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On Bravais Classes of Magnetic Lattices

by Aloysio Janner
Instituut voor Theoretische Fysika, Katholieke Universiteit, Nijmegen (Nederland)

(13. IX. 66)

Summary. The concept of Bravais classes is examined by looking at the extensions from which
n-dimensional space groups are obtained. It is shown how #-dimensional magnetic space groups,
too can be derived from extensions of abelian groups. This leads to a natural classification, which
interprets in terms of extensions that given by OpEcHOWSKI and GUCCIONE. Bravais classes of
magnetic lattices are defined by generalization of the concept of arithmetically equivalent
holohedries. A new group is introduced: the magnetic linear group ML(n, Z), i.e. the group of
linear basis transformations leaving invariant the magnetic lattice structure. This group is
isomorphic to subgroups ML,(n, Z) of index 27— 1 in GL(», Z), which subgroups replace GL (%, Z)
in the magnetic case. Some basic properties of these new groups are discussed. As illustration, the
two-dimensional Bravais classes of magnetic lattices are derived.

1. Introduction

The Bravais classes of two- and three-dimensional magnetic lattices are well
known [1]1). But only recently has a mathematical definition for these equivalence
classes been given, by W. OpEcHOWSKI and R. GuccioNE [2]. In their paper (here
quoted as OG) one also finds an explicit definition of the Bravais classes of the usual
translational lattices. In the non-magnetic case, the Bravais classes are given by the
arithmetic classes of lattice holohedries and correspond, therefore, to the classes of
conjugate finite subgroups of GL(%n, Z). In the magnetic case, however, OG use the
concept of ‘semidirect product’ in order to have a simple definition.

In the present paper we show how this concept can be avoided. The result repre-
sents a natural generalization of the arithmetic case, as it involves, for the equivalence
defining magnetic Bravais classes, conjugation with respect to a subgroup of GL(%, Z).
At the same time one learns how Bravais classes can be defined for more general
crystallographic symmetry groups (for example, in the relativistic case, as will be
discussed in a subsequent paper). For definitions and properties of magnetic symmetry
groups, we refer to OG.

2. Bravais Classes of Euclidean Lattices

Let us briefly examine the euclidean case, because it forms a natural basis for our
subsequent treatment. The approach indicated below is discussed in detail in a paper
of E. ASCHER and A. JANNER [3] (here quoted as A]J).

We consider a #-dimensional lattice / in a euclidean space V' of same dimension.
The most general (invertible) isometries of ¥ which leave A invariant are elements of
space groups G obtained from extensions of a #-dimensional translation group T
by an abstract crystallographic point group R with¢,: R - Aut(7) a monomorphism.
Actually g,(R) is the (no more abstract) crystallographic point group belonging to G.

1) Numbers in brackets refer to References, p. 682.



666 , Aloysio Janner H.P. A.

One has the following exact sequence:

0->TS5G3R—>1 (p). (2.1)
That is:
T <1G and G/T=R. (2.2)

Throughout this paper  is the natural injection of the subgroup T and ¢ the canonical
epimorphism (i.e. the homomorphic projection onto R considered as factor group of G).
In what follows we therefore omit their indication.

Between isomorphic space groups G ~ G, it is possible to construct a morphism of
group extensions by:

0->T—>G—->R—=>1 (¢

| | i
Xo | ¥, |
v "yl

0>T—>G->R->1 (o) {2.3)
with y, and y isomorphisms such that:
vV aeT, VaeR, pouoa= ylpoxoa) g". (2.4)
The isomorphism between G and G is then explicitly given by:
p(a, o) = (goa, a) for (a,0) e G, ¥ aeT and ¥ ae R. (2.5)

If one gives the one-to-one correspondence between the generators of T and those of T,
then y, is completely defined for all ae T and ae€ T. The free abelian group 7 is

generated by a basis of the lattice A, therefore T é Z", and analogously: fé 2,
Let us consider the following commutative diagram of group-isomorphisms:

SN 26)

with y, as in (2.3). One has from construction: y = A %0 ~71. Through the isomorphism
A, the monomorphism g, of (2.3) induces a monomorphism ¢: R - GL(n, Z) given by:

poa=Apx) A, VaeR, (2.7)

where GL(n, Z) is the group of the #-dimensional integral matrices with determinant
+ 1. In the same way one obtains another monomorphism ¢: R -~ GL(n, Z) by:

Eoc:[(aoa)x‘l, VY aeeR. (2.8)
Relation (2.4) becomes (for any « € R):
pa=7y(pa) g, with ye GL(n, Z) . (2.9)

From this last formula, there follows that ¢(R) and @(R) are related through an inner
automorphism of GL(%, Z) and belong to the same class of conjugate finite subgroups
of GL(n, Z) isomorphic to R. Such class is called an arithmetic crystal class. One says
that ¢(R) and ¢(R) are arithmetically equivalent.
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If @y(R,) is the largest point group leaving A invariant with ¢, a monomorphism
as above, then going over to ¢(R,) by means of (2.6) and (2.7) one detines a holohedry
of the lattice A by:

HZ g(R) C GL(n, Z) . (2.10)

For a given /1 one has an infinite number of possible holohedries (corresponding
to different choices of basis), all belonging to the same arithmetic crystal class.
/ determines this arithmetic class but not vice versa. What such an arithmetic class

determines is a whole Bravais class of lattices. Two lattices /1 and A are said to belong
to the same Bravais class if and only if they have arithmetically equivalent holohedries:

A~A<«sH—yHy? for ye GL(n, Z), (2.11)

where H and H are holohedries of A and A, respectively. Looking now at (2.3), (2.6),
and (2.9) one realises that in order to obtain all non- isomorphic space groups, it 1s
sufficient to consider one representative of each Bravais class. This representative is
also called Bravais lattice. The result is independent of special choices in (2.6)
precisely because it depends only on the arithmetic crystal class and not on the
representative point group considered.

In crystallography it is customary to identify not all isomorphic space groups, but
only those having the same orientation. To obtain all differently oriented space
groups, one has to consider oriented Bravais classes. These are defined by the equiva-
lence arising from holohedries belonging to the same proper arithmetic crystal class,
15 8,5

A« H=y, Hy: for y, eSL(n, 7), (2.12)

where SL(n, Z) is the subgroup of GL(n, Z) consisting of the automorphisms of Z=
with determinant 4 1. Only in spaces of even dimensions may one expect differences
between Bravais classes with and without orientation (because a lattice always
permits inversion). Actually in the two-dimensional euclidean case, there is no such
difference, but this is a consequence of the particular simple case.

3. Magnetic Space Groups as Extensions

We consider #-dimensional non-trivial magnetic space groups M. According to the
general theory [2] the elements of M can be classified in primed and in unprimed
according to whether they are associated or not with the time inversion operation
t—> —1).

The unprimed elements form a subgroup D C M of index 2. Therefore one obtains
all the magnetic space groups M of given dimension (the trivial case of ‘grey’ space
groups included) by considering extensions:

1-=D—->M-—>4 —>0 (3.1)

where D is a space group of same dimension and 4 = (E, E’) =~ C, 1s the group
consisting of the identity E and the time inversion E’. The difficulties lying in this
approach are due to the fact that in (3.1) the group D is in general non-abelian.
Non-trivial magnetic space groups, however, considered as abstract groups, are
isomorphic to space groups, so that, from this point of view, they can equally well be
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obtained from extensions of abelian groups, along the lines discussed in AJ. In addi-
tion, one needs a careful discussion relative to the distribution of the primes among
the elements of the group M. In other words, a magnetic space group is a group M
together with a subgroup D of index two (D being a space group). We are now back
again to (3.1). Nevertheless, it is very instructive to discuss magnetic space groups in
the frame of the theory developed in A]J.

One then finds, for example, that the three cases M, My,, and My, considered
in the systematic presentation given by OpEcHOWSKI and GUCCIONE (compare with
Table II of OG) have a simple interpretation in terms of commutative diagrams with
exact sequences. Actually it turns out that it is convenient to split the case My into
a case M, and into a case M ,». OPECHOWSKI and GUCCIONE, too, consider in their
book over magnetic groups [4] a somewhat equivalent separation of M in My, and
My, . We discuss below the mutual relations of these various cases.

In the first case (M = M), all primitive translations are unprimed, and D = D,
the subgroup of index two of (3.1), has the same lattice as M ;. The other cases are
characterized by the presence of a magnetic lattice A,, left invariant by the point
group @y(R). In other words, M = My has the same point group as D = Dy, and
primed, as well as unprimed, primitive translations occur. In the second case (M =
Mp,), all non-primitive translations are unprimed, whereas in the cases denoted by
Mg, primes are distributed also among non-primitive translations. The subdivision
of My, into two other classes cannot be explained here in a few words.

a) The first case: M = My

All magnetic space groups M ; belonging to the first case are obtained from exten-
sions of the following type:

0>T >Mr— Ry —1 (@) (3.2)

where 7 is a discrete translation group generating a euclidean n-dimensional lattice,
R, a corresponding crystallographic magnetic point group and ¢, is a monomorphism
as considered in Section 2.

In fact, (3.2) is part of a more complete commutative diagram with exact rows
and columns:

1 1

v

0—->T—= D, — K —1 ()

[

0 —>T—>M;— Ry;—1 (p)

v

A =4
v ¥
0 0 (3.3)

where 4 = (E, E) = C,.
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The monomorphism g, indicated in the upper extension is actually the restriction
of that appearing in the lower one, to the elements of the subgroup K of Ry, .

Let » stand for a set of representatives for the cosets of My by T in My. As T
consists only of unprimed elements, for any unprimed element a« € Ry, the representa-
tive 7(«) is an unprimed element of M ;. For any primed element ' € Ry, 7(8') is a
primed element of M, which can be noted as:

Def

() = r(f)" - (3.4)

In this last notation, R,; appears as an abstract group, the magnetic structure of the
crystallographic point group being taken over by primed and unprimed representa-
tives 7(Ry,).

There follows that all unprimed elements of M are of the form:

(@,0) = arl)eDy, ~aeT, % o(unprimed)e R, (3.5)

(ie. v aeK),
whereas the primed ones are given by:

Def

(@, B8)=ar(f)=ar(p))eM;,—D,, ~aecT, B (primed)eR,  (3.6)
(i.e. ¥ e Ry, — K) .

We observe that using (3.4) and according to (1.1) of AJ:

e f
BoB 00 = 1) ar(p) = r(B)ar(p)r = g poa, 37)
so that R, operates (through ¢,) as an abstract group on T (and not as a magnetic
group). One easily verifies that the elements of the factor set m: Ry X Ry > T are,
as they have to be, always unprimed elements.
The Bravais classes of these non-magnetic lattices are precisely the non-magnetic
ones. The first case is also the simplest one.

b) The cases M = My

These cases need a preliminary discussion in common. Magnetic space groups M g
are obtained from extensions of the following type:

0Ty —>M,—>R—>1 (g, (3.8)

with T, a magnetic translation group generating a n-dimensional magnetic lattice
Ay and R a non-magnetic crystallographic point group. ¢, is a monomorphism:
R - Aut(T,,). By Aut(T,,) we mean the group of automorphisms of the magnetic
lattice /1, into itself, so that @,(R) maps unprimed elements on unprimed ones, and
primed on primed i.e.:

VvV a€ R, @yaeAut (T,,)implies:
poxoac T’ for “aeT? (3.9)
porod €T — TP for ¢ el —TP. (3.10)
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TP is the subgroup of index two of T, consisting of the unprimed elements of T,.

The choice of a basis in A,,;, which corresponds to choosing the generators of T,
and the isomorphic mapping of these on the generators of 27, leads to a #-dimensional
faithful integral representation ML(n,Z) of Aut(T,) with ML(n,Z) C GL(n, Z).
The magnetic linear group ML(n, Z) can be interpreted as the group of linear trans-
formations which transform a basis of 4, into all the other ones of the same magnetic
type (see Section 5). This justifies the notation. Some basic properties of M L(n, Z) are
discussed in Section 5. We consider the isomorphism 4:

T\ )—s> 20 (3.11a)
According to (2.7), there follows from (3.8):
pou=2~4(@a) A, YaekR, (3.11b)

but now ¢ is a monomorphism: R - ML(n, Z) C GL(n, Z).

Choosing different representatives for the cosets of 7, in Mg, one obtains
equivalent extensions (i. e. extensions having systems (¢,, m) and (¢,, m), respectively,
which are equivalent). Equivalent extensions define isomorphic groups [3].

The point is that, in the case of magnetic space groups, we cannot simply identify
isomorphic groups. We can do so only if we can find an isomorphism which maps
primed elements into primed ones (and therefore unprimed into unprimed). In the case
of such an isomorphism we may speak of a magnetic-group-isomorphism. Henceforth,
by isomorphic magnetic groups, we mean groups related by this special type of
isomorphism (preserving the magnetic structure), for which we adopt the notation:

MEM. (3.12)
Let us now consider the diagram representing two equivalent extensions (3.8):

0>Ty—>Mpg—>R—>1 (p)
| | 1
‘ ILU ‘
I

0>Ty->M,—>R—>1 (o) - (3.13)

According to A(52)/A(56) in AJ, M and M, g are related by the isomorphism u
induced by a different choice of the representatives of the cosets by T, namely:

pr(@) =u@r@), VaekR. (3.14)

The mapping u: R - T, satisfies the conditions implying that (¢,, m) and (¢,, m)
are two equivalent systems from R to T, related by (Vv «, f € R):

Po 0 @ = u(x) (py o a)ule)?, (3.15)
m(a, B) = w(x) [go o0 u(B)] m(a, B) u(x f) , (3.16)
with of course u(e) = 1. The isomorphism u is then given by:

plar@)] =au@ 7o), VaeT,, VacR. (3.17)
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From the above relations one can see that u is a magnetic-group-isomorphism if and
only if all #(R) are unprimed (i.e. #: R - TP). Primed #’s change the distribution
of primes among the #’s (possibly among the m’s, too) and may therefore lead (but
not necessarily) to different magnetic space groups.

For this reason, we cannot restrict ourselves to inequivalent extensions. Note that
this difficulty does not arise in (3.2). All this is a consequence of the fact that a magnetic
group is a group together with a given subgroup of index two.

Actually, the diagram (3.8) has to be seen as part of a more complete commutative
diagram with exact rows and columns, given by:

0 1

oo

0—T° - Dy — Ry, — 1 (@)

Vel I

0T, —>Mp— R, —1 ()

o e P A
I
[

O < <

(3.18)

with 4 as in (3.1). The injection p, which determines the relation between ¢, and ¢,,
depends on the case considered (Mzo, Mg, or My ).
After these general remarks, we may treat these three remaining cases separately.

c) The second case: M = Mp,

One obtains all magnetic space groups of the type My, by choosing unprimed
representatives 7(«) for any « € R. There follows that the factor set m(R, R) involves
only unprimed elements because of the relation:

7(0(.) 7(ﬂ) = m(d, AB) 7(“ ﬁ) ’ \7L &, ﬂ € R * (319)
Therefore the unprimed elements of My, are:

@) = ar@)eDyy, ~ael?, acR, (3.20)

and the primed ones appear as:

Def

(O, a) = b r(a) e Mpy — Dy, 0 eT—T°, wacR.  (3.21)

The relations (3.20) and (3.21) correspond precisely to the characterization given by
OG for the second case.

In the case Mz = My, the injection g of diagram (3.18) is the natural one, and the
monomorphism @, is simply the restriction of ¢, to the elements of the subgroup
Aut(TP) of Aut(T,).
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d) The third and the fourth case: M = Mg,

Magnetic space groups of this type are those which cannot be obtained by choosing
unprimed representatives 7(a) only ; primed ones must also be chosen. This is a common
property of the third and fourth case. Distinction between primed and unprimed
representatives give a partition into J and I, respectively, of the set of indices
numbering the elements of R. For clarity, we denote by:

a;: any element of R with 7(«;) an unprimed representative (i € I)
B;: any element of R with #(f,)" a primed representative (j € J)
a,: any element of T,

b,: any element of T D [ is a numbering index. (3.22)
% ne

According to (3.22) the elements of M, can be divided into one of the following four

sets:

Def
1st set: (a,, ;) = a,r(x)

2nd set: (b,’, ) ;) = b; #(ot;)

Srdset:  (a,, B;) = a, 7(B;)’
dthset: (5,8, = b,7(B,)’ , (3.23)
for any element of (3.22).
The first and the fourth set of (3.23) constitute together the group Dy, . The first
set alone in general does not form group, because for example in:

(o) 7(o) = m(oe;, o) 7ot o), N 4, RET, | (3.24)

one does not know a priori if m(e;, o) and 7(e; ;) are primed elements or not of Mg,,.

The partition of OpEcHOWSKI and GUCCIONE [4] of Dy, into Dy,; and Dy o 1S
based on the distinction between the case in which the first set of (3.23) forms a group
(denoted by Q or Q,), and the case in which it does not.

Our partition of Dy, into Dy, and Dg,s distinguishes between factor sets
involving only unprimed elements and those involving primed elements as well.

Looking at (3.24) one sees that the two classifications are more or less equivalent.
We have not succeeded, however, in proving whether or not they always are
equivalent, or if in some cases they are not. We keep, therefore, the two different
notations mentioned above. They are:

(1) According to OPECHOWSKI and GUCCIONE.

Case M ,,: if the first set (3.23):

Def
{a,7(0;) | V a,e T®, Y a,eR, iel}=0Q (3.25)
forms a subgroup of Dg,;.
Case My, if the first set (3.23) does not form a subgroup of Dg,., . (3.26)
(i1) According to our subdivision. _
Case My, if the factor set involves only unprimed elements, 1.e.:

m: Rx R— TP (3.27)
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Case Mg, if for given y, 6 € R,
m(y,0) e T — T" . (3.28)

The following propositions indicate the mutual relations between (i) and (ii) (insofar
as Investigated).

Proposition 1.

A magnetic space group of the type My, is also of the type Mz, ;.

Proof: The product of any two elements of the first set (3.23) is given by:

[a, 7(e;)] [@, 7(a)] = a, (o &; 0 @) m(x;, o) 7(ex; o) - (3.29)

Per hypothesis m(x;, o) € TP, therefore #(x; o) is unprimed and (3.29) is an element
of the same first set. The inverse of any element of the first set belongs to the set:
[a, 7 (o;)]7 = [@g ;" 0 a; ] m(x; !, a;)~ #(; ). There follows that this set is a sub-
group Q of Dy .

Corollary 1.

The group Q of proposition 1 is a subgroup of index two of Dy - (and therefore of
index four of Mg ).

Proof: The product of any two elements of Dy, not in  is an element of Q:

(5, 7(8;)'1 [, 7(B)'] = b,(pa B; 0 ,) m(Bs., Bi) 7(B; By - (3.30)

Proposition 2.

A magnetic space group of the type My, is also of the type Mg .

Proof: Consider two elements of the first set (3.23) with product not lying in the
same set. This product then lies in the fourth set (3.23):

(@, 7(a;)] la, 7(o)] = a,(@y &; 0 «,) mo;, o) 7(B;)" (3.31)

with §; = a; a,. Therefore m(«;, )’ is necessarily primed.
From the above propositions one sees that a necessary and sufficient condition for
having the case My, is:

mlo;, ) €T, o, € R with 4, kel (3.25a)

(3.25a) is a weaker condition than (3.27). However, it ensures already that the following
other factors are also unprimed:

m(a;, f;) and m(B;, a;) € T?, v o;, f;€ R with iel,j€ J. (3.32)

In fact: [b, #(8;)'] (a;) is not an element of the group (, because r(x;) € Q but
b,7(B;)' ¢ Q, it is therefore an element of the fourth set (3.23):

[b; ”(ﬁj) Tr(e) = b; m(ﬁj: ;) ”(ﬁj ®;) (3.33)

implying m(f;, ;) € TP. In the same way and by considering 7(;) [b, #(f;)'] one
gets: m(a;, §;) € TP.

What (3.25a) not necessarily ensures (at least at the present stage of investigation)
is that m(p;, ;) also is unprimed. The requirement of this last property for all j, ke J
is equivalent to that of Q being a subgroup of index two of D,;. With one of these

43 H.P.A. 39, 8 (1966)
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conditions, M ., becomes equivalent to My, and we arrive at the following propo-
sition:

Proposition 3.

If the group Q of (3.25) is a subgroup of index two of Dy, (and therefore of index
four of Mg, ,), then the magnetic space group Mg, is of type My, .

Proof: Q being a subgroup of index two of Dy, ,, the product of any two elements
of the fourth set (3.23) is an element of Q:

[b; 7(ﬁj)’] [b; (8] = b; (@0 ﬁj o b,;) m(ﬁj’ B ?(ﬁj By » (3.34)

thus m(B;, B,) € T". (3.34), (3.25a), and (3.32) give (3.27).

According to the detailed investigation of OpECHOWSKI and GUCCIONE [4], all
three-dimensional magnetic space groups of the type My, satisfy the condition of
proposition 3.

Let us remark that in the case My, , the four sets (3.23) are cosets of My,
relative to (). Take for example the following four elements of My . :

(e€), (bg,e), (e o) and (b, By)
with 7(8y)" and b, primed. Then (3.23) becomes:

1st coset: (a,, ;) €(e, e Q

2nd coset: (b, o) € (by, €) Q

3rd coset: (a,, B;) € (e, Bo) QO

4th coset: (b, B;) € (by, Bo) Q- (3.23a)

The following corollary shows how M .. can also be obtained from extensions of Ty,
by R, exactly in the way explained by OG.

Corollary 3.

In all magnetic space groups of the type My, the point group R has a subgroup

K2 ¢ a,e R|ie I} of index two.
Proof:

rlo) 7o) = mlo;, o) 7o o) (3.35)

7(a; o) being unprimed, o; o, = o, with /€ I. Therefore {«; | # € I} forms a subgroup
K of R. The product of any two elements f3;, #; not belonging to K lies in K:

T(ﬂj)’ r(Br) = m(ﬁj: B "(ﬁj Bi) (3.36)
giving B, B, = o, € K.
In other words, we can equally well have the primes on the elements §; of R
according to:

7 Def ’ .
rB) =), ~vie]. (3.37)
In the case of space groups of type M, the injection g of diagram (3.18) is explicitly
given by:
ola, 7(@)] = a,7(a;), W ael?, a,ekK

Def _,

ola, 7(B)] = a, by (B)) = b,7(B)" (3.38)
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for % a, € T? and uniquely given by € T, — T? (i.e. =/ b, = a,bye Ty — TP), and
¥ Bi€ Ry — K.

In addition to (3.18), the following two other diagrams with exact rows and
columns can be constructed:

0 1 I

v v
5 7230 > K —1 (g)
voom v

0Ty —>My, — Ry—1 ()

v v

0—+>A —-AxA—- A —0

v v

0 0 0 (3.39)

with A ~ C, asin (3.1). The monomorphism 7 is the natural injection and, therefore,
@, is the restriction of g, (this latter being the same as in (3.18)) to the elements of 7
and of K.

1 1

v \

0——>TD——>Q — K —>1(qu))

[ v

0—>T" Dy, — Ry —1 (p,)

v v

v v

0 0 (3.40)
with @, as in (3.18) and ¢, as in (3.39). The injection ¢ is defined by:
ofa, r(a,)] = a,7(a;), > a,eT?, Y a,eK, (3.41)

so that ¢, is the restriction of ¢, to the elements of K.
From (3.38) and (3.41) there follows:

oo =m, (3.42)
with 7 as in (3.39).

Proposition 4.

Symmorphic magnetic space groups My, are of the type Mg,.

Proof: In this case the extension (3.8) is a split-extension, the factor set may be
chosen to be the trivial one, thus unprimed, and (3.27) is verified.

What we indicate here is only a first step towards a theory of extensions for
magnetic space groups. In particular the case Mg,s needs further investigation.
However, our reformulation of the results already obtained by OG (and summarized
in Table I) is sufficient in order to arrive at a simple definition of the Bravais classes
of magnetic lattices.
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Table I. Classification of magnetic space groups
Type| Magnetic Point group | Translation | Representatives | ¢(R) Factor set
space group group of the cosets of finite subgroup
M R T Mby T'in M:7(R) | of m(R, R)
1 My Ry T primed and GL(n, Z) unprimed
with a unprimed unprimed
subgroup K | elements representatives
of index 2 only
II Mpgo R Ty unprimed ML(n, Z) elements
primed representatives
and only
. unprimed . st
IIT | Mgy R.M R primed ¥
with a and
subgroup K unprimed
of index 2 representatives
IV | Mgy R primed and
unprimed
elements

4. Bravais Classes of Magnetic Lattices

Magnetic lattices occur only with magnetic space groups of the type Mg; from
now on we restrict ourselves to these groups (simply noted M).

Given two isomorphic magnetic space groups (M & M) we are able to construct
a morphism of group extensions in the same way as in (2.3):

#y
00— T, —>M-

1

Xo,
ooy
0—=>Ty—M-—>R—>1 (p) (4.1)

with monomorphisms ¢,: R - Aut(7T",) and ¢,: R - Aut(T),) and 9 a magnetic-
group-isomorphism.

According to AJ (A34), y, is an isomorphism; it even preserves the magnetic
structure, because in our case (with s, and %, natural injections) y, is the restriction

to T, of 9. But of course T, and T, generate in general two different magnetic

lattices A,; and A,,. For this reason it is convenient to go over to Z» by means of the
diagram (2.6) so that according to (3.11a,b), Aut(T,) is replaced by ML(#n, Z). This
subgroup is determined only after specification of how the elements of Aut(7 ') act on
basis vectors of A,, and for a given type of lattice basis (see Section 5).

It is convenient to choose a covariant transformation (compare with (5.2)) of a
so-called magnetic basis (i.e. a basis consisting of primed elements only). Doing so,
and supposing that these primed elements (generators) are mapped by A on the
generators of Z#, one gets a uniquelv defined subgroup MLy(n, Z) of GL(n, Z). The
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integral matrices elements of MLy(n, Z) are in one-to-one correspondence with the
transformations of a magnetic basis into an arbitrary other magnetic basis of the same
lattice 4,,;. The same can be done for the lower extension of (4.1), and we can now
replace that diagram by:
e
0—=7" > M-—>R—>1 (p)

T

0—>2">M->R-—>1 (p (4.2)

with o = 29 A1, % = 2, 471, % = A4 yo A-* and monomorphisms ¢ and g: R - MLy(n, Z)
related to ¢, and to g, by (2.7) and (2.8), respectively. As y, is a magnetic-group-
isomorphism and after the special choices discussed above, we have:

yEMLyn, Z) . (4.3)
There follows from AJ(A62):

P(R) = @(R) 17, (4.4)
so that ¢(R) and ¢(R) belong to the same class of conjugate finite subgroups of
MLy(n, Z).

The results obtained do not depend on the particular choice: the only important
point is to fix once for all the subgroup ML (n, Z) considered.
We may now define a magnetic holohedry H of a given magnetic lattice A,, by:

Def

H = @(Ro) C MLy(n, 2) (4.5)

where @(R,) is the largest point group leaving A ,, invariant and ¢ is a monomorphism
referred, as above, to a magnetic basis of A,,.

Definition of magnetic Bravais classes

Two magnetic lattices A,, and A A are said to belong to the same Bravais class if
and only if their magnetic holohedries H and H respectively, are conjugate subgroups
of MLy(n, Z):

Ay~ Ay<=H=yHy? for ye MLyn, Z). (4.6)

Looking at (4.2) one sees that in order to obtain all isomorphic magnetic space
groups, it is sufficient to consider one representative of each magnetic Bravais class.
In particular as extensions of a given type (g fixed) always admit the trivial (or split)
extension which yields symmorphic magnetic space groups, our definition is equivalent

to that indicated by OG in terms of semi-direct products (consider in (4.2) the split-
extensions for R = R, as above, together with (4.4), (4.5), and (4.6)).

5. Basic Properties of the Magnetic Linear Group ML(n, Z)

We consider an arbitrary basis of a given n-dimensional magnetic lattice A,, and
the corresponding translation group 7;:

Ty={e1,€3-..€ ... 6}, (5.1)
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and we fix the correspondence between the elements A of GL(n, Z) and the basis
transformations of the basis in A,, by:

gld) =) 'Au v, S AECLZ);, =12t (5.2)
k=1

In (5.1) at least one of the basis vectors is primed. In general we may distinguish
between primed indices (if the corresponding basis vectors are primed) and unprimed
indices (if not). We define as basis of the same type, those bases which have the same
sequence of primed and unprimed indices. In particular, denoting by p the number of
primed indices we have: 1 < p < #n. For a magnetic basis (as defined in Section 4):
P = n.

Proposition 5.

For n-dimensional magnetic lattices the total number of different types of basis is
N=2r-1
n

Proof: For p = k there are (

k) different types of basis. Altogether, therefore:

N:Zn'(;:) o1,

F=1\
Proposition 6.

There is alway an element T', , € GL(n, £) which transforms a basis of type u into
one of typev (v, u =0,1,..., N —1).

Proof: To every permutation of the order of the elements of the basis there
corresponds an element of GL(n, Z). If p < n one can always increase p by one in the
following manner. Suppose e, primed and e; unprimed elements of the basis. Define:

E; =¢; + e;v, and ¢,=¢ for h+q. (5.3)

By (5.2) there corresponds to the transformation (5.3) an element of GL(», Z). One
gets T, , by suitable combination of these transformations.

Corollary 6.

The element 7, , of proposition 6 transforms every basis of type u into one of
type ».

Proof: This follows directly from the construction of 7, , indicated above.

Proposition 7.

The elements of GL(n, Z) which transform (according to (5.2)) a basis of a given
type » into another of the same type form a subgroup ML (n, Z) of index 2" — 1,
isomorphic to ML(n, Z), and to Aut(7,).

Proof: From the definition there follows directly that ML (n, Z) C GL(n, Z).
That ML (n,Z) >~ ML(n, Z) ~ Aut(T},) is a consequence of the fact that the elements
of Aut(T,,) and of ML(n, Z) are uniquely given once one knows how they transform
the generators of 7', i.e. the corresponding basis of A,,. To demonstrate that the
index is 2" — 1, we show that there is a set of 2* — 1 elements Sﬂ eGL(n, Z), p=
0,1,..., N —1, such that for any A e GL(n, Z):

A = S, B, with a uniquely determined Be ML,(n, Z) . (5.4)
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Consider a basis of type ». Every element A € GL(#n, Z) can be classified according to
the type of basis (say u) into which it transforms the basis ». Take 7, , as in propo-
sition 6. Then:

T, A= Be MLyn, 7). (5.5)
For a fixed », choose 2" — 1 such transformations 7, ,. By:
Def
g.=1. (5.6)

these form the desired set. The unicity of the decomposition (5.4) follows from the
group properties of GL(#n, Z) and from the fact that 4 as above transforms every basis
of type » into one of type u.

We now consider the homomorphism: Z = Z,, i.e.:

A~ A (mod2), <~ AeGL(n, 2) (5.7)

obtained by using the elements of the Galois field GF(2) instead of integers. The
homomorphic image of GL(#n, Z) is then GL(n, 2), which is a finite group of order [5]:

| GL(n,2) | = (20 — 1) (20— 2) ... (20 — 21) . (5.8)

Denote by ML, (n, 2) the image of the subgroups ML (n, Z) under the homomorphism
(5.7). There follows corollary 7.

Corollary 7.

The order of ML (n, 2) is:

| ML,(n,2) | = (20 — 2) (2n — 22) .., (20 — 2n-1) |

Proof: Propositions 6 and 7 remain true under the homomorphism (5.7). This
because the transformation by (5.2) of a primed basis vector into a primed, or into
a unprimed one, depends only on 4 (mod 2). Therefore the ML (n, 2) are subgroups of
index 2" — 1 in GL(n, 2).

Remark.

In Section 4 we have denoted by » = 0 the magnetic-basis-type (p = #). In this
case, and using (5.2), one sees that those elements of GL(#n, Z) which also belong to
ML(n, Z) have in each row an odd number of odd rational integers.

Fiyst example: n = 2

GL(2,2) @ Dy={s, 8}, with $*=2=(st)2=¢.
The order is:
|GL(2,2) | =(22—1) (22— 2) =6.
The six elements are:

10 01 11 11 10 01)
01/’ \10/>\10/)”\01/)” \11)° 11/'
For ML (2, 2) we have:

| ML, (2,2) | = (22 — 2), therefore ML, (=2,2) = C,
and the index is 22 — 1 = 3.
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In particular for the types of basis:

’ ’ x 5 O 1
v=0 Ty =1{e,e} (magnetic basis), ML, (2,2) = {(1 O) }

v=1 Ty ={e, e} MLy(22) = {((1) D}

ve= B Tye={ey, 85 MLQ(Z,Z):i(i?\)}.

Second example: n = 3

GL(3, 2) >~ LF(2,7), linear fractional group of order 168 and abstract definition
[6]:
=gl = frsp=_[rlgt=ag.
In our case for example:

111 111
r=1010)ands=(101
100 001

ML (3, 2) =2 0, octahedral group of order 24, index 7 and abstract definition:

gt 8 e g )@

For ML,3, 2) take e.g.:

111 100
u=1100)and » = 001).
010 010

/

6. The Two-Dimensional Magnetic Bravais Classes

To illustrate how our considerations apply in practical cases, we derive here the
magnetic Bravais classes for the two-dimensional case. Two magnetic lattices having
- the same magnetic Bravais class have arithmetically equivalent holohedries, which
are in one-to-one relation with the non-magnetic Bravais classes. One therefore starts
from these (supposed known) and discusses the equivalence of the corresponding
magnetic lattices.

a) Oblique lattices
Ry=Cy={o} with «®=¢.

The non-magnetic Bravais class is: P = {a, b} with paoca=—a, paob=—10
i.e. holohedry
_ l( -1 0y
H= ] 01 [

The corresponding magnetic lattices are: P, = {a, b'}, P, = {a’, b}, Py={a’, b’}
or expressed in magnetic bases: P, ={a+ 0, 0"}, Py={a',a’ + b}, Py={a’,b'}.
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All these lattices have the same holohedry H and belong therefore to the single
magnetic Bravais class P’.

b) Rectangular lattices
Ry=Cy,={a,f} with ®2=f82= (af)?=¢.
The non-magnetic Bravais class is: R = {a, b} with:

proa=—a; pouob=—1b; ppoa=a; pBob=—0b

A6

The corresponding magnetic lattices expressed in magnetic bases are:

Ri={a—¥,b}, Ry={a',a' +0b}, Ry={a, 0}

i.e. holohedry

with magnetic holohedries given respectively by:
-1 0 (1 2\| 5 —1 0\ /1 0)
Hl“] 0—1’,0—1[’H2*\ 0—1/"\2—-1)
-1 0 1 Ol_
=70 3) o)

Now H, ~ H, because:
1

4 7

but Hj; belongs to another magnetic Bravais class. To establish this, it is sufficient
for this to consider the second generator of H; and Hj, respectively:

AH, A= H, implies

1 0 11 0
Z(z—l)“( 0$1))“’
and one finds that the possible values for A € GL(2, Z) are:

o 1 0 B +1F1

There are two rectangular magnetic Bravais classes and R, Ry€ R, ,, Ry € R;.

¢) Diamond lattices

RO = C2v = {OC, ﬂ}
as above.

The non-magnetic Bravais class is: D = {a, b} with:

paoa=—a; paob=—15; pfoa=b; ppob=a.
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The corresponding holohedry is:

S ]

For primed a, this holohedry implies also primed b. The only compatible magnetic
lattice is therefore D’ = {a’, b’} with holohedry H. By every other choice of the
magnetic bases, one obtains magnetically equivalent holohedries so that there is only
one magnetic Bravais class of this type.

d) Square lattices

This case can be discussed exactly as under c). There is only one magnetic Bravais
class Q' = {a’, b’} corresponding to a non-magnetic square lattice Q = {a, b}.

e) Hexagonal lathices
Ry=C¢,={a, B} with ob=p2=(af)2=¢.
The non-magnetic Bravais class is: E = {a, b} with:

paoa=a—>b; porob=a; pfoa=a; ppob=a—"b.
The corresponding holohedry is:

1—-1 1 0
m={3 7o) ()
One sees from @(a) that this holohedry is not compatible with a magnetic lattice.
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