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Reellanalytische kovariante Funktionen
und ihre analytische Fortsetzung ins Komplexe

von Rudolf Seiler
Seminar fiir theoretische Physik, ETH, Ziirich

(6. IX. 66)

Abstract. In trying to develop an S-Matrix Theory based only on physical assumptions
H. Stapp has formulated two theorems about the analytic continuation of real analytic Lorentz-
covariant functions. This paper contains a generalisation of these theorems with regard to ortho-
gonal and symplectic groups.

Einleitung

In einer Arbeit von H. Stapp [1]1) wird der Versuch unternommen, eine S-Matrix
Theorie ausschliesslich auf physikalischer Grundlage zu bauen. Es stellt sich dabei das
Problem, die zunichst nur in einem reellen Gebiet definierte analytische und lorentz-
kovariante Streuamplitude komplex analytisch fortzusetzen. Diese Frage, die bereits
teilweise von H. Stapp gel6st wurde, bildet in der Verallgemeinerung auf beliebige
orthogonale und symplektische Gruppen den Gegenstand der vorliegenden Arbeit.

Nach einem vorbereitenden Abschnitt wird im zweiten Paragraphen das Verhalten
im Kleinen der analytischen Fortsetzung einer reell analytischen, kovarianten Funk-
tion von mehreren Vektorvariablen untersucht. Das in Satz A zusammengefasste
Resultat entspricht einem von H. Stapp formulierten, aber nicht — wie R. Jost?)
zeigte — vollstindig bewiesenen, Theorem3). D. WirLiams und P. MINKOWSKI [7]
fithrten die Behauptung auf zwei Vermutungen zuriick, die hier bewiesen werden
(Satz 1 und Satz 2). Dabei spielen die Zusammenhangsverhéltnisse der betrachteten
Isometriegruppe eine wesentliche Rolle. Diese werden in einem Anhang diskutiert.
Es zeigt sich, dass die Lorentzgruppe unter den klassischen Liegruppen bereits die
maximale Anzahl von Zusammenhangskomponenten besitzt. Es ist dies der Grund,
weshalb Satz A fiir die orthogonalen und symplektischen Gruppen in gleicher Weise
formuliert werden kann.

Im dritten Abschnitt losen wir die folgende Frage: Welche geometrischen Eigen-
schaften muss ein reelles Gebiet haben, damit jede in diesem Gebiet reell analytische

1) Die Nummern in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 664.
%) Vgl. Abschnitt 2.1, Beispiel b.
3) Theorem 1 in [1].

41 H,P. A, 39, 8 (1966)



642 Rudolf Seiler H.P. A,

und reell kovariante Funktion mehrerer Vektorvariablen kovariant in eine komplexe
Umgebung fortgesetzt werden kann? Die notwendigen und hinreichenden Bedingun-
gen werden in Satz B angegeben. Ein besonders einfaches Resultat gilt fiir symplekti-
sche und orthogonale Gruppen zum Tragheitsindex Null (Satz 7) sowie fiir Lorentz-
gruppen (Satz von H. STAPP).

Meinen verehrten Lehrern Herrn Prof. RES JosT und Herrn Prof. MARKUS FIERz,
die diese Arbeit ermdglichten, méchte ich an dieser Stelle meinen Dank ausdriicken.
Ganz besondersdankbar binich Herrn Prof. REs Jost und Herrn Dr. PETER MINKOWSKI
fiir die vielen hilfreichen und anregenden Diskussionen. Allen Mitgliedern des Institu-
tes bin ich fiir wertvolle Hinweise, geduldiges Abhéren oder Schreiben des Manuskrip-
tes und dem schweizerischen Nationalfonds fiir seine finanzielle Unterstiitzung zu
Dank verpflichtet.

1. Klassische Liegruppen (2] (3] und tensorwertige,
analytische Funktionen [4] [5] [6]

1.1. D1e allgemeine lineare Gruppe GL(n, «) ist die Menge der Automorphismen des
n-dimensionalen Vektorraumes V' («), itber dem Koérper « der reellen oder der komple-
xen Zahlen. Zwischen GL(», «) und der topologischen Gruppe der # x » Matrizen mit
nicht verschwindender Determinante besteht ein Isomorphismus ¢,. Trotzdem 7, von
der Wahl der Basis & in V() abhéngt, ist die so in GL(n, «) induzierte Topologie von b
unabhingig.

Die Menge der # x n Matrizen mit Determinante 1 wird durch ¢, auf die spezielle
lineare Gruppe SL(n, a) in GL(n, «) abgebildet. Diese Charakterisierung von SL (%, o)
ist unabhédngig von der Wahl der Basis in V' (a).

Die Topologie in V(«) — induziert durch ein Euklidisches oder unitdres Skalar-
produkt — ist unabhdngig vom Koordinatensystem.

1.2. In V(«) sei ein nicht ausgeartetes bilineares symmetrisches (orthogonales) oder
schiefsymmetrisches (symplektisches) Skalarprodukt gegeben. Die Menge der Elemente
aus GL(n, a), die ein vorgegebenes Skalarprodukt invariant ldsst, heisst die zum
Skalarprodukt gehorige Isometriegruppe. Orthogonale Gruppen O(n, o) sind Isometrie-
gruppen symmetrischer Skalarprodukte, symplektische Gruppen Sp(n, o) solche schief-
symmetrischer Skalarprodukte.

GL(n, o) induziert in O(n, o) und Sp(n, «) eine Topologie. Die Einskomponente
L®)(n, o) einer klassischen Lieschen Gruppe L(n, «) enthidlt genau diejenigen Ele-
mente, die durch einen stetigen Weg in L(#, «) mit der Einheit verbunden werden
kénnen (vgl. Anhang).

1.3. Essei W = <w,, ..., w,> der von den Vektoren w,, ..., w, in V(«) auf-
gespannte Teilraum. Wenn in V(«) ein Skalarprodukt gegeben ist, kann der Ortho-
gonalraum WL definiert werden:

Wt={x|xeV(), (xw)=0, VweV(®}. (1)
Der Durchschnitt von W und W+ heisst das Radikal von W

rad W=WnWt. (2)
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Radikale sind #sotrope Teilrdume, d.h. Teilrdume, die nur Nullvektoren / enthalten
(5,1) =0,

Vektorraume mit verschwindendem Radikal heissen nichisinguldr.

Sei ¢ eine isometrische Abbildung eines nichtsinguldren Raumes auf sich. ¢ heisst
eine Rotation, wenn det ¢ = + 1, oder eine Spiegelung, wenn det o = — 1.

Zu jedem Nullvektor p in V(x), existiert ein konjugierter Nullvektor ¢ in V(«),

.9 =9 =0 (bg =1
$ und g spannen in V() eine hype}'boliscke Ebene auf
H=<p,q>. (3)

Jeder Teilraum W in V(«) kann in die direkte Summe seines Radikals und eines
nichtsinguldren Teilraumes H zerlegt werden

W=rad W | H. 4)

Wenn in V() eine symplektische Geometrie gegeben ist, zerfillt H weiter in eine
endliche direkte Summe zueinander orthogonaler, hyperbolischer Ebenen

W=radW | H, | ... | H,. (5a)

Ist in V(&) ein orthogonales Skalarprodukt gegeben, zerfillt H in eine endliche
direkte Summe zueinander orthogonaler eindimensionaler Unterrdume

W=radW | <> 1 ... 1 <g>. (5b)

Der Trigheitsindex T des im reellen Vektorraum V(R) definierten, nicht ausge-
arteten Skalarproduktes ist die maximale Dimension aller in V(R) enthaltenen
isotropen Unterrdume.

1.4. Die /-fache direkte Summe

Vi) =T(x) ® ... ® V()

trage die iibliche Topologie (1.1). Sei in V(a) ein Skalarprodukt definiert und L die
entsprechende Symmetriegruppe. Die Wirkung von A€ L(n, «) auf ein Element
k= (ky,..., k)€ Via) ist durch

Ak=(Aky, ..., Ak) (6)

definiert.
Wir betrachten ausserdem Transformationen 7" € GL(/, «) die gemaéss

(k T), :i’ks Ly (7)

auf V(x) wirken. A€ L(n, «) und T € GL(], «) kommutieren.
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Sei nun k€ V(«) gegeben; dann fiithren die Transformationen 7 in <&y, ..., &>
eine neue Basis ein. Zu jedem k € V!(«) 1dsst sich ein 7T so finden (5), dass

BT = by wes by Py sse s O 65 D) (8)
{py...pp>=r1ad <k> dim<k>=7r+b

und der nicht singuldire Raum <, ...%.)> je nach der Geometrie entweder in 7/2
hyperbolische Ebenen zerfillt (5a)

<‘t11""tr>:<tl:t2>L"'L<tr—1!tr> (9&)
oder dann in 7 1-dimensionale, zueinander orthogonale Teilriume (5b) aufspaltet
Shysons sy =Xk 1 s | G5 (9b)

(8) heisst im folgenden die Normalform des Punktes ke V(a).
Die Punkte ke Vi(x) und k' € Vi(«) heissen L(n, «)-dquivalent,

k~Fk (L(n a))
wenn ein / € L(n, o) existiert, derart dass
kK=A4Fk.

1.5. Den folgenden Satz von WITT [3] werden wir hidufig verwenden:

Satz: Seien V(e) und V'(«) zwel Vektorriume mit nichtsinguldren Skalarprodukten
(1.3). Es existiere eine isometrische Abbildung 6 (1.2) von V(&) auf V'(«). Dann kann
jede isometrische Abbildung X eines Teilraumes U C V(x) auf einen Teilraum
U’" C V'(«) zu einer Isometrie von V(x) auf V’(x) erweitert werden.

1.6. o se1 der Korper der komplexen Zahlen. Dann charakterisiert die Dimension
n des Vektorraumes V'(C) die orthogonalen und symplektischen Gruppen (1.2) bis
auf Isomorphie eindeutig. Ist dagegen V'(R) der n-dimensionale Vektorraum iiber den
reellen Zahlen, so zerfallen die orthogonalen Gruppen nach ihrem Triagheitsindex (1.3)
in Aquivalenzklassen.

1.7. f sei eine komplexwertige Funktion auf einer analytischen Mannigfaltigkeit
(X, 7). m projeziert X lokal topologisch in den n-dimensionalen, komplexen Zahlen-
raum C.

f heisst in einem Punkte x € X analytisch, wenn fz~! in einer Umgebung U(x)
als Potenzreihe darstellbar ist.

f heisst in einer offenen und zusammenhidngenden Menge D C X - einem Gebiet
in X — analytisch, wenn fin jedem Punkt x € D analytisch ist.

Ein Gebiet D C X heisst schlicht, wenn m D topologisch auf (D) abbildet.

D heisst maximal schlicht — oder ein Blatt — wenn kein schlichtes Gebiet D’
existiert, das D echt enthilt.

Sei f eine in einem Gebiet D C C” analytische Funktion. Durch vollstindige
analytische Fortsetzung erhalten wir in jedem Punkt x eines Gebietes D, C C” eine
héchstens abzdhlbare Menge analytischer Funktionskeime K, . Es existiert eine analy-

tische Mannigfaltigkeit (X, #) und eine darauf definierte analytische Funktion f
derart, dass f in x genau die analytischen Funktionskeime K, erzeugt [6].
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2. Reellanalytische, kovariante Funktionen und ihre lokalkovarianten,
analytischen Fortsetzungen

Das Ziel dieses Abschnittes ist der Beweis des folgenden Satzes:
Satz A: Sei f eine tensorwertige in einem reellen Gebiet D C V(R) (1.4) analytische
(eindeutige) Funktion.

Zu f gehére eine endlichdimensionale Tensordarstellung einer klassischen Lieschen
Gruppe L(n, R) (1.1) (1.2) derart, dass aus

keDy, KeDy, K =Ak, A LO(n, R) (1.2)
folgt
J(k) = S(4) f (k) .

Sei{z(t) | £ [0, 1]} ein Weg in V!(C) mit %(0) € Dy, lings dem sich alle Komponen-
ten von f analytisch fortsetzen lassen. f; sei die so durch analytische Fortsetzung er-
haltene, in einer Umgebung U,(2(1)) definierte, analytische (eindeutige) Funktion.

Behauptung: Es existiert eine Umgebung U,(2(1)) C U,(2(1)) derart, dass aus

welU, weU, w=4Aw, AeLlV@xn,C)
folgt
Hilw') = S(A) fi(w) .

2.1. Der folgende Abschnitt diene zur Motivierung des in 2.2 formulierten Satzes.

a) Zu w e V¥C) und 5 > 0 gibt es im allgemeinen keine solche Umgebung U(w),
dass je zwei L®)(n, C)-dquivalente Punkte 2z und 2’ aus U(w) durch ein A € L®)(#n, C),
| 4 — 1| < 5 aufeinander abgebildet werden kénnen

Z=Az.
Beispiel:

Sei V(C) der zweidimensionale Vektorraum iiber C. Das Skalarprodukt der
Vektoren y — (#, v) und y' = (u’, v’) sei w v’ + ' v. In jeder Umgebung des Null-
vektors gibt es OW(2, C)-dquivalente Vektoren z = («, 8) und 2’ = (f, ), 2’ = Az,
Ae0M(2, C) die A eindeutig festlegen. Durch geeignete Wahl von « und § kann die
Norm von A4, | A |>= | «/f |2+ | B/« |2, beliebig gross gemacht werden.

In V(C) sei das symplektische Skalarprodukt der Vektoren y und y’" gegeben:

(v, y)=uv' —u v.

In jeder Umgebung des Punktes w = ((1, 0), (0, 0)) € V¥(C) kénnen Sp™)(2, C)-dqui-
valente Punkte z und 2’ = A 2, A € SpP)(2, C) gefunden werden

z=((1,0), (a B))

Z’ = ((1: O)’ (20!" ﬁ)) '

Sie bestimmen /A eindeutig. Durch geeignete Wahl von « und  kann die Norm | A |
wie im Fall der orthogonalen Geometrie beliebig gross gemacht werden.

b) R. Jost zeigte [7] die folgende stidrkere Aussage: Zu w € V!(C) gibt es im all-
gemeinen keine Umgebung U(w) so, dass zu je zwei L®)(n, C)-dquivalenten Punkten
z und 3" aus U(w)

2z~ z(L(l)(n, C))
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ein stetiger Weg A(¢), £ € [0, 1], in LM (n, C) existiert, und, dass gilt:
A0)=1 AQ) =4 =4z
Al) ze U(w), te[0,1].

Im dreidimensionalen Vektorraum V/(R) sei ein orthogonales Skalarprodukt mit
dem Trigheitsindex (1.3) v = 1 gegeben,

VIR =<p,g> L <r> Bp)=1(q9=0 (rr=1

(P,Q)=1 (¢!7)=(q,7'):0.
Wir definieren in V2(R)

w=(p,0)
k= (p,aqg+pr) o feR
k= (peg—p7).

Angenommen in einer Umgebung U(w) c V?(R) existiere zu jedem « € R, € R ein
Weg
{3() = A(t) k | A(t) € LO(n, C), te[0, 11}

derart, dass

z(t)e U(w), tel0,1].

Aus Satz 1 (2.2) folgt dann die Existenz einer Umgebung Uy(w) D U(w) und
eines Weges

{Z2o(t) = Aolt) k | Ao(t) € L(n, €, w)¥), 1[0, 1]}
so, dass gilt

Z,(f) € Uy(w), te[0,1].

Die kleine Gruppe L(3, C; w) ist einparametrig; darum ist es einfach zu zeigen, dass
zu jedem N > 0 « und f so gefunden werden kénnen, dass Max | 2,(f) — k| > N ist.

te(0,1]

Zum Beweis von Satz A benétigen wir die folgenden beiden Sitze:

2.2. Satz 1: Sei V(o) der n-dimensionale Vektorraum iiber den reellen oder komple-
xen Zahlen und k ein Punkt aus V™(«) (1.4). Sei weiter die Dimension & des linearen
Raumes <k» = <k, ..., k,> maximal, das heisst d = Min (%, m). Dann gibt es zu jeder
Umgebung N der Einheit in einer klassischen Liegruppe L(n, «) (1.1) (1.2) eine Um-

4y L(n, C; w) bezeichnet die Kleine Gruppe zu w (2.3).
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gebung U(k) derart, dass zu zwei L®)(n, a)-dquivalenten Punkten (1.4) k' und k" in
U(k) ein Element /A € N existiert, das k' in k” abbildet,

k' =AFk .

Beweis: a) Wenn in V(x) die Gruppe GL(n, ) oder SL(n, o) operiert, ist die Aus-
sage trivial.

b) Seiin V(x) ein orthogonales oder symplektisches Skalarprodukt gegeben, wobei
wir vorerst noch den Fall der orthogonalen Geometrie im reellen Vektorraum V(R)
mit Tragheitsindex 7 = 0 ausschliessen.

Wir beweisen die Behauptung durch Induktion nach m bei festem #.

Wenn m = # ist, folgt die Aussage unmittelbar wie folgt:

Es existiert eine Umgebung U, (k) derart, dass aus k, € U, (k) folgt

dim <k> = dim &> = n.

Zwel LM)(n, a)-dquivalente Punkte k' und k” aus U,(k) definieren ein A € L®(n, o)
eindeutig. A hdngt stetig von K’ und k" ab.
Seim = n — 1 und die Behauptung fiir » + 1 bewiesen. Wir werden zeigen, dass
sie dann auch fiir m gilt. Die Vektoren %, ... k,, konnen zu einer Basis %, ... &,,, u,
Uptg, -+ » U, €rgdnzt werden. Ohne Einschrinkung diirfen wir annehmen, # sel ein
Nullvektor
(4, u) = 0.

Dann ist, falls nur k' nahe genug bei k liegt, auch k... %, #, v,.s,...,V, €ine
Basis, ebenso k] ... k,,, u, Upaigs -+ » U,. WIr setzen jetzt £, = . Damit (k’, u) ~
(R", w') (LM (n, «) gilt, ist zu verlangen:

(k;, w)=(k,u) a=1..m

(', w) =0 .

Eine Losung des nicht linearen Gleichungssystems kann in zwei Schritten folgender-
massen gefunden werden. Wir suchen zuerst eine Familie von Losungen des linearen
Systems

(k. w) = (b u), a=1...m.

Die allgemeine Losung s(4) der » — 1-Gleichungen

(ko,s)= (k,u) a=1..m (A)

(v5,8) = (vg, ) B=m+2...n

setzt sich aus einer partikuliren Lésung s; von (A) und einer Losung 4 s,, A € «, des
homogenen Systems (4,,,,) zusammen:

s(A) =s1+4s;.

Das System A und die Gleichung
(w, s1) =0
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bestimmen s, eindeutig. s, hingt stetig von k’ und k” ab. s, sei die Losung des inhomo-
genen Systems (A4,,,,) und
(#, 85) = 1.
s(4) erfillt (A) fiir alle 4 € a.
Der zweite Schritt besteht darin, ein 4 zu finden, so, dass gilt:

(s(2), 5(2)) = 0.

Im Fall der symplektischen Geometrie in V(a) ist jedes s(4) ein Nullvektor. Wenn in
V(a) ein orthogonales Skalarprodukt vorliegt, so ist eine quadratische Bestimmungs-
gleichung fiir A zu 16sen:

A2(Sg, So) + 2 Ay, Sg) + (51, 81) — (59, u) = 0.

Alle Koeffizienten hingen stetig von k" und k" ab. Bei passender Wahl von U(k)
existiert eine Losung, die beliebig nahe an Null liegt.

Im Ausnahmefall der reellen, orthogonalen Geometrie mit Trigheitsindex v = 0
kann der Beweis ebenso durchgefithrt werden, wenn statt des Nullvektors # ein auf 1
normierter Vektor »” zu k; ... k,, adjungiert wird. ||

2.3. Satz 2: Die kleine Gruppe L(n, a; %)

Lin,a;2)={2|2elOn,a)f, Zz=2z 2V}

einer klassischen, reellen (x = R) oder komplexen (& = C) Liegruppe (1.1) (1.2) ist

zusammenhingend.

Bewers: Da fiir die allgemeine und die spezielle lineare Gruppe die Behauptung trivial

ist, nehmen wir an, in V' («) sei eine orthogonale oder symplektische Geometrie gegeben.
Zuerst setzen wir ein symmetrisches Skalarprodukt voraus. Sei T eine reguldre

lineare Abbildung, die z auf Normalform (1.6) transformiert:

2T =(y...40,p1..-Pp, 0...0) = (¢, p, 0)
rad <z> = {Pp; ... P>
rad <¢>=0.
V() zerfallt in die direkte Summe der orthogonalen Teilrdume W = <&, ... ¢,> und W+
Vi =W | Wt.

Die Elemente aus O(n, «; %) bilden W identisch in sich ab. Es geniigt daher, die kleine
Gruppe der b Nullvektoren p,, ..., p, im #» —» dimensionalen Teilraum W' zu unter-
suchen. In W existiert ein zu rad {p> gleichdimensionaler isotroper Raum <g,,...,g,>
(1.3) und es gilt

(B8 —=0g LE=1l,,08,

Der 2b dimensionale Raum <p;... p,, ¢, ... g,> C WL ist nicht singuldr und zer-
fallt in die direkte Summe von b zueinander orthogonalen, hyperbolischen Ebenen (1.3),

PrPostr-- G =<1q> L --- L <bu. 9> -

%) Definition der Bezeichnung in (1.2).
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Das orthogonale Komplement in W+

BreoPorque-- GO W

zerfillt in die direkte Summe der zueinander orthogonalen 1-dimensionalen Teilrdume
<g;»>,1=1...¢, und zusammenfassend gilt:

Wh=<prg Lo L P> Lg> Lo L <8

6 € O(n, «; 2) induziert in <g> = (g,,...,g,> eine orthogonale Transformation
6y € O(c, o)

b

0o g; = Ogi*Z(Ogika) Pro 1=1...c.

E=1
Wir definieren 6, als Identitit in <g>L und als 6, in <g>. 50_ 1§ ist von der Form
t >t
b—p
q->pA+tqtgB
g—-pC+3g.
Zwischen den Matrizen 4, B und C bestehen die Beziehungen
A+ 4"+ BB'=0
C+B'=0.

Es zeigt sich somit, dass 50‘ 1 § durch B und den antisymmetrischen Teil von A4 fest-

gelegt ist. Die Transformationen von der Form 50‘ 1 bilden eine ¢ b+ b (b — 1)/2
dimensionale zusammenhingende Untergruppe von O(n, «; 2).

Es geniigt jetzt noch zu zeigen, dass 6~0 aus der Einskomponente der kleinen
Gruppe 0(n, o; p) ist.

Sei o der Korper der komplexen Zahlen. Da 0~0‘ 1§ in der Einskomponente von
6(n, C; z) liegt und det 6 = 1 ist, folgt, dass gilt det 6, = 1.

Sei a der Korper der reellen Zahlen und ¢ der Homomorphismus der O, (#, R)
auf R*/R*2 abbildet®). Der Kern der Abbildung o besteht aus der Einskomponente
in 0, (n, R). Da a(8) = a(fy) o(f;1 6) > 0 und o(d;2 6) > 0 ist, folgt o(fy) > 0 und
damit, dass 50 in der Einskomponente von O(x, R) liegt.

Der Beweis kann ebenso gefiihrt werden, wenn in V(x) ein schiefsymmetrisches
Skalarprodukt vorliegt, wird aber etwas kiirzer, weil die Zusammenhangsverhiltnisse
der symplektischen Gruppen einfacher sind (vgl. Anhang).

W+ zerfillt jetzt in die direkte Summe zueinander orthogonaler hyperbolischer
Ebenen (1.3)

W= <prq> Lo L <Py qp> L @b L oo L ez epa -

) Vgl. E. ArTIN, Geometrical algebra, p. 196.
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6 induziert in (g, &> | ... L <&y, k> eine symplektische Abbildung 6,

00 = 6/<g1) h’l> _L £y __L <gc/’21 hc/2> .

0, definieren wir wie im vorausgehenden Fall der orthogonalen Geometrie. 61 6 ist
von der Form

~

t—t

p—>p

q>pA+q+gB +hbB,

g—-pCi+8g

h—-pC,+ h.

Zwischen den Matrizen 4, B;, B,, C; und C, bestehen die Beziehungen

A~AY + BT B, — Bl B,=0
C,+ B =0
Co— BT =0,

Sie zeigen, dass 60‘1 6 durch B, B, und den symmetrischen Teil von 4 festgelegt ist.

Die Transformationen von der Form 6:;1 f bilden einec b + 1/2b (b + 1) dimensionale,
zusammenhdngende Untergruppe von Sp(n, o; 2). Da die symplektischen Gruppen

zusammenhingend sind und da das insbesondere fiir Sp(c, ) gilt, gehort 6, der
Einskomponente der kleinen Gruppe Sp(n, «; 2) an.
Nebenbei liefert der Beweis die Dimensionen der kleinen Gruppen

dim O(n, o; 2) = dim O (n — (7 + b), &) = 5 (1 — (r + b)) (n — (r + ) — 1)

dim Sp(n, a; 2) = dim Sp (n — (r + ), a) = 5 (n — (r + ) (n — (¢ + B) +1). |

2.4. Beweis von Satz A:

Sei N eine Umgebung der Einheit in L(z, C). Es ist einfach zu zeigen, dass dann
eine Umgebung U(z(1)) existiert, in der f; eindeutig und analytisch ist und aus
we U(z(1), weU(z(1), w =A4Aw, Ae N folgt

Hw') = S(A) fi(w) .

Ohne Verlust der Allgemeinheit diirfen wir voraussetzen, dass in z(1) nur die
ersten 4 linear unabhéngigen Vektoren 2, ... z, von Null verschieden sind:

2(1) = (2, ... 24, 0 ... 0) = (z, 0®)

(Diese Form kann immer durch eine Transformation 7 € GL(I, C) erreicht werden.)
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Wir zerlegen V¥(C) in die direkte Summe V4(C) @ V!—¢(C). Es existieren Um-
gebungen U(zV) und U(0®) der Punkte

20 = (z,, ..., 2, € V¢C)
und

o= (0,...,0) e V()
so, dass

U(z®) @ U(0®) C U(z(1)) .

Jetzt wihlen wir zur Umgebung der Einheit N in L(n, C) konvexe Umgebungen
U'(z®) C U(zV), U'(0®) C U(o®) so, dass gilt:

1. NU'(z®) C U(z®), N U'(o®) C U(o®),

2. Zu zwei LM(n, C)-dquivalenten Punkten

peU’'(z2®) und p'e U'(2?)

existiert ein 2’ € IV, das p auf p’ abbildet:

p=2p.

Eine solche Wahl ist nach Satz 1 immer moglich.
Zu zwei L®(n, C)-dquivalenten Punkten w = (p,q) und w' = (p’, q’) aus
U'(z®W) ® U'(0®) existiert ein 2 e N so, dass

p=2p, ZweU@EV® U?).
2w und w' sind LM (n, C)-dquivalent (1.4)
w= 012w, 0el®n,C).

6 ist ein Element der kleinen Gruppe L(n, C; p') (2.3).
Nach Satz 2 existiert ein Weg 6(z), €0, 1],in L(n, C; p’), der 6 mit der Einheit
verbindet.

Wir definieren

hit, ) = S7(6(2)) (P, 1 0(0) ) -

(¢, 7) ist analytisch in ¢ und 7, wenn £ € [0, & ] und 7 € [0, 1] fiir ein geeignetes &; > 0;
denn 6(1) ¢, T€[0, 1], ist eine kompakte Punktmenge und daher liegt der Weg
t 6(t) q’ fiir geniigend kleines ¢ ganz in U(0®) und wegen der Konvexitit auch fiir
jeden kleineren nicht negativen Wert von £ In diesem Gebiet ist ausserdem A(Z, 7)
von 7 unabhingig. Weiter ist A(t, ) analytisch in ¢£€[0, 1] und 7 €0, &)] fiir ein
passendes g, > 0 und schliesslich auchin ¢ € [0, 1] und 7 € [1 — &, 1] fiir ein passendes
gg > 0.

h(t, T) kann daher in das ganze Quadrat ¢ [0, 1], 7 € [0, 1] analytisch fortgesetzt
werden, und es ist %(¢, 7) im ganzen Quadrat von 7 unabhéngig.

Insbesondere gilt (1, 0) = A(1, 1), was fiir g bedeutet

Hi(w) = S(A) fi(w) . |
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3. Reellanalytische, kovariante Funktionen und ihre global kovarianten,
analytischen Fortsetzungen

Das Ziel dieses Abschnittes ist der Beweis des in 3.2 formulierten Satzes.

3.1. Wir wollen annehmen, dass in V() eine orthogonale oder symplektische
Geometrie gegeben sei. Der folgende Begriff wird eine wesentliche Rolle spielen:

Definition: Zwei Punkte x e V{(R) und &' € VY{(R) heissen Limespunkte (3.5),
wenn Folgen {2’} und {z"}, 2" € V!(C) so existieren, dass

2~ (L(l)(n,, C))

¥x=1limg & =1limgzg"”.

P—>00 Y—>00

3.2. Satz B: Sei f eine tensorwertige, im reellen Gebiet D C VY(R) (1.4) analyti-
sche (eindeutige) Funktion.

Zu f gehore eine endlichdimensionale Tensordarstellung S einer symplektischen
oder orthogonalen Gruppe L(#n, R) (1.2), derart, dass aus

keDy, kKeDy, k=Ak, AecLOn,R) (1.2)
folgt

fk) = S(A4) f (k) .

Je zwei reelle Limespunkte (3.1) (3.5) ¥ € Dy und &' € Dy seien L®)(n, R)-dqui-
valent (1.4).
Behauptung: Es existiert zu jeder kompakten Menge Cp C Dy eine L®)(n, C)-
invariante, komplexe, offene Umgebung U(Cg) C V!(C) und eine analytische Fort-

setzung f von f auf U(Cp) mit den Eigenschaften:

1. fist auf U(Cy) eindeutig,
2. aus 2e U(Cg), 2’ € U(Cg), 3’ = Az, A€ LV (n, C)
folgt

f(z') = S(A4) f(z).

Bemerkungen: a) Die Voraussetzung, je zwel reelle Limespunkte ® € Dy, & € D sind
L®(n, R)-dquivalent ist notwendig.

Sei V(R) der zweidimensionale, reelle Vektorraum mit symmetrischem Skalar-
produkt und Tridgheitsindex 7 = 1,

VR)=<p,g> B, =(@9=0 (pqg=1.
In V#(R) definieren wir das reelle Gebiet
Dp={x|s=(ap+pga'p+pq «p o, p reell.
Die Funktion
f®) —a)pr+ g2

ist in Dy analytisch und L®)(2, R)-invariant.
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Die Abbildung J:

Tp=—p
Jif=—4
gehort zu LM)(2, C). Da aber
J(J %) = —f(%)

ist, kann die Behauptung von Satz B nicht richtig sein.

b) Wenn Satz B gilt, kann U(Cj) maximal-schlicht gewdhlt werden. Sei U’(Cg)
ein Gebiet in V{(C) das U(Cy) enthilt und gleichzeitig dieselben Eigenschaften 1 und 2
wie U(Cy) aufweist. Wir bezeichnen mit M die Menge der U’(Cg). M ist partiell ge-
ordnet. Jede geordnete Teilmenge X von M (Kette) ist durch die Vereinigungsmenge
der Mengen in X beschriankt. Diese gehért zu M. Nach dem Zornschen Lemma
existiert in M ein maximales Element B, d.h. aus C D B, Ce M folgt C = B. B ist
LM)(n, C)-invariant, da

B ={z' |2 =42 4€ LY%n, C), zc B}

in M liegt und B enthilt. B ist maximal schlicht. Sei B U U schlicht, aber nicht in M
und sei fin U L®(n, C)-kovariant (Satz A)

fw) =S fw) w=AweU,weU,Ae L®@x, C).
In B U U existieren Punkte z und 2’ und es gilt:
2=Az AeLYn,C)
f(#) = S(A4) f(2) .

Das widerspricht aber den Annahmen, da B L®)(n, C)-invariant ist.

3.3. Beweis von Satz B:

a) Es geniigt, folgende schwichere Behauptung zu beweisen: Zu Cy existiert eine
komplexe, offene Umgebung U’(Cy) mit einer darauf definierten analytischen Fort-
setzung f’ von f und es gelten die Aussagen 1 und 2 von Satz B.

f’ kann dann analytisch und eindeutig von U’(Cy) auf das L®)(n, C)-invariante
Gebiet

UCy) = [3" | 2" = A %', Ae LO@n, C), 2 € U'(Cp)]

fortgesetzt werden. Die analytische Fortsetzbarkeit folgt aus den Argumenten, die
schon in 2.4 verwendet wurden [8]. Wire die analytische Fortsetzung nicht eindeutig,
so gibe es ein

we U'(Cg) w=A,w=Ad,w, w,eU(Cgp 2=1,2
flAywy) + f(Aywy) A€ LYn, q,

und dann miisste gelten:

Jwy) = S(A Ay) f(wy) -

b) Weil Cy als kompakte Menge in D, vorausgesetzt wurde, existiert eine komplexe
Umgebung U,(C) und eine analytische Fortsetzung f, von f auf U(Cy).
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Wir machen die Gegenannahme: In jeder komplexen Umgebung U(Cg) C Uy(Cg)
existieren L®M)(n, C)-dquivalente Punkte z und 2’ = 4 z, A € L®(n, C), und es gilt:

fol2) = S(A) fo(2) -

Die Punkte {z} und {2’} haben auf C; Hiufungspunkte & und &’. Nach Voraussetzung
sind Limespunkte (3.1) L®(n, R)-dquivalent (1.4). Daher existiert ein X'e L®)(zn, R)
derart, dass " = X' x. Wir definieren die in einer komplexen Umgebung von &' defi-
nierte analytische Funktion

g(w) = S(&) fo(27t w) .

Sie ist in einer reellen Umgebung von &' mit f, identisch und daher auch in einer
komplexen U(x'):
Jolw) = S(2) fo(&1w)  weU). (10)

U(#’) enthilt nach Satz A eine komplexe Umgebung U’(x’) so, dass aus w e U’(¥'),
weU' &), w=Aw, Ae LY (n, C) folgt,

folw') = S(A) fo(w) . (11)
Seien z und 2" L®W(n, C)-dquivalente Punkte mit den Eigenschaften
g=Az AeLlW#n,C)
2el'(x) XzeU'(x)
fol#) + S(A) fofa) . (12)
Aus (11) folgt

fo(®) = S(A) S27) fo(27%)
und aus (10)

fol& 7) = S(2) fo(2)

was mit (12) im Widerspruch steht.
3.4. Charakterisierung von Limespunkten durch Eigenschaften des reellen Gebietes
Lemma 1: Sel x € VYR) und &' € V¥(R) und es gelte

(0 %) = (%, %) 4, k=1...1.
Dann existiert ein 7' e GL(/, R) derart, dass
8T =(t...L, py...$,,0...0,0...0)
' T =l ity By ves B, 0 O P00 0 B, 0 o O
rad <&> = <py ... p,> rad &> = Py ... P>
dim <> =7+ b dim <&'> =7+ 0.

Definition: & T, &' T heisst die Normalform des Punktepaares %, ' (1.4).
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Beweis: Es existiert ein 7® e GL(/, R) das & auf Normalform (1.4) und &’ in die
folgende spezielle Gestalt transformiert:

8 TO = (t ...t py...$,,0...0,0...0)
8 TO= (..t byt 0.0, P 1.0 p,,0...0)
rad #>=<(p,...0,> dim<a>=7+b p,+0 i=1...c.

Offenbar kann 7'® so gewihlt werden, dass p.  ; ... p. linear unabhingig sind, und
P1---Pas Pesr--- P. fUr ein geeignetes d ein maximales linear unabhiingiges System
von py ... p, bilden.

Es existiert ein T@® e GL(J, R) derart, dass

xTOT® = (¢, ... ¢,,9,...5,,0...0,0...0)
& TOT® = (£, ey, 0.0, 001 5,,0...0) . |

Offenbar gilt das folgende
Lemma 2: x € VY(R) (1.4) und &' € V¢(R) kénnen nur dann Limespunkte sein, wenn

(%, %) = (%, %,) 4, k=1...1.

Im Fall der symplektischen Gruppe gilt der stirkere

Satz 3: In V(R) sei eine symplektische Geometrie (1.2) gegeben. Die beiden Aus-
sagen iiber die reellen Punkte & = (x, ... x;) € V4(R) (1.4) und & = (%] ... x)) € V(R)
sind dquivalent:
a) (%, %) = (%, %) 6, k=1...1.
b) & und &" sind Limespunkte.

Bewers: o) a) ist nach dem voranstehenden Lemma eine Folge von b).

B) Es existiert ein T € GL(/, R) das « und &’ in die Normalform abbildet:

BT = (f sy Py oo Prg W s 0 0555 Q)
¥ Tl s Uy Py ons B 0 e & Py 56 Bns D 1)
Nach dem Satz von WITT existiert ein A € Sp(n, C) derart, dass
=A% d=1..#
po=Ap, k=1..5s.

Sei {e!} eine Nullfolge. Wir definieren 2z’ und z'! durch

BT = (.t PreeePor Dogr oo Do EA Py o8 AL P,,,0...0)
2T =ty ...t Py & APy 8 Apy, Doy oeety,0...0).
Nach Konstruktion ist 2’ ~ 2 (Sp(n, C))

¥=1limz &' =limz'i. [

7—>00 1 —>00
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Im Fall der orthogonalen Geometrie ist die Satz 3 entsprechende Aussage kompli-
zierter.

Satz 4. Fiir L(n, C) = O(n, C) (1.2) folgt aus
(%, %) = (%, %) 4, k=1..1,
dass # und &" Limespunkte (3.1) (3.5) sind, sofern nicht
Dim <x; ... x,> = Dim <x'1 x;> =n—1.

Beweis: o) Sei dim (x> + dim &').
Das Punktepaar #, " kann durch ein T € GL(/, R) auf Normalform (3.4) gebracht
werden.

8T =t ...t py...5,,0...0,0...0) (13)
X T =t prete0...0, poy oy, 0...0)

rad <&> = <Py «on P

rad <&'> = < py ... py> .

Seien ¢, ... ¢, und ¢; ... q;» die zu p, ... p, und p; ... p;, konjugierten Vektoren (1.3)
in V(R).

(B g =0y & f=1.00 @.00=0, gh=1..V

(G2, 87 = @) =0 (g, 0)=(g. 5)=0 k=1lau.r.

Wir setzen voraus, dass & < b ist, was keine Einschrinkung der Allgemeinheit
bewirkt.
Sei {¢i}, ¢t € C, 1 € Z_, eine Nullfolge. Wir definieren

2T = .t P P borr PosPrvsr - Py € Gy €4y, 0...0)
T = (6o b, Py e Par € Qs e € Qory Ty o+ Ty Porg oo Dyr 0012 0)
Die Nullvektoren 7, ... 7, konnen so gewihlt werden, dass
2t~ gt (0W(n, C)).

f) Sei dim <x)> = dim<«’) < # — 1 und rad <x¥) = rad <x’> = 0.
Aus dem Satz von WITT folgt

x ~ & (O(n, Q).
Da <x; ... x>+ + 0 und rad (<x, ... x,>1) = 0 ist, folgt sogar
& ~ & (0W(n, C)).

y) Sei dim <¥> = dim <&«’> < # — 1 und dim rad <¥) = dim rad <&"> = 1.
Aus7 + b<n — lund b = 1folgt» <n — 3. <xy ... x,>L enthilt daher einen zum
mindesten eindimensionalen nichtsinguldren Unterraum. Es existiert daher ein

XeOm, C) detX=—1 (14)
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derart, dass
o = ¥,

Im Fall ¥ ~ %’(O(n, C)) ist die Behauptung trivial.
Seien also ¥ und &' beziiglich O(n, C) nicht aequivalent. Wir beniitzen wieder die
Normalform:

xT=(¢...¢,$0...0)

8 T=(t...t,0,p,0...0).
Analog wie in o) definieren wir 2/ und 2'! durch

T=_(%..%,p¢64q¢0..0)

2iT=(t...0,e¢q,9,0...0).

Nach dem Satz von WITT ist
zi ~ 2’1 (0(n, C))
und wegen (14)
2l ~2'1 (0W(n, C)).

d) Seidim <¥> = dim <¥'> < # — 1 und dim (rad <x}) = dim (rad <s'>) = 2. Wieder
verwenden wir die Normalform von & und &’: _

X T: ({1 ...tr, pl"'pS’PSﬂ‘l"'Pb’O"'O)
& T=(0 ..t pyveite, 0.0, Py ey, 0...0).

Wir definieren 2i und 2’¢ durch

BT =0 ..., P Perro--Ppr € Ger+-€6,,0...0)
T = () ity Py es oy € oy oen € Gy s Pasy e Ppr 0.0 0).
Nach dem Satz von WITT existiert ein A? € O(n, C) derart, dass
gi=Al g%,
Durch Vertauschen der g¢;.,...¢, in i T kann immer erreicht werden, dass
zi ~ 21 (00, C)). |
Satz 5: Fur L(n, C) = O(n, C) (1.2) folgt aus

(%, %) = (%, %) 4, k=1...1
und
dim ¢#; s+ %5 = dim <x’1...x;>:n,

x¥ und &’ sind genau dann Limespunkte (3.1) (3.5), wenn & ~ &'(0®(n, C)) (1.4).
Bewers: o) & und ¥’ sind offensichtlich Limespunkte, wenn

&~ (0W(n, C)).

42 H. P. A. 39, 8 (1966)
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f) Seien & und &" beztiglich O®)(n, C) nicht aequivalent. Sie legen eindeutig ein
A e On, C)fest so, dass gilt
=4,

Fiir w und w’, die in geeigneten Umgebungen U(x) und U(«’) liegen, ist die obige
Aussage immer noch wahr. A(w, w’) hingt stetig von w und w’ ab. |}
Die Behandlung des letzten Falles verlangt zwei vorbereitende Hilfssdtze:

Lemma 3: Sei (x;, x,) = (x;, %) 4, k=1...1
dim <> =dim <&'>=n —1

und das Punktepaar &, ' sei nicht O(n, C)-aequivalent.
Dann existiert ein 7 € GL(/, R) so, dass

8T =(ry.c.r, o, $0...0) (15)

& T= (v ..7

n—2»

0,¢,0...0)
(rir)t=(r,r)2=08; 4, k=1...n—2
(By7r:) = (8. 9) =0
(¢.7) =g, ¢)=0

8 T, & T heisst Normalform (3.4) des Punktepaares «, &’
Beweis: Nach (1.4) existiert ein 7 € GL(I, R) derart, dass

xT=(ry...7,.0,9$,0...0),
Aus

(o, ) =, ) 4 b=1l

folgt die Behauptung. |
Lemma 4: Sei (15) die Normalform (3.4) des Punktepaares «, &'
In V(R) existieren eindeutig Nullvektoren g und p’ so, dass

(gr) =, 7)) =0 di=1..n—2

b9 =@¢)=1.

Beweis: In V(R) existiert mindestens ein Nullvektor ¢ bzw. p” (1.3). Seien ¢, und ¢,
zwel Nullvektoren und es gelte:

(q.,,7) =0 (p,g)=1 =12 1=1...n—2,
Da
VR) = dwy wan®, 5% | <P, g3

kann g, als Linearkombination von ¢; und p dargestellt werden:
92:Z-P+,U»C]1 AER,JU,ER_

Aus (p, ¢5) = 1 folgt w = 1 und aus (¢,,9,) =0 Au=0. |
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Den letzten und schwierigsten Fall in der Diskussion der Limespunkte erledigt

der folgende
Satz 6: a) Sei dim<x, ... x> = dim<x ... x> =# — 1 und

x ~«& (On, C)).
Dann sind » und & Limespunkte (3.1) (3.5).
b) Sei dim<x, ... x,;> = dim<x]... x> = # — 1, und & beziiglich O(n, C) nicht
aequivalent zu «’,

(xi’xk)z(x;,x;) 1, Ek=1...1

und (15) die Normalform (3.4) des Punktepaares %, &'
¥ und «’ sind genau dann Limespunkte, wenn
Det (ry ... 7,5, 0, q) =Det (r; ...7, ., 9, q) .

Beweis: a) Seien & und &' beziiglich O%(n, C) nicht aequivalent, da sonst die Be-
hauptung trivial ist. Aus rad<«) = rad <«’> = 0 folgt rad (<, ... x,>+) = 0. Durch
eine Spiegelungin <(x;...x,>1 kann daher immer erreicht werden, dass & ~&'(0®)(%, C)).

Wenn dim (rad ¢(«>) = dim (rad <&’>) = 1 ist, kann fiir &, &' die folgende Normal-

form (1.4) gefunden werden:
xT = (ry...7,4,$,0...0)
x T = (r1 r;_2,p’, -
Sei {&'} eine Nullfolge. Wir definieren
2T =(r..70p+eq (£)2p+ (6)2¢0...0)

giT = ...v, o, p +eq,ep +()3¢,0...0).

Nach Konstruktion ist
g~ gl (O“’(n, C))

und
¥=lim 2z & =lim 2*.
1—>00 1—>00
b) Es existiert ein 2’ e O(n, C) derart, dass
,=Xr, i=1...n—2
p'=2p
¢ =29

2 ist durch # und &’ eindeutig festgelegt, da ¢ und ' durch & und &” bestimmt sind.
Wir betrachten den Spezialfall » = 2. Es gibt Umgebungen U(#) und U(2-! &)

derart, dass O(n, C)-dquivalente Punkte we U(x), w' e U(2-1 &') auch OW(xn, C)-

dquivalent sind.
Zusammen mit Satz 2 folgt die Behauptung. ||
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3.5. Die in 3.4 gewonnenen Resultate gestatten den Begriff « Limespunkte» derart
neu zu definieren, dass dabei weder eine Einbettung von V/(R) in 7(C) noch eine
Punktfolge notig ist.

Definition: a) In V(R) sei eine symplektische Geometrie gegeben. ¥ € V{(R) und
¥" € VY(R) heissen Limespunkte (3.1), wenn

(o, %) = (%, %) G, k=1...1.

b) In V(R) sei eine orthogonale Geometrie gegeben. xe V{(R) und &' e V(R)
heissen Limespunkte (3.1), wenn ausser

(%) = (%, %) G hk=1..1
eine der folgenden Bedingungen erfiillt ist:
7. dim (¥} # dim {%")
2. dim (&) = dim <{a&"> < n — 2
3. dim () = dim {&") = n x ~ & (0W(n, C))
4. dim {«) = dim (&) =n — 1 ¥ ~ &’ (O(n, C))
5. dim (&) =dim &> =n — 1, Det (r; ... 7, o5, p,9) = Det (r; ...7, 5, $',¢).7)

3.6. Satz 7: In V(R) sei ein symmetrisches Skalarprodukt mit Trigheitsindex
v =0 (1.3) gegeben.

Zweil Limespunkte (3.1) (3.5) x € VYR) und &' € VYR) sind OM)(n, R)-dquivalent
(1.4).

Bewers: Aus rad (¥) = rad (¥'> = 0 folgt dim <x¥> = dim <&’>. Nach dem Satz von
WitT ist & ~ &'(O(n, C)). Die Behauptung ist offenbar fiir dim <x> = #» richtig. Wenn
dim <x, ... x,> < ist, kann durch eine Spiegelung in <x, ... x>+ immer erreicht
werden, dass

x ~& (00n, ). |

Bemerkung: Satz B gilt fiir die reelle orthogonale Gruppe mit Tragheitsindex 7 = 0
ohne die Voraussetzung, je zwei Limespunkte € Dy, &' € Dy sind L®(zn, R)-dquivalent.

3.7. Satz 8: In V(R) sei ein symmetrisches Skalarprodukt (1.2) mit Tragheitsindex
7 = 1 (1.3) gegebeny Die folgenden Aussagen iiber das Gebiet Dy C V¥R) (1.4) sind
dquivalent:

1. Je zwei Limespunkte (3.1) (3.5) ¥€ Dy, &' € Dy sind L®)(n, R)-dquivalent
(1.2) (1.4).

2. Je zwei LM)(n, C)-dquivalente Punkte sind LW(n, R)-dquivalent.

Bewers: Aus 1 folgt 2 als unmittelbare Konsequenz der Resultate in (3.4). x € Dp
und &’ € Dy, seien Limespunkte. Ohne Einschrinkung der Allgemeinheit setzen wir
dim <&’'> < dim <&> voraus.

") Vgl. Satz 6 (3.4).
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Sei dim <#’> < dim <#). Es existiere ein T € GL(/, R) das & und &’ in Normalform
transformiert®):
*T =t ..., $,0...0)

8 T=(...1,00...0).

In allen Umgebungen U(x) und U(a’) existieren L®(n, C)-dquivalente Punkte
ke U(x) und k' € U(x') die nicht LZ®)(#n, R)-dquivalent sind.

Sei dim <¥> = dim ¢&’> und das Punktepaar &, # nicht L(n, C)-aequivalent. Wie-
der kann ein T € GL(/, R) gefunden werden, das # und &’ in die Normalform trans-
formiert:

xT: (tl...t?,,p,o...())
s a0, 0, 00 0}

Nur der Fall dim <#> = dim<&’> = % — 1 ist nicht trivial. In allen Umgebungen U (x)
und U(«) existieren nach Satz 6 L®)(n, C)-dquivalente Punkte &, k’,

RT=(t..t,p¢eq0..0)
RT=(..1,ep,9,0..0)

die nicht L®)(n, R)-dquivalent sind. |

Bemerkung: In V(R) sei ein symmetrisches Skalarprodukt mit Tragheitsindex
7 > 1 gegeben. Aussage 2 ist immer noch eine Folge von Aussage 1, aber nicht um-
gekehrt.

Wir betrachten die direkte Summe zweier hyperbolischer Ebenen,

V(R) = <pr1g1> L <pag>
und definieren

%= ($,0,0,0)
& = (0,0,q,0).

¥ und & sind in V#4(R) Limespunkte und nicht L(4, R)-dquivalent. In allen Um-
gebungen U(x) und U(s') existieren L®)(n, C)-dquivalente Punkte k und k’

k= (p1,eP2, €01, €0)
k' = (8 }b]_, €(qs, 491, € ?2)

die nicht L®)(xn, R)-4quivalent sind.

Satz 8 erlaubt eine neue Formulierung von Satz B:
Satz von H. STAPP: Sei f eine tensorwertige, in einem reellen Gebiet D C V(R) (1.4)
analytische (eindeutige) Funktion.

Zu f gehore eine endlichdimensionale Tensordarstellung der orthogonalen Gruppe
O(n, R) (1.2) mit dem Tréagheitsindex 7 = 1 (1.3) derart, dass aus

keD,, K eDy, K =Ak, Ae0%x,R)

8) Der allgemeine Fall kann ebenso behandelt werden,
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folgt
f(k") = S(A) f (k) .

Je zwei OW(n, C)-dquivalente (1.2) (1.4) Punkte seien O®)(n, R)-dquivalent.

Behauptung: Es existiert zu jeder kompakten Menge Cp C Dy eine OM(n, C)-
invariante, komplexe, offene Umgebung U(Cg) und eine analytische Fortsetzung f'
von f auf U(Cg) mit den Eigenschaften:

1. f 1st auf U(Cpg) eindeutig,

2. ausze U(Cy), 2 € U(Cy), 3 = A 2z, A€ 0W(n, C) folgt

~ ~

f#") = S(4) f(z) .

Anhang

Die Zusammenhangs-Komponenten der klassischen, veellen Liegruppen [9].

Es ist bekannt, dass die allgemeine lineare Gruppe GL(n, R) in die beiden Zu-
sammenhangskomponenten GL, ={A | AeGL(n,R), det A >0} und GL-=
{B| BeGL(n,R), det B < 0} zerfillt. Die Gruppe der speziellen linearen Trans-
formationen SL(n, R) ist einfach zusammenhidngend. Wir fragen jetzt nach den Zu-
sammenhangskomponenten der reellen symplektischen und reellen orthogonalen
Gruppen.

1. Die reelle symplektische Gruppe wird von den symplektischen Transvektionen [3]
erzeugt. Jedes Element 2’ e Sp(n, R) kann als endliches Produkt dargestellt werden

Z=14..74, A,eVR)

'rAi(x) =x+(x,A) A, =xeV(R).

V(R) ist zusammenhédngend und daher auch Sp(#n, R).

2. Die orthogonalen Gruppen O7(#n, R) sind durch die Dimension # des Vektor-
raumes V(R) und den Triagheitsindex t des symmetrischen Skalarproduktes charak-
terisiert. Mit ©27(n, R) bezeichnen wir die von den Kommutatoren erzeugte Unter-
gruppe in O"(n, R)

N
n R ={4]|4= HAi AP X 1 A, € 0°(n, R), X, € OF(n, R)}
i1
07(n, R) wird auch von allen Quadraten in O7(#, R) erzeugt [3].

a) Die Einskomponente O*"(n, R) von O7(n, R) ist in der Kommutatorgruppe
27 (n, R) enthalten

0"W(n, R) C 2%(n, R) .

Sei A € 0*®(n, R). Dann existiert die Produktdarstellung

N
A = Hexp o
i-1
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«; gehort zur Liealgebra von O,(n, R). A kann daher auch als endliches Produkt von

Quadraten geschrieben werden
N

A= H [exp —;— ai]g.

i=1

b) Die Kommutatorgruppe £2%(#, R) ist in der Einskomponente enthalten
Q%(n, Ry C O"D(n, R) .

Zu jedem B e O(n, R) existiert ein stetiger Weg B(f), t€[0, 1], in O%(n, R) derart,
dass gilt:

0 o)
Jedes Quadrat in O7(n, R) kann daher durch einen stetigen Weg mit der Einheit ver-
bunden werden. Da die Quadrate in O*(%, R) die Kommutatorgruppe erzeugen, ist die

Behauptung bewiesen.
Aus a) und b) folgt

B(0) = (’71\ 0 ) w=1 B(l)=B.

Q%(n, R) = O"W(n, R) .
c) Die Untergruppe O.(n, R) der orthogonalen Gruppe O*=°(n, R) = O(n, R)
O.(n,R)={4|AeOxn,R), det 4 =1}

ist zusammenhdngend und daher gleich der Einskomponente. O(n, R) zerfillt in zwei
disjunkte Zusammenhangskomponenten O (n, R) und O_(n, R)

O_(n,R)—{A|AecOmR), detd——1},

d) Sei der Trigheitsindex 7 des Skalarproduktes nicht Null. Die zugehérigen
Isometriegruppen sollen im folgenden Pseudoorthogonale Gruppen heissen. Dann gilt
zwischen der Gruppe O7 (n,R) = {4 | 4 € O%(n, R), det A = 1}, der Kommutator-
gruppe, sowle der zyklischen Gruppe der Ordnung 2, Z,, die Beziehung [3]

0% (n,R)/2*(n,R) = Z,.
In V(R) existiert eine Hyperbolische Ebene H (1.3)

H = <py q> u
Wir definieren ein Element [ aus O7 (n, R) wie folgt:
Jfi==p
Jx=x yxeH
Jg=—q¢

J gehort nicht zur Kommutatorgruppe. Wenn A4 € 0% (#, R) nicht zur Kommutator-
gruppe gehort, so ist | 4 € 27(n, R). Es existiert also ein stetiger Weg in Q7(%n, R)
von JA nach 1. 4 kann daher durch einen stetigen Weg mit J verbunden werden.
0% (n, R) zerfillt somit in zwei disjunkte Zusammenhangskomponenten,

O% (n, R) = Q7(n, Ry U ] 2°(n, R)
Jm R ={B|B=JA, Ac@nR)}.
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Mit K, bezeichnen wir das direkte Produkt Z, ® Z, (Kleinsche Vierergruppe).
Die Gruppe O"(n, R) zerfillt in vier disjunkte Zusammenhangskomponenten und es
gilt:
O"(n, R)[2"(n,R) @ K, .
e) Zusammenfassung:

Die spezielle lineare und die symplektische Gruppe (1.1) (1.2) sind einfach zu-
sammenhangend.

Die allgemeine lineare und die orthogonale Gruppe (7 = 0) zerfallen in zwei Zu-
sammenhangskomponenten und es gilt:

GL(n, R)/GL , (n,R) = Z, O(n,R)/O , (n,R) = Z,.

Die Pseudoorthogonalen Gruppen O%(x, R), T > 0, zerfallen in vier Zusammenhangs-
komponenten und es gilt:

O"(n,R)|J0O"M(n,R) ~ K, . 9
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