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Reellanalytische kovariante Funktionen
und ihre analytische Fortsetzung ins Komplexe

von Rudolf Seiler
Seminar für theoretische Physik, ETH, Zürich

(6. IX. 66)

Abstract. In trying to develop an S-Matrix Theory based only on physical assumptions
H. Stapp has formulated two theorems about the analytic continuation of real analytic Lorentz-
covariant functions. This paper contains a generalisation of these theorems with regard to orthogonal

and symplectic groups.

Einleitung

In einer Arbeit von H. Stapp [1]x) wird der Versuch unternommen, eine S-Matrix
Theorie ausschliesslich auf physikalischer Grundlage zu bauen. Es stellt sich dabei das

Problem, die zunächst nur in einem reellen Gebiet definierte analytische und lorentz-
kovariante Streuamplitude komplex analytisch fortzusetzen. Diese Frage, die bereits
teilweise von H. Stapp gelöst wurde, bildet in der Verallgemeinerung auf beliebige
orthogonale und symplektische Gruppen den Gegenstand der vorliegenden Arbeit.

Nach einem vorbereitenden Abschnitt wird im zweiten Paragraphen das Verhalten
im Kleinen der analytischen Fortsetzung einer reell analytischen, kovarianten Funktion

von mehreren Vektorvariablen untersucht. Das in Satz A zusammengefasste
Resultat entspricht einem von H. Stapp formulierten, aber nicht - wie R. Jost2)
zeigte - vollständig bewiesenen, Theorem3). D. Williams und P. Minkowski [7]
führten die Behauptung auf zwei Vermutungen zurück, die hier bewiesen werden
(Satz lund Satz 2). Dabei spielen die Zusammenhangsverhältnisse der betrachteten
Isometriegruppe eine wesentliche Rolle. Diese werden in einem Anhang diskutiert.
Es zeigt sich, dass die Lorentzgruppe unter den klassischen Liegruppen bereits die
maximale Anzahl von Zusammenhangskomponenten besitzt. Es ist dies der Grund,
weshalb Satz A für die orthogonalen und symplektischen Gruppen in gleicher Weise
formuliert werden kann.

Im dritten Abschnitt lösen wir die folgende Frage : Welche geometrischen
Eigenschaften muss ein reelles Gebiet haben, damit jede in diesem Gebiet reell analytische

1) Die Nummern in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 664.
2) Vgl. Abschnitt 2.1, Beispiel b.
3) Theorem 1 in [1],

41 H. P. A. 39, 8 (1966)
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und reell kovariante Funktion mehrerer Vektorvariablen kovariant in eine komplexe
Umgebung fortgesetzt werden kann Die notwendigen und hinreichenden Bedingungen

werden in Satz B angegeben. Ein besonders einfaches Resultat gilt für symplekti-
sche und orthogonale Gruppen zum Trägheitsindex Null (Satz 7) sowie für Lorentz-
gruppen (Satz von H. Stapp).

Meinen verehrten Lehrern Herrn Prof. Res Jost und Herrn Prof. Markus Fierz,
die diese Arbeit ermöglichten, möchte ich an dieser Stelle meinen Dank ausdrücken.
Ganz besonders dankbar bin ich Herrn Prof. Res Jost und Herrn Dr. Peter Minkowski
für die vielen hilfreichen und anregenden Diskussionen. Allen Mitgliedern des Institutes

bin ich für wertvolle Hinweise, geduldiges Abhören oder Schreiben des Manuskriptes
und dem schweizerischen Nationalfonds für seine finanzielle Unterstützung zu

Dank verpflichtet.

1. Klassische Liegruppen [2] [3] und tensorwertige,
analytische Funktionen [4] [5] [6]

1.1. Die allgemeine lineare Gruppe GLfn, cn) ist die Menge der Automorphismen des

w-dimensionalen Vektorraumes F(a), über dem Körper oc der reellen oder der komplexen

Zahlen. Zwischen GL(n, oc) und der topologischen Gruppe der nxn Matrizen mit
nicht verschwindender Determinante besteht ein Isomorphismus ib. Trotzdem ib von
der Wahl der Basis b in F(a) abhängt, ist die so in GL(n, tx.) induzierte Topologie von b

unabhängig.
Die Menge der nxn Matrizen mit Determinante 1 wird durch ib auf die spezielle

lineare Gruppe SL(n, ql) in GL(n, oc) abgebildet. Diese Charakterisierung von SLfn, oc)

ist unabhängig von der Wahl der Basis in Vfa).
Die Topologie in F(oc) - induziert durch ein Euklidisches oder unitäres

Skalarprodukt - ist unabhängig vom Koordinatensystem.
1.2. In F(a) sei ein nicht ausgeartetes bilineares symmetrisches (orthogonales) oder

schiefsymmetrisches (symplektisches) Skalarprodukt gegeben. Die Menge der Elemente
aus GL(n, oc), die ein vorgegebenes Skalarprodukt invariant lässt, heisst die zum
Skalarprodukt gehörige Isometriegruppe. Orthogonale Gruppen 0(n, oc) sind Isometrie-
gruppen symmetrischer Skalarprodukte, symplektische Gruppen Sp(n, oc) solche
schiefsymmetrischer Skalarprodukte.

GLfn, oc) induziert in Ofn, oc) und Spfn, oc) eine Topologie. Die Einskomponente
Z,(1)(w, oc) einer klassischen Lieschen Gruppe Lfn, oc) enthält genau diejenigen
Elemente, die durch einen stetigen Weg in Lfn, oc) mit der Einheit verbunden werden
können (vgl. Anhang).

1.3. Es sei W (wx, wf> der von den Vektoren wx, ws in Vfa.)

aufgespannte Teilraum. Wenn in F(a) ein Skalarprodukt gegeben ist, kann der
Orthogonalraum W1- definiert werden:

Wx {x j x e F(oc) (x,w) 0 V« F(oc)} (1)

Der Durchschnitt von W und W1- heisst das Radikal von W

rad W W n Wx (2)
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Radikale sind isotrope Teilräume, d.h. Teilräume, die nur Nullvektoren l enthalten

(/, l) 0.

Vektorräume mit verschwindendem Radikal heissen nichtsingulär.
Sei o* eine isometrische Abbildung eines nichtsingulären Raumes auf sich, a heisst

eine Rotation, wenn det a +1, oder eine Spiegelung, wenn det a — 1.

Zu jedem Nullvektor p in Vfx), existiert ein konjugierter Nullvektor q in F(a),

(P, p) fq, q)=0 fp, q) 1

p und q spannen in F(a) eine hyperbolische Ebene auf

H <P, qy (3)

Jeder Teilraum W in F(a) kann in die direkte Summe seines Radikals und eines

nichtsingulären Teilraumes H zerlegt werden

W rad W ± H (4)

Wenn in F(a) eine symplektische Geometrie gegeben ist, zerfällt H weiter in eine
endliche direkte Summe zueinander orthogonaler, hyperbolischer Ebenen

W xadW ±Hx±...±Hk. (5a)

Ist in V(a) ein orthogonales Skalarprodukt gegeben, zerfällt H in eine endliche
direkte Summe zueinander orthogonaler eindimensionaler Unterräume

W rad W ± <gxy ± ± <gsy (5b)

Der Trägheitsindex r des im reellen Vektorraum V(R) definierten, nicht
ausgearteten Skalarproduktes ist die maximale Dimension aller in VfR) enthaltenen
isotropen Unterräume.

1.4. Die Wache direkte Summe

F'(oc) F(oc)©...0F(oc)

trage die übliche Topologie (1.1). Sei in V(tx) ein Skalarprodukt definiert und L die

entsprechende Symmetriegruppe. Die Wirkung von A e L(n, a) auf ein Element
k fkx,...,kf)e F'(oc) ist durch

Ak=(Akx,...,Akl) (6)

definiert.
Wir betrachten ausserdem Transformationen T £ GLfl, ol) die gemäss

(kT)k=£ksTsk (7)
s^l

ani F'(cc) wirken. A e L(n, a) und T e GLfl, oc) kommutieren.
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Sei nun k e F'(oc) gegeben; dann führen die Transformationen T in <[kx, kf
eine neue Basis ein. Zu jedem fe e Vfa) lässt sich ein T so finden (5), dass

kT=ftx...tr,px...pb,0...0) (8)

<px pfy rad <fe> dim <fe> r + b

und der nicht singulare Raum {tx...try je nach der Geometrie entweder in r/2
hyperbolische Ebenen zerfällt (5a)

<tx, ,try= (tx,tf> _|_ J_ (tr_x, try (9a)

oder dann in r 1-dimensionale, zueinander orthogonale Teilräume (5b) aufspaltet

<tx,...,try=(tf> ±... ±<try. (9b)

(8) heisst im folgenden die Normalform des Punktes fe e Vfa.).
Die Punkte fe e Vfa.) und fe' e Vfa) heissen Lfn, a)-äquivalent,

k~k'(L(n,ai))
wenn ein A £ L(n, oc) existiert, derart dass

k' Ak.
1.5. Den folgenden Sate to« Witt [3] werden wir häufig verwenden:

Satz: Seien F(a) und F'(oc) zwei Vektorräume mit nichtsingulären Skalarprodukten
(1.3). Es existiere eine isometrische Abbildung 6 (1.2) von V(a) auf Vfa.). Dann kann
jede isometrische Abbildung S eines Teilraumes U C F(a) auf einen Teilraum
c7' C V'(a) zu einer Isométrie von F(oc) auf F'(oc) erweitert werden.

1.6. a sei der Körper der komplexen Zahlen. Dann charakterisiert die Dimension
n des Vektorraumes V(C) die orthogonalen und symplektischen Gruppen (1.2) bis
auf Isomorphie eindeutig. Ist dagegen V(R) der «-dimensionale Vektorraum über den
reellen Zahlen, so zerfallen die orthogonalen Gruppen nach ihrem Trägheitsindex (1.3)
in Äquivalenzklassen.

1.7. / sei eine komplexwertige Funktion auf einer analytischen Mannigfaltigkeit
(X, n). n projeziert X lokal topologisch in den w-dimensionalen, komplexen Zahlenraum

C".

f heisst in einem Punkte x e X analytisch, wenn fn~l in einer Umgebung U(x)
als Potenzreihe darstellbar ist.

/ heisst in einer offenen und zusammenhängenden Menge D C X - einem Gebiet

in X - analytisch, wenn/in jedem Punkt xe D analytisch ist.
Ein Gebiet D QX heisst schlicht, wenn n D topologisch auf n(D) abbildet.
D heisst maximal schlicht - oder ein Blatt - wenn kein schlichtes Gebiet D'

existiert, das D echt enthält.
Sei / eine in einem Gebiet D C. C" analytische Funktion. Durch vollständige

analytische Fortsetzung erhalten wir in jedem Punkt x eines Gebietes D0 C C" eine
höchstens abzählbare Menge analytischer Funktionskeime Kx. Es existiert eine analytische

Mannigfaltigkeit (X, n) und eine darauf definierte analytische Funktion /
derart, dass/in x genau die analytischen Funktionskeime Kx erzeugt [6].
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2. Reellanalytische, kovariante Funktionen und ihre lokalkovarianten,
analytischen Fortsetzungen

Das Ziel dieses Abschnittes ist der Beweis des folgenden Satzes :

Satz A : Sei /eine tensorwertige in einem reellen Gebiet DR C Vl(R) (1.4) analytische
(eindeutige) Funktion.

Zu/gehöre eine endlichdimensionale Tensordarstellung einer klassischen Lieschen
Gruppe Lfn, R) (1.1) (1.2) derart, dass aus

fe e DR, fe' £ DR, fe' A fe, A e LV(n, R) (1.2)

folgt
ffk') SfA)ffk).

Sei {zft) ji £ LO, 1]} ein Weg in VfC) mit zfO) e DR längs dem sich alle Komponenten

von / analytisch fortsetzen lassen. fx sei die so durch analytische Fortsetzung
erhaltene, in einer Umgebung Ufzfl)) definierte, analytische (eindeutige) Funktion.

Behauptung: Es existiert eine Umgebung U0fzfl)) C £7(2(1)) derart, dass aus

weU0, w'eU0, w'=Aw, AeLmfn,C)
folgt

ffw') SfA)ffw).
2.1. Der folgende Abschnitt diene zur Motivierung des in 2.2 formulierten Satzes.

a) Zu we VlfC) und rj > 0 gibt es im allgemeinen keine solche Umgebung Ufw),
dass je zwei L(1)(«, C)-äquivalente Punkte z und z' aus Ufw) durch ein A e L(1)(«, C),
| A — 1 | < rj aufeinander abgebildet werden können

z' =Az.
Beispiel :

Sei V(C) der zweidimensionale Vektorraum über C. Das Skalarprodukt der
Vektoren y (u, v) und y' fu', v') sei «»7»' v. In jeder Umgebung des
Nullvektors gibt es 0(1>(2, C)-äquivalente Vektoren z (a, ß) und z' fß, oc), z' Az,
Ae0(l)(2, C) die A eindeutig festlegen. Durch geeignete Wahl von oc und ß kann die
Norm von A, | A |a | ajß |2 + | /S/oc j2, beliebig gross gemacht werden.

In VfC) sei das symplektische Skalarprodukt der Vektoren y und y' gegeben:

fy, y') u v' — u' v

In jeder Umgebung des Punktes w ((1, 0), (0, 0)) e F2(C) können S£(1»(2, C)-äqui-
valente Punkte z und z' Az, Ae Spa)f2, C) gefunden werden

z=ffi,0),(a,ß))
z'=((l,0),(2a,ß)).

Sie bestimmen A eindeutig. Durch geeignete Wahl von a und ß kann die Norm | A \

wie im Fall der orthogonalen Geometrie beliebig gross gemacht werden.
b) R. Jost zeigte [7] die folgende stärkere Aussage: Zu w e VfC) gibt es im

allgemeinen keine Umgebung Ufw) so, dass zu je zwei Z.(1)(«, C)-äquivalenten Punkten
z und z' aus Ufw)

z'~ z(Z7>(«, C))
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ein stetiger Weg Aff), te [0, 1], in L(1)(«, C) existiert, und, dass gilt:

/1(0) 1 /1(1) =A z' Az

Aft) z e Ufw), te[0,1]

Im dreidimensionalen Vektorraum VfR) sei ein orthogonales Skalarprodukt mit
dem Trägheitsindex (1.3) t 1 gegeben,

VfR) <p,qy ± <r y fp,p) fq,q) 0 fr,r) l
fp,q) l fp,r) fq,r) 0.

Wir definieren in F2(R)

w (p, 0)

k fp, a q + ß r) a, ß £ R

fe' (p, « q — ß r)

Angenommen in einer Umgebung U(w) q V2(R) existiere zu jedem a e R, ß e R ein
Weg

{z(t) A(t) k | Aft) e lA\n, C), t e [0, 1]}
derart, dass

zfO) k

zfl) fe'

zft) e Ufw), te[0,1].
Aus Satz 1 (2.2) folgt dann die Existenz einer Umgebung Ufw) Z) Ufw) und
eines Weges

{zft) Aft) fe I A0ft) e Lfn, C,w)*), te [0, 1]}
so, dass gilt

*o(0) k

zfl) fe'

zft) e Ufw), te[0,l}.
Die kleine Gruppe L(3, C; w) ist einparametrig ; darum ist es einfach zu zeigen, dass

zu jedem N > 0 a und ß so gefunden werden können, dass Max | zft) — fe | > N ist.
(e[0,1]

Zum Beweis von Satz A benötigen wir die folgenden beiden Sätze :

2.2. Satz 1 : Sei F(oc) der «-dimensionale Vektorraum über den reellen oder komplexen

Zahlen und fe ein Punkt aus Vm(a) (1.4). Sei weiter die Dimension d des linearen
Raumes <fe> {kx, kmy maximal, das heisst d Min(«, m). Dann gibt es zu jeder
Umgebung iV der Einheit in einer klassischen Liegruppe Lfn, a) (1.1) (1.2) eine Um-

4) L(n, C; w) bezeichnet die Kleine Gruppe zu w (2.3).
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gebung U(k) derart, dass zu zwei L(1)(«, oc)-äquivalenten Punkten (1.4) fe' und fe" in
U(k) ein Element A e N existiert, das fe' in fe" abbildet,

fe" A fe'.

Beweis: a) Wenn in F(a) die Gruppe GL(n, oc) oder SL(n, oc) operiert, ist die Aussage

trivial.
b) Sei in V(o) ein orthogonales oder symplektisches Skalarprodukt gegeben, wobei

wir vorerst noch den Fall der orthogonalen Geometrie im reellen Vektorraum V(R)
mit Trägheitsindex t 0 ausschliessen.

Wir beweisen die Behauptung durch Induktion nach m bei festem «.
Wenn mfrn ist, folgt die Aussage unmittelbar wie folgt:

Es existiert eine Umgebung Ufk) derart, dass aus kx e Ufk) folgt

dim <fe> dim <kxy n

Zwei L(1)(«, oc)-äquivalente Punkte fe' und fe" aus Ufk) definieren ein A £ L(1)(«, oc)

eindeutig. A hängt stetig von fe' und fe" ab.
Sei m rf n — 1 und die Behauptung für m+1 bewiesen. Wir werden zeigen, dass

sie dann auch für m gilt. Die Vektoren kx km können zu einer Basis kx... km, u,
vm+2, ,vn ergänzt werden. Ohne Einschränkung dürfen wir annehmen, u sei ein
Nullvektor

(u, u) 0

Dann ist, falls nur fe' nahe genug bei fe liegt, auch k'x...k'm, u, vm+2, vn eine
Basis, ebenso k"x k"m, u, vm+2, ,vn. Wir setzen jetzt km+x u. Damit (fe', u) ~
(fe", u') (L(1)(w, oc) gilt, ist zu verlangen:

(k"a, u') (k'a, u) x— 1 m

(u', u')=0
Eine Lösung des nicht linearen Gleichungssystems kann in zwei Schritten folgender-
massen gefunden werden. Wir suchen zuerst eine Familie von Lösungen des linearen
Systems

fka u') fka u), oc 1 m

Die allgemeine Lösung s(A) der « — 1-Gleichungen

(C s) (Z Z a=l...m (A)

fVß, s) fVß, u) ß m + 2 «

setzt sich aus einer partikulären Lösung sx von (A) und einer Lösung X s2, Xea, des

homogenen Systems (^4hom) zusammen:

sfX) sx + As2.

Das System A und die Gleichung
fu, sx) 0
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bestimmen sx eindeutig. sx hängt stetig von fe' und fe'' ab. s2 sei die Lösung des inhomogenen

Systems (Abom) und
fu, s2) 1

sfX) erfüllt (A) für alle X e a.
Der zweite Schritt besteht darin, ein X zu finden, so, dass gilt:

(s(X),s(X)) 0.

Im Fall der symplektischen Geometrie in Vfa) ist jedes sfX) ein Nullvektor. Wenn in
F(a) ein orthogonales Skalarprodukt vorliegt, so ist eine quadratische Bestimmungsgleichung

für X zu lösen :

X2(s2, sfi + 2Xfsx, s2) + (sx, sx) - (sx, u) 0.

Alle Koeffizienten hängen stetig von fe' und fe" ab. Bei passender Wahl von U(k)
existiert eine Lösung, die beliebig nahe an Null liegt.

Im Ausnahmefall der reellen, orthogonalen Geometrie mit Trägheitsindex x 0

kann der Beweis ebenso durchgeführt werden, wenn statt des Nullvektors u ein auf 1

normierter Vektor u" zu kx km adjungiert wird. |
2.3. Satz 2: Die kleine Gruppe Lfn, a; z)

Lfn, oc; z) {I \ I e Z7>(«, oc) 5), Z z z, ze Vfa)}

einer klassischen, reellen fa R) oder komplexen (oc C) Liegruppe (1.1) (1.2) ist
zusammenhängend.
Beweis: Da für die allgemeine und die spezielle lineare Gruppe die Behauptung trivial
ist, nehmen wir an, in F(a) sei eine orthogonale oder symplektische Geometrie gegeben.

Zuerst setzen wir ein symmetrisches Skalarprodukt voraus. Sei T eine reguläre
lineare Abbildung, die z auf Normalform (1.6) transformiert:

zT=ftx...tr,px...pb, O...0) ft,p,o)
rad <z> ipx ...pby

rad <r> 0

Vfa) zerfällt in die direkte Summe der orthogonalen Teilräume W (tx... try und W1-

V(a) W ±W±
Die Elemente aus Ofn, oc; z) bilden W identisch in sich ab. Es genügt daher, die kleine
Gruppe der b Nullvektoren px, pb im « — r dimensionalen Teilraum WL zu
untersuchen. In Wx existiert ein zu rad <p> gleichdimensionaler isotroper Raum <qx,..., qby

(1.3) und es gilt
(Pi1k)=òik i,k l...b.

Der 2b dimensionale Raum <[px... pb, qx qfy C WL ist nicht singular und
zerfällt in die direkte Summe von b zueinander orthogonalen, hyperbolischen Ebenen (1.3),

<p1---pb,q1-..qby= <px qfr A ¦ ¦ ¦ A <Pb, ?7 •

5) Definition der Bezeichnung in (1.2).
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Das orthogonale Komplement in W1-

<px...pb,qx...qby1nW^

zerfällt in die direkte Summe der zueinander orthogonalen 1-dimensionalen Teilräume
<SY>> i 1 ¦¦¦ c, und zusammenfassend gilt:

W1 <Px, qA A ¦ ¦ ¦ A <pb, q,f A <gi> Z • • • Z <&> ¦

d e 0(n, a; z) induziert in <g> (gx, gcy eine orthogonale Transformation
ö„ e Ofc, a)

Oogt-Og^JJfOg^qfp,, i=l...c.
A-l

Wir definieren ö0 als Identität in <g>x und als ö0 in <g>. df1 6 ist von der Form

t -^t

prrp
qr-pA + q + gB

g~>pc + g.

Zwischen den Matrizen A, B und C bestehen die Beziehungen

A + AT + B BT 0

C + BT 0

Es zeigt sich somit, dass Of1 6 durch B und den antisymmetrischen Teil von A

festgelegt ist. Die Transformationen von der Form ö^"1 ö bilden eine c b + b (b — l)/2
dimensionale zusammenhängende Untergruppe von Ofn, oc; z).

Es genügt jetzt noch zu zeigen, dass Ö0 aus der Einskomponente der kleinen
Gruppe 0(w, oc; p) ist.

Sei a der Körper der komplexen Zahlen. Da df1 6 in der Einskomponente von
ö(«, C; z) liegt und det ö 1 ist, folgt, dass gilt det ö0 1.

Sei oc der Körper der reellen Zahlen und a der Homomorphismus der 0+(«, R)

auf R*IR*2 abbildet6). Der Kern der Abbildung a besteht aus der Einskomponente
in 0+(«, R). Da afd) af60) afdf1 6) > 0 und afdf1 6) > 0 ist, folgt or(£0) > 0 und

damit, dass 0O in der Einskomponente von Ofn, R) liegt.
Der Beweis kann ebenso geführt werden, wenn in F(a) ein schiefsymmetrisches

Skalarprodukt vorliegt, wird aber etwas kürzer, weil die Zusammenhangsverhältnisse
der symplektischen Gruppen einfacher sind (vgl. Anhang).

W1 zerfällt jetzt in die direkte Summe zueinander orthogonaler hyperbolischer
Ebenen (1.3)

Wx <px, ?7 ± X <p„, qA ± <gx, hfy 7 A <ëcl2> Ki-A ¦

Vgl. E. Artin, Geometrical algebra, p. 196.
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0 induziert in <,gx, hxy ± ± <gc/2, hcy eine symplektische Abbildung 0O

0O definieren wir wie im vorausgehenden Fall der orthogonalen Geometrie. 0"1 0 ist
von der Form

p->p

q~+pA + q+ gBx+hB2

g^pCx + g

h -> p C2+ h

Zwischen den Matrizen A, Bx, B2, Cx und C2 bestehen die Beziehungen

A - AT + Bl Bx - B\ B2 0

Cx +Bl 0

C2 - B{ 0

Sie zeigen, dass 0"1 0 durch Bx, B2 und den symmetrischen Teil von A festgelegt ist.
Die Transformationen von der Form df1 0 bilden eine cb + 1/2 b (b + 1) dimensionale,
zusammenhängende Untergruppe von Sp(n, oc; z). Da die symplektischen Gruppen

zusammenhängend sind und da das insbesondere für Sp(c, a) gilt, gehört 0O der
Einskomponente der kleinen Gruppe Spfn, oc; z) an.

Nebenbei liefert der Beweis die Dimensionen der kleinen Gruppen

dim Ofn, oc; z) dim 0 fn — (r + b), a) fn — fr + b)) fn — fr + b) — 1)

dim Spfn, oc; z) dim Sp fn — fr + b), a) fn — (r + b)) fn — fr + b) + 1) |
2.4. Beweis von Satz A :
Sei N eine Umgebung der Einheit in Lfn, C). Es ist einfach zu zeigen, dass dann

eine Umgebung Ufzfl)) existiert, in der fx eindeutig und analytisch ist und aus
w e Ufzfl)), w' £ Ufzfl)), w' A w, A e N folgt

fxfw') SfA)fxfw)

Ohne Verlust der Allgemeinheit dürfen wir voraussetzen, dass in z(l) nur die
ersten d linear unabhängigen Vektoren zx zd von Null verschieden sind :

z(l) fzx...zd,0 ...0) (z<7o<2>)

(Diese Form kann immer durch eine Transformation T e GLfl, C) erreicht werden.)
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Wir zerlegen VfC) in die direkte Summe VdfC) © V'-dfC). Es existieren
Umgebungen Ufzw) und J7(o(2)) der Punkte

7P-)=fzx,...,zd)eV"fC)
und

o<2>= (0,...,0)eF'-d(C)
so, dass

£/(z<«) © l7(o<2>) C Ufzfl))

Jetzt wählen wir zur Umgebung der Einheit AT in Lfn, C) konvexe Umgebungen
(7'(z«>) C t/(z(1)), (7'(o<2>) C UfoW) so, dass gilt:

1. N (7'(z(D) C U(z^), N f/'(o<2>) C C/(o<2»),

2. Zu zwei L(1)(«, C)-äquivalenten Punkten

pe [/'(s«)) und p' e i7'(z«>)

existiert ein ZeN, das p auf p' abbildet :

p' 2"p.

Eine solche Wahl ist nach Satz 1 immer möglich.
Zu zwei La)(n, C)-äquivalenten Punkten w (p, q) und w' (p', q') aus

U'(z<M) © (7'(o<2>) existiert ein A e N so, dass

p' Zp, Zw e (7(z<» © (7(o<2>)

E w und w' sind L(1)(«, C)-äquivalent (1.4)

u/ 0-1S w 0 £ !«>(«, C)

0 ist ein Element der kleinen Gruppe L(n, C; p') (2.3).
Nach Satz 2 existiert ein Weg 0(t), t £ [0, 1], in L(n, C;p'), der 0 mit der Einheit
verbindet.

Wir definieren

hft,x) S^(6(r))f1fp',tdfr)q').

hft, r) ist analytisch in t und r, wenn t e [0, ej und x e [0, 1] für ein geeignetes sx > 0;
denn 0(t) q', re[0, 1], ist eine kompakte Punktmenge und daher liegt der Weg
t dfx) q' für genügend kleines t ganz in C/(o(2)) und wegen der Konvexität auch für
jeden kleineren nicht negativen Wert von t. In diesem Gebiet ist ausserdem hft, x)

von x unabhängig. Weiter ist hft, x) analytisch in t e [0, 1] und x e [0, e2] für ein

passendes e2 > 0 und schliesslich auch in t e [0, 1] und r e [1 — e3, 1] für ein passendes

e3>0.
hft, r) kann daher in das ganze Quadrat t e [0, 1], x e [0, 1] analytisch fortgesetzt

werden, und es ist hft, x) im ganzen Quadrat von x unabhängig.
Insbesondere gilt hfl, 0) hfl, 1), was für g bedeutet

fxfw') SfÄ)fxfw). |
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3. Reellanalytische, kovariante Funktionen und ihre global kovarianten,
analytischen Fortsetzungen

Das Ziel dieses Abschnittes ist der Beweis des in 3.2 formulierten Satzes.
3.1. Wir wollen annehmen, dass in V(a) eine orthogonale oder symplektische

Geometrie gegeben sei. Der folgende Begriff wird eine wesentliche Rolle spielen:
Definition: Zwei Punkte xeV(R) und x' e V(R) heissen Limespunkte (3.5),

wenn Folgen {zv} und {z'v}, z" e VfC) so existieren, dass

z* ~ z'v (V»(n, C))

x lim z" *' lim z'v.

3.2. Satz B: Sei/eine tensorwertige, im reellen Gebiet DR C V'(R) (1.4) analytische

(eindeutige) Funktion.
Zu / gehöre eine endlichdimensionale Tensordarstellung S einer symplektischen

oder orthogonalen Gruppe Lfn, R) (1.2), derart, dass aus

keDR, k'eDR, k'=Ak, A e £«»(«, R) (1.2)

folgt
/(*') S(A)f(k)

Je zwei reelle Limespunkte (3.1) (3.5) xeDR und x' e DR seien L(1)(«, R)-äqui-
valent (1.4).
Behauptung: Es existiert zu jeder kompakten Menge CR C Dr eine Z,(1)(«, C)-
invariante, komplexe, offene Umgebung U(CR) C Vl(C) und eine analytische
Fortsetzung / von / auf U(CR) mit den Eigenschaften :

1. /ist auf U(CR) eindeutig,
2. aus z e U(CR), z' e U(CR), z' =Az,Ae L^fn, C)

folgt

ffz')=SfA)ffz).
Bemerkungen: a) Die Voraussetzung, je zwei reelle Limespunkte * £ DR, x' e DR sind
-La)(w, R)-äquivalent ist notwendig.

Sei VfR) der zweidimensionale, reelle Vektorraum mit symmetrischem
Skalarprodukt und Trägheitsindex x 1,

VfR) <p,qy (P,P) fq, q) 0 fp, q) 1

In V2fR) definieren wir das reelle Gebiet

DR= {x \ X (xp + ß q,a.' p + ß' q) a, ß, oc', ß' reell}

Die Funktion

f(x)=a\lß2 + ß'2

ist in DR analytisch und L(1)(2, R)-invariant.
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Die Abbildung / :

jp=-p
Jq -q

gehört zu L«»(2, C). Da aber

fffx) -ffx)
ist, kann die Behauptung von Satz B nicht richtig sein.

b) Wenn Satz B gilt, kann UfCR) maximal-schlicht gewählt werden. Sei U'fCf)
ein Gebiet in V-fC) das U(CR) enthält und gleichzeitig dieselben Eigenschaften 1 und 2

wie U(CR) aufweist. Wir bezeichnen mit M die Menge der U'fCf). M ist partiell
geordnet. Jede geordnete Teilmenge X von M (Kette) ist durch die Vereinigungsmenge
der Mengen in X beschränkt. Diese gehört zu M. Nach dem Zornschen Lemma
existiert in M ein maximales Element B, d.h. aus C Z) B, C e M folgt C B. B ist
L(1)(«, C)-invariant, da

B' {z' \z' =Az,Ae lf»(n, C), zeB}
in M liegt und B enthält. B ist maximal schlicht. Sei B U U schlicht, aber nicht in M
und sei/in U La)(n, C)-kovariant (Satz A)

f(w') S(A) f(w) w' AweU,weU,Ae L«>(«, C)

In B U U existieren Punkte z und z' und es gilt :

z' Az A e Dl\n, C)

ffz') * S(A)f(z)

Das widerspricht aber den Annahmen, da B Z.(1>(«, C)-invariant ist.
3.3. Beweis von Satz B:
a) Es genügt, folgende schwächere Behauptung zu beweisen: Zu CR existiert eine

komplexe, offene Umgebung U'(CR) mit einer darauf definierten analytischen
Fortsetzung/' von /und es gelten die Aussagen 1 und 2 von Satz B.

/' kann dann analytisch und eindeutig von U'(CR) auf das La)(«, C)-invariante
Gebiet

U(CR) [z" \z" A z', A e !«>(«, C), z' e U'fCR)}

fortgesetzt werden. Die analytische Fortsetzbarkeit folgt aus den Argumenten, die
schon in 2.4 verwendet wurden [8]. Wäre die analytische Fortsetzung nicht eindeutig,
so gäbe es ein

weU'fCfi w Axwx A2w2 WjSU'fCg) »=1,2

ffAxWfi +ffA2w2) /lt. e I«(«, C),

und dann musste gelten :

ffwfi +SfAf^A2)ffw2).

b) Weil CR als kompakte Menge in DR vorausgesetzt wurde, existiert eine komplexe
Umgebung U0fCR) und eine analytische Fortsetzung/0 von/auf U(CR).
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Wir machen die Gegenannahme: In jeder komplexen Umgebung U(CR) C U0(CR)
existieren L(1)(«, C)-äquivalente Punkte z und z' A z, A eL(1)(m, C), und es gilt:

/„(*') A= SfA)ffz)

Die Punkte {z} und {z'} haben auf CR Häufungspunkte x und *'. Nach Voraussetzung
sind Limespunkte (3.1) L(1)(«, R)-äquivalent (1.4). Daher existiert ein Ze La)fn, R)

derart, dass x' Z x. Wir definieren die in einer komplexen Umgebung von *'
definierte analytische Funktion

gfw) SfZ)f0fZ^w).

Sie ist in einer reellen Umgebung von x' mit /0 identisch und daher auch in einer
komplexen Ufx') :

ffw) S(Z)f0(Z-i w) we U(x') (10)

U(x') enthält nach Satz A eine komplexe Umgebung U'(x') so, dass aus w e U'(x'),
w' e U'(x'), w' Aw, Ae !Ax\n, C) folgt,

ffw') S(A)ffw) (11)

Seien z und z' L(1'(«, C)-äquivalente Punkte mit den Eigenschaften

z' A z A e !<«(«, C)

z' e Ufx') ZzeU'(x')

f0fz') + SfA)f0fz). (12)
Aus (11) folgt

/,(*') SfA) SfZ-i)MZz)
und aus (10)

f0fZz) SfZ)ffz)

was mit (12) im Widerspruch steht.
3.4. Charakterisierung von Limespunkten durch Eigenschaften des reellen Gebietes

Lemma 1 : Sei x e VfR) und x' e V(R) und es gelte

(xf,xk) (x\,xfi i,k=l...l.
Dann existiert ein T e GLfl, R) derart, dass

xT=ftx...tr,px...pb,0...0,0...0)

x'T=ftx...tr,p'x...pfO...O,ps+x...pb,,0...0)

rad <xy <px... pby rad <*'> <p'x p'b,y

dim <*> r + b dim <*'> r + b'

Definition: x T, x' T heisst die Normalform des Punktepaares x, x' (1.4).
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Beweis: Es existiert ein T«1 e GLfl, R) das x auf Normalform (1.4) und x' in die

folgende spezielle Gestalt transformiert :

x T<"= ftx...tr,px...pb,0 ...0, 0...0)

x'TV=ftx...tr,p'x...p's,0...0,p's+x...p'c,0...0)

rad <* > <px ¦¦¦ ps > dim < x > r + b p\ 4= 0 * 1 c

Offenbar kann 771' so gewählt werden, dass^Zi p'c linear unabhängig sind, und
Pi ¦¦¦ fidi Ps+i ¦¦¦ Pc für ein geeignetes ^ ein maximales linear unabhängiges System
von Zi ¦ ¦ • Pc bilden.

Es existiert ein T(2) £ GL(l, R) derart, dass

x r«) r<2> (tx... tr, px... p„, o... o, o... o)

x'TMT®=ft'x...t'r,p'x...p'd,0...0,p's+x...p'c,0...0). |
Offenbar gilt das folgende
Lemma 2: x e VfR) (1.4) und *' e VfR) können nur dann Limespunkte sein, wenn

(xi,xfi fx'i,x'k) i,k=l...l.
Im Fall der symplektischen Gruppe gilt der stärkere

Satz 3: In VfR) sei eine symplektische Geometrie (1.2) gegeben. Die beiden
Aussagen über die reellen Punkte x (xx... xt) e V(R) (1.4) und x (x'x x\) e V(R)
sind äquivalent:
a) fXi,xfi fxfx'fi i, k= 1 /.
b) * und *' sind Limespunkte.

Beweis: oc) a) ist nach dem voranstehenden Lemma eine Folge von b).
ß) Es existiert ein T e GLfl, R) das * und *' in die Normalform abbildet:

xT ftx...tr,px...pb,0 ...0, 0...0)

x'T=(t'x...tr,p'x...ps,0...0,ps+l...p'b,,0...0).

Nach dem Satz von Witt existiert ein A e Spfn, C) derart, dass

% A tt i=l...r
p'k Apk k l...s.

Sei {e'} eine Nullfolge. Wir definieren z' und z'' durch

z' T ftx... tr, px... ps, p,+x... pb, £' A-1 p's+x... s' A-1 pb,,0 0)

z'< T ft'x... tr, p'x p's, e* Aps+1... e< Ap„, p's+1... p'y.O ...0).

Nach Konstruktion ist zn ~ z* fSpfn, C))

x lim z' x' lim z' 7 |

l—>-00 t—rOO
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Im Fall der orthogonalen Geometrie ist die Satz 3 entsprechende Aussage komplizierter.

Satz 4: Für Lfn, C) Ofn, C) (1.2) folgt aus

(xl,xk) (x'i,x'k) i,k=l...l,
dass x und x' Limespunkte (3.1) (3.5) sind, sofern nicht

Dim yx xf Dim <x'x x'f ^. n — 1

Beweis: a) Sei dim<*> 4= dim<*'>.
Das Punktepaar *, *' kann durch ein T e GLfl, R) auf Normalform (3.4) gebracht

werden.

xT=(tx...tr,px...pb,0...0,0...0) (13)

x'T=(t'x...t'r,px...ps,0...0,p's+1...p'b,,0...0)

rad <*> <px... pf)

rad <*'> <p[ Pb>> ¦

Seien qx... qb und q'x qb' die zu px pb und p[... p'b> konjugierten Vektoren (1.3)
in VfR).

fPd,qf)=òdf d,f=l...b fp'g,qh)=ò%h g,h l...b'
(qd, qf) fe. tf) 0 fq'g, qf) (q'g, t'h) 0 k 1 r

Wir setzen voraus, dass V < b ist, was keine Einschränkung der Allgemeinheit
bewirkt.

Sei {e'}, s' e C, i eZ+, eine Nullfolge. Wir definieren

ZiT=ftx...tr,px...ps,ps+x...pb,,pb,+x...pb,^qs+x...eiqb,,O...Q)

z"T=ftx... tr, p'x... p's, e' q's+x ...s' q'y, nb,+x ...nb, p's+x p'b,, 0 0)

Die Nullvektoren nb>+1 ...nb können so gewählt werden, dass

z'< ~z' (0«»(m, C))

ß) Sei dim<*> dim<#'> < « — 1 und rad<*> rad<*'> 0.

Aus dem Satz von Witt folgt

x ~ x' fOfn, C)).

Da <xx xf1 + 0 und rad(<% xfx) 0 ist, folgt sogar

x~x' (0«)(«, C))

y) Sei dim <*> dim <*'> < « — 1 und dim rad <*> dim rad <*'> 1.

Aus r + b < « — 1 und b 1 folgt r < n — 3. yx... xf1- enthält daher einen zum
mindesten eindimensionalen nichtsingulären Unterraum. Es existiert daher ein

ZeOfn.C) det27=-l (14)
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derart, dass

Z x x

Im Fall * ~ x'fOfn, Q) ist die Behauptung trivial.
Seien also x und x' bezüglich Ofn, C) nicht aequivalent. Wir benützen wieder die

Normalform :

xT= ftx...tr,p,0 ...0)

x' T (tx...t'r,0, p', 0...0).
Analog wie in a) definieren wir z' und zn durch

zlT (t1...tr,p,eiq,0...0)

z'' T= ftx...t'r,elq',p',0...0)
Nach dem Satz von Witt ist

z>' ~z'!' fOfn, C))
und wegen (14)

zi~z'i(0(1,(«, C))

Ò) Seidim<#> dim<*'> < « — 1 unddim(rad<#>) dim(rad<*'>) A 2. Wieder
verwenden wir die Normalform von x und x' :

xT=ftx...tr,px...ps,ps+x...pb,0...0)

x'T=(t'x...t'r,px...ps,0...0,p's+x...pb,O...Q).

Wir definieren z' und z'!' durch

z' T ftx...tr, px ...ps, ps+x...pb, fi'' qs+x £; qb,0...0)

»" T ftx tr, p[...p's, é q's+x 7 q'b,p's+x...p'b,0... 0)

Nach dem Satz von Witt existiert ein A* e Ofn, C) derart, dass

z'i =/[i zi

Durch Vertauschen der q's+x-..qb in z'' T kann immer erreicht werden, dass

z!,~z'ZO(1)(«, C)). |
Satz 5: Für Lfn, C) Ofn, C) (1.2) folgt aus

fXf.xf) fx'i.xf) i,k=l...l
und

dim yx... xf dim <jcx x'f n,

x und *' sind genau dann Limespunkte (3.1) (3.5), wenn x ~ x'fOa)fn, C)) (1.4).
Beweis: a) x und *' sind offensichtlich Limespunkte, wenn

x~x'(OW(n, C)).
42 H. P.A. 39, 8 (1966)
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ß) Seien x und *' bezüglich 0(1)(«, C) nicht aequivalent. Sie legen eindeutig ein
A £ Ofn, C) fest so, dass gilt

x' A x

Für w und w', die in geeigneten Umgebungen Ufx) und Ufx') liegen, ist die obige
Aussage immer noch wahr. Afw, w') hängt stetig von w und w' ab. |

Die Behandlung des letzten Falles verlangt zwei vorbereitende Hilfssätze :

Lemma 3: Sei fx{, xf (xf xf i, k 1 .1

dim <#> dim <*'> « — 1

und das Punktepaar x, x' sei nicht Ofn, C)-aequivalent.
Dann existiert ein T e GLfl, R) so, dass

xT-(rx...rn_2,p,0...0) (15)

x' T= ff ...r'n_2,0,q',0...0)

fritrff fr], r'hf ôik i, k 1 n - 2

fp. Z (P, P) o

(q'> Z (q'< q') °

x T, x' T heisst Normalform (3.4) des Punktepaares x, x'.
Beweis: Nach (1.4) existiert ein T eGL(l, R) derart, dass

xT=(rx...rn_2,p,0...()).
Aus

(*,-.**) (ZZ) i,k i ...i
folgt die Behauptung. |

Lemma 4: Sei (15) die Normalform (3.4) des Punktepaares x, x'.
In VfR) existieren eindeutig Nullvektoren q und p' so, dass

fq, r{) fp', r{) 0 i — 1 n — 2

(P, q) fp', q') l.
Beweis: In V(R) existiert mindestens ein Nullvektor q bzw. p' (1.3). Seien ^ und q2

zwei Nullvektoren und es gelte :

(^,^ 0 ^,^ 1 t=l,2 i=l...n-2.
Da

7(R)= (^...Wl^fj)
kann q2 als Linearkombination von qx und ^i> dargestellt werden :

q2 Xp + piqx X e R, ti e R

Aus fp, qfi 1 folgt ^ 1 und aus (q2, q2) 0 Xpt 0. |
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Den letzten und schwierigsten Fall in der Diskussion der Limespunkte erledigt
der folgende

Satz 6: a) Sei dim<xx xf dim<jcx .• ¦ x'f> n — 1 und

x~x' fO(n, C))

Dann sind * und x' Limespunkte (3.1) (3.5).
b) Sei dim^ xf dim<7x xf n — 1, und * bezüglich Ofn, C) nicht

aequivalent zu x',
(xi,xk) (xi,x'k) i,k l...l

und (15) die Normalform (3.4) des Punktepaares x, x'.
x und x' sind genau dann Limespunkte, wenn

Det frx rn_2, p, q) Det fr'x r'n_.,, f, q')

Beweis: a) Seien * und x' bezüglich 0(1)(«, C) nicht aequivalent, da sonst die
Behauptung trivial ist. Aus rad<*> rad<*'> 0 folgt rad(<% xf1) 0. Durch
eine Spiegelung in <%.. .xf1- kann daher immer erreicht werden, dass Xr^x'fO^fn, C)).

Wenn dim(rad<*>) dim (rad <*'> 1 ist, kann für *, x' die folgende Normalform

(1.4) gefunden werden:

xT=(rx...rn_2,p,0...0)

x'T=frx...r'n_2,p',0...0)
Sei {e'} eine Nullfolge. Wir definieren

z* T (rx rn^2, p + éq, fe1)2 p + (e1)2 q, 0 0)

zn T (r'x... r'n_.,,p' + s' q', e'p' + (e*)3 q'', 0 0)

Nach Konstruktion ist
z* ~z'' (0«>(«, C))

und
x lim z' *' lim z*

4—>00 i—>00

b) Es existiert ein Z e 0(n, C) derart, dass

ri Zri i 1 n — 2

p' Zp

Z ist durch x und *' eindeutig festgelegt, da q und p' durch x und *' bestimmt sind.

Wir betrachten den Spezialfall « 2. Es gibt Umgebungen U(x) und U(Z~X x')
derart, dass Ofn, C)-äquivalente Punkte we U(x), w' e UfZ'1 x') auch 0(1)(», C)-

äquivalent sind.
Zusammen mit Satz 2 folgt die Behauptung. |
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3.5. Die in 3.4 gewonnenen Resultate gestatten den Begriff «Limespunkte» derart
neu zu definieren, dass dabei weder eine Einbettung von V(R) in V(C) noch eine

Punktfolge nötig ist.
Definition: a) In V(R) sei eine symplektische Geometrie gegeben, x e V(R) und

*' £ V(R) heissen Limespunkte (3.1), wenn

(X(,xk) fx'f,x'k) i,k=l...l.
b) In VfR) sei eine orthogonale Geometrie gegeben, x e VfR) und *' £ VfR)

heissen Limespunkte (3.1), wenn ausser

fx-%,xfi fx\,xfi i,k-l...l
eine der folgenden Bedingungen erfüllt ist :

7. dim <*> #= dim (x')
2. dim <*> dim <»'> < n - 2

3. dim <#> dim <*'> n x ~ x' (0(1)(«, C))

4. dim <#> dim <#'> — « — 1 x ~ «' (0(«, C))

5. dim <*> dim <*'> « — 1, Det (^ rn_2, p, q) Det fr'x *'n_2, p', q') 7)

3.6. Satz 7: In V(R) sei ein symmetrisches Skalarprodukt mit Trägheitsindex
x 0 (1.3) gegeben.

Zwei Limespunkte (3.1) (3.5) *e VfR) und x' e VfR) sind 0»»(«, R)-äquivalent
(1.4).

Beweis: Aus rad<*> rad<x'> 0 folgt dim<#> dim<*'>. Nach dem Satz von
Witt ist * ~ x'fOfn, C)). Die Behauptung ist offenbar für dim <*> « richtig. Wenn
dim<% xf < « ist, kann durch eine Spiegelung in <.xx xf1 immer erreicht
werden, dass

x~x'(0M(n, C)). |
Bemerkung: Satz B gilt für die reelle orthogonale Gruppe mit Trägheitsindex x — 0

ohne die Voraussetzung, je zwei Limespunkte * £ DR, x' e DR sind L (1)(«, R)-äquivalent.
3.7. Satz 8: In V(R) sei ein symmetrisches Skalarprodukt (1.2) mit Trägheitsindex

x 1 (1.3) gegeben. Die folgenden Aussagen über das Gebiet DR C F'(R) (1.4) sind
äquivalent :

1. Je zwei Limespunkte (3.1) (3.5) xeDR, x'eDR sind La)fn, R)-äquivalent
(1.2) (1.4).

2. Je zwei La,(«, C)-äquivalente Punkte sind Z,(1)(«, R)-äquivalent.
Beweis: Aus 1 folgt 2 als unmittelbare Konsequenz der Resultate in (3.4). x e DR

und *' e DR seien Limespunkte. Ohne Einschränkung der Allgemeinheit setzen wir
dim<*'> tif dim<*> voraus.

') Vgl. Satz 6 (3.4).
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Sei dim <*'> < dim <#>. Es existiere ein T e GLfl, R) das * und x' in Normalform
transformiert8) :

xT ftx...tr,p,0 ...0)

x' T (t[... t'r, 0, 0 0)

In allen Umgebungen U(x) und U(x') existieren Z,(1)(«, C)-äquivalente Punkte
fe £ Ufx) und fe' £ Ufx') die nicht Z,«'(«, R)-äquivalent sind.

Sei dim<*> dim<a?'> und das Punktepaar x, x' nicht Lfn, C)-aequivalent. Wieder

kann ein T e GLfl, R) gefunden werden, das * und *' in die Normalform
transformiert :

xT= (tx...tr,p,0 ...0)

x' T= ftx...t'r,0,q',...0)
Nur der Fall dim <*>> dim <#'> « — 1 ist nicht trivial. In allen Umgebungen Ufx)
und Ufx') existieren nach Satz 6 L(1)(«, C)-äquivalente Punkte fe, fe',

kT ftx...tr,p,sq,0 ...0)

fe' T ft'x...t'r,sp',q',0...0)

die nicht L(1)(«, R)-äquivalent sind. |
Bemerkung: In VfR) sei ein symmetrisches Skalarprodukt mit Trägheitsindex

t > 1 gegeben. Aussage 2 ist immer noch eine Folge von Aussage 1, aber nicht
umgekehrt.

Wir betrachten die direkte Summe zweier hyperbolischer Ebenen,

V(R) <Px qA A <p2 qA
und definieren

x= fpx,0,0,0)

x' f0,0,qx,0)

x und x' sind in Vi(R) Limespunkte und nicht L(4, R)-äquivalent. In allen
Umgebungen Ufx) und Ufx') existieren L«'(«, C)-äquivalente Punkte fe und fe'

*= (Pi>ep2,eqx,eq2)

fe'= fepx,sq2,qx,ep2)

die nicht L(1)(«, R)-äquivalent sind.
Satz 8 erlaubt eine neue Formulierung von Satz B :

Satz von H. Stapp: Sei/eine tensorwertige, in einem reellen Gebiet DR C Vl(R) (1.4)
analytische (eindeutige) Funktion.

Zu / gehöre eine endlichdimensionale Tensordarstellung der orthogonalen Gruppe
Ofn, R) (1.2) mit dem Trägheitsindex t 1 (1.3) derart, dass aus

fe £ DR, fe' £ DR, fe' A fe, A e 0«)(«, R)

8) Der allgemeine Fall kann ebenso behandelt werden,



662 Rudolf Seiler H. P. A.

folgt
f(k') S(A)f(k).

Je zwei 0(1)(«, C)-äquivalente (1.2) (1.4) Punkte seien 0(1'(«, R)-äquivalent.
Behauptung: Es existiert zu jeder kompakten Menge CR C Dr eine 0(1)(«, C)-

invariante, komplexe, offene Umgebung UfCR) und eine analytische Fortsetzung /
von/auf UfCfi mit den Eigenschaften:

1. /ist auf UfCf) eindeutig,
2. aus z £ UfCR), z' e U(CR), z' =Az,Ae 0»>(«, C) folgt

/(z') S(^)/(z).

Anhang

Die Zusammenhangs-Komponenten der klassischen, reellen Liegruppen [9].

Es ist bekannt, dass die allgemeine lineare Gruppe GLfn, R) in die beiden
Zusammenhangskomponenten GL+ {A \ A e GLfn, R), det A > 0} und GL-
{B | BeGLfn, R), det B < 0} zerfällt. Die Gruppe der speziellen linearen
Transformationen SL(n, R) ist einfach zusammenhängend. Wir fragen jetzt nach den

Zusammenhangskomponenten der reellen symplektischen und reellen orthogonalen
Gruppen.

1. Die reelle symplektische Gruppe wird von den symplektischen Transvektionen [3]
erzeugt. Jedes Element Z e Spfn, R) kann als endliches Produkt dargestellt werden

Z=rAl---rAN A{eVfR)

xA.fx) x + fx, A;) At xe F(R)

VfR) ist zusammenhängend und daher auch Sp(n, R).
2. Die orthogonalen Gruppen 0T(n, R) sind durch die Dimension « des Vektorraumes

V(R) und den Trägheitsindex x des symmetrischen Skalarproduktes
charakterisiert. Mit üT(n, R) bezeichnen wir die von den Kommutatoren erzeugte
Untergruppe in 0Tfn, R)

Or(n, R) {A j A fjAi Zi Af1 Zf\ Ai e 0\n, R),Zte Ofn, R)}
i-l

Qz(n, R) wird auch von allen Quadraten in 0T(«, R) erzeugt [3],
a) Die Einskomponente Or(1)(«, R) von Or(n, R) ist in der Kommutatorgruppe

üT(n, R) enthalten
OrW(n, R) C üx(n, R)

Sei A e 0T(1)(«, R). Dann existiert die Produktdarstellung

N
A JJ^ exp Xj
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Xi gehört zur Liealgebra von Ofn, R). A kann daher auch als endliches Produkt von
Quadraten geschrieben werden

f r 1 12
A Il [exP y a'J •

i 1

b) Die Kommutatorgruppe Qrfn, R) ist in der Einskomponente enthalten

ür(n, R) C Or«>(«, R)

Zu jedem BeOfn,R) existiert ein stetiger Weg Bft), te[0, 1], in Orfn, R) derart,
dass gilt :

B(0)-(y\°J^-l *<1)«B.

Jedes Quadrat in 0T(n, R) kann daher durch einen stetigen Weg mit der Einheit
verbunden werden. Da die Quadrate in 0T(n, R) die Kommutatorgruppe erzeugen, ist die
Behauptung bewiesen.

Aus a) und b) folgt
Q*(n, R) Ojm(n, R)

c) Die Untergruppe 0+(«, R) der orthogonalen Gruppe OI=0(«, R) 0(n, R)

0+(n, R) {A | A £ 0(n, R), det A 1}

ist zusammenhängend und daher gleich der Einskomponente. Ofn, R) zerfällt in zwei
disjunkte Zusammenhangskomponenten 0+(«, R) und 0_(«, R)

0_(«, R) L4 | A e Ofn, R), det A - 1}

d) Sei der Trägheitsindex t des Skalarproduktes nicht Null. Die zugehörigen
Isometriegruppen sollen im folgenden Pseudoorthogonale Gruppen heissen. Dann gilt
zwischen der Gruppe 0T+(n, R) {A \ A e 0T(n, R), det A 1}, der Kommutatorgruppe,

sowie der zyklischen Gruppe der Ordnung 2, Z2, die Beziehung [3]

0\(n,R)jQT(n,R) s Z2.

In V(R) existiert eine Hyperbolische Ebene H (1.3)

H ip, qy

Wir definieren ein Element / aus Of fn, R) wie folgt :

J/=~"t) Jx x VxeH1
Jq -q

J gehört nicht zur Kommutatorgruppe. Wenn A £ Of (n, R) nicht zur Kommutatorgruppe

gehört, so ist JA eüT(n, R). Es existiert also ein stetiger Weg in Qrfn, R)

von JA nach 1. A kann daher durch einen stetigen Weg mit J verbunden werden.

0\(n, R) zerfällt somit in zwei disjunkte Zusammenhangskomponenten,

Offn, R) QTfn, R) U / Qr(n, R)

fürfn,R) {B\B JA, Aeüfn.R)}.
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Mit Ki bezeichnen wir das direkte Produkt Z2 (g) Z2 (Kleinsche Vierergruppe).
Die Gruppe 0T(«, R) zerfällt in vier disjunkte Zusammenhangskomponenten und es

gilt:
0Tfn,R)IQr(n,R)^Ki.

e) Zusammenfassung:
Die spezielle lineare und die symplektische Gruppe (1.1) (1.2) sind einfach

zusammenhängend.
Die allgemeine lineare und die orthogonale Gruppe fx 0) zerfallen in zwei

Zusammenhangskomponenten und es gilt :

GLfn, R)/GL+fn, R) s Z2 Ofn, R)jO+fn, R) ï Z2.

Die Pseudoorthogonalen Gruppen 0T(«, R), x > 0, zerfallen in vier Zusammenhangskomponenten

und es gilt :

Ofn, R)/0T(1)(«, R) s K,4- 9)
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