phe ST = m daa.

We need only take S = ST= V71 = (p/m)1/2 = (p/m) /2 defined as the positive de-
finite roots. :

We have so far studied manifolds which have been generated by positive-timelike
four-momenta. These manifolds are special cases of orbits which in general can be
defined for SU(6,6) and the space of dimension 143 as manifolds of momentum ma-
trices satisfying the following three conditions:

i) vanishing trace, p4 = 0,

ii) hermiticity, yo 7 = % Yo,

iii) transitivity in the sense that if p lies in the manifold, then U p U1 lies also in the
manifold for any U € SU(6,6), and if  and ' lie in the manifold then a matrix U
exists such that p'=U p U L.

Condition iii) was satisfied in a trivial manner by the manifolds just studied. They are
therefore orbits. We call them positive-timelike orbits in the sequel. We are not
interested here in the problem of characterizing all possible orbits in the 143-space.
‘We only remind the reader that all other vector spaces corresponding to self-conjugate
representations of SU(6,6), which contain an invariant four-space under the Lorentz
group, are as well suited to carry the orbits and to construct on it a relativistic SU(6)
model. In the case of the SL(6,C) group the representation of dimension 400 has
attracted some interest (see Refs. [27, 232, 233]).

3.1.3 Unitary representations of the inhomogeneous groups SL(6,C) x T, and SU(6,6)
X Thas

The inhomogeneous groups involve translations in vector spaces of 72 or 143
dimensions. We can apply Wigner’s theory of representations (see Ref. [394]) for the
inhomogeneous Lorentz group to both cases. -

The irreducible representations of the subgroups of translations are one-dimen-
sional. Let x be an element of 7,,;. Then the representation characterized by the
matrix p is

Ty(p) = P y(p) .

We construct the representations of the inhomogeneous groups on functions y(p)
where p runs over an orbit. Let us assume that the orbit under consideration is posi-
tive-timelike. We introduce a scalar product in the function space by defining an
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invariant measure on the orbit. For the case of the inhomogeneous Lorentz group this
scalar product looks as follows

[ 1) |26 (p2 — m?) a*p

where the invariant measure is

0 (P2 — m?) d*p .

The representation space is then a Hilbert space of square integrable functions with
respect to this measure. In the case of SL(6,C) and SU(6,6) and positive-timelike
orbits this measure can be defined as

0 (detp — m) 000 (ab p;, — m* 88) d'2p
respectively |
O (9 5 — m o) A%

The functions y(p) bear additional indices, which describe their properties as elements
of a finite vector space. In the case of the Lorentz group these quantities can either
be spinorial, of the Dirac or Weyl type, or canonical; that means the indices describe
spin projections on a fixed axis in the rest system. The norm in these finite dimensional
spaces depends on the choice of spinors. We obtain

- —  pab -
YVey, Y ‘Pm— Yo ;%3 Ve

respectively.

We introduce now the notion of little groups. We may define them here as those
subgroups of the homogeneous groups which leave a given momentum unchanged
(they are therefore also called “‘stationary subgroups”). The structure of the little
group is independent of which momentum we choose out of one orbit. Indeed, if U
is an element of the little group belonging to 2,

UpU-l=9p,
another momentum on the same orbit can by definition be written as
p=VpV-1, VeSU®,6) .
Then
W=VUV-1
is an element of the little group belonging to #’.

We consider now only positive timelike orbits and take the momentum p = m y,.
The condition defining the little group is then '

Uy U =70
which implies
U= Ut.
The little group is therefore compact and has the structure S[U(6), ® U(6)_]. Let U
be an arbitrary element of SU(6,6) which transforms a given momentum p into p":

p=U-1pU.
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We define V), as the Hermitian matrix with transforms p to rest in a manner which is
“free of rotations” (see Ref. [341])

. i . 2 _ (vap 12
p=mV, y V,=my, Vg, Vp—( m) . 19)

By means of this matrix V, we construct
W',p, U)=V,UV,",

and find that W lies in the group S[U(6), ® U(6)_].

Let x(p) be a square integrable function on a fixed orbit which corresponds to a
unitary representation R of the little group. We can define a unitary representation
of the inhomogeneous group SU(6,6) X Ty,3 by

T(U, x) g(p) = g 1) RW(p’,p, U) %) -

This basis y(p) corresponds to what Wigner calls “canonical basis” in the case of the
Poincaré group.

In a similar manner we obtain unitary representations for the inhomogeneous
group SL(6,C) x T;,. The little group belonging to the pair (p,3, pa?) consists of matrices
S which satisfy simultaneously

SpSt=p, (S"'pS1=p.
These conditions are equivalent because of p p = m? and imply
(V, SV (V, SV =1,

where V), is the “rotation free’ transformation of p to rest introduced in Section 3.1.2.

~

B (8- (8)

m m

The little groups are therefore isomorphic to SU(6).
Let R be a representation of SU(6) operating on the indices of the function y(2).
Then the element (S, x, %) of SL(6,6) X (T35 ® T) is represented by

TS, %, ’2) Z(P) = g AR RW(p’,p,S) %) -
Here »" and W mean

p=S1p(SHL, W(p,p, S)=V,SV; eSU®).

3.1.4 Spinor bases and Bargmann-Wigner equations

In order to introduce spinorial bases we must make use of quite different methods
for the two groups. We shall discuss this problem separately for both cases and start
with the simpler group SL(6,C). The notion of Bargmann-Wigner equations has been
chosen in accordance with similar equations known to exist for the inhomogeneous
Lorentz group, see Ref. [37].

15) It remains to be proved that the matrix V, is in SU(6, 6) if we define it as the positive definite
square root of y, p/m. See Ref. [341].
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Let x(p) be a spinor (synonymously: tensor) of SU(6)
@)

with a symmetry of the indices corresponding to a certain representation R of SU(6).
If we continue the representation 7" analytically we are able to define Rjg for general
S e SL(6,C). We can then ascribe independent meaning to each factor of W and obtain

X

Iiz...@k

Ry = Ry, Rs Ryt
We denote
T/)a, az...uk(p) = (RVp_l X)a]az...a,k .

1

The indices “a” have necessarily the same symmetry as had the indices “i”, but
transform now under SL(6,C). We obtain a transformation formula

T(S, %, %) p(p) = £ T7EPHD R y(p') .

Another possibility of introducing a spinor of SL(6,C) consists in the analytic con-
tinuation of the conjugate representation of R.

Ry = Ry = R(W—I)T
=R, 171 1T T
(Vp (577) Vp,
=R, 17 R _1rRp-
(Vp ) (577) Vp,

Conjugating again after this continuation we obtain a spinor (note V}; =V,

PrETR) = (Ry 2(p)
This spinor has the same symmetry as the quantity y(p) and transforms as
T(S, %, %) p(p) = TP Ry p(p') -

Both spinors are connected by

aa,..a p*1 %1 p% % pk Ok
PR p) = %ZL— e ;Dm ~ Wb, by By
These equations together with their inversions and all intermediate steps, which
involve spinors with dotted and undotted indices simultaneously, are called the
Bargmann-Wigner equations.

In the case of SU(6,6) it is obviously impossible to obtain a representation of
SU(6,6) by continuing a representation of S[U(6), ® U(6)_]. We must therefore
proceed differently.

Let

xiliz...ik ; flfg...jl(P)

denote a representation of the little group, in which the first % indices transform under
the group SU(6), and the remaining / indices under SU(6)_ (in the #-basis, see Section
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2.3.5). We know that (see Section 2.3.5) the following equations are satisfied by this
representation
(1 - y()):tl Zi1i2...1'k ;fliz"'il =0 ’

£c222

analogously for all indices “i”’, and

A+ 20 i iy 570y, = O
etc. If we insert into these equations
mya=V,pV;',
we obtain
B _ B _
(m — p)4 XBiyig..iysidyni) = 0 etc., (m+p)y Xijiy.. iy 5 Biyiy-ni) 0 etc.,
where

Ypos o S .:Vﬁlil., -,
163121’3""1:’?172"‘” ( P )B 11112...%,1132...75

If we multiply y(p) with & + 1 factors V, ' corresponding to each index, we obtain
spinorial quantities

Yd A, oodys By ByoiBy 2

which satisty Bargmann-Wigner equations for each index. We can introduce contra-
gredient quantities in an analogous manner; the Bargmann-Wigner equations look

then as follows:

~A A,...4;; B B,...B,

¥

m—p)C —0, 1;’3141,42%;J_rslla’z...za'l
Certainly we can also form all mixed quantities.

If now the representation R has the property that by adding other representations
R', R ... of the little group a finite representation Z of the group SU(6,6) can be
built up, we may again split the matrix W of the little group

(m + p)5, = 0 etc.

— -1
Zwipvy = Zv, Zu 2yt -

We call the direct sums of the spinors p again g and obtain the following transforma-
tion formula for the reducible representation }' ©® T*

(& ® T) (U, 2 pip) = &0 Zo yip)

If we are interested in one irreducible part, we must project it out with the help of
the Bargmann-Wigner equations.

Example:

A quark representation (6,1) of S[U(6), ® U(6)_] can be completed by adding
the pseudoquark representation (1,6). It leads to a spinor ¢, of SU(6,6). The quark
part can later be projected out again by the condition

(P_m)i'//'za:o-
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Since scalar products and invariants of all kinds can be constructed more easily in
terms of spinor quantities, this completion-projection technique is, practically, quite
important. It was developed first in Ref. [358]. The advantage of the group theoretical
method over the treatment of Ref. [358] lies only in the fact, that it allows us to
derive the Bargmann-Wigner equations. In addition we shall find that the group
theoretical procedure implies unambiguous recipes for constructing invariant forms
in the most general form.

Further references on the representations of the inhomogeneous SL(6,C) and
SU(6,6) groups: [86, 342].

The Bargmann-Wigner equations have been used to define a mass splitting. For
the SL(6,C) model see Refs. [153, 210, 375]; and for the SU(6,6) model: [319, 395].

3.2 The inhomogeneous groups as physical symmetry groups
with subsidiary conditions

3.2.1 Little groups, subgroup chains and subsidiary conditions

In order to construct a relation between unitary representations of the inhomo-
geneous groups and physical multiplets, we must overcome in any way the difficul-
ties of the additional components of the momenta. We do this by requiring that the
momenta of observable particles (“physical momenta”) have the form

pa = (p" 7, respectively p,; = (0,,0) p* .

We take them from the positive timelike orbits in order to be sure that the physical
momenta belong to the positive timelike orbits of the inhomogeneous Lorentz group.

We may visualize the content of this definition in the following way. The Min-
kowski space can be considered as a subspace of the 143-space, respectively as a
subspace of both 36-spaces. The intersection of the orbits with this subspace is the
orbit of the Lorentz group (indeed, a pair of equivalent orbits in the case of SL(6,C)).
If we consider the Hilbert space of square integrable functions on the 143-orbits (or
72-orbits) it is impossible to define a relation with the Hilbert space of square inte-
grable functions on the Lorentz orbits in terms of a continuous mapping. Indeed, the
continuous functions of the 143-orbits create, in a natural fashion, continuous funec-
tions on the Lorentz orbits. By additional restrictions on the original functions we
could even manage to obtain square integrable functions of the Lorentz orbits. How-
ever, this mapping of a dense set of one Hilbert space on a dense set of another Hilbert
space is not continuous, since the Minkowski space is of measure zero in the higher
dimensional spaces. Arbitrarily small changes of the functions on the 143-orbits in
the neighbourhood of the Lorentz orbit may introduce arbitrarily big alterations in
the functions on the Lorentz orbits. The restriction of the bigger spaces on the smaller
one 1s therefore not describable as a linear projection operation. Nevertheless, the
restriction on physical momenta can be defined uniquely. We can for example refer
to plane wave states (and will do so always!), which depend analytically on the mo-
mentum and apply the definition of physical momenta to them. They lie outside the
Hilbert spaces but this does certainly not encounter any difficulties.

The physical meaning of the subsidiary conditions imposed on the momenta in
this manner is straightforward. First it excludes orbital contributions to isospin and
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hypercharge, which are known not to exist in strong interaction physics. In addition
they imply that the sum of two physical momenta lies again on the same type of
143-orbit (72-orbit), namely the positive timelike one. This is not true in general,
particularly the condition
P by = m* O

does not necessarily hold for a sum of momenta if it holds for each constituent of the
sum. The little groups can be defined as those subgroups which leave a given momen-
tum matrix unchanged (see Section 3.1.3). For positive timelike momenta these little
groups are equivalent to the maximal compact subgroups of the homogeneous groups.
We recognize, that the requirement imposed on the maximal compact subgroups in
Section 2.3.3 is satisfied: Due to the definition of the little group its generators do
not change the state of motion. We can, therefore, assign physical multiplets to the
representations of the little groups. As a consequence we see that the subgroup chain
symmetries apply to any system of particles the momenta of which are positive time-
like and physical.

For the sake of our later discussion we introduce a few additional notions. We can
extend the definition of the little group to “generalized” little groups, which are sta-
tionary subgroups belonging to a set of momenta. In general we expect two cases to
occur. The generalized little groups contain only the identity element of the homo-
geneous group or they are non-trivial subgroups. In the latter case we call the sets
of momenta ‘““degenerate”. _

For the inhomogeneous Lorentz group we can distinguish between two cases of
degenerate manifolds of momenta:

i) A set of positive timelike momenta which spans a straight line in Minkowski space.
We denote such a set as “‘static kinematics”. The little group has the structure SU(2).

i) A set of positive timelike momenta spanning a two-dimensional plane in Min-
kowski space. We call this situation “‘collinear kinematics”. In a special frame ot
reference the corresponding three-momenta are parallel to a fixed axis. The little
group consists of the rotations around this common direction. It has the structure
U(1).

If the set of positive timelike momenta spans a three-dimensional plane (coplanar
kinematics) or the whole four-dimensional space (general kinematics) the little groups
are trivial.

We realize that for the groups SL(6,C) and SU(6,6) there are many different
classes of systems of degenerate momenta. All sets composed only of physical mo-
menta are degenerate since the generalized little groups contain SU(3) as a subgroup.
It turns out that the subgroup chains introduced in Section 2.3 coincide just with the
generalized little groups corresponding to static (SU(6) respectively S[U(6) ® U(6)]),
collinear (S[U(3) ® U(3)]) respectively SU(6)y) and coplanar kinematics (SU(3)
respectively S[U(3) ® U(3)]).

3.2.2 The construction of invariant S-matrix elements

As a matter of principle we apply all the symmetry models discussed in this
article only to the S-matrix. The notion of the Lagrangian is still so obscure in field
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theories of strong interactions that we see no chance to derive any prediction from
the symmetry of a Lagrangian.

If we require that the S-matrix is invariant with respect to a symmetry group this
anticipates that the representations of the symmetry group operate in the physical
Hilbert space. The physical Hilbert space must decompose into a direct sum of spaces
which are irreducible with respect to the symmetry. In the case of inhomogeneous
groups with more than four dimensions of the translation space this is obviously
impossible. We have therefore to redefine what we mean by symmetry in this case
(see Ref. [343]).

First we consider the scattering matrix in a plane wave basis. We construct a
symmetric matrix in this basis which has many unphysical elements,

LET =X,

where “#”" is an element either of SL(6,C) x T;, or of SU(6,6) X T;45. Due to Schur’s
lemma the matrix 2’ can be decomposed into contributions from different irreducible
representations. The number of these representations fixes the number of invariant
functions appearing. These invariant functions are multiplied with certain projection
operators which project onto the corresponding irreducible representations. The ele-
ments of these operators in the plane wave basis are restricted finally to physical
momenta.

The methods of constructing such covariant operators have never been worked
out explicitly for the groups SL(6,C) and SU(6,6). Instead, the technical device used
1s taken over from what is known to hold for the inhomogeneous Lorentz group.

Indeed, the recipe looks as follows. We take the spinors (Weyl’s type) and the
momentum matrices of all the particles involved in the process and contract their
indices. We obtain then forms which are linear in the spinors of the particles and which
are index invariant!6) against transformations of the homogeneous group. The mo-
menta add to zero because of translational invariance. In general one multiplet can
be described by different spinor quantities, which are, however, linearly connected
by Bargmann-Wigner equations (see Section 3.1.4). We have then to account for all
invariants which can be built out of all possible spinors and momentum matrices and
which are linearly independent as far as Bargmann-Wigner equations are concerned.

This procedure raises two questions:

i) Is the set of invariants thus obtained independent in a more general sense (the
problem of group theoretical independence) ?

ii) Is the set of projection operators thus constructed complete (problem of com-
pleteness) ?

As we can see from inspection of the inhomogeneous Lorentz group, the answer
to the first question is negative. This problem seems, however, not very serious as
far as applications are concerned; the predictions derived from an independent set
of invariants are identical with those implied by a dependent set. The answer to the
completeness problem which we shall reach below is in the affirmative. Nevertheless,
we believe that this problem is not quite trivial.

18) By this we mean that the functional dependence on the momenta must be neglected. The
homogeneous group acts only on the indices.
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In fact we can imagine other possibilities of constructing invariant forms than
those contained in the prescription given above. We have matrices 1" in the case of
the group SU(6,6) and similar matrices ¢417) for the group SL(6,C), which can be
used to build invariant forms. The task consists of showing that these additional
invariant forms can always be reduced to the earlier ones, i.e. to those consisting
only of spinors and momentum matrices. We shall do this now, thus establishing the
completeness, not by investigating the matrix algebras I', or ¢, but using arguments
which are more familiar to physicists. We start with an exposition of the same prob-
lem for the inhomogeneous Lorentz group.

It is convenient to fix first the Lorentz frame; we choose the centre of momentum
system (c.m.s.). The spins of all particles involved in the process can be coupled to-
gether and give a finite set of integral spin representations for the group of rotations
in the c.m.s. If the four-momenta of the particles are non-degenerate (this notion has
been defined in Section 3.2.1) their space components together with one cross-pro-
duct of two three-momenta span a basis in the three-dimensional space and can be
used to construct bases for all integral spin representations. Both the spin and the
momenta can then be contracted yielding invariant forms. These invariant expres-
sions can finally be rewritten in Lorentz covariant, spinorial form. We obtain spin-
orial invariants composed only of spinors and momentum matrices.

The case of degenerate momenta is very important for our later discussion (Sec-
tion 3.2.3). When the momenta are degenerate, the spins can only be contracted with
the three-momenta if some restrictions on the invariant amplitudes are satisfied.
These restrictions can be understood as the predictions to be deduced from the gene-
ralized little groups, which as we know are by definition connected with degenerate
systems of momenta. Let us assume, for example, that the momenta are collinear.
Then the generalized little group of the inhomogeneous Lorentz group consists of
rotations around the common axis of motion; the corresponding component of the
total angular momentum must be conserved and induce restrictions on the invariant
amplitudes.

The situation is quite similar for the inhomogeneous SL(6,C) and SU(6,6) groups.
We refer again to the c.m.s. and limit our discussion to the SL(6,C) model. If we
couple the SU(6) representations of all the participating particles together we can
arrange the indices such that we obtain tensors with just the same number of quark
(contragredient) indices as antiquark (congredient) indices.

If the momenta were non-degenerate, their 35-dimensional parts (corresponding
to the adjoint representation of SU(6)) could again be used to contract these indices.
But physical momenta are known to be degenerate, since the generalized little groups
contain at least the unitary symmetry group SU(3). The invariant amplitudes must,
therefore, satisfy restrictions which fall together with the predictions of the subgroup
symmetries,

In this manner we cannot only convince ourselves that the set of spinorial in-
variants is complete, but can also develop a method of deducing the predictions of
17) We make use of Weyl's representation for the matrices I' (see Section 2.3.1). Then we may
define the matrices 4 as the upper right or lower left 6 x 6 matrices contained in the anti-
diagonal I"'s: 0oy 01

() = (&)
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the models based on inhomogeneous groups, which is equivalent but independent of
the method which starts with spinorial invariants. This formalism for the SL(6,C)
model has been displayed in Ref. [329]. The following features are specific for such
an approach: a particular frame of reference must be chosen; the approach is only
implicitly covariant and only representations of SU(6) (or S[U(6) ® U(6)]) are in-
volved.

The most efficient technique of deriving the predictions, however, makes use of
the generalized little groups, the chain of subgroups, themselves.

3.2.3 Predictions of the symmetry models based on inhomogeneous groups

Since the subgroup chains define symmetries and give us definite predictions the
only problem we have still to investigate is whether additional predictions can be
derived. Indeed, we know a prediction of the SL(6,C) model which can neither be
obtained with the collinear nor with the static subgroup.

Let the form factors of the meson multiplet 35~ coupled to the nucleon octet part
of 56 be denoted by a¥, a” for the pseudoscalar octet (vector coupling form factors)
and af, aP, a7, al, ab, a5, for the vector nonet (Sachs type form factors)8). We can
then express the results for the meson-nucleon vertex due to collinear S[U(3) ® U(3)]
symmetry in the following way (see Refs. [348, 384] and the discussion in Part II
of this article)

D. F. S _2.n. F_ 2 F D
sl t 0y, = 31221, & ==l =5l

D __ F, 2 p
a’=—a;, +5a .

These equations hold identically in the meson mass u2. In addition the static symmetry
SU(6), gives

af =1

at the point u? = 4 M2 The well-known result of the inhomogeneous SL(6,C) group
(and of some other recipes, see below)

af:a?=2:3 at i2=0

cannot be obtained from the static or collinear subgroup but by the method of using
spinor invariants (see Ref. [339]). Since the ratio of the charge form factors a?:af can
be expressed by the ratio a”:a” through the collinear subgroup, we can fix the value
for a”:a” by requiring “‘current conservation”, i.e. a” = 0 at u? = 0. But such con-
ditions which make sense predominantly in the case of electromagnetic or weak
currents should not be mixed with purely group theoretical predictions for the meson-
baryon vertex. We note further that the symmetry models in Section 4 which possess
the same subgroup chains lead to other results for the ratio a”:af, see Section 4.2.5.

The number of independent invariant functions involved in a process results
simply from counting the independent helicity amplitudes. If the system is non-
degenerate, the number obtained is the product of the dimensions of all multiplets
divided by some fixed number which is due to additional discrete symmetries (e.g.
parity reflection invariance), The fundamental statement we make is that this num-
ber of amplitudes is independent of whether the symmetry is valid or not!

18) The notation is identical with the one introduced in Section 1.5.2.
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Indeed, if we assume for example that we have invariance under the inhomoge-
neous rotation group [SO(2) x 73] ® T; and that we know by any a priors information
that the particles possess a spin degree of freedom which corresponds exactly to their
relativistic spin, the number of invariant functions in the rotation invariant theory
is identical to the number of invariant functions in the Lorentz invariant theory
provided we consider the same group of processes. We admit, however, that the in-
variant amplitudes, which in both cases depend implicitly on the same three-momen-
tum and energy variables, are explicit functions of different sets of invariants argu-
ments formed out of these variables.

If we express the invariant functions of a theory symmetric with respect to
SL(6,C) x T, or SU(6,6) X 11,53 by means of invariant functions of a theory symmetric
only under the Lorentz group and unitary symmetry SU(3) [note that the momenta
are still assumed non-degenerate, in particular unphysical; they transform non-tri-
vially under SU(3)] no identity between the invariant amplitudes of the smaller
symmetry will result and we cannot make any prediction. The fact that the invariant
functions of the bigger symmetry depend on a smaller number of invariant arguments,
can perhaps lead to some predictions, but has never been made use of in all the appli-
cations contained in the literature.

The situation changes, however, if the momenta are degenerate. We obtain rela-
tions which are the consequence of the subgroup chain symmetries. These arguments
prove that the subgroup chains give us really all predictions. But how can we explain
the result for the a”:a” ratio? The condition u? = 0 shows that this result has been
obtained by continuing the representations analytically. In fact, the spinor invariants
depend on the momenta in a simple manner so that the analytic continuation is
straightforward. If we know in addition that the invariant functions standing in front
of the spinor forms have a definite analytic behaviour at the point we want to investi-
gate (say regular behaviour at % = 0), we are able to derive such predictions. It is
obvious that an analytic continuation of this kind is impossible for the subgroups

since their representations do not depend explicitly on parameters of the kind of a
mass?9).

As a last illustration of these remarks concerning implications of analytically
continued representations we remind the reader of Van Hove’s method to derive
the ratio a”:a” in “static”” SU(6) theory, Ref. [382].

In the non-relativistic limit the 0— and 1~ mesons couple to /,* baryons through

—P—ké:ﬁ;k— @ x 0, 7 respectively V,y 7y,

where y, y are Pauli spinors. These forms suggest that the gradient of the pseudoscalar
field couples like a spin-one particle whereas the zeroth component of the vector
field couples like a scalar field. Redefining the octets of the 35-plet in this manner and
coupling this 35-plet to the baryons in the static limit leads to the value 3/, for the

ratio a”:af.

%) The question whether the collinear symmetry together with the substitution rule in the limit
of vanishing four momentum of the meson may lead to a prediction for 4> = 0 has not yet
been investigated (remark due to Prof. J. S. BeLL).
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We expect that in each theory in which the representations have a similar ana-
lytic structure as that of Dirac spinors 3/, will result. Models involving inhomogeneous
groups imply such a structure, this is the explanation of why this ratio has been
found in the model using the inhomogeneous SL(6,C) group (see Ref. [339]). Models
based on infinite representations of the homogeneous groups yield a completely
different analytic structure. This is the reason why in Section 4 we shall obtain a new
value for the ratio a?:a”.

3.2.4 The unitarity of the S-matrix

Let | p, w> denote a one-particle state with physical momentum p and let o fix
the SU(6) state at rest, respectively S[U(6) @ U(6)] state at rest. We normalize this

state by P | pyw> =208, 0% @ —p).

In the sum over projection operators onto a complete set of states (“‘completeness
sum”) we extend the summation only over physical momenta and one SU(6) multi-
plet (respectively one S[U(6) ® U(6)] multiplet),

Tm= [ @8 —m?) 6% X | o> <proo |

This expression is used in the unitarity condition of the physical scattering matrix
and similarly in computations of total transition probabilities. By Schur’s lemma an
invariant operator must necessarily reduce to the unit operator on each irreducible
representation space. Contrary to this the operator 1, is the unit operator only over
physical states. We emphasize again that it is not a projection operator in the familiar
sense, see the discussion in Section 3.2.1. The problem of unitarity of the S-matrix
is concerned with the consequences of the substitution

unit matrix — I,

on a fixed representation of the inhomogeneous group.
Let us consider an illustrating example (see Ref. [53]). We assume that two meson
representations exist, the one forming an SU(6) singlet, the other an SU(6) 35—-plet.

The masses are to satisfy 5 m(1) > m(35) > 2m(1) .

All other particles are assumed to have such a mass that only the decay of the 35-plet
into two singlet particles is allowed kinematically. In general we assume that the
masses within one multiplet are degenerate.

In this case the SU(3) singlet vector particle of the 35--plet decays into P-wave
states whereas the octets are stable as a consequence of unitary symmetry. The total
widths of the particles are Lo >0, T —0.

octets

By the unitarity condition these widths can be connected with the imaginary parts
of the masses; the masses cannot therefore be degenerate. Of course, the difficulty
arises because we ascribe certain SU(6) transformation properties to the orbital
angular momentum but do not on the other hand permit that the orbital angular
momentum form complete SU(6) multiplets.

A way out of this inconsistency is to assume that the over-all coupling constant
for this decay vertex vanishes. This is a customary attitude in the discussion of the
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unitarity problem: if an inconsistency arises one tries to adjust the invariant func-
tions such that the trouble cancels. In some cases this may force us to put a certain
set of amplitudes equal to zero. The additional requirement of crossing symmetry
may lead to further restrictions on the amplitudes. In this manner the problem of
unitarity has been split into two completely different questions:

i) Is the unitarity of the S-matrix compatible with the symmetry if the invariant
functions may take arbitrary values (the problem of violation of unitarity “in prin-
ciple”’) ? The answer is “no”. _

ii) We may ask whether it is possible to adjust the invariant functions such that
the S-matrix becomes unitary (the problem of “effective” violation of unitarity) ?
The answer to this question depends on what S-matrix we are willing to accept.

The unrealistic example of quark-quark scattering has been investigated in Ref.
[15]. In order to eliminate production processes the energy in the s-channel was assu-
med to be sufficiently small. To prevent the quark-antiquark pair from annihilating
into two mesons in the #-channel the quark mass had to be taken very small. The
authors could then prove that unitarity and crossing-symmetry taken together forbid
any scattering in the SU(6,6) model, whereas no statement could be made for the
SL(6,C) model. Indeed, the SL(6,C) model is always in a better position concerning
this problem since predictions can only be made for collinear kinematics.

The interpretation of a result like this is that even effective unitarity and crossing
symmetry cannot be achieved for the SU(6,6) model, because absence of any scatter-
ing is thought to be unphysical. In more realistic cases we expect that the restrictions
due to unitarity and crossing symmetry allow some amplitudes to take non-zero values.
The only criterion for deciding whether unitarity is violated or not is then the con-
sistency of the theoretical description in terms of these allowed amplitudes with
phenomenology. Because of the complexity of the algebra on the one hand and of the
phenomenological analysis of strong interactions on the other hand, no final answer
can be given at present.

Further references on the general properties of the SL(6, C) model: [207, 213, 245,
287, 343, 403]. _

Further references on the general properties of the SU(6,6) model: [48, 78, 104,
105, 110, 128,129, 144,145,159, 160, 184, 196, 202, 260,291,292, 294, 351, 359, 360, 390).

Further references on the connection of collinear SU(6),, with the SU(6,6) model:
[5, 39, 64, 216, 263].

Further references on the unitarity problem??): [31,49, 52,60, 62, 142, 211, 317]. A
possible dynamical background of these symmetries has been studied in references:
[99, 112].

20) The following remark is perhaps necessary to avoid confusion, In part of the original literature
the invariants formed out of spinors have been divided into two classes: “‘regular’” invariants
formed out of spinors only, and “irregular’”’ invariants which in addition contain momentum
matrices. These matrices bear names like ‘‘kinetic spurions’” or “‘kinetons’. Instead of “irregu-
lar” invariants one can also find the notations “irregular couplings’ or ‘‘derivative couplings”,
If the S-matrix elements are assumed to consist only of regular invariants, this proves to be
in conflict with the unitarity requirement, see Refs. [132, 343]. Most of the references on the
unitarity problem given above are concerned only with this ““trivial” problem. In a group theo-
retical presentation of the models as given in this article, a distinction between regular and
irregular invariants makes no sense.
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A model related to the SU(6,6) model has been studied in: [321, 322, 323, 324].
A perturbation treatment of strong interactions with vertices symmetric under
collinear groups is dealt with in: [161, 197, 318].

4. Relativistic SU(6) theories with infinite multiplets

4.1 The mathematical structure of the infinite multiplet theories

4.1.1 Introduction

In this section we consider models of the type which have been assigned class a)
'n Section 2.2.3. The group we are mainly interested in is

G=Lx(SL(6,C) ®T,).

Models of such type have first been suggested to be of physical interest in Ref. [148].
Because of the difficulties involved in the theory of representations we exclude the
analogous group

G =L x (SU(6, 6) ® T,)
from our discussion.

If we split the homogeneous Lorentz group into its orbital component L, and its
spin component L, which is a subgroup of SL(6,C) (we hope that this notation which
has been introduced in Section 2.2.3 will become clearer below: the notation “orbital”
has to be taken with care, since the generators of the “orbital’” group are not identical
with the familiar orbital angular momentum operators), we obtain the group G in
the form

G=(Lyx T,) ®SL(,C).

Writing the group G in this form enables us to solve the representation problem
immediately: first we find the representations for the group P’ = L,x T, which has
the structure of the inhomogeneous Lorentz group; then we construct unitary repre-
sentations for the group SL(6,C); and finally, we build the tensor products of both
representations.

Representations of the group P’ can be characterized by the invariants M, the
mass, and S’, the “orbital spin”. The states of the representations spaces depend on
the four-momentum p ,; let us denote them by

[ S5, P>

The representation theory for groups SL(n,C) has been dealt with in a wide mathe-
matical literature; an introduction is given in Ref. [166]. The unitary representations
of SL(6,C) are infinite dimensional. They can be reduced into an infinite direct sum
of finite dimensional representations of the compact subgroup SU(6). A short account
of the representation theory in a form which is most convenient for the applications
we have in mind is contained in Sections 4.1.2 and 4.1.3. Let 7 comprise all of the
invariants necessary to characterize a unitary representation of SL(6,C), » the in-
variants of a definite SU(6) representation contained in 7, and w a state of this SU(6)
representation space. Then we may denote a state of the representation space of the
representation 7 by

] T,Y,W)>.
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The representation space for a representation of the group G can then be spanned by
the products

|S;p> [r,v,w>.

For simplicity’s sake we assume that S” = 0. We shall come back to this assumption
at the end of the introduction.

Now we try to define the connection between these states of a representation
space of G with a physical particle state. Let the particle have momentum $, and in
its rest system belong to the component w of the SU(6) multiplet », which 1s of course
idealized so as to have a degenerate mass M. We write this state

| v, 0, p> = A@) |v,0,0),

where /(p) is a rotation-free Lorentz transformation, A(p) € L. We assume that we
know by any principle the representation 7 of SL(6,C) which we have to select from
the big set of representations of SL(6,C) containing the SU(6) representation » as a
representation of the compact subgroup. Then we define

12, 0,00=0>|7,7,0>.

Physical SU(6) multiplets have therefore been identified with the representations of
the compact subgroup SU(6) of SL(6,C) when they are at rest. The definition of
states for particles in motion is straightforward. We apply the “‘booster” A(p) to
both sides of the defining relation, but note that on the right-hand side we can split
the Lorentz transformation into the product of commuting operators

A(p) = Aop) £ (P)
where /,(p) belongs to the orbital part L, and 2(p) lies in SL(6,C). Thus we obtain

v, 0, p>=1|p>(Z}) |77, 0).

By definition an element U of the compact subgroup SU(6) applies to a state | 7, », w>
as

U|r,v,a)>:2Uw,w|r,v,w'>.
e

An element V of SL(6,C) which is not in the compact subgroup will, however, bring
in different SU(6) multiplets

Vi itv,w>=3V,y 0l 0.V, 0.
v o

This holds in particular for the “booster’” 2(p). A particle in motion therefore pos-
sesses components in different representations of the compact subgroup.

In Section 2.3.3 we saw that the subgroup chain symmetries can be derived from
a model which satisfies the following conditions:

i) The group SL(6,C) is part of the symmetry and transforms under the Lorentz
group in a particular manner.

ii) The compact subgroup SU(6) of SL(6,C) operates on a physical SU(6) multiplet
at rest as a representation and does not change the state of motion of this multiplet.
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$ince both conditions are fulfilled by our model we can state:

If physical SU(6) multiplets »; are given each one of which is contained in a represen-
tation 7, of SL(6,C), and if these representations 7; are known to couple to at least
one invariant form, the predictions of the subgroup chain symmetries are valid for
the:sse SU(6) multiplets.

The same statement can obviously be made for a model built on the group SU(6,6),
seze Ref. [361]. The existence of the subgroup chain symmetries was first proved in
Fef. [350]. The role played by the subgroup symmetries in such a model will become
quite clear in the following discussion.

Consider a particle of a physical multiplet » moving with momentum $. Those
elements of SL(6,C) which bring this state into other states of the same multiplet »
with the same momentum #, have the form

Z(p) U 2(p)

with U from the compact subgroup SU(6) and 2(p) as defined above. These elements
form a subgroup SU(6),. The intersection of several such subgroups yields the groups
of the subgroup chain of SU(6). In this manner we can prove the following statement:

Let a set of particles of SU(6) multiplets », with momenta p; be given. The maximal
subgroup of SL(6,C) whose elements transform each particle # into a particle of the
same multiplet »; with momentum p, is that group of the subgroup chain of SU(6)
which belongs to the set of momenta p; (see Ref. [330]21)). In a two-particle decay
process above threshold the maximal subgroup of the spin-independence group
SL(2,C) is the helicity group U(1). The model studied here therefore does not encoun-
ter a spin-conservation which would forbid processes like

¢—>2x and N0 —>N+m.

It is straightforward to introduce classical fields for this model. Fourier-trans-
forming the states of the representation space spanned by

}p>|r,v,w>

we obtain quantities which we write @(x, z). The first variable x denotes a four-vector
in Minkowski space, the second variable z describes the degree of freedom needed for
the application of elements of SL(6,C). The exact meaning of this variable will be
explained in Sections 4.1.2 and 4.1.3.

The field @(x, z) satisfies the Klein-Gordon equation

(O, — M?) D(x,2) =0.

The orbital component L, of the homogeneous Lorentz group operates only on x,
. whereas SL(6,C) and its subgroup L, apply to the variable z. This is the origin of the
notation “orbital’” and “‘spin’’ parts of the Lorentz group.

Let us now say some words about the assumption made above that the orbital

spin S’ vanishes. This assumption is introduced for the sake of convenience. If S’
) The further erroneous statement made in that paper that all predictions which can be made
for a given set of SU(6) multiplets w;, each one belonging to a representation 7;, are due to
the subgroup chain symmetries, is based on wrong arguments.
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would be non-zero, the spin of a particle at rest would consist of contributions firom
both the groups P’ and SL(6,C). Take for example a 35-plet. For S’ = 0 the spin
content is

(S =035} = (81) @ (83) ® (1,3)
whereas for S’ = 1 we obtain

{(S'=135}=(83)®(B5@301)@(1,503a1).

Since this bears some resemblance to the /-excitation of elementary particles (see
Refs. [119, 157, 159, 160]) we may adopt this notion for theories with S’ #+ 0. On the
other hand, we denote the excitation of particle multiplets implied by the non-com-
pactness of SL(6,C) “relativistic SU(6)” excitation. The idea that non-compact
groups could be used to generate infinite series of multiplets with or without non
trivial (that means non-perturbative) mass formulae, goes back to Ref. [41].

4.1.2 Unitary representations for SL(2,C)

There are two reasons for studying unitary representations for the group SL(2,C)
in this context. First, this group is a simple example for SL(#n,C) groups and allows
us to display general methods of constructing representations and to work with them.
Besides this technical reason, this group may well be of physical importance as a model
defining relativistic spin independence. It is a subgroup of SL(6,C) and can be built
into a symmetry of the type

{L x (SL(2, C) ® T)} ® SU@)

which is simply a subgroup of the group we are studying in this section. We shall
come back to this model later. Here we only note that the reduction of a unitary
representation of SL(6,C) into unitary representations of the subgroup SL(Z,C) ®
SU(3) raises problems connected with the normalization of states which are character-
istic for the reduction of representations of non-compact groups into representations
of non-compact subgroups.

Finite dimensional representations of SL(2,C) can be given in terms of spinors.
Let &, &, be two variables transforming as

F=8p, E=1(8,8), gesLZ2,TC).

Homogeneous polynomials I'(&) of degree A in & and of degree u in the conjugate

variables E define a carrier space for an irreducible finite representation SL(2,C), if
we transform these polynomials as

| LEE@E=F(Eg .
If we expand F(§),

A L a; 7B, i}
F(E) =Z;xoclot2...az,f§1ﬁ'2...ﬁ# E ! f 2-.. E 4 <,t IE M’

‘we obtain a set of coefficients Lay..a;,6,. .0 which are necessarily symmetric in the
: H
indices « and . They define an algebraic quantity which is usually called spinor
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(synonymously: tensor). If the polynomial ¥ corresponds to the spinor Xa...az.f,... ,;ﬂ
the transformed polynomial is mapped on the spinor

2 u .

l l Y l l _60 5 3 5
( goc,,)( gﬁ ) Xylyg Y 0, 6;...0u "
%=1 \o=1 "o

Another way of writing the vectors of the representation space is to introduce func-
tions of homogeneity degree zero:

F&) =@ (&) /@),

where

These functions f(z) transform as

T, f(2) = (g, 2) f(2") -

(811 &2
§ <g21 gzz) ,

then the transformed variable z’ can be written as

Let

B e Y et guztgn

(&) EQ?  guait
The factor a(g, 2) is the so-called multiplier which has the form

) — Lo Ee” _
et @

The basic idea of the theory of GELFAND and NEUMARK (see Ref. [166], for the
particular case of SL(2,C) also Ref. [285]) consists in generalizing the function space
f(z) allowing general complex numbers 4, u. The corresponding homogeneous func-
tions F7(§) have been called generalized tensors (see Ref. [149]). In order to obtain

unitary representations we must metricize the function space. We do this by means
of an ansatz

x(g, 2 g12 % + 829)" (8122 + go2)* .

(f, 1) = [ M(x,y) f(%) hy) dx dy ,

where ¥ = %, + Xy, ¥ = ¥y + W, dx = dx,dx,, dv = dy,dy,.
The kernel M(x, y) which will be specified later as a function or a distribution
must be symmetric

M(x, y) = M(y, %) ,

positive definite, and its support must be the closure of a transitive set of pairs (x, ¥).
The first condition guarantees symmetry of the scalar products

(/Lh) = f),

the second condition means:

(f,f/)=0 implies f=0,

and the condition of “transitive support” has the following origin.
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Transforming the scalar product yields

(L f, T, h) = [ M(x, y) alg, %) a(g, y) f(&') h(y') dx dy
= [ M(x,y) alg, %) alg, v) f() h(y") J(x) J(y) dx' dy’ .

Invariance of the scalar product can therefore be achieved if the metric kernel satis-
fies the functional equation

M, y') = M(x, y) alg, ¥) «(g, y) J(x) J ().

As can be easily seen, the Jacobians are

J(x) = \g12x+g22 l4'

The first implication of the functional equation is that if (x, y) belongs to the support
of M, then so does the transformed pair (x’, y’). This is the first requirement of
transitivity (see Section 3.1.2 and the definition of transitive manifolds used there).
On the other hand, let two pairs (x, y) and (x, ¥) belong to the interior of the support
of M. If no element g € SL(2,C) exists such that

X%, y—>9,
g g
we can split M into
M=MuM,,

where we choose M, such that its support is the closure of the set (x’, ¥") which are
created by the pair (x, y), and M, is zero on the interior of the support of M,. The
representation splits correspondingly and is reducible. The second requirement of
transitivity which is necessary for the representation to be irreducible states that two
pairs (x, v), (x, ¥) can always be transformed into each other by a group element g.
Let us study sets of pairs which are transitive in this sense.

If (x, v) is in the set, we can always find an element g which transforms x to zero.
We can obviously characterize a transitive set by the pairs (0, y) it contains. This
subset of pairs (0, ¥) = (y) is invariant against transformations % € SL(2,C) which
have upper triangular form,

Ry k
kz(onkm)’ Ruke=1, Fky 0.
22

We find

with

— Fy
Y= Fiay + kog
This formula tells us that the set (y) either consists only of the element (0) or is equal
to the complete complex plane with exception of the point 0. In the first case the
transitive set contains the pairs (x, x), in the second case all pairs (¥, y), x = v.
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In the case of the pairs (x, x) we obtain the principal series of representations. We
choose the kernel M as a delta function (in the two-dimensional sense)

M(x,y) =0 (x—y),

which satisfies the requirements of symmetry and positive definiteness. The represen-
tation space consists of square integrable functions f(z)

(L) =[ /@) [2dz<oo.

From

@ =) =(x =) (g2 %+ ga2) ™ (12 ¥V + go2) ™"
follows

6(’5’“3"):8("“‘3’)yglzx‘{’gzz‘z[gmy‘f'gzz |2-

The functional equation on M implies then

1g12x+g22 |4 ‘ a(g, x) |2: 1
or
A+u+2=0.
We write then

1 i 1 i
A= tcbrg— 1, p=temtag—1,

where m and g are real.

Now we turn our attention to the compact subgroup SU(2) of SL(2,C). The
homogeneous function F (&) which corresponds to the vector of highest weight for any
unitary representation of SU(2) contained in the representation of SL(2,C) has
necessarily the form

e [E_z]wz (L4 g 5:2)*/
where 7, and #, are non-negative integers, y is arbitrary complex. This proves that
A—p=m+y)—(my+y)=n—n=—m

1s integer. The spin of the SU(2) multiplet is 1/, (#, + #,). It increases from the smal-
lest value k&,

1 . 1
kozjmm (nq —i—nz):-\zml

in integer steps, and each spin is just contained once in the infinite multiplet. These
arguments are not restricted to the principal series. If we use the parametrization
for 4 and g in terms of m and g, with g as an arbitrary complex number, m must
always be integer.

The case x + y leads to the supplementary series of representations. The func-
tional equation on M expresses that an arbitrary transformation changes the kernel
only by a factor. We call functions with this property of transformation “‘quasi-
invariant functions” (see Ref. [347]). We construct a set of “elementary” quasi-
invariants in the following way. We use spinor variables &, i and construct SL(2,C)
invariants out of them. There is only one,

51,}72_52171_
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We translate this quantity back into a function of Geltand variables and obtain

xX—9.

We can prove that the kernel M is a product of powers of elementary quasi-invariants
(in the general case we may have also delta functions instead of powers, as in the case
of the principal series):

Mx,y) = |x—y |4 (x_y)_B.

¥-y
Symmetry requires that 4 is real and B is purely imaginary. Further we have

M, y')
M@,y | €12 % + gz ! | 8129 + 82 | (

) @)
12 22 12 22
We compare this with the functional equation for M and obtain
A=A4+u+4=4i0+2, B=-—m.
Since B is imaginary and s is integer we find
B=m=0.
If we introduce ¢ = 70, we can write the kernel M finally
M(x,y) =|x — y|~2*°.
It can be shown that the condition of positive definiteness restricts the parameter o to
0<eo<2.

The arguments used here to derive unitary representations of the group SL(2,C)
have a form which enables us to generalize them in several directions. In the next
paragraph we will introduce spinor variables for the group SL(6,C). The construction
of representations belonging to the principal series or to the supplementary series can
again be based on an investigation of transitive pairs of variables (see Ref. [166]).

In a manner similar to that applied when building the metric kernel M out of
elementary quasi-invariants, we can find generalized vector coupling coefficients
which are needed to construct invariant forms for an arbitrary number # of represen-
tations. Doing this we must first study the transitive domains in the manifold of
n-tupels of variables, then find all elementary quasi-invariants, and finally solve a
power ansatz. If the domains have lower dimension than the maximal possible one,
we can substitute delta functions for some of the powers. This programme was per-
formed in Ref. [347].

We note finally that the transformation of the Gelfand variable z,

22—z,
g

can be rewritten in terms of matrices:

(10 o (Rake\ (10
Z_(\zl)' zg--l’az—(O ko) 2 1)
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In the product zg we split off a triangular matrix £. 2’ is then uniquely determined.
We can interpret the representations therefore as linear operators in Hilbert spaces
of functions over the right cosets of the subgroup K consisting of upper triangular
matrices &.

4.1.3 Unitary representations for SL(6,C)

In Section 1.2.1 we introduced tensor representations for the group SU(6) using
a vector space of homogeneous polynomials F(&) depending in variables A1 (&)
with degrees of homogeneity f,, £ =1, 2, ... 5. Similarly we obtain finite-dimen-
sional, non- umtary representatlons of SL(6, C) if we use the enlarged set of spinorial

variables A (}aﬁ (&) and A7/ )’ "(£), and take & as a matrix of SL(6,C). The homo-
geneities for A (&) and 4 (5) will be A, and u,, £ =1, 2, ... 5, respectively.

As for SL(2,C), we introduce in addition polynomials of homogeneity zero by
extracting powers

5

F(£) :H[A?k)—ka-l,ﬁwm-z,..,c (5)]1]3 I:A?k)—k+l,6—k+2,..,6 (5]#kf(2)-

k=1

We have to specify on which variables z the functions f depend.
We know that the variables A are in general not independent, e.g. the following
identity must hold:

3 23 1 31 2 __
Ats) Ay + Al Ay + Ay Ay = 0

However, we want f to depend only on independent variables z. Therefore we have
to eliminate the superficial variables. This can be done in the following manner.
We consider first non-degenerate representations, that means

| A |2+ | pe|> >0
forall k=1, 2, ... 5. We start with the variables Ay and introduce the notation

A% (&
26k=%*(i, k:1,2,..-,5.
NG

Next we consider 4,5, and eliminate all but A5, by means of identities such as the
one written above. Then we define

Akﬁ
sz_ (51)(), k=1,2,...,4-

Proceeding in this manner we get the independent variables

A;”’j;”ii )
qu=AP1§+]p L6 s 2<\p<6’1\<\q<P
(6—p 1) (€)

If (&) was a homogeneous polynomial, we obtain in this manner certain rational
functions f(z).
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It can be proved by simple algebraic calculation that the variables z fit into a

lower triangular matrix
1

29y 1
%31 %3y 1
g1 %o Zgz 1
%51 %52 5y Zpa 1
Ze1 %62 Zg3 Zea Zes 1
which can be obtained from the matrix & by splitting an upper triangular matrix %2 €
SL(6,C):

The matrix % is uniquely determined.
If we transform the matrix &,

&=~£g,
this induces a transformation of the matrix z of the following kind
kzg=Fk 7 or zg=(k1hk)Z.

We have to multiply z by g on the right and split a triangular matrix 2" on the left,
k' = k1 k,. We recognize that the factor & of £ may be chosen arbitrarily without
changing the functions f(z).

The case of degenerate representations is a bit more complicated. Let

ij'fcs!2+|ﬂk‘512>ol 822,3:-":7:
whereas
| A |2+ || =0
for all other subscripts 2. We bring the subscripts k, into decreasing order. We divide
the matrix & into blocks

"y  Hg Uz ",

et e, ot e,

-

[ et
s 3
[

S
@
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of length #n,, 7y, ... n

rs
[l

#, =6,

i
i=1

in such a manner that the subscripts %, are given by

v
k, = E n, or R, — ko, =n,.
t=s

It can again be shown that the elimination of superficial variables can be performed
in such a way that variables z,, result which fit into a lower triangular matrix z of
the same block structure as has been introduced for the matrix & with unit matrices
in the diagonal blocks. We can again split

E=Fkz

with the upper triangular matrix % with arbitrary blocks on the diagonal. This split-
ting 1s unique. The formulae connecting z,, and the variables 4 can be found in Ref.
[344].

In any case we have obtained rational functions f(z) where z may represent all
the matrix elements of a lower triangular matrix. These functions transform as

T, f(2) = (2, 8) f(2) -
The multiplier is obviously given by

5 [A6~k+1,6——k+2,.”,ﬁ(5/) }lk[A?k;k+l’6"k+2"”’ﬁ(§’) 2E

afz, g) = H

k=

Aﬁwk-i-l 6—k+2 G(E) Aﬁk;k+1,ﬁ—k+2,v..,6(£)

(k)
According to the theory of Gelfand and Neumark we generalize the functions f(z)
and allow A, and y, to take arbitrary complex values. In order to metricize the resul-
ting space of functions, we make an ansatz

1) = [ M 9) [6) hiy) dx dy,

where dx is the product of all differential of the real and imaginary parts of the
matrix elements of x. The kernel M(x, y) = 6 (x — ) (in the multidimensional sense)
leads to the principal series of representations. Kernels corresponding to other transi-
tive domains of the manifold of matrix pairs (x, v) give rise to different supplementary
series (compare Ref. [166]). The homogeneities 4, and y, are submitted to certain
conditions which guarantee the invariance of the scalar product (consequently the
unitarity of the representation). For the principal series we find

1 z

1
/Ilks = *? (ms — My ) 2 (Qs - Qsﬁl) - _2_ (%S * ns“l) ’

““N

1 ' 1
luks = +7 (ms — m3w1) 5 (Qs - Qs—l) T2 (%s + ns—l) .

no

We have used here the same symbols %, and #», as above. m, are integer, g, are real
We may normalize m, and g, to zero.
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The order of the invariants » and p and the parameters »# characterizing the
degeneracy, is unessential. Indeed, the following theorem of equivalence can be
proved (see Ref. [166]):

Let a representation be given by m_, o, 7, s = 1, 2, ... . Any permutation of the
subscripts s leads to an equivalent representation.

If we apply this theorem to a representation of SL(2,C) we recognize that the
pairs m, o and -m, -p belong to equivalent representations??),

Another corollary says that we can always bring the parameters m into a decrea-
sing order,

m, =mg, if s<s", mg=0.

As in the case of SL(2,C), the integers m are intimately connected with the repre-
sentations of the compact subgroup SU(6) which are contained in the SL(6,C) re-
presentation. The following content theorem holds, the proof of which is again con-
tained in Ref. [166], (we give it only for the non-degenerate case):

We assume that the m, are ordered in a decreasing sequence, 7, = 0. We construct
by means of these parameters m, the weight

5
M=) mN,
E=1

as In Section 1.2.1. If this weight is ¢g-fold degenerate in a given representation of
SU(6) (¢ = 0 included), this representation of SU(6) is contained in the SL(6,C)
representation ¢ times.

As a corollary we find that the SU(6) representation, the highest weight of which
is just M, is contained in the SL(6,C) representation exactly once. SU(6) represen-
tations with highest weight lower than M cannot be contained. We can therefore
call M the “lowest highest weight” of all SU(6) representations contained in the
SL(6,C) representation. For the degenerate case see Ref. [166].

4.2 Physical applications of the infinite multiplet models
4.2.1 Quantized global fields and the spin-statistics theorem

As usual we apply the symmetry of strong interaction to the scattering matrix
and not to a Lagrangian of any field theory whatsoever. The scattering matrix is
the operator which transforms scattering states of the “in’’-type into scattering states
of the “out”-type. Within a quantized field theory these in- and out-states can be
described by asymptotic fields which behave as free fields.

In Section 4.1.1 we introduced fields @(x, z) which can be interpreted as “global
free fields” in the sense that the different SU(6) multiplets are described globally by
one unitary representation of the group SL(6,C). The argument x denotes the point
in Minkowski space, the variable z is Gelfand’s SL(6,C) variable, and the orbital spin
1s assumed to be zero. In spite of the difficulties involved in a theory of interacting
quantized fields, the properties of such quantized global free fields have recently

22) In this case m, = g, = 0, my = m, g, = p. After a transposition and new normalization
m) = o, = 0 we obtain the result quoted.
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attracted some interest. Let us discuss them briefly. We start with the classical
Lagrangian. Invariance under the group G = L x[SL(6,C) ® 7,) requires that the
Lagrangian has the following form

0 = 0
C— f {W D(x, 2) 5o B, 2) — 12 B(x, ) lx, zg)} M(z,, 2,) dz, dz, d%,

where M is the metric defining the scalar product in the representation space for
SL(6,C) (see Section 4.1.2 and 4.1.3). Invariance with respect to the orbital group
forces us to contract the derivatives d/dx, with themselves; this makes the Lagran-
gian unique. Only when the fields bear an additional orbital spin is it possible to
construct a Lagrangian of first order in the derivatives. The Hamiltonian is similarly

H flf)’v’o G- ‘QD 4 N NP + pt @ @} M2y, 2,) dzy dzy dPx .

If we require in addition invariance of the model against parity reflections, we
must distinguish between the following two cases. A parity transformation may map
the SL(6,C) representation onto itself or onto a different inequivalent representation
(see the discussion in Section 4.2.3). In the former case the expressions for the La-
grangian and Hamiltonian given above are already invariant, since the parity trans-
formation is represented by a unitary operator. In the second case we must introduce
two fields which are parity transforms of each other

D, Py, Dy=PP,.
The Lagrangian is additive in both fields

L=L(D) + L(Dy),
H= HD,) + HD,).

Now we quantize these fields such that a local field theory results. By this we mean:
the Lagrangian and Hamiltonian are integrals (over four, respectively three, dimen-
sions) of densities which themselves are normal products of field operators yp(x, 2),
their adjoints, or their parity transforms. These operators belong to representations
of the group G of the same type as the classical fields @(x, z).

Using arguments like Pauli’s (see Ref. [306]) we can deduce from the form of the
Hamiltonian that the quantized fields are boson fields. The same result can be ob-
tained introducing the operator fields in WEINBERG's manner (Ref. [389], see also
Ref. [131]), which we sketch briefly.

We consider the physical particles in states | », @, p> (this notation has been intro-
duced in Section 4.1.1) and define the creation and annihilation operators for such
states. They commute or anticommute in the canonical manner. Then we go over to
annihilation operators for states in the product representation | p> |7, », > and
apply a Fourier transformation. The result is the positive frequency part of a field
operator, %' +(x, z). In the same way we introduce a positive frequency operator
[w=(x, 2)]T which annihilates antiparticles.
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The antiparticles must necessarily belong to the conjugate representation of
SL(6,C). Taking the adjoint of the latter operator and adding both fields we obtain
the local field

p(x, 2) = E9pN(x, 2) + nypO(x, 2),

with two arbitrary complex parameters &, 7. We note the formula

[P, 20), (0, 20) )] = 54D (v — y) MYz, 23) ,

where M -1 is an “inverse’’ of the kernel M. Since this field operator y satisfies the
Klein-Gordon equation, the positive and negative frequency parts both transform
as irreducible representations of the group G. In the case of two fields @,, @, we may
consider these as dynamically independent. We need then two sorts of particles and
antiparticles.

The fact that the Hamiltonian is diagonal in the Fock space with positive eigen-
values, forces us to substitute the adjoint field operator 7 for the conjugate classical
field. This is not trivial. Indeed, we could think that ¢ is substituted for the parity
transformed conjugate field P @, see Ref. [151] which contains the same SU(6) multi-

plets as @. The Hamiltonian would take the form

H = f@p %, &) [—xo 4+ A4 —I—,u]y;(x, 2a) P Mz, o) dzy deg d%%:,

with P as a number matrix. States from SU(6) multiplets with different eigenparities
would give positive as well as negative contributions to the energy. We shall see in
Section 4.2.3 that such SU(6) representations exist always in one SL(6,C) representa-
tion. This argument 1ules out this choice for p'. The Lagrangian is therefore of the

following operator form:
E*‘/ﬁ b, 2 R (%, 25) M (2, 2,) dzy dz, d%x:
B -J L 0/"7;,5 Oxu M PAX, 29 1 %2 1 d&g :

In the case of two independent fields, the same argument together with the require-
ment that the Hamiltonian is diagonal in Fock space yields as for unquantized fields

L= Lly,) + Lls) -

To assure that

[H(x), Hy)]-=0
for space-like distances x—y, where H(x) is the Hamiltonian density, we require
['l/)(x! 2’1), wT(y: zz)]i =0 ’
[zpa(x, 21), 1/’1(% 22)]i =0, a=1,2
for space-like distances. The brackets on the left-hand side yield
+ i MMz, 2) [| £ 2AW (x —y) £ [ 5 PAD (y — #)]

(respectively M 1), Only for | £ |2 = | 5 |2 and the lower sign can our requirements be
satisfied. This result was first established in Ref. [132].
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For fields with half-integral orbital spin we can similarly assert that we must
quantize them like fermions. It is, however, in no way possible to obtain a fermion
field which contains a 56-plet of SU(6) with half-integral total spin.

It seems necessary to add a remark about the fields introduced by GELFAND and
JaGLowM (see the presentation given in Ref. [285], Chapter IV ; the references to the
original literature can also be found there). These authors use unitary and non-unitary
infinite dimensional representations of SL(2,C), which group is identified with the
homogeneous Lorentz group. The theory is based on a covariant field equation of
first order in the derivatives, a generalization of the Dirac equation. Instead of
matrices y, which couple the two-dimensional Weyl spinors, they use infinite-dimen-
sional matrices coupling sets of infinite representations of the homogeneous Lorentz
group. A generalization of this approach to groups SL(6,C) or SU(6,6) would bring
in the 72 or 143 momenta.

The Gelfand-Jaglom fields themselves are not required to satisfy the Klein-
Gordon equation: they split into one or more infinite sequences of irreducible repre-
sentations of the Poincaré group. The masses of these irreducible components depend
on the spin, however, in a completely uninteresting manner; the masses decrease
monotonically for increasing spin and accumulate at zero. Since there is no direct
connection between the Gelfand- Jaglom fields and the fields introduced by us above
in particular the results concerning the connection between spin and statistics cannot
be transferred from one model to the other.

The conclusion we draw from this discussion, namely that in a quantized theory
of global fields there is no room for a fermion field with half-integral spin fitting into
a 56-plet of SU(6), can be interpreted such that only the familiar fields with one
SU(6) multiplet in them have a meaning as asymptotic fields which can be submitted
to second quantization. The non-compact symmetry SL(6,C) is used only to group
these fields together and to restrict the form of the scattering matrix.

We should always keep in mind that even if we start from a local, quantized theory
of global interacting fields, putting the baryons say in a 189-plet with orbital spin 1/,
we could expect that the S-matrix comes out unitary and crossing symmetric in the
unitary basis used for the asymptotic fields. If we translate this matrix into the spin-
orial basis, for which the Mandelstam postulates are usually formulated, at least
crossing symmetry will be lost. The latter point will be discussed in Section 4.2.7.

4.2.2 The assignment of particles to states of a representation of SL(6,C)

The problem how to assign the known resonances to states of a unitary represen-
tation of SL(6,C) involves two separate tasks:

i) Let an SU(6) multiplet be given. How can we decide into which representation
of SL(6,C) we must embed it ? A minor restriction on the set of possible candidates is
due to the postulate that parity acts as a unitary operator in the irreducible repre-
sentation space for one representation of SL(6,C). We discuss this requirement in
Section 4.2.3. Out of the continously infinite number of representations a still infinite
subset is left by the parity postulate. The general answer which representation to
choose out of this infinite subset is not known. The familiar attitude in such cases
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is to try starting with the simplest representations and look what the physical pre-
dictions are,

ii) Assume the representation of SL(6,C) to be known. How can the Gelfand-Neu
mark function be constructed which corresponds to a certain state of a physical
particle ? This technical problem has a simple solution (see Ref. [346]). We start in
the rest system of the particle and construct the homogeneous function (see Section
4.1.3) corresponding to the particular component of the SU(6) tensor. We translate
this homogeneous function into a Gelfand-Neumark function in the manner discussed
in Section 4.1.3. Finally, we apply the pure Lorentz transformation which brings
the particle into the state of motion desired. As an illustration, we discuss the most
important examples: the baryons 56+ and the mesons 35-.

The baryon multiplet 56 can be considered to lie in all those representations of
SL(6,C) for which the invariants m, define a weight of the representation 56 of SU(6)
(see the theorem stated at the end of Section 4.1.3; for degenerate representations
we have to account for some modifications). The invariants g, can be chosen arbi-
trarily, but as we shall see in the discussion of the parity requirement it is natural
to take them equal to zero. As we shall recognize later, one of the most serious prob-
lems in the infinite multiplet models is to assign all the infinite states of the multi-
plets to known resonances and particles. To reduce this problem we consider primarily
representations with maximal possible degeneracy. They contain the smallest but
still an infinite number of SU(6) multiplets. For the baryons we may choose the
degeneracy (see Section 4.1.3)

This implies that the homogeneous functions are constructed only by means of the
quantities

A(8) Ay () -
As a basis for the baryon tensor at rest we may then take (see Refs. [148, 346])

-9/2

Fhdeds = AG3(E) A54(8) A58 [(;Aﬁ)(f) Aﬁ,(?)}

which corresponds to
m=0, my=—3, 0,=0,=0.

This representation starts with a multiplet 56+, the next representations are 700~ and
4536+. Each representation appears just once. The parity assignments will turn out
in the next paragraph.

The case of the mesons is a bit more intricate. Since we want to couple the mesons
to the baryons, the degeneracy of the mesons cannot be chosen freely but must be
ny =1, ny=4, ng=1 or even a refinement thereof, which means: #, is split into
further parts. The proof for this statement can be found in the results of Refs. [346,

347). Let us take n, = 4. We have then to deal with variables 4,(&), 4(1)(&), 45)(§),

A5(&). With these variables we may obtain different representations:
1) We take the invariants to be

my=0, my=—1, my=—2, py=0,=p3=0.
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This representation belongs to the principal series and starts with the representation
35-. It does not contain a singlet. The basis for the meson tensor at rest is

6 6

F5(E) = 4,6 47¢) [gac(é) Ac@}_ [ PG AD@)]' ,
1

A4 = A8, A48) =5 eup,p,.. 5,455 5E) -

2) We take the invariants as
my=myg=my=0, 0,=0,=03=0.

This representation still belongs to the principal series.

3) Let us now introduce a representation of the supplementary series, which has the
same degeneracy as the representations discussed before, namely n, = 1, n, = 4,
ng = 1. With the invariants

my=myg=myg=0, 0,=0, go=p;—ps=01, 0<o<1,

the content concerning SU(6) multiplets is the same as for the representation (2).
There is one singlet (singlets are always uniquely determined), two 35-plets of oppo-
site parity, etc.

The metric in the space of the Gelfand-Neumark functions of representation (3)
1s defined as

712 = [ 7(22) F(za) M2y, 2) A2y dz,
with
Mz, 25) = | ww |59,

(21, 23) = (21)61 — (22)e +k22'[(21)6k — (22)64) (Z1)k1 »

v(2y, 25) = u(2g, 73) .

The scalar product integral has to be regularized obviously. This is the reason why
GELFAND and NEUMARK (Ref. [166]) give these degenerate supplementary series only
in such a form that the blocks #, = 1 are grouped together. In that case the scalar
product can be defined without regularization.

Let us give the tensor basis for the 35-mesons in the rest system; we obtain

6 -
" . 448 458 = 1/6 T Ac(6) Ac(B A
(£)4 = 7 NG 6 . )
V2 NE) X Ap(®) 458

- 6 -
AME APE) —1/6 X A°F) A%E o]

{
T

5 AP AP(E

et \S
L=1
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where the (+)-sign multiplet has the same parity eigenvalue as the singlet. The
denominators N (&) are defined as

N(S) = [%‘AC(E) AC(E)'I&‘Z [EAD(E) AD(S]{,,Z
in case of representation (2), and

N(E) = [ Z'Ac®) AB ™o [ JAP@) 42
¢ D

in case of representation (3).
4.2.3 Parity

We adjoin the parity operator to the algebra of the group SL(6,C) by requiring
that the parity operator commutes with the generators of the maximal compact sub-

group
[P,shJo=0, 4,7=1,2,3,k=0,1,...8,

[P,s]_=0,k=12..8.

Since the non-compact generators involve a polar vector, the momentum, we require
that parity anticommutes with these generators

[P,shij],=0, j=1,2,3,k=0,1,...8,
[P,sf], =0, k=1,2,...8.

Let D(S) be a representation for the matrix S e SL(6,C). We define R =
D[(S")-1] as the conjugate contragredient representation. It can be shown quite
easily (see Ref. [345]) that P maps the representation D on the representation D’:

D'(S) = P D(S) P,

Let us consider then an infinite multiplet at rest. Since P has been defined such
that it commutes with the generators of SU(6), each SU(6) multiplet can be chosen
as to possess an intrinsic parity eigenvalue. The parity operation maps then the SU(6)
multiplets of D one to one on the multiplets of D’. If D and D’ were inequivalent we
would have to put both representations together in order to be able to define the
parity operation as a linear operator in one space. The physical multiplets would then
be linear combinations of multiplets of D and D’: each multiplet would appear pair-
wise with opposite parity eigenvalues. Such pairs have not been observed in nature.
We require therefore that D and D’ are equivalent. P can then be chosen as a unitary
operator in the irreducible representation space of D. As a corollary of the definition
of the parity operation, we may deduce that each pair of states which can be connec-
ted by a non-vanishing matrix element of one of the non-compact generators, must
possess different eigenparities. If we imagine a network formed out of vertices and
lines connecting these, where the vertices are SU(6) multiplets of one infinite repre-
sentation of SL(6,C) and the lines represent nonvanishing matrix elements of non-
compact generators, we recognize that this net contains only loops with an even
number of vertices.
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We consider the following example which corresponds to the meson representa-
tions (2) and (3):

1%t generation, 2" generation, 3" generation

There is no direct line between 1+ and 35+ and between 35+ and 405+ due to the
parity postulate. We observe that the multiplets are ordered into “generations” in
anatural manner. Since the role of a positive parity singlet is quite obscure (vacuum?),
we may reverse all the signs of the parity eigenvalues. The 35—-mesons belong then
to the third generation together with a 405-- and 189—-plet, and the 35+-plet plays a
certain key role.

The mathematical solution of the requirement imposed on the representations
D and D’ has been discussed in Ref. [345]. The unitary operator has been explicitly
constructed there. The result may be formulated as follows:

Let m,, o,, and #n, fix the unitary representation D?2). D is equivalent to D’ if

and only if a permutation s - z(s) exists, for all s = 1, 2, ... 7, such that
mg = + M, (S
Os = = Qays)»

Ny =+ Ny -

4.2.4 Masses and general properties of vertices

In a systematic study we could proceed discussing #-point functions starting with
n = 2 and letting » increase. But for such a presentation the information available
today is still too limited.

For n = 2 we deal with Green’s functions which if submitted to the strong sym-
metry depend only on the degenerate mass. Mass breaking can be introduced with
the help of a perturbative ansatz of the kind

A m* = Gell-Mann-Okubo term + o W, W* .
where

1 vAG t
VV/‘: = 3 8,u ?vslo',()'

%) The result is even true for non-unitary representations, i.e. general complex parameters g.
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Since the momentum commutes with the generators of SL(6,C) this ansatz breaks
the symmetry in a relativistically invariant manner. We obtain an additive term to
the Gell-Mann-Okubo relation of the form

L aMES(S+1)

which has first been proposed by Pais for static SU(6) symmetry (see Section 1.4.2).
In the perturbative approach we may certainly find a more general ansatz. However,
no systematic investigation has been performed until now. The validity of the per-
turbative treatment is necessarily restricted to the lowest SU(6) multiplets.

In the case of three-point functions, we are faced with all the technical and inter-
pretational difficulties of the model. We know that the collinear subgroup symmetry
holds. The question arises whether there are additional predictions beyond those of
the collinear subgroup. There are certainly those new results which involve different
SU(6) multiplets from one ladder (predictions of second kind). They will be discussed
in Section 4.2.6. But restrictions on the S-matrix might also occur which involve
only one SU(6) multiplet from each ladder and which are not obtainable with the
collinear subgroup (predictions of the first kind). Whether such predictions are possi-
ble depends on the number of invariant functions which can be constructed out of
the particular representations involved. Two extreme cases are known: the baryon-
meson vertex with the representations discussed in Section 4.2.2 which allow exactly
one vertex function, and the meson-meson-meson vertex with the representation (1)
of Section 4.2.2 which possesses a continuous set of invariants (these have been given
in Ref. [347]). In the case of a four-point function we meet the continuous case al-
ways. Such infinite numbers of invariants must even be considered as natural for
infinite dimensional unitary representations. A finite set of invariants can be achieved
only if the representations used are sufficiently degenerate. We know that three
representations of SL(2,C) always couple uniquely, if at all. Maximally degenerate
representations (that means » = 2, #n; + #, = 6) bear an intimate resemblance to
representations of SL(2,C). The baryons have been chosen maximally degenerate.
The mesons, however, are not degenerate enough to couple to themselves with a dis-
crete number of invariants. We note that at present it is still unknown whether conti-
nuous sets of invariants give any predictions of both kinds beyond those of the colli-
near subgroup. We do not go into the details of the construction of the invariant
vertices. A principal remark about the technique in the Gelfand-Neumark scheme was
made in Section 4.1.2; a more general discussion of the mathematical problem can be
found in Refs. [347, 348].

4.2.5 Predictions of the first kind

FronspAL (see Ref. [150]) has discussed the vertex B(56) B(56) M (35) with the
particular meson representation he uses (representation (3) in Section 4.2.2). Besides
the results of the collinear subgroup, which for the mesonic form factors of the nucleon

octet can be written as % 2 = B
A =—-"dr—--a
38 B gt
D _ F D
D. F._ .S _2.9.
'Oy ., =3:2:1,
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(the notations are the same as in Section 1.5.2, y and M are meson mass and baryon
mass respectively) and the prediction of the static subgroup SU(6) in the annihilation
channel at threshold u? = 4 M2,
D
= (.

(see Ref. [348]), he obtains one additional number in the static limit where the mass
of the outgoing baryon M’ is of the magnitude M + u:

aPla’ = 9/5.
Due to the collinear symmetry this corresponds to
aljal = —3/25.

These figures are independent of the Casimir invariant ¢ which was left open in
Section 4.2.2. No functional dependences on u/M, nor the interesting number

F/&lF

am c

at u?=
are known up to now??),

The fact that the BBM vertex is unique could lead us to the suggestion that the
electromagnetic current is also uniquely determined. However, this is not true. Me-
sons and photons are treated quite differently in this model with infinite multiplets.
Mesons fit into a representation which is unitary and infinite-dimensional; photons
are treated in the familiar manner as belonging to a non-unitary four-vector repre-
sentation which is in addition submitted to a subsidiary condition.

The electromagnetic current of baryons has been dealt with in Refs. [93, 257].
The current is composed of different contributions:

i) The convection current is of the structure
/56,0, o, p) L

L (s 15
\ 7[5+ 5 )| 0
It has first been investigated in Ref. [93]. It gives rise to a charge form factor of the

Sachs type GT'; all the other form factors G2, GE, G2 vanish identically.

i) The magnetization current which is constructed as the divergence of the magne-
/56, ', p'

tization density
1
\ (HW3+V ;4,1/,)56C{)¢>

Its contribution to the form factors is (see Ref. [257])

D.CF . 50¢ 1 ¢t 2
GG G == et g s L

111) Contributions which are either of higher order in the momentum or the gene-
rators of the group SL(6,C). In particular, we can introduce arbitrary polynomials
in the Lorentz scalar

S @+ D) (' — £,

) Fronsdal’s method did not yet allow him to derive any functional dependences on the masses.
In principle, the expressions given in Ref. [348] contain the complete information. A many-
dimensional integral has still to be evaluated. The solution for this technical problem has been
found recently, Ref. [257], so all the form factors will soon be known.
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which are submitted to the only condition that the SU(3) indices build up a charge
operator.

In any case the absolute value of the magnetic moments is free even if we only
allow for contributions of type i) and ii).

A similar treatment applies to the semileptonic interactions. In that case, the
weakly interacting currents can be composed of different expectation values of
SL(6,C) operators, e.g.:

vector current, A1 = 1,

(' +Plu 1 - s
—pffM—’“‘ =5 (s3 + 783)
and
' =P 1 -
- 2 M T(Siw,l—{_zsiwz)’
axial vector current, A7 =1,
i?zaé’l& S (P isd)
and
('+p) 1 ”
—Pz—ﬂf 5 (Su,1+ 15,0) € o

4.2.6 Predictions of the second kind

Relations which connect different SU(6) multiplets contained in one infinite
representation make sense only if the existence of such multiplets is proved in nature.
So far no example for a recurrence of this type is observed. The multiplets 405+ and
189+ have been investigated quite thoroughly, but no candidate which might belong
to a 27-plet (see Section 1.3.4) has yet been found. For baryons the situation is at least
as obscure as it is for mesons.

Up to now only model calculations have been performed for the subgroup SL(2,C)
® SU(3) of SL(6,C), Ref. [349]. For subgroups of compact symmetry groups, it is
well known that the predictions of the subgroups are involved in the predictions of
the enclosing group. For non-compact subgroups of non-compact symmetry groups
the situation is not so simple. The reduction of a unitary representation of SL(6,C),
into representations of SL(2,C) ® SU(3) is a mathematically non-trivial problem.
In order to get an idea of the problem we make use of the notion of characters which
has been developed for the unitary representations of groups SL(%,C) in Gelfand’s
book (Ref. [166], page 93-123).

Let g be an element of SI.(2,C) ® SU(3), g=a-u, ae SL(2,C), we SU(3). The
trace Sms o, (g) for a unitary representation of SL(6,C), defined by the invariants
m, and o, and the degeneracy n,, can be decomposed in the manner?23)

+00 %
Smyeyny 8) = [ AR 3 XTK(R, M, &y, A | m, 0,) Suy,rl@) 23,0,
_5 M>=0 2,2,

%) This decomposition has not been performed explicitly. So the following facts are unproved:
that we need only the principal series of representations of SL(2,C) and that the kernel K
exists at all as a certain distribution. It is straightforward to include also the supplementary
series in this decomposition, if this would turn out to be necessary.
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Sy gr(a) is the corresponding trace for a representation of SL(2,C) defined by the
invariants M and R, g, ; (#) is the character of a representation of SU(3). Since the
functions S and y are known, the kernel K can in principle be determined. We expect
that the support of this kernel with respect to the argument R includes at least one
interval.

Take a certain SU(6) multiplet out of the infinite representation of SL(6,C), and
decompose it into irreducible representations of SU(2) ® SU(3). Each one of the
latter representations then possesses, in general, projections onto a continuous set of
irreducible representations of SL(2,C) ® SU(3). On the other hand, states of one
irreducible representation of SL(2,C) ® SU(3) lie in general outside the Hilbert space
of the representation of SL(6,C), their norm is infinite. This implies that it makes no
sense to ascribe physical particles simultaneously to states of unitary irreducible
representations of SL(6,C) and SL(2,C) ® SU(3). It is in the scope of this article
to believe that SL(6,C) is the correct group to generate the infinite multiplets. Never-
theless, an investigation of the subgroup can help us to understand better the features
of models with infinite multiplets and, if it turns out that the subgroup does not
generate the sequence of physical resonances, supports our belief that the group
SL(6,C) is more suitable.

Infinite representations of SL(2,C) containing integral spins can be classified into
n-ladders with intrinsic parity (— 1)%+! and ¢-ladders with intrinsic parity (— 1)%.
The notation %, was defined in Section 4.1.2 as the lowest spin in the ladder. Since
we are interested in the decay

g-—>T+ 7

we couple the g-ladder to two m-ladders taking ky(w) = 0. We find that a final state
consisting of two O—-particles has a definite signature (— 1)%(®), From this result (see
Ref. (349]) we deduce that the physical 1~ and 2+ octets do not fit into one g-ladder,
since in each octet at least one component decays strongly into two pseudoscalar
mesons.

Another result is of more fundamental importance. If we compute the partial
widths for the decays of hypothetical 2+ and 0+ mesons into two pseudoscalar mesons,
which is possible if we put them together in a o-ladder with k£, = 0, we obtain a ratio
(see Ref. [349])

I'or o0-10-

. = 0(10-3).
TR

We now introduce some convenient notations. We call the invariant functions
of the symmetry group G [or of the subgroup containing only SL(2,C)]D;, and
assume that only a finite number of them exists. The invariant functions of the
inhomogeneous Lorentz group and SU(3) symmetry are denoted as A;. Then the
implications of the bigger symmetry are relations

4= K D,

where the K;; will be referred to as kinematical functions. The functions K;; are the
quantities of main interest.
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In the case of the o mm-vertex, there is only one coupling constant D. The variation
of the functions K with the invariant velocity v,

B 4 M(m)2 7172
0= (1= i |
1s shown in the following figure:
KA
U+
2+
0 Vv

Qualitative behaviour of the kinematical functions K for the decay ¢ - 7 + .
The kinematic functions take account of the threshold behaviour:

K0+ﬁo—+0— = 0(1) ’

Kyt o 0o = 0(v%),

for v = 0.

The decrease of the kinematical functions for increasing mass M (o) is due to the fact
that for increasing mass M(g) final states with higher and higher orbital angular
momentum become accessible. The number of possible spins which can couple with
this orbital angular momentum to the fixed total angular momentum grows corres-
pondingly. The partial width for one final channel (in our case two spin-0 particles)
must go down. Explicit asymptotic expansions for some kinematic functions are
given in Ref. [349].

The K-function for spin-2 decay is damped away before it can reach the value of
the kinematic function for spin-O decay. This explains the small ratio for the decay
widths. Even if we break the symmetry and allow the masses of the spin-0 and spin-2
particles to vary independently of each other as arguments of the kinematic func-
tions and the phase space factors up to several GeV, the order of this ratio does not
change much (see Ref. [349] for exact numbers).

4.2.7 Unitarity, crossing symmetry and the substitution rule

Among the reasons to study such models with infinite multiplets was the desire
to gain a deeper understanding of the unitarity problem which arose in the models
discussed in Section 3. We remind the reader that the collinear and static subgroup
symmetries cannot yet run into conflict with unitarity. They require only that the
particles must fit into SU(6) multiplets but make no definite statement whether in a
completeness sum we have to sum over one or more such SU(6) multiplets. The theo-
ries dealt with in Section 3 violate unitarity in principle. This can be understood to
be a consequence of summing only over one SU(6) multiplet in the completeness
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relation. In a certain manner the unphysical momenta may represent the higher SU(6)
multiplets which are cut off by the subsidiary conditions26). On the other hand, we
know from the discussion of this section that an infinite number of SU(6) multiplets
suitably chosen is sufficient to guarantee completeness. The natural question to ask
is how the higher multiplets are weighted in the completeness sum if this is taken
between two channels, and whether there is any meaning in a statement that already
few SU(6) multiplets are sufficient to conserve probability in a “good’” approximation.
The answer we will give makes sense certainly only in so far as we consider the theo-
ries of Section 4 to be reasonable.

Generalizing the results obtained for SL(2,C) (see Section 4.2.6), which could be
explained in simple physical terms of centnfugal barriers and increase of number of
open channels, we suggest:

If a channel is open to several SU(6) multiplets of one infinite representation of
SL(6,C), is is mainly coupled to the lowest multiplet! We note, however, that the
meaning of “lowest” is unclear in this context. It could mean lowest in the sense of
“highest weight”” but also in the sense of generations which have been introduced
in Section 4.2.3. Both notions coincide for the group SL(2,C). If this suggestion
turns out to be correct in any-well-defined version, it implies that in the completeness
sum only a few “low” multiplets must be taken into account. This would not only
justify the theories of Section 3 physically, but also bear some resemblance to the
notion “saturation” used in the current algebra approach.

Another implication of fundamental importance would be that the higher rungs
will be unobservable in the near future.

The unitarity problem was the crucial defect of the models treated in Section 3.
The critical problem involved in the models of Section 4 is connected with the sub-
stitution rule and crossing symmetry.

Let us consider a process described by a finite number of invariant functions D,.
The symmetry would yield predictions for the Mandelstam amplitudes 4, invariant
with respect to the Poincaré group and unitary symmetry SU(3)

"4122K1J'DJ’ 7::1,2,...,%, ?':1’2"
1

The structure of the functions D; is undetermined by the symmetry. In a local field
theory of global interacting fields one could perhaps make them satisfy the substitu-
tion rule, but we may neglect this. Eliminating them we obtain #-m identities

Zz”Ai:O, l1=1,2,...,n—m.

In the simplest case of only one D-function we obtain
4, K, — K, A,=0

for any pair ¢, j. Since the K-functions are analytic functions prescribed by the theory
of representations for the group G and P ® SU(3), these relations enable us to study

%) The idea that the 72 (respectively 143) momenta are to be interpreted as “‘internal”’ and
generate higher SU(6) multiplets if added to a basic multiplet, allows us to connect the models
with finite and infinite multiplets in an intuitive manner. This idea is perhaps also mathe-
matically formalizable,
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analytic properties of the functions A4 ; in particular, whether they satisfy postulates
like crossing symmetry. As has been inspected from definite examples (say those of
Ref. [349]), these identities for the amplitudes 4 inhibit them from showing crossing
symmetry and obeying the substitution rule, in contradiction to the postulates of
familiar S-matrix theories.

Such a difficulty could have been suspected from a study of the little groups. For
the inhomogeneous Lorentz group these little groups are

SU(2) su(, 1) SU(2)
for p2=m2>0, p°>0, for 2 —=m? <0, for $2=m?>0, p* <0,

For the same situations we would expect particle classification in a relativistic SU(6)
model of the kind
SU(6) SU(3, 3) SU(6).

Indeed, the models with subsidiary conditions do give these little groups if the orbits
are chosen appropriately. In the models with infinite multiplets we have instead

SU(2) @ SL(6, C) SU(1, 1) @ SL(6, C) SU(2) ® SL(6, C).

The factors SU(2) and SU(1,1) can be dropped since we have limited our investigations
to representations with orbital spin zero. Within the representation of SL(6,C) we
ascribe particles to boosted SU(6) multiplets. These boosters can be continued ana-
lytically from positive energy to negative energy, but they remain inside SL(6,C) and
are therefore represented by unitary operators. This implies that the algebra which
transforms the states of a fixed SU(6) multiplet into themselves is always isomorphic
to an SU(6) algebra. The algebra classifying the SU(6) multiplets is therefore SU(6)
in all three cases. ,

This difference of analytic behaviour in the mass between the description of
particles in terms of spinorial representations and unitary representations of the non-
compact group reflects itself in the analytic properties of the kinematic functions.

Further references: [206, 372].

PART II

APPLICATIONS

5. Applications of the static, collinear and coplanar subgroup symmetries

5.1 General remarks
5.1.1 Introduction

In the following sections we want to compare the models described in Part I with
experiment. We shall be mainly concerned with the subgroup chains described in
Section 2.3, namely the chain S[U(6) ® U(6)] for particles at rest, SU(6) for collinear
processes, and S[U(3) ® U(3)] for coplanar processes and the chain SU(6) (rest) O
S[U3) ® U(3)] (collinear) O SU(3) (coplanar). The second chain consists of subgroups
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of the first chain. As was pointed out in Section 3.2, the predictions of these chains
are the same as those obtained from the inhomogeneous groups SU(6,6) and SL(6,C)
with supplementary conditions??). One should also mention that SU(6,6) or SL(6,C)
symmetries broken with kinetic spurions yield the same results.

All these models can of course have only approximate validity. As is already the
case for the SU(3) symmetry, mass splitting may play an important role. The under-
lying hope is that a transition matrix or a form factor may be divided into two factors,
a dynamical one (coupling constants, etc.) where the symmetry holds, and a kine-
matical (phase space, etc.) where the true masses are used. Such a division is of
course ambiguous, and it is an open problem to find a consistent prescription which
agrees with experiment. For example, the symmetry relates the decays V' — V' P and
V' = PP, where V is a spin 1~ and P a spin 0~ particle. But the coupling constants
have different dimensions. In order to make meaningful comparisons, one should
multiply one or both coupling constants by factors depending on the mass. Should
this be some mean mass of the multiplet, or the mass of the decaying particle ? Group
theory alone cannot give an answer to this question. Because we wanted to get num-
bers which the experimentalist could immediately use, we have in many cases chosen
a definite prescription. Due to the arbitrariness just mentioned, other choices may
turn out to be better. However, accumulation of experimental results to be fitted
by the model will again reduce this freedom. It may even turn out that a successful
prescription found empirically could give some clues to the dynamics. An example is
the Cabibbo theory of weak interactions,

In this theory, the ratio of comparable leptonic decays with AS = 0 and 4S =1
is given by the Cabibbo angle # and SU(3). For example, &7 - uv and K — p v is de
scribed by the interaction

cos@gntf)yﬂywjd”n and sintK@yﬂystp()”K.

If SU(3) relates gx to g,, one gets for tgf the value obtained from other processes
(such as f-decay, etc.). If, however, SU(3) applies to the dimensionless coupling con-
stants gz/m ), one would get a quite different value for tgf, destroying the univer-
sality of the theory.

Another ambiguity due to the mass differences comes from the fact that one is
obliged in certain cases to compare processes at a different energy or a different
momentum transfer. Extrapolations are needed in these cases and only the dynamics
can give information (see Ref. [277]).

We should, however, mention that there exist a certain number of examples where
the kinematics is such that many ambiguities discussed previously disappear, This
1s the case for the magnetic form factors of the nucleons, which is one of the main
successes of the models. The same is true for certain radiative decays V' - Py and
certain baryon-meson scatterings in the forward and backward directions, for which
precise experiments are still lacking. These should be considered as test cases.

Considering now what we called the “dynamical factor”’, we remark that there are
a priori reasons to believe that the symmetry is not equally good for all processes. If

27) The models based on the inhomogeneous groups may give some additional restrictions such
as the value of the form factor at some particular points. See discussion in Section 3.2.
%) where B is the boson 7 or K.
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a scattering is dominated by peripheral mechanisms, then the matrix elements are
sensitive to the mass of the exchanged particle. Mass differences play an even more
important role in the peripheral model with absorption.

So far, the symmetry was applied only to real particles. However, especially for
vertex functions, one or more particles may be off the mass-shell. In these cases we
assume that the relations obtained from the symmetry for real processes can be
analytically continued to unphysical situations.

It was already mentioned in Section 3.2 that unitarity and crossing symmetry
give additional restrictions which, together with the symmetry, may be too severe.
However, nobody (including S. Coleman) has worked out these restrictions in a rea-
listic case??).

In spite of all objections, we present the predictions of the models as they stand.
We hope that in many cases they will provide at least a useful 0 approximation.

We have tried to give the results in a form immediately useful to the experimen-
talist. This was not always possible, due to the great number of processes. The rele-
vant literature quoted after each section should fill these gaps.

Although in the following section we analyse only the predictions of the two sub-
group chains, we give also the literature for the static SU(6) model, as well as for the
models based on SU(6,6) without “‘irregular’” couplings. The latter model gives for
collinear processes the same predictions as SU(6),,, provided all particles belong to
irreducible representations of SU(6),, the reason being that irregular couplings are
invariants of SU(6),, under collinear conditions; their value depends then only on the
irreducible representations considered. On the other hand, static SU(6) is non-rela-
tivistic and is based on strict conservation of spin, in contradistinction with the
models we study here.

In the references quoted after each section, SU(6,6) includes SU(6),, and coplanar
S[U3) ® U(3)], and SL(6,C) includes collinear S[U(3) ® U(3)].

5.1.2 Notations

a) The chain SU(6) D S[U(3) ® U(3)] O SU(3)
In this model, the group SU(6) classifies particles at 7est. The infinitesimal trans-

formations of the fundamental, sixdimensional representation act on the quark wave
functions in the following way:

1.
094 = 0q,, = 2! (’11')2 (O’H)g 9y ‘Sew (1)

Ad=liw:s0] m=1w37 #=12; #=0:.8; @w=%0 .3

A; are the eight Gell-Mann 3 x 3 matrices together with the unit matrix, ¢ , the three
Pauli 2x 2 matrices together with the unit matrix, de;, the infinitesimal parameters.
The condition of unimodularity is expressed by dey = 0.

The decomposition SU(6) D SU(3) ® SU(2) reads

6=(3,2).

29) The objections of Refs. [49] and [60] do not apply to the models discussed here. See discussion
in Section 3.2.
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The conjugate representation is given by:

a oL 1 ; a o
og” = 0g** = —5 ! (4:)3 (%),3 ‘ZW 58;’,u~

Under charge conjugation C we want to leave the ordinary spin unchanged but change
an SU(3) representation into its conjugate. So we define

(4) = @a) = Ga=6,59"" @) =@ =i =60, (2)
where ¢ is the charge conjugate wave function.

We recall that ¢,; = ¢*/ is the invariant metric tensor of SU(2).
The negative parity mesons are described by tensors of the representation 35
which transform like ¢*%g,

1

M=~ PO105 £ V5 S5
1 |
V(9)£; — V(B)c; i ,Vé_, ) &
ple —p®a_ gz _ g (3)

P stands for pseudoscalar and V for vector.
The SU(6) O SU(3) ® SU(2) decomposition is therefore:

3B=081e @ 3)@(13)
Under charge conjugation we get, according to formula (2):
(MZ’E‘)” = &7 &g, Mﬁi . (4)

This agrees with the positive C-parity of P and the negative C-parity of V.

Furthermore, here we can put M = M, there being no extra quantum numbers
besides I, and Y distinguishing mesons and antimesons.

If an interaction is invariant under SU(6), and C, it is also invariant under C’
which is the product of C and the rotation exp[i(o,/2)7] (acting on a quark)?®). This
rotation changes the sign of the z-component of the quark spin S, and is numerically
equal to the matrix e*#. We have thus:

(@) = qa (MR = MG, (2 bis)

P® and VV® can also be written in matrix form:

1 1
W ) ST | + K+
Ve Y - % 7 7
® - 1L o1 oo Ko

30) We thank Dr. J. S. BELL for discussions on this point.
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1 1
g® L 40 + K
AR . |
(8) = 1 (8) 1 0 K*O
Pl = 0 Vo P — *V';jz: 0 (6)
2
K%— K*0 _— (P(S)
/6

#® is a linear combination of the % (549 MeV) and some other I = 0 pseudoscalar
meson. The most likely candidate is " = x, (958 MeV) although its quantum numbers
are not definitely established. If ¥ is an SU(3) singlet pseudoscalar meson, one can
write:

n = n®cosat + yWsina 5 = —y®sina + 7 cosa. (7)
Using the Gell-Mann/Okubo mass formula and the actual masses of 4 and %', one gets:
cosa = 0.98  sina = 4 0.18 (8)

so that the mixing angle is quite small. It would be even smaller if %" turns out to be
a more massive resonance.
The vector meson ¢ is a linear combination of @ (783 MeV) and ¢ (1019 MeV).
Writing again
@ = ¢® cosd + ¢Wsind = —¢®sind + ¢ cosi (9)

one gets, using the masses of the “nonet”,

cosd = 0.766  sind = 4+ 0.643. (10)

Such a mixing angle allows, as we shall see, a small coupling forp = pmand ¢ >y

(see Sections 5.3 and 5.5). The experimental branching ratio ¢ - 3z/p > KK is
much larger than suggested by earlier experiments. But since the phase space is much

more favourable for ¢ - gz than for ¢ - KK, the coupling constant for ¢ - gz is
still small, but not zero. Nothing is known about ¢ > g y.
In a simple quark model, the mixing angle would be, instead of formula (10):

cosAd = v sinj — — = —--0.577. (11)

V V3

In many models, including those discussed here, formula (11) would forbid ¢ -
o w and ¢ = ¢ y completely.

We shall use formula (10), but take only the negative value for sinA.

It is an open question to understand why « is so much smaller than A. If particles
are classified according to SU(6), where P® and V' belong to 35, and PW is a
SU(6) scalar, this is not so surprising. But if the rest group is S[U(6) ® U(6)], the
negative parity mesons belong to 36, including PV, as we shall see below. Alsoin the
quark model, it is difficult to understand why o << 4.

The 1/,* octet of “stable’ baryons and 3/,+ decuplet resonances are assigned to the
representation 56, which has the SU(3) ® SU(2) decomposition

2.
.

56 = (10, 4) @ (8, 2) (12)
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and is described by the tensor:

1
B(ABC) = D(abc) S(aﬁ"-/) Ty =g {Oi €dbe So: 8,81} + Oi €4ca Sﬁ E‘ycx ‘o O‘(fgdab Sy Saﬁ} (13)

3)/2
where D stands for decuplet and 0 for octet, and S, 4., is a spin 3/, tensor (see Section
1.3.1 for explicit expressions).

We now consider the collinear group S[U(3) ® U(3)] which applies to particles
all moving in the same space direction. Its generators are:

1 140,
- L > ] (14)

This is the subgroup of SU(6) which commutes with Lorentz transformations
along the z-axis. Choosing the z-direction as quantization axis, the two Uj; groups
transform the S, = 4 1/, quark states separately. We introduce the notation:

91=4.€ (3, 1) (SS=+12) ¢,=g€(1,3) (S=-1/2). (15)
For the contravariant representation, S, change sign
¢'=¢e(3,1) (S.=-12 ¢2=g¢e(L,3) (5=+1/2) (16)

Under the parity operation, the momentum of all particles changes sign, but since the
momenta do not appear explicitly in this formalism, we define P’ = R (m) P, where
R (n) is a rotation of & around the x-axis. P’ leaves the momenta (which are along
the z-axis) unchanged and changes the sign of S,. Hence

@) —g: or (3,1)<x(1,3) (17)

charge conjugation affects only the SU(3) properties, not S,. Hence

@) =g or (3,1)¢>(1,3). (18)

The mesonic representation 35 of SU(6) splits under S[U(3) ® U(3)] in the following
way:
M3 lacr,pon = My + I/'(SHM:T ®F + Vs Sl+l/3 P so g1
4 = M* “ - _1, S)a (8,0)a 2 L _—
MBian,ﬁ:2:M5+T(§AM /3 + pE0s g2 +V—V]0)6 sz
M |y9 5.1 =My =VED be+V§5§ (1+) g2

a —)a 1 a —
My lass, ez =M = VEig 8+ ﬁ & Vi S, (19)
St=—82
or
35=081a1L8all)eB3 a33) (20)

and V®+) is, for example, a vector octet with S, = + 1.
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Since the mesons have negative intrinsic parity, one has
(M{P = —MZ (M = — M. (21)

Because the 7 = 0, Y = 0 members of P®, respectively V® are even, respectively
odd under C, one gets:

(M3)° = M2 (M2 =M (MI)C=— M, (22)

The baryonic representation 56 splits in the following way:

BABC la=1,,8=1,y=1 = Bub(: = Dabc S111
BABC !a:Q,ﬂ:Z,y:iZ = BZEE = Dabc Sozs

. 1 q
Bysc lant,p-1,y-2 = Bz = ‘/3 D,ye Stz + Vg (03 eapc + 05 €443) Si

— 1
B ne 1%1,,3:2,?.,2 = B = ’/3 D,y Siae + 1_/6 (Of Eyas T Of E1ap) So (23)

or
56 = (10,1) ® (1, 10) @ (6,3) @ (3, 6). (24)

b) The chain S[U(6) ® U(6)] D SU(6), D S[URB) ® U3)]

Particles at rest are classified according to S[U(6) ® U(6)]. The first U(6) group
applies only to quarks, the second only to antiquarks (see Section 2.3). Hence, for
systems built of quarks only, one gets the same classification as with SU(6),. But
mesons are gq systems, which have negative parity. Hence, the 0- and 1- mesons

belong to the representation (6,6), and we have an additional pseudoscalar meson,
compared with SU(6),31).

Particles moving along the z-axis are classified according to the collinear group
SU(6)y. It is the subgroup of S[U(6) ® U(6)] which commutes with Lorentz trans-
formations along the z-axis. Quarks transform the same way as under SU(6), (see
Eq. (1)].

But antiquarks behave differently under the subgroup SU(2)y, as was shown in
Section 2.3:

a

s i I - A
66](10& - 7{ z(}'2)2, (Gﬂ)g qbﬂ asz’ﬂ fOI !LL = O, 3

B o o

éaarx = = 1&:) (O_#),OB( g_lb/? 681';& for m = 1,2 (25)

a

2
where g,, is defined by Eq. (2).
This difference arises from the fact that we define antiquarks to transform in the
same way as quarks under SU(Z2),.
This is, however, not very convenient for calculations where invariance under
SU(6)y is assumed. Since S, = W, (for quarks and antiquarks) is conserved in collinear
reactions, we can define a new antiquark wave function:

E;a = (Gz)g ?a,()’ (26)

31) For positive parity mesons one could use a quark and a pseudoantiquark, thus getting the
representation (35,1).
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Under SU(6),y, the transformation properties are now:

i 1 . —
8uy =5 iA)2 (0,8 Tpp O6i,, =0,...3. (27)

The negative parity mesons are described by tensors of the representation 35 of
SU(6)yy, transforming like ¢"** ¢, 4 Butsince ¢’, has different transformation properties
under SU(6),, we now have:

1
M% = VE yENe 5% + MO wy
1
BN = MR b M
1
V2
M(ﬂ)z wf _ V("H‘; M“’)‘; w% _ V(s—)c; (28)

9 1 Na .2 __ 9
M®e gl —  M®242 — peie

where 0, 4, — stand for S, =0, + 1, — 1.

If an interaction is invariant under SU(6),,, we can again define a new operation
C’ such that [see (2bis)]

(Gae)” = 4> (29)

We now add a few remarks on parity P. Again we consider the operation P’ = R (n) P,
defined above. For both SU(6), and SU(6)y, we define

(Qa 1)P’ = qa 2

(qa 2)P’ = qa1 (30)
apart from an arbitrary phase.

Since a quark-antiquark system has negative intrinsic parity, one has

@n)P’ = — §a2

@az)P’ = (31)
In SU(6)o, negative parity mesons transform like ¢,, ¢°# so that
Y = 12

(MD)" = — Mg; (32)
ete.
Hence, a coupling of three negative parity mesons

My M2 My (33)

is forbidden by SU(6), and parity.
However, for SU(6)y,, negative parity mesons transform like ¢,, ¢"*#, where ¢’ was
defined in Eq. (26). We now have |

(Qazl)P, = Ga2

—

(@a2)” = 4ux (34)
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and correspondingly
(Ma)" = + M3 (35)

The three-meson coupling Eq. (33) is now allowed, the indices of course referring
to SU(6)y-

Particles moving in a plane are classified according to the coplanar group S[U(3) ®
U(3)]. The first U(3) group refers to S, = + 1, the recond to S, = — 1, but the quan-
tization axis is now orthogonal to the plane. In the following, we shall only use the
fact that the group yields conservation of S,, for processes where no antiquarks are
involued, so we shall not analyse the formalism any further.

5.2 BBM wvertex

We consider the baryons belonging to the representation 56 of SU(6), and the
mesons of 35 of SU(6),, respectively 36 of S[U(6) ® U(6)].

5.2.1 Collinear S[U(3) ® U(3)]

The different S, components belong to different representations and thus give
rise to different invariants, except that parity relates S, and — S,.
There are five invariants

I=a, B B,y M? + a, B*Y B, M: + ay B**® B,,; M% + a, B**° B, ;; M}
+ as B*° By, M% + (P) (1)

where (P) are the terms obtained by parity transformation.
Using Egs. (19) and (23) of Section 5.1.2 it is seen that a5 and a, contribute to the

vertex OO P, and hence no new relations beyond SU(3) result for this vertex. The pre-
dictions which one gets for the other SU(3) multiplets are difficult to test since they
hold only for definite helicity states. They have been quoted in Section 3.2.3.

5.2.2 SU(6)y
Considering only the representation 35 of SU(6)y,, we have one invariant:
1=B43°RB, . M2, (2)

Using Eqs. (13) and (28) of Section 5.1.2 one finds:

s 1 —
I= D% Dy VO 88 4 MO wgi) %P7 S, 4

V2

AV_ Ou ebc Dabd M(Q)d ZP) Soc Eﬁ'y S

+ 50 V2 D* 0 e, M®9 0P S*F7 5 S,
(8,0) (8,0)y cux

31/2 r (0 789 0 —00V®9) 5=,

4 3 tr [3 (0M®0 + 00M®) + 2 (0M®0 — 00M®)]

tr OV0 = 0° V4 05,
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The last term contributes to the vertex OO P and gives D|F = 3/,, where D, reépectiv—
ely F are the symmetric, respectively antisymmetric couphngs of two SU(3) octets
with a third octet.

For the decay D - O + P, one gets the same results as with SU(3), which are
known to be not very accurate, so that SU( ) symmetry breaking is not negligible.

One also gets a relation between the DOP and 00P coupling constants. But since
they have different dimensions, they are related by an unknown function of the mas-
ses. Various recipes have been proposed (see Refs. [110, 186]).

Literature: SU(6)o: [80, 186]; SL(6,C): [150, 209, 334, 339, 384]; SU(6,6): [40,
110, 120, 138, 243, 359].

Literature on the decay of higher baryon resonances: [106, 200, 201].

5.3 MMM vertex

We consider the vertex of three negative parity mesons belonging to the represen-
tation 35 of SU(6), or (6,6) of S[U(6) ® U(6)].

5.3.1 Collinear S[U(3) ® U(3)]

Using P and C invariance [Section 5.1.2, Egs. (21) and (22)] one gets two inva-
riants:

ik ==y {M1§ M,; M,% — MlgM;E M2+ M1§ MM 2 — M,> M,¢ Mz‘j}
Iy = ay {Mlz Mf Mgs — M1f‘; Mz My; + Ml% M5 Misa— My, My Mzg} :
With the expressions [Section 51.2, Eq (19)] one finds:

Iy = “1 Ztr [P VO + tr (VIO 7RO 7O} (1)
where P 1s a cyclic permutatlon of 1,2, 3,

L= azﬁ {tr P® (Y9, V=) — tr PO (V9), VEH)
+ tr VEO [PED, VE 4 tr VB0 [VE) V). (2)
Notice that ¢z P®) 71+ V12 — 0 and also that the three-meson couplings involving

P and V1.9 are unrelated to the preceding ones. Everywhere [4, B] = AB — BA,
(4, B) = AB + BA.

5.3.2 SU(B)

In addition to a trivial coupling of V1.9 which does not belong to the representa-
tion 35 of SU(6)y, there are two invariants:

I —=bitr M\ MyM;+ bytr My My M,

where M is a traceless tensor belonging to the representation 35 of SU(6)y.. One noti-
ces that each term conserves parity, provided that the intrinsic parity of the mesons
is negative [see Section 5.1.2, Eq. (35)]. For positive parity, such a coupling would be
forbidden. This may have interesting consequences for bootstrap calculations.
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Charge conjugation invariance [Section 5.1.2, Eq. (29)] implies b; = — b,. Remem-
bering that pseudoscalar mesons belong to a W-spin triplet and the zero helicity states
of vector mesons to a W-spin singlet, one finds, using Eq. (28) of Section 5.1.2

I=0btr[M,, M, M,
b _ -
= T hetr [0, VIO P — (0, V) P

1
e ? [Vgs,O)’ VéB,())] V:(}S,O) + [P&S) P:(ZS)] VéS,D)

4 Ve, B pE0 4 [68-) P+ v;&ﬂ)} . 3)
Notice that the coupling of the 0— SU(3) singlet is now related to the others, using

PO — p®) 1/|/§ Pa.
Comparing I with I; and I, of the preceding paragraph, one sees that SU(6)y

“invariance gives the additional relation

6!1=a2.

5.3.3 Applications

i) From Egs. (1), (2) and (3), one can get relations between coupling constants.
Since they have in general different dimensions, one needs, as already said, a certain
prescription. Following Ref. [355], one finds with SU(6):

Bown 2
Sprn B 4)
where u is the mass of a vector meson.

ii) Using the “ideal” mixing angle [Section 5.1.2, Eq. (11)], S[U(3) ® U(3)] and
SU(6)y forbid the decay ¢ - px. With the mixing angle [Section 5.1.2, Eq. (10)],
one gets a small decay rate which, by SU(6), is related to g >z 7.

iii) An experimental test is provided by the decay of one meson into two mesons.
But, due to phase space, the only decays of interest are, in addition to ¢ - g, the
three decays

(p—>—KK—, K¥>Kn, g-rann.
Because of C invariance, the decay ¢ > KK proceeds only through the SU(3) octet
part of p. Hence, these decays are already related by SU(3) alone. Using an inter-

action g tr(V* PE; P), one finds a phase-space factor P3/m?2, where m is the mass of
the decaying meson and P the centre-of-mass momentum. The results are shown in
the Table. For the experimental values, see Ref. [325.]

Transition g2 P8 m? I'in(MeV) Texp(MeV)
oTm 2 77.8 172 125 + 15
K*Kn 3, 30.1 Input 500 + 1.5
o K+ K- 0.88 1.92 1.88 1.26 + 0.5
g KVK)  0.88 1.16 1.13 126 + 0.5

ote added in proof: the values of the last column keep changing.
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Literature: SU(6),: [172, 242]; SL(6,C): [336]; SU(6,6): [33, 182, 217, 270, 355].
Literature on the decay of higher meson resonances: [74, 88, 107, 109, 200, 215].

5.4 B By vertex

The main successes of SU(3) have been obtained in situations where fwo hadrons
interact with the electromagnetic or the weak currents. This may be due to the fact
that the low number of baryons minimizes the symmetry-breaking effects and/or
that they are coupled to a conserved or almost conserved current. It is therefore
important to see if SU(6), and its relativistic generalizations are equally successful in
the same situations. This is indeed the case for the BBy vertex, treated in this section.
The MMy vertex will be studied in Section 5.5. For f-decay one gets the ratio G4/
Gy = — 33

The first success was the prediction of the ratio of the total magnetic moments
of the proton and the neutron, from SU(6), (Ref. [46])

This result remains valid in SU(6);, (Ref. [38]) and collinear S[U(3) ® U(3)] (Refs.
[339, 388]), and can even be generalized to the Sachs magnetic form factors:

Gy @ 3 _ )
Gg'}) (g2 o 2

This relation holds for any ¢? and is in remarkable agreement with experiment.
In order to get Eq. (2), one needs two hypotheses:

i) The baryons belong to the representation 56 of SU(6), or S[U(6) ® U(6)].
ii) The magnetic form factor transforms like a component of the representation 35.

If the baryons belong instead to the representation 20, one gets — 1/, for the same
ratio, and if they belong to 70, no relation follows, since there are then two reduced
matrix elements.

The second hypothesis is the simplest that one can make, and is certainly true
for quarks. We assume its validity for all representations.

The matrix elements of the quark current are:

vy, Q| b

- (1422 ) T (G WK, Qu— Gylgd uir, Qu}

T oM 4M2) { e\q") u u (4 u\q u

K=p+ps qg=101—0: r,u:'s,uvgdequoyS (3)

G and G are the Sachs form factors and @ the SU(3) charge matrix

—t

=51 -1 | )
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In the Breit system, where p, = — p, = 1/, q, we can apply the collinear groups
S[U(3) ® U(3)] and SU(6),. Taking the z-axis along p, the only non-zero matrix

elements are:

4 E?
WK Qu= o 2" Q1 (5)

where y 1s the spin 1/, quark wave function, and

4 E2

wr, Qu= " 2p 10,0y
- 4 E?
WryQu=— 25y 0,0 7. ©)

5.4.1 Collinear S[U(3) ® U(3)]

We assume that the transformation properties of the vertex abstracted from Eqgs.
(5) and (6) also hold for the B By vertex. This means that the various S, components
of the virtual photon behave like:

S.=0~@1) @18 ~0+0
S:=1~(33) ~Q;
S.=—1~(3,3) ~ Q8 (7)

and we have given both the representation and the tensor.
For the transition <S, =1/,|7| S, = !/,> one has two invariants:

Il = Eab; Bad; Qg
I,= B B, (. (8)
Using Eq. (23) of Section 5.1.2, one gets:

1

I,=3D% D, 0l S"25 1~ (4tr0Q0 — tr 00Q) S

]
I, = 3D D, @ SU2 Sy, — -+ (2tr0Q0 + 4 tr 00Q) S’ S

Hence, for the electric form factor of the baryons, one gets nothing new compared
to SU(3). ,
For the transition ¢S, =1/, |7|S, = — 1/,> one gets only one invariant:

dg= Bt B,5 Qg — 3D D,.q 0 §112 Sie

-
" _I/_Z; D** e, 0; Qf sue S+ —= Oa & Dysq Oy st S1e2

V
+%tr[36(QO+OQ)+20(QO~OQ)5‘52- )

From this follows the result of Eq. (2).
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The transition <S, =3/, |7 | S, = /5> is given by a different invariant

2 e
—l/? Oa €eva Sl) Q‘ci

so that the predictions for the transitions D O y and D D y are rather weak.

I = Bt B,y Q‘E: L it (l/3 D,y Sue +

5.4.2 SU(6)
Writing for the tensor representing the current:
Je=0 55 Si+0
one gets the unique invariant
T =4 piBo ]g Bypp=3 Drbe Dypa Qo b Saps 55
)2 D @l ey, 0L S SD ey, S,
+ )2 600 Q¢ D,,, S* &7 S8 S, 45 (10)

+tr0(Q0 — 0Q) S* S, + tr [6 (00 + 00) + = 0(Q0 — OQ)] 5% S, (sg — 50 s})-

From this one gets the following predictions:
i) Putting S% = 4%, one sees that G(¢?) is proportional to the charge.
ii) Putting S§ = (¢3)% one finds

(N* S, = 5 | j| N*+S, =

1i1pS,=5> 1)

where 7 refers to the spin 1 part only. From this, relation (2) follows again. One finds
also from Eq. (10) that the N* Ny transition is pure M (1) (see Ref. [202]). Of course,
one has to add to Eq. (11) all relations following from SU(3) alone.

One gets more information if one assumes that the form factor is dominated by a
vector meson pole (see Refs. [39] and [143]).
However, one gets a different result if one makes the pole approximation in the F
functions (Dirac and Pauli form factors), or in the G functions (Sachs form factors).
In the first case one gets, for the proton:

fz_(fli) _ - L ,.__(_4_)__ _ 1 1+2Mju | M 1
Fold ~ " gl 2M 1+gpzMp’ T =& © (12)
and in the second case ;
Gul@®) _ 1. _ M 13
Gg(g?) p 1% (13)

where M is the mass of the baryon, 4 the mass of the meson and u, the total magnetic
moment of the proton. Equation (13) agrees rather well with experiment.



104 H. Ruegg, W. Riithl and T. S. Santhanam H.P. A

Literature: SU(3): [95]; SU(6), or SU{4),: [6, 24, 46, 58, 170, 199, 228, 236, 254,
352]; SL(6,C) or SL(4,C): [118, 154, 209, 288, 334, 339, 385, 388]; SU(6,6) or SU(4,4):
[3, 38, 39, 55, 92, 111, 123, 143, 266, 295, 296, 305, 313].

Literature on radiative hyperon decays with creation of a Dalitz pair: [124]; Litera-
ture on the electroproduction of resonances: [173]; Literature on the electromagnetic
properties of the 70-plet: [87]; see also the literature on the B B M-vertex.

Photoproduction process By -~ B M

The main experimental information comes from the resonance region, where the
problem is reduced to the determination of the coupling constant B* Bvy. Below the
B* threshold, symmetry breaking plays probably an important role.

Literature on By - B M.
SU(6),: [116, 225, 312, 380]; SL(6,C): [71]; SU(6,6): [76, 113, 225, 249, 250];
Quark model: [102].

5.5 M M y vertex

We consider the interaction of two negative parity mesons belonging to the re-
presentation 35 of SU(6), or 36 of S[U(6) ® U(6)] with the photon.

Since the predictions of the collinear groups for the B By vertex have so far been
successful, it is important to have another test where only two hadrons interact.
There should soon be enough experimental information available concerning the
radiative decays of vector mesons. In at least three cases, namely p >ny, © >my,
and ¢ - 7y, the kinematical factors are similar, so that the complications discussed
in the Introduction should not arise. There is, of course, still the essential difficulty
that in the symmetry limit with degenerate masses the photon has zero energy, so
that an extrapolation to the real masses is needed.

5.5.1 Collinear S[U(3) ® U(3)]

We assume the hypothesis of Section 5.4, Eq. (7). Using P and C invariance, one
gets three invariants:

I, = Gg) {Qg [Mli M?.Z - Mzﬁ Ml;] + Q% [le_:' M2-é - Mzé Mlg]}
I, — G {08 (Mg Myl — My M) +Q2 (M} My — M} Mlﬁ]}
= G (G [ 32+ 002 1, — 05 [ME s+ T 00

Using the numerical convention for the matrix elements

= Q_—I/WZM 5_]/2 Qa'
one finds
I = {tl‘ Q [P (8)] + tr Q I:V(S’O), Vé&o):t}
Iy = 6‘2 {tr © [V‘8+) VE] 4+ tr Q [VE), VEH]
T = Gy 4UF Q(+ ), P ) — tr Q- ) (V(9+ Pf(zs))

— tr QW [V, ) VEN + tr QU [VEH, VEIT}

[A, B] stands for the commutator, (4, B) for the anticommutator.
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5.5.2 SU(6)y

For each form factor there is one invariant
I: tI‘Q [Ml,Mz] )

Extracting from this the (8,1) part of Q for the charge form factor and the (8,3)
part for the magnetic form factor, one finds one additional relation:

G — G
and in I, one should replace P® by P® — P® 4 (1/)/3) PW.

5.5.3 Decay M, > M,y

This is the most interesting case for comparison with experiment, since many
decays are energetically possible, and experimental information will soon be available.
Recall that for a real photon only magnetic transitions are allowed. Hence, there is
only one form factor G, (g,). In addition, SU(6),, relates P to P®. Without further
knowledge of G,(¢%), we assume it to vary slowly with ¢? using, however, a phase-
space factor calculated with the physical masses. For the decays V - P +y or
P - TV + y we start with the interaction :

efr%0,4,0,V, P.
In momentum space, with the momentum q of the photon along say the third
axis, one typical term will be

Gy(g?) g3 My, g*10% AV, P,

Assuming the symmetry relations for Gy(¢?), one gets a “phase-space factor”
proportional to ¢3. '

Considering the decay of a vector nonet into a pseudoscalar nonet and a photon,

SU(3) alone (with C invariance) describes these decays in terms of three coupling
constants (Ref. [180])

8sss 831, 818-

From the foregoing expressions, one finds for
a) S[U@3) @ U@)] collinear: g;3=}/2 g

b)  SU(6)y: g15 = ga1 = I/Z Ess-
In the following Table, the predictions of SU(3), S[U(3) ® U(3)], and SU(6)y are
given.
Remarks

Column 6: The values sinA = — 0.643 and sin « = - 0.183 were used. This choice
minimizes ¢ > n® y [see Section 5.1.2, Egs. (8) and (10)].

Column 7: To give a rough idea for the order of magnitude, the input [(w=%y) = 1.2
MeV was used, although this is only an upper limit with large errors (109,). The five



100

H. Ruegg, W. Riithl and T. 5. Santhanam

H. P. AL

first decay widths are then calculated using U(3) ® U(3), the others using SU(6)y,
and multiplying with ¢3.
Column 8: The values for I" are taken from ROSENFELD et al.,, UCRL-8030 (Rev.
1. 10. 1965). The width of X, =%’ is unknown, but the values of the Table can be
used to give a lower limit to it. With '

one gets

according to the two possible solutions. This is a prediction of SU(6), only.

I'( Xy — oy)

I'( X, —+ all)

I'y, > 0.24 MeV  or

1

4

I'y, > 0.40 MeV

As is apparent from the Table, three decays are particularly well suited for com-
parison with experiment, because ¢* has nearly the same value.
From collinear S[U(3) ® U(3)] one gets:

I'(o7ry)

——— = 0.104 .

I'{wmy)

In addition, SU(6),, predicts:

Predictions of SU(3), S[U(3) ® U(3)] and SU(6)w for the decays M, = M,y

I(gny)

Fomny)

Table

=0.203 or 0.33

Tran- &ss &18 881 73 X } 4 |2 I'; r (MeV) I I17
sition 10-6
oty 1 50.66 1 0.12 10-3
'y 1 50.90 1 0.12 10-3
K* K~y 1 29.37 1 0.07 1.5x10-3
K*¥ Kby -2 28.73 4 0.28 6.0 x 108
From S[U(3) ® U(3)]
_ _ ﬂgss = &1s
Qa0 y /3 cosi /3 sind 125.75 0.06 0.02 1.5x10-2
wa’y  —}/3sin} }/3 cosi 54.88 8.94 LZ= 1ot
From SU(6)w Input
l/2 8ss = 818
_ . = &1
o®ny }/3 cosa /3 sina 6.40 4.63 0.073 6x 104
1.57 0.025 2x10*
PNy —Ccos/ coso sinj coso cosA sine  47.44 2.10 0.24 7.3x1072
3.40 0.40 12.1x 102
wny sini cosu cosi cosa —sinA sina 7.93 0.36 0.007 6x10*
_ 0.07 0.002 1.7 x 104
X%y —}/3sina /3 cosa 5:33 4.37 0.057
7.43 0.096
@ X0y cosA sine —sin/ sina cosi cosax  0.20 1.88 0.0009 B¢ 104
0.57 0.0003 104
X'wy —sindsing —coslsine —sinl cosa 4.10 0.66 0.007
0.95 0.009
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where the two solutions refer to the two possible signs of sina«. From S[U(3) ® U(3)]
one gets the relation for amplitudes, corrected for phase space:

0284 |wny|=0.093|@gny|+006|wxy]|.

Only upper limits are known for the experimental quantities involved.
Finally we remark that BEccur and MorPURGO (Ref. [43]) calculate the absolute

rate of @ > 7wy, using a quark model and a quark magnetic moment deduced from the
proton magnetic moment. They find

I(wmy) = 1.17 MeV

in agreement with experiment. They also get the other results of the Table, although
the physical assumptions of their quark model are different from SU(6)y.
Literature: SU(3): [180]; SU(6),: [22, 23, 30, 205, 276, 311, 369, 370]; SL(6,C):
[205, 336, 398, 399].
Literature: SU(3): [180]; SU(6),: [22, 23, 30, 205, 276, 311, 369, 370]; SL(6,C):
[205, 336, 398, 399]; SU(6,6): [63]; Quark model: [21, 43, 100, 379].
Reference on the meson decay with creation of a Dalitz pair: [124]. See also the
references on the M M M vertex.

5.6 B B B B four-point function

To our knowledge, all the works which treat the problem of baryon-baryon
scattering with B belonging to the representation 56 of SU(6), in the framework of a
U(6,6) theory, omit irregular couplings. Hence, one can extract from these works
the predictions of collinear SU(6)y,, but not of coplanar S[U(3) @ U(3)]. The reason
is again that the 56 baryon states belong to an irreducible representation of SU(6)y,
and therefore the irregular couplings give no new invariants. On the other hand, they
belong to a reducible representation of S[U(3) ® U(3)]. For example, the spin !/,
octet belongs to (6,3) @ (3,6), and the irregular couplings may take different values
for (6,3) and (3,6), and hence are important.

However, the most important prediction of coplanar S[U(3) ® U(3)] can be
obtained without any work: the component of the spin along an axis orthogonal to
the scattering plane is conserved. For spin 1/,-spin 1/, scattering, this means that there
are no A/ = 2 transitions.

For proton-proton scattering, the most general form of the scattering matrix in
spin space is, in standard notations (Ref. [281]):

M(k, k') = BP; + C (0, + 0,)n + N(o,n) (6,n) P,

1 1
+ 5 G [(0,K) (0, K) + (0, P) (0, P)] P, + 3 H [(0,K) (0,K) — (0, P) (0, P)] P;
where n, K, P are unit vectors along kx k', k + k' and k — k’, and P5 and Py are
singlet and triplet projection operators.

The same form holds for particles belonging to a same I-spin, U-spin or V-spin
multiplet (Ref. [332]) but otherwise could be more general.
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The term multiplying H is responsible for A/ = 2 transitions. Hence, coplanar
S[U(3) ® U(3) entails

H=0.

In terms of triple scattering parameters, this means (Ref. [146]):
R=4"=0
R+4=0

| Ck s | < cosay,

a; is the angle between the two final baryons in the lab. frame.
For proton-proton scattering, the Pauli principle leads to the additional relations
at 90° c.m.:
A(90°) — R(90°) cotl, =0

2[1 —D(90°] — [1 — Cyny(90°)] =0
D(90°) >0
f; is the laboratory scattering angle.
Comparison of these predictions with experiment has been done in Refs. [146]
and [234]. The agreement is very poor.
For collinear processes, the most general scattering amplitude is obtained by set-
ting
C=0 N= (G- H
so that SU(6)y, entails in addition

1
N=G.

In view of the bad prediction of the coplanar group, it is not worth while pursuing
the analysis of SU(6).
On the other hand, the hierarchy of groups

SU(6), D collinear S[U(3) ® U(3)] D coplanar SU(3)

gives no additional restrictions for coplanar processes. For collinear processes, one
gets predictions for reactions involving polarized particles. There is not yet enough
experimental material to discuss these predictions in true detail.

Literature: SU(3): [332]; SU(6), at threshold: [36, 59, 91, 377]; SL(6,C): 267];
SU(6,6): [7, 72, 146, 234, 252]. Literature on baryon-antibaryon scattering: SU(6,6):
(7, 72, 125, 265].

57 B B M M four-point function

There are doubts if higher symmetries like SU(3) or SU(6) should be applied at
all to processes where four hadrons are involved. For example, in the case of baryon-
meson scattering, one striking empirical fact is the existence, in many processes, of
forward and/or backward peaks, which can be explained by the dominance of peri-
pheral graphs. These are characterized by the exchange of a meson or a baryon, and
give a pole contribution which is most important if the mass of the exchanged par-
ticle is small. Especially in the case of pseudoscalar meson exchange, the large mass
difference between the pion and the kaon will introduce large symmetry-breaking
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effects. These are, however, smaller if a baryon is exchanged. Other, inelastic effects,
also depend strongly on mass differences.

Another serious difficulty is the dependence of the kinematical factors on mass
differences. Some reactions are endothermic, such as pz— - 2~ K+, others are exo-
thermic, like p K— - 2~ z+. So one does not know exactly at what energy one should
compare these processes. A prescription has been given in Ref. [277].

There are, however, reactions where both of these difficulties are minimal. For
example, both collinear groups predict for the cross-sections in the forward and back-
ward direction

c(pK-—-EK)=40(p K —E°K°).

The kinematical factors are here almost the same. In the backward direction,
these processes seem to be dominated by baryon exchange, for example A and 2,
whose mass difference is relatively small. In fact, the above prediction is consistent
with present experiments (Ref. [28]).

A new, practical difficulty appears for collinear processes. Since the differential
cross-sections are only known for a small number of angles, it is difficult to extra-
polate them to 0° or 180°. Only improved statistics and better angular resolution will
solve this problem.

One may argue that mass differences would play a smaller role for reactions at
high energy and high momentum transfer. However, the cross-sections for two-body
processes are very small under such conditions, so that experimental verification
becomes extremely difficult. Furthermore, the collinear groups would then not apply,
since they involve zero momentum transfer in one or the other channel. But one of
the successes of the models discussed here are the Johnson-Treiman (Ref. [226]) rela-
tions, which are derived using the collinear groups. (They can, however, also be derived
using other models.)

Eventually, only experiment will decide if the theory is useful. Hence, in the
following we give the main predictions, first for baryon (56) meson (35) scattering,
then for the corresponding annihilation channel.

5.7.1 Baryon (56) meson (35) scattering

a) Collinear S[U(3) ® U(3)]
The number of invariants is very large and it would be useless to give them all.
An extensive list of predictions is contained in Refs. [267] and [331].
Let us first remember that the zero helicity states of vector mesons belong to a
different representation than the 4 1 helicity states. The same is true for the 4- 1/,

and 4 3/, states of spin 3/, baryons. Hence, no simple predictions concerning polari-
zation arise.

The most interesting predictions are of two kinds:

1) Forward and backward scattering

c(K-p—>KtE)=40 (K p—>K°E° (1a)
c(K-p—>K'E°) =0 (np—>K+2") (1b)
c(K~p—>K E)=¢ (K p—>atl). (1c)
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As stated above, Eq. (1a) gives the least ambiguous test of the model. Within
(large) experimental errors, it is satisfied in the backward direction (Ref. [28]. In the
forward direction, there is no reliable experimental value for ¢ (K~ p - K°Z9), due to
the difficulty of identifying the process.

Equation (1c) follows from SU(3) alone (Refs. [147, 258]). Equations (1b) and
(1c) disagree with experiment, maybe for the reasons outlined at the beginning.

11) Total cross-sections

Using the optical theorem, the symmetry gives a linear combination of the John-
son-Treiman relations (Ref. [226]).

(K*p) + (= p) + (K°p) = (K~ p) + (=" p) + (K° P)
where (Mp) means o, (Mp).

b) Collinear SU(6),;

There are four invariants:
I =a BA80 B, Mf MIIE)
Iy = a, BABe B, sp M? Mg
Iy = a4 BBC BABD-Mg ﬂ_lf
I,—a,B**¢ B, . M2 ME.

Contrary to the assertion of Ref. [65], SU(6), gives exactly the same number of
invariants as a U(6,6) theory with irregular couplings.
An extensive list of predictions is contained in Ref. [75]. We give a few examples:

i) Forward and backward scattering
In addition to the S[U(3) ® U(3)]. predictions one gets, for example,
o (K+tp— K’ N*¥t+H) =g (K" p - K+ N*°) = g (K- p — K~ N*+)
— o (K°p — K~ N*++) = 0,
This follows from an SU(2) subgroup of SU(6),, (Ref. [264])

0 (K*+p—>K*p) = 2 g(K+p—>K*° N*+) = 22 6 (K°p > K*n).
All reactions B + M - B' + M’, such that the reaction in the crossed channel B +
B" —> M’ + M goes only through the representation 405, are given by one amplitude.
This is the case for BB’ systems with Y = 2 andjor I =3/,, I =2, W = 2. All reac-
tions P + B - P + B¥* are in this category (Ref. [75]). So, for example,

1 1 1

97 ¢ Emp = K+ E7) = = o (K~ p - K¥+ 5 :mzzo‘(K—p — 1= K*+)
o ok - Nl e o A *4)
= 5 o(K~p —>m K*) = T (= p—>mt N*¥) = 5 o (nt p — m+ N*t) = etc.
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As pointed out in Ref. [223], many of these predictions are in violent disagreement
with experiment. On the other hand, one important agreement has been found in
Ref. [299]: SU(6), gives a relation between the I =1/, and I = 3/, amplitudes of
N = n N*, which agrees with the determined scattering lengths. This example is
relevant in so far as the kinematical factors do not break the symmetry. However,
the prediction g (K= p >n~ Y*+) =40 (K~ p >+ Y*~) again disagrees with empirical

data.

11) Total cross-sections

Both Johnson-Treiman relations follow from SU(6);,, namely

which we call (JT2).

(K= p) + 2(z* ) = (K* p) + 2(n~ p)

(K= p) + 2(K°® p) = (K* p) + 2(K° p) .
The relation obtained from collinear S[U(3) ® U(3)] is the sum of these two relations,

(JT1)
JT2)

In the following Table, we give the experimental results for the left-hand side of
the equations, and of the difference A between the two sides (Ref. [156]).

Table
JjT1 JT2 jTXx

Momen- (K~ p)+ V| (K= p)+ A (K- p)+ A
tum 2 (at P) 2 (K° P) (7wt p)+ (K° )

(GeV/c) (mb) (mb) (mb) (mb) (mb) (mb)

6 76.4 4+ 0.7 +24 +14 590+ 1.2 —-1.8 +21 677 4+1.0 +03 418
8 73.8 4 0.6 +154+1.3 588 +1.0 421419 663 4+0.38 +1.8 +1.6
10 72.1 4+ 0.6 +1.84+ 1.3 5754+ 1.0 —1.04+19 64.8 4+ 0.8 +04 + 1.6
12 70.0 + 0.6 +09+1.3 568 +1.0 —-094+19 6344038 0 +1.6
14 69.3 + 0.6 +1.1+13 565 +1.0 —11+19 629408 0 +1.6
16 68.1 + 0.8 +09+15 561 41.2 —-1.5425 621 4+1.0 —-0.3 4+ 20
18 68.0 - 1.2 4+09+19 5624+1.6 —-1.5+39 6214+ 14 —-03+29

The agreement of the S[U(3) ® U(3)] prediction is systematically better than the
additional SU(6), prediction.
There exist other models which predict the Johnson-Treiman relations, for exam-
ple, the quark model (Ref. [262]), or the octet dominance model (Ref. [36]), so that
they are not a decisive test of any of these models.

1i1) Polarizations

SU(6)y [but not U(3) ® U(3)] predicts for forward or backward production zero
polarization of the resonances (meaning that the density matrix elements g, are
equal for different m values), for example, in the following cases:

K+tp—>K*p, K-p>EK*p

wtp >0t p,
K+ p — K*+ N*+ |

P> P

etc.

In the first or last case, for example, this disagrees with experiment (Ref. [223]).
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5.7.2 Baryon-antibaryon annihilation into two mesons

This is, of course, just the crossed channel of baryon-meson scattering, so one
gets the same number of amplitudes and the same number of predictions. However,
most of the latter are not very interesting, because they involve processes which are
very difficult to realize in the laboratory, such as - p > K+ K+, etc.

One important restriction arises from the fact that $$ annihilation at rest into
two mesons proceeds mainly through an S-state. In the following, we shall assume
this to be always the case. Parity conservation implies that the mesons are in an odd
angular momentum state. Using generalized Bose statistics for the mesons, one finds
that only antisymmetric products of representations of the collinear groups contri-
bute. For SU(6),,, there is only one amplitude, namely (35),.

This case has been analysed in Ref. [367] for both SU(6)y and collinear S(U(3) ®
U(3)). Comparison of SU(6)y predictions with experiment can be found in Ref. [57].

a) Collinear S(U(3) ® U(3))
Pp—ong)=0@Fp—>n9)=0p—>09)=0pp—>wg=0.

This was also obtained in Ref. [14], using static SU(6) with a spurion.
There are four other relations involving polarized particles.

K+E-|T|p'ph = (K¥=, K¥— | T | p' b
K> K° | T | pFH = <K¥=, K%~ | T | '35
<K+VK*_T | T ‘ pT 5T> = (K*+ K*1 i T ‘ pT §T>
CK°K*| T | g1 31> = <K=, K* | T | pt 3
where IéT, ft'_’, I?l are the S, =1, 0, — 1 states.
b) SU(6)w
We give the results of Ref. [57]. It is assumed that the px annihilation at rest also
goes through the S-state.
Table

Rates for two-meson annihilations of antiprotons at rest on protons and neutrons. SU(6)y values.
The rates reported are normalized to 25, pp — K*0 K° taken equal to one.

Channel Rate Channel Rate

3S, PP > K** KO 1 1S, pp —> K*0 K© 0.5
> K* K+ 16 > K*— K+ 8
> V0 AT 94+9+49 >otnat 12.5+4+12.5
—> w9 70*) 25 1S, np > K*0 K- 12,5
> @ %) 0 > K*— K° 12.5

3S, np > K*~ K° 25 > 07 25
> K*0 K- 25 3S.pp >a at 4.5
> w® 7*) 50 > K- K+t 18
> pa¥) 0 > K K° 4.5

3S, np >~ a’ 9
> K~ KO 4.5

*) We have assumed:
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— g l/ 1 <P~V§%+]/%%-

The following predictions involve final states with nearly the same mass:

1) PE—*KWL}E* o i
pp— K*K°
(see also Refs. [14, 202, 218]).
The experimental ratio is 2.0 4 0.26, Ref. [57].
2) (S pp— KWK+ (S, pp—>K*OK) 1
(S pp—> K+ EH+ (S, pp—> K+ K) 16

A lower limit for the experimental ratio is 0.87 4 0.23.

3) ppr RER 1

15029—?5#}}'?0* KO T8
4) 3Sipp—>om _ 27
150?5-?599“ 25

5) Assuming an w — ¢ mixing angle of 40°, one gets

PSHnP @ 6007
3S,np—>wn-
which disagrees with the experimental lower limit.

Literature on meson-baryon scattering: SU(3): [147, 258, 277]; SU(6),: [35, 101,
226, 314]; SL(6,C): [267, 331, 337]; SU(6,6): [26, 60, 65, 75, 85, 90, 98, 115, 197,
271, 299, 318, 402]; other models: [35, 262, 363]; comparison with experiment: [179,
223].

Literature on baryon-antibaryon annihilation: SU(6)_: [14, 29, 127, 198, 241, 244];
SL(6,C): [71, 367, 400]; SU(6,6): [57, 82, 108, 192, 195, 202, 218, 219, 223, 251, 255,
267, 397].

5.8 Non-leptonic decays of hyperons and omega
In this paragraph we deal with the weak decays
hyperon or £2- - nucleon or hyperon + pseudoscalar meson.

For the general theory see Ref. [54].

The decay amplitudes consist of two parts which conserve and violate parity,
respectively. They are handled separately. The SU(6) treatment of these decays is a
generalization of the SU(3) treatment in so far as the characteristic selection rule

AI =1/, is incorporated in the ansatz by means of a spurion which belongs to the
adjoint representation:

SU(3): S = (6267 + 62 6%) belonging to the octet,
U(6): S = (0305 + 85 03) 6% from the 35-plet.
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For the discussion of the (+)-sign in these spurions we refer to Ref. [54]. The spurion
is assumed to bear the eigenparity plus or minus corresponding to parity conservation
or violation. In S[U(6) ® U(6)] the ansatz for the spurion can be made analogously.
The representations to be used are the products of quark and pseudoquark with
pseudoantiquark and antiquark, respectively (parity plus) or of quark with antiquark
(parity minus). They belong to one 143-plet of SU(6,6).

We shall use the collinear groups to describe the P- and D-waves; S-waves can be
handled with the static groups. We know that the collinear group approach is equi-
valent to a certain technique which uses “kinetic spurions”™ (see Part I, Section 3.2
for the discussion of this technique). These kinetic spurions are SU(3) singlets. The
appearance of two types of spurions, kinetic and weak ones, leads us to suggest a
different method of treating the non-leptonic weak decays which is no longer equi-
valent to the collinear group technique: we ascribe the transformation properties of
the weak spurion to the kinetic ones and take the latter from SU(3) octets [weak
spurion (8,1) C 35] x [kinetic spurion (1,3) C 35] - [weak kinetic spurion (8,3) C
35]. We do not go into the details of such a “‘combined spurion’” approach, but refer
to the original publications, Refs. [25, 135, 220, 235, 327]. The results obtained are in
general more restrictive than those of the collinear groups. Only in the case of the
SU(6,6) group is this approach accidentally equivalent to the SU(6),, technique.

The parity violating amplitude can be handled with the static models as long as
only S-waves are concerned. The £2- decay proceeds, however, possibly partly through
D-waves. Therefore, we cannot a priori neglect them.

We note the relations implied by the A7 = 1/, rule

]/E EF—=>pa" =2t >naty — X~ —>na> (1)
A—->pa>=— ]/2” A —n a% (2)
E->Aa>=)2 E° > An® (3)
& >E0ay = — )2 Q- > E-a%. )

5.8.1 Collinear S[U(3) ® U(3)]

We follow along the lines of Ref. [16]. The technique of constructing invariants
is quite similar to that used for the baryon-meson scattering process, since the weak
spurion belongs either to the scalar or to the pseudoscalar octet contained in the 35-
plet, and is correspondingly attributed to the representations of the subgroup S[U(3)
® U(3)].

It is well known that in addition to the unitary symmetry certain discrete sym-
metries are necessary to yield restrictions on the non-leptonic decays in the SU(3)
scheme. The situation here is similar. It is simplest to generalize the concept of “CP
invariance”, see Ref. [171] to the SU(6) approach, since the dynamical assumptions
involved do not depend intrinsically on the group structure. We therefore give the
results with or without additional CP invariance. We find without CP invariance
for the parity conserving amplitudes

Q> AK,= |§5_ {(/1 >pay—2KE-—>Aday,— Vg &t e-pm))p} (1)
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and for the parity violating amplitudes

_ _ /15 _ - _ 2 3 i
@ > AK>, = 2 A > pass—2¢E > Ands— )3 Er>pady. (@)

If CP invariance #s imposed, we obtain three additional relations for the parity
violating amplitudes

E+>nmaty, =0 (3)
D= AK>,=0 (4)
22 >0, = )10 <A > padg + 15 <Z- > mads. (5)

Static SU(6), gives the same results for the parity violating amplitudes, only all
D-waves must be put equal zero (see Refs. [13, 17, 376]).

If we take Eqgs. (2) and (4) together we obtain the first component of the triangle
relation of SucGawaARrA and LEEg, Refs. [253] and [374]:

<A > P s — 2 <E——>Agr>s _]/5 (> pade =0.
The second component can be obtained if we assume ad hoc that in Eq. (1)
- > AK>,=0,

In the unitary symmetry scheme both triangle relations can be obtained with the
assumption of R-invariance.

Modifications of the weak spurion, for example, the generalization due to the
current-current hypothesis, are discussed in Refs. [13, 273, 378]. Some dynamic
assumptions based on dispersion theory have been introduced in Ref. [67].

5.8.2 SU(6)y

We rely on the results of Refs. [164, 214, 237, 293]. Similar results have been found
in Refs. [158, 239]. The weak spurion is taken from Ref. [143]. We find without CP
invariance for the parity conserving amplitudes

Q- AK->,— VT3 A >pa>,—2¢E>Aa>,—)3 Er>pa®, ()

- AK>,=— ?'lgz (ot = BTy | (2)
|/5<2+—>%n+>p-—3<2+—~>1bn“>p+]/13 A—pr>,=0 3)
/()— =— 0 V67 - — -

- =5 7z>p+T<2+—>nn+>ﬁ—]/6 X =>nm>,=0, (4)

A more useful combination of Eqgs. (1), (2) and (3) is

e f ls, — 41?1?; E-—>An>, — Slléé; (Xt > nat>,=0. (1)
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For the parity violating amplitudes we obtain

Q- > AK->,=0 (5)
</[ﬁ>pn">s—2<:”%A7z—>s—]/§<2+—>pn0>5=0 (6)
! A —pa > +|/§ Lt =>npty 4 &+ —>pa =0. (7)

&
If CP invariance is superimposed we get
&t —>natd; =0 (8)
M —»Z—m%, =10 (9)
We note a useful combination of Egs. (8) and (7)
A —pass+)3Et—>pads=0. (8")

We recognize that the result
Lt —w>natds=0

appears again only as a consequence of CP invariance. A remark made in Ref. [158]
i1s perhaps interesting in this context: if the formalism of spinorinvariants is used,
the magnitude of the amplitude <X+ - #n z+>_ turns out to be of the order of the
meson-baryon mass ratio.

5.8.3 Comparison with experimental data

We use the data on hyperons as compiled in Ref. [362], data about the - are
not yet available (following Table).
Only the prediction

Et—>natye =0 (1)
and the Sugawara-Lee relation
A—>pads—2¢E > Aads—|3E+>pa;=0 2)
Table

Units are 10% (1/MeV sec)!/2. 4 and B are the familiar covariant amplitudes corresponding to

S- and P-waves. The phase of 4(A%) is chosen positive. All other phases are chosen to fit the

Sugawara-Lee relation for the 4-amplitudes. We took the solution with A (&) small (see Ref.

[362]). The ambiguity of the value of the amplitude <X+ —> p % is due to the fact that only the
asymmetry parameter o has been measured.

A=>pa> E->And E->na) (Zt—>nmt) (&t > pn’

A 40.132 4 0.007 +0.169 + 0.004 +0.158 + 0.002 —0.004 + 0.007 —0.079 + 0.020 a)
~0.144 + 0.011 b)
B +0.858 4 0.119 —0.697 + 0.125 —0.127 + 0.168 +1.632 + 0.042 +1.443 + 0.114 a)
+0.785 + 0.200 b)
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can be tested from the set of S[U(3) ® U(3)] results. At least one of the solutions which
come out from the experiments fits the relations reasonable well. The single new
S-wave result from SU(6)y,, Eq. (8'), is also in good agreement if solution a) (see the
text belonging to the Table for the amplitude <X+ pa®>) is chosen.

The P-wave predictions from SU(6), are, however, systematically bad as has
been pointed out by several authors (see Ref. [158]). A typical case is the second
component of the Sugawara-Lee relation which appears as

A—>pr>, —2¢E = An>, — 3 (Zt > pady,= mé—l/6<f+—>nn+>p. (3)

If a solution is chosen which makes <X+ - nz+> small (as was done in the Table)
the amplitude (X = nz+), is necessarily big. The SU(6),, predictions are therefore
not consistent.

Modifications of the weak spurion which are aimed at overcoming this difficulty
have been studied in Refs. [158] and [165].

Literature on non-leptonic hyperon decays: SU(6),: [2, 13, 17, 25, 67, 70, 220,
221, 235, 273, 327, 376, 378]; SL{6,C): [12, 16, 71, 328]; SU(6,6): [158, 164,165, 214,
237, 239, 393, 303].

Literature on weak interactions in general and the structure of hadronic weak
currents: SU(6),: [18, 47, 70, 163, 282]; SL(6,C): [212, 335, 368]; SU(6,6): [3, 212,
237, 295, 396, 401].

Literature on neutrino-induced processes: SU(6),: [9, 10, 304]; SL(6,C): [11];
SU(6,6): [11, 19, 238].

5.9 Conclusions

There is not yet sufficient experimental material to be able to arrive at a definitive
conclusion about the usefulness of the concept of the chains of subgroups which are
relativistic generalizations of SU(6).

Both collinear groups S[U(3) ® U(3)] and SU(6)y, give correct and important
predictions for the BB y vertex. For the MM y vertex, experiments will soon be avail-
able.

For the BBM and M MM vertices, the accuracy of the collinear groups is limited
by the accuracy of SU(3). The same is true for scattering processes involving four
hadrons. For the total cross-section BM, SU(6),, gives the two Johnson-Treiman
relations which agree fairly well with experiment, and collinear S[U(3) ® U(3)] gives
the linear combination of these relations which is in best agreement. There are a cer-
tain number of predictions of collinear SU(6),, for the processes BM - BM and BB
- MM, and of the coplanar subgroup S[U(3) ® U(3)] for proton-proton scattering
which disagree rather violently with the empirical facts. Further tests of the collinear
group S[U(3) ® U(3)] probably require the measurement of polarizations.

6. Appendix
Table 1

The decomposition of representations of SU(6) into irreducible representations
of SU(3) ® SU(2)
Indices

A, B, ... run from 1 to 6, a, b, ... from1 to 3, o, B, ... from1 to 2.
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The following relations are always assumed:

ti{l Saﬁ o yﬂb AB 0.

L U
=y = S5y = ay ~ ac AC_

Indices in round brackets are symmetrized, and those in square brackets are antisymmetrized.
The normalization factors have been chosen in the usual way, namely the norm of an SU(6)
tensor is given by the sum of products of norms of SU(3), SU(2) tensors:

Example:
1352 = | (8,3) |2+] (8,1) [2+] (1,3) |2
tgt‘ézvgvgsgsg+7;“7;b+ S,;i :f.
by = 6
g Sa (3,2)
gl = r
y%s* (3,2)
A
p = 35
b S (8,3)
1 o]
+ 72 vy 65 (8,1)
1 {72 v &
cx 1/3, éb sg (1,3)
t[ABC} = 20
Vé’ Eabc (Saﬁy) (L.4)
; 8,2
T3 Ye Vevie Sapy T Tvas Sna  Teas Sl (8,2)
faBe) = 56
”(abc St By) (10,4)
3 l/ [ [able [aﬁ]}' + 7[!)6]& S[ﬁy}a + T{ca]b S[wx]ﬁ] (&2)
frame == YBea © ears = 70
1
Yz [atle “aby) &.4)
1
+ g €abe S(ocﬂ)y ‘ (1,2)
= 1/6 [2 7tat1c S@pyy = "vela SBna ™ Yieals Sty 6] (8,2)
—1 10,2
+ TRGENELE (10,2)
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i = 189
» |1/'1—é“ [3008 ofrol —26f8 ol 2] (1,1)
+ oy 506 ol -3 0nied ol )
+ % "lat) Ot (47,1)
+ _é—ls_ [enfas] ©s - OG5 ©9Ea) s
" 161;/37 [enfed) @9 + 05 @9fig — 3 ONLE G9p] 8,3)’
T % £ T ape) 051 (10:3)
+ % are 74 092 1,3
TERoRA (ws)
+ % onfed o &9
4201 — 280
a7 (008 oz - 3 nfel) ofz3) 5.1
+ -»2176, % v ney O (10,1)
+;~%eabg A0 ofr (t0.1)
+ gy et o) - 2 e8] @3
T Vll - (@G5 @95 — 5 onfes] 093] (8,3)
+ W (@065 @95 + Gnfal 0972 — enied 098] (8,3)’
+ ﬁem e 0L (10,3)
- cd) (ds )[vd (27,3)

2 V (aB)
by, A28 (10,5)

V2
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{OD) — 405
1"271/-1-4' (8t oas) — 6 ofeé] k] .1)

I >16]1/15 UO”)M 0(22) 15 (or )[;ij ‘)chﬁﬂ 8:1)
;‘11'/3 Sas) Ons) (27,1)

T 11/3 [O0155] 0955 — Onfes) 09)(z5]] (8,3)
"F'is“;ﬁif'[S(oyk @) g + 5 (On(5q] 09)F 8] — 3 (G055 B9 (8,3)"

+ % “ T apey 0)p) b3

L }( Eape 710 (05)22) (10,3)

oy o9l @3

b o g w3

L g o3 =

D o (27,5)

The following tensors have heen made use of:

d
Vable = €aba Ve »
Sy = Eay Sp T Egy S

Staply = €ap Sy
and

8lem =85 85 + 05 0

sy = 0205 — &% 6;,
30 =g 8+ o2 8,
3L s = o7 65 — 62 8%,

(0r){ai) = 0 75 + 8375 + 67 + By 7,
(Or)ied) = 0573 — 82 i+ Oy 7y — 8 7
(Or)ed = o8 7+ 075 — 85 7 — 87
(0o = 8% vy — 0L vy — Oy 72 + O, 7

The tensors (ds) are constructed analogously.
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35
189
280
405
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56

70
700

35
(214),

189
(2212,

189

(221%),

280

(312),

280

(319),

280
(318),

280
(3229),

405
(424),

x

X

X

X

X

X

X

X

35
(21%)

35
(21%)

189

(271%)

35

(21%)

189

(2212)

280
(31%)

280
(31%)

35
(21%)

W
W

X X X X X X X X
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Table 3
Multiplication of representations of SU(6)
189 280 280 405 20 56 56 70 70 700 700
X
X X X
X X X
X X X X
X X X X X X X
X X X X X x X X X
X X X X X X X X X X X
405 (@ 280 (D 280 D189 @ 235 @1
(424) (313), (3%28), (221%), (21%), ()
3675 @ 896 @ 896 (D 280 @ 280 @D 2(189)
43221),  (321), (3%21), (313), (3223), (2212),
@175 @ 35
(23), (214).
1 @ 2(35) @ 405 @ 280 @ 280 @ 3(189)
), @9, @2y, 6B, @), @),
@ (175) @ 2(896) @ 2(896) D 490 (D 490 @ 3969
(28), (321), (3321), (3%, (39, (43212),
@ 5670 @ 5670 (O 2(3675) @ 6720
(4322),  (42212),  (43221),  (4%22).
3200 @ 405 (@ 3675 @ 840 @ 2(280) D 896
(5231), (424), (43221),  (412), (313), (321),
@ 189 @ 35
(2212), (21%).
14175 @ 12250 @ 3200 @ 1134 @ 5670 @ 840
(5322), (5321%),  (5231), (42), (4322), (412),
@ 3969 @ 2(3675) @ 405 @ 2(896) @ 896 @ 2(280)
(43212),  (43221),  (429), (321), (3321), (313),
@280 + 175 @189 @ 35
(3229), (2%), (2213), (214).
9625 (P 8910 @ 1050 @ 14175 @ 12250 @ 2(3200)
(623), (62212),  (51) (5327),  (53212%),  (52%1),
@ 1134 @ 2(840) @ 6720 @ 5670 @ 2(3675) @ 405
42), (412), (4222), (42212),  (43221), (429,
@ 490 @ 2(896) @ 280 @ 280 @ 189
(32), (321), (313), (3223), (2212).
1 @ 29700 @ 12250 @ 12250 @ 3200 (D 3200
(0), (64322),  (5321%),  (54232),  (52%1), (5439),
@ 896 @ 8% @ 280 @ 280 @D 2695 @ 3969
(321), (3821), (313), (3323), (634), (43212),
@ 2(405) @ 2(3675) @ 175 @ 2(189) @ 2(35)
(429), (43221),  (23), (2212), (21%).
2695 + 3200 @ 3200 @ 3675 (@ 2(405), @ 280
(634), (5231),  (5439%),  (432%1),  (429), (313),
@ 280 @ 35
(3229), (21%).
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405 x 189 - 29700 @ 12250 @ 12250 @ 3200 @ 3200 @ 840
(429, (2212) (64322),  (5321%),  (54232),  (5231),  (543%),  (41%),
@ 840 @ 8% P 8% @ 280 D 280 @ 2(3675)
(4832), (321), (3%21),  (313), (3228), (43221),
@ 3969 @ 405 @ 189
(43212),  (429), (2212).
405 x 280 = 19845 @ 8910 (@ 2605 @ 29700 @ 2(3200) @ 12250
(424), (313) (73%2),  (6221%),  (63%), (64322),  (5231),  (53212),
@ 3200 @ 840 @ 2(3675) @ 405 @ 2(280) @ 89
(5433),  (412), (43221). (429, (313), (321),
@ 14175 @ 5670 @ 280 (P 189 @ 35
(52322),  (42212),  (3223), (2212), (214).
405 x 405 = 12740 @ 19845 (O 19845 (D 2(2695) D 9625 @ 9625
(429), (42) (844), (7332), (7543,  (63%), (623), (6243),
@ 2(3200) @ 2(3200) @ 14175 @ 14175 @ 2(3675) @ 3(405)
(5231),  (543%),  (5327),  (5%2322),  (43221), (429,
@ 6720 @ 280 @ 280 @ 235 @189 @1
(4222), (313), (322%), (214, (2212), (0).
20 x 35 - 540 @ 70 @ 70 @ 20
(19), (219) (32212),  (21), (241), (13).
20 x 189 = 1960 @ 560 @ 560 @ 540 @ 70 @ 70
(18), (2212) (3221), (329, (3213), (32212),  (21) (241),
@ 20
(13).
20 x 280 = 3240 @ 1134 @ 560 @ 540 @ 70 @ 56
(13), (318) (4221),  (421%), (329, (32217),  (21), (3).
20 x 405 = 5202 @ 1134 @ 1134 @ 540
(13), (42%) (53222),  (4213), (4332), (32212).
20 x 20 - 1 @ 35 @ 175 @ 189
(1%, (1%) (0), (21%), (2%), (2212).
56 x 35 - 1134 @ 700 @ 70 @ 56
(3), (214) (4213),  (519), (21), (3).
56 x 189 - 5670 @ 3240 @ 1134 @ 540
(3), (2212) (521%),  (4221),  (421%),  (3221?).
56 x 280 = 3080 @ 5670 @ 700 @ 1134 @ 560 @ 4536
(3), (313) (613), (5212), (519), (4213),  (3213), (4312).
56  x 280 - 8624 (@ 5292 @ 1134 @ 540 @ 70 @ 20
(3), (3223) (6323),  (5322%),  (421%),  (3221%),  (21), (13).
56 x 405 = 4536 @ 8624 @ 700 @ 7000 @ 1134 @ 560
3), (424) (72%), (6323), (514), (5423), (4213), (3%19),
@ 70 @ 56
(21), (3).
56 x 20 - 840 @ 280
(3), (1%) (412), (319).
56 x 56 = 1050 @ 1134 @ 490 @ 462
(3), (3) (51), (42), (3%), (6).
56 x 56 - 2695 (@ 405 @ 35 +1

(39, (3) (634), (429), (21%);

<2



Vol. 40, 1967

70
(21),

70
(21),

70
(21),
70
(21),
70
(21),

70
(21),

70
(21),

70
(241),

700
(514),

700
(514),

700

(514,

700
(51%),

X

35
(21%)

70
(21)

20
(1%)
56
(3)

56
(39)
280
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