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Paraelektrische und Paraelastische Resonanz

von G. Pfister
Laboratorium für Festkörperphysik der Eidgenössischen Technischen Hochschule Zürich

(14. VII. 66)

Abstract: A simplified model for paraelectric and paraelastic systems is discussed. The energy
levels and eigenfunctions of a charged point mass moving in a sixwell potential of octahedral
symmetry are investigated. The energy shifts and splittings induced by externally applied electric
fields and uniaxial stresses have been calculated for the following two cases : a) perturbation energy
small compared to the tunneling splitting and b) perturbation splitting large compared to the
tunneling splitting. For both cases the matrix elements for the electric and elastic dipole transitions
induced by small periodic perturbations have been evaluated (paraelectric and paraelastic
resonance). Expressions for the polarizability of the system are also given.

1. Einleitung und Modell

Molekülionen, wie OH-, CN- können in Alkalihalogenid-Kristalle eingebaut
werden. Aus optischen Messungen [1, 2]x) an den Systemen KCl : KOH und KCl : KCN
weiss man, dass diese Molekülionen an Stelle der Halogen-Ionen ins Gitter eingebaut
werden und im Gleichgewicht ihr Dipolmoment parallel zu den [001]-Richtungen
stellen. Dielektrische Messungen [3, 4] zeigen, dass diese Molekülionen noch bei sehr
tiefen Temperaturen (0,3 °K) einen temperaturabhängigen Beitrag zur dielektrischen
Suszeptibilität liefern, d.h. dass die Energieaufspaltung, welche vom «Tunnelieren»
zwischen den sechs Gleichgewichtslagen herrührt, kleiner ist als 0,3 °K. In dieser
Arbeit sollen die Energieniveaux und Eigenfunktionen berechnet werden, welche die
Reorientierung eines Dipols im Kristall beschreiben. Dazu betrachten wir folgendes
(stark vereinfachendes) Modell: Ein Massenpunkt mit der Ladung q bewege sich im
Raum, welcher sonst vom Halogenidion eingenommen wird. Er habe 6 Lagen
minimaler potentieller Energie, welche in den [001]-Richtungen aus dem Gitterplatz des

Halogenidions verschoben sind, d. h. die Scheitel der sechs Potentialmulden bilden ein
reguläres Oktaeder, dessen Zentrum im Halogenplatz liegt (Figur 1). Das Potential
erfülle folgende Bedingungen :

a) Die Potentialminima sollen so tief sein, dass in nullter Näherung jede Potentialmulde

für sich allein betrachtet werden kann.

b) Die angeregten Zustände, welche den Schwingungen des Teilchens in einer
einzelnen Potentialmulde entsprechen, sollen so weit vom Grundzustand entfernt sein,
dass sie vernachlässigt werden können.

Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 616.
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c) Die Ionen, die das kubische Potential erzeugen, sollen an ihre Gleichgewichtslagen

fixiert sein, d. h. die Potentialmulden sind starr.

Mit diesen Voraussetzungen können die Wellenfunktionen des Teilchens im
betrachteten oktaedrischen Potential nach den Eigenfunktionen, die das Teilchen in den
einzelnen Potentialmulden beschreiben, entwickelt werden. Wegen der Voraussetzung

b) müssen in die Entwicklung nur die Eigenfunktionen der sechs Grundzustände

einbezogen werden. Wir bezeichnen im folgenden diese Eigenfunktionen als
Basisfunktionen cpt. Sie sind in der nullten Näherung orthogonal, d. h. der Grundzustand

des Teilchens ist sechsfach entartet. In der ersten Näherung werden wir dann
die Überlappung der Basisfunktionen berücksichtigen, wodurch der Grundzustand
teilweise aufgespalten wird (Tunnelaufspaltung).

[OOIl

:oioi

Modell - Ladung

nooi

[Alkali-Ioni*

-o * >

Figur 1

Gleichgewichtslagen der Modell-Ladung im KCl-Gitter

Von einer ganz anderen Näherung ging Devonshire [5] in seiner Arbeit aus. Er
betrachtete einen starren Rotator, dessen potentielle Energie als Funktion der
Orientierung im Raum oktaedrische Symmetrie hat und entwickelte die
Wellenfunktionen des so gehinderten Rotators nach den Eigenfunktionen des freien starren
Rotators. Diese Approximation darf nur angewendet werden, wenn die Störung durch
das Potential klein ist gegen den Abstand der Rotationsniveaux.

In einem äusseren elektrischen Feld werden die Energieniveaux des Teilchens
teilweise aufgespalten oder verschoben. Durch ein elektrisches Wechselfeld können
Dipolübergänge zwischen den Niveaux induziert werden. Solche resonanten Übergänge

bezeichnen wir als «paraelektrische Resonanz»2). Ebenso werden die Energieniveaux

durch eine elastische Deformation des Wirtgitters aufgespalten oder ver-

2) Ähnliche Rechnungen über paraelektrische Resonanz wurden von P. Sauer, O. Schirmer
und J. Schneider in Phys. Stat. Sol. 16, 79 (1966) veröffentlicht.
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schoben. Mit einem Ultraschallfeld können «elastische» Dipolübergänge zwischen den
Niveaux induziert werden, die wir als «paraelastische Resonanz» bezeichnen.

Für folgende zwei Fälle werden wir den Einfluss stationärer elektrischer und
stationärer elastischer Felder auf die Energieniveaux und Eigenfunktionen
untersuchen :

1. Störung klein gegen die Tunnelaufspaltung und

2. Störung gross gegen die Tunnelaufspaltung. In beiden Fällen berechnen wir die
Matrixelemente für die elektrischen und elastischen Dipolübergänge, welche durch
periodische elektrische und elastische Felder induziert werden.

2. Tunnelaufspaltung

Das Teilchen wird beschrieben durch den Hamiltonoperator

#o
2 m

v0 (1)

wobei das Potential V0 oktaedrische Symmetrie hat und die in Abschnitt 1 gemachten
Voraussetzungen erfülle. Für die Lösung der Schrödingergleichung

#o Wk Ek Wk (2)

entwickeln wir die Eigenfunktionen xpk nach den Basisfunktionen cpì fi 1, ,6;
vgl. Figur 2)

Wk=Z!Cik<Pi- (3)

Aus (2) und (3) erhalten wir dann das homogene Gleichungssystem

£fHiJ-EkAij)cJk 0 (4)

für die Koeffizienten cjk, wobei Hu <t \ ~U0 \j> und AtJ A \j> (Überlappungsintegral)

(5).

6

(i)
yy(3)

x
(2)

(4)

Figur 2

Numerierung der Potentialminima und der zugehörigen Basisfunktionen

Wegen der oktaedrischen Symmetrie von V0 sind die Matrizen H{j und A{J
zyklisch. Sie lassen sich mit derselben unitären Transformation

ttm N-W0}(m-M-l) (5)
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diagonalisieren, wobei co exp — i 2 njN) und l, m --

(5) erhält man dann folgende Lösungen von (2)

1,... ,2V[6] ist. Mit (3), (4) und

EfA ig)
H1X + AHX2AHX,

1A-AA..A-A,.

Ex(Txu)
Hl1 Hu-
1-A,

UE. H,. -2H.. + H.

Wl <* (<Pi + <Pi) + (<Pi + <Pt) + (fa + <Pe)

f2 oc a* fcpx - cpf + fcp2 - cpfi + a* fcp3 A

fioc- (cpx - cpf + (cp2 - cpfi - fcp3 - cp6

y>6 oc a* (cpx -cpf - a (cp2 - cp5) - (<p9-<

\ip3oc- a* (cpx + cpf - a (cp2 + Ç95) + (tp3

— a* fcp, — cp.) + lep, A- cpA — a i

(6)

]rp6oc- a* (tpx - cpf + fcp2 + cps) - a fcp3 + cpe)

wobei a exp( — i nß).
Der sechsfach entartete Grundzustand spaltet somit durch die Überlappung der

Basisfunktionen in einen einfachen, sowie in einen zwei- und dreifachen Zustand auf
(vgl. Figur 3). Die Eigenfunktionen (6) transformieren sich nach den in Klammern
angegebenen Darstellungen der kubischen Gruppe 0h. Die Charaktere der
Symmetrietransformationen von 0h, ausgeübt auf einen linearen Dipol, von dem ein Ende am
Gitterplatz festgehalten wird, sind

0, 8Ca 3 67 6C, 6G7 C3i 3 C2i 6 C2 i 6 C4 i
0 0 0r | 6 0 2 0 2

F kann in die Summe AXg + Eg+ TXu ausreduziert werden. Die Reihenfolge der
Niveaux Eg und TXu hängt vom Verhältnis HX2jHxi ab. HX2 beschreibt z. B. das 'Tun-
nelieren' von der Potentialmulde (1) in eine der Potentialmulden (2), (3), (5) und
(6) (90°-Sprünge, vgl. Figur 2) ; Hxi z. B. das 'Tunnelieren' zwischen den Potentialmulden

(1) und (4) (180°-Sprünge).

NULLTE TUNNEL-
NÄHERUNG AUFSPALTUNG

E2 (E.)

(6) / E|(T1u

Eo<V

-(3)

ENERGIE -
EIGENWERTE

H1( -2H,2 * H14

1 - 2A,2 • A,,

>Tt - H*4

A„

"II • "H<2

«A,2 *A,,

EIGENFUNKTIONEN

i*><0) ¦ N2, [ff2

^"'¦"zoUVrtJ-iCrz-
W0] - %,( \- V

<!»> io,-n,o(^- r-6)

|<Z01 -n«( V V

6»

l°3 ?6>]

ioo> -n00( V V V "V fV rt)

Figur 3

Tunnelaufspaltung, Energieeigenwerte und Eigenfunktion im mechanisch und elektrisch un-
beanspruchten Kristall
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Für die im nächsten Abschnitt folgende Störungsrechnung ist es zweckmässig, die
Eigenfunktionen (6) wie folgt zu orthonormieren

Er.

Ex-

j 21>(o) [4 (1 - 2 AX2 + AXi)A112 [(n + <p>) - (n ¦

2o>(o> [3 (i - 2 AX2 + AXi)A112 Ufh + n)-\ (n 7 n + % + ?>.)]

j 12>(") [2 (1 - Au)]-W fcp2 - cpf

|ll>(o)=[2(l-Zl14)]-^(%-<?6) (7)

10>(o) [2 (1 - AXi)]-w fcpx - cpf

E0: | 00>«» [6 (1 + 4 AX2 + AXi)]~^ (cpx + cp2 + cp3 + <pi + tp5 + cp,).

In der Notation | n £>(0) bezeichnet n das Energieniveau und k die zu diesem Niveau
gehörenden Eigenfunktionen. Der Index (0) weist darauf hin, dass die Eigenfunktionen

(7) Ausgangsfunktionen für die Störungsrechnung sind.

3. Der Einfluss einer äusseren Störung, die klein ist gegen die Tunnelaufspaltung

a) Elektrisches Feld

Ein elektrisches Feld, parallel zur [001]-Richtung, erniedrigt die Symmetrie des

Potentialfeldes. Die Potentialmulden (1) und (4) (Figur 2) werden dadurch vor den

übrigen ausgezeichnet. Den Term Vx — q £0 z im Hamiltonoperator ?/ ?/0 + Vx

behandeln wir als Störung. Dieser Störoperator hat die Transformationseigenschaften
von TXu, d.h. die Matrixelemente von der Form <rnj\ Vx \ n ky verschwinden und
damit auch die Energieänderungen in erster Ordnung. Für die Energieänderungen in
zweiter Ordnung müssen wir Matrixelemente der Form inj \ Vx\mqy berechnen,
von denen aber aus Symmetriegründen nur

<00 | Vx | 10> - wx q 80 <10 | Vx | 20> - w2 q £0 (9)

von Null verschieden sind. Bezeichnet man mit Nnk den Normierungsfaktor der
Eigenfunktion | n &>(0), dann werden die in (9) eingeführten Grössen zu:

wx 2 2V00 2V10 fzxx + 2 zx2) w2 2 2V10 2V20 fzxx - 2 zX2) (10)

wobei zik A z | ky ist.
Bei der Berechnung von (9) und (10) haben wir verwendet, dass, z.B., zX2 — z2i

ist. Die mit (9) berechneten Energieänderungen zweiter Ordnung, sowie die bis zur
ersten Ordnung korrigierten Eigenfunktionen (7) sind in der Figur 4 eingetragen.

Mit einem elektrischen Wechselfeld £u können elektrische Dipolübergänge
zwischen den Energieniveaux induziert werden. Die Übergangsmatrixelemente
<nj\r\mqy der Dipolübergänge wurden für verschiedene Richtungen des Wechselfeldes

mit den gestörten Wellenfunktionen (Figur 4) unter der Annahme berechnet,
dass die Störenergie des Wechselfeldes vernachlässigbar sei gegenüber der Störenergie
des statischen Feldes. Diese Matrixelemente sind ebenfalls in der Figur 4 zu finden.
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Aufspaltung im

elektrischen Gleichfeld

4 n rc>oi]

E2(E,>
m/^,

»)/ E,Cliu)

m

®
(2)

Ti>>^: ®1

\W^l

®

1

3

' v^
'

^,ncocnr—

Energie -

änderungen
2

"2 „2ff2

'"HO E;¦4^

ElO

Eigenfunktionen

|20> - S 4I.O)

|2t>

*>Z *>"
(0) v, (Ol

l»>^l»>"Uo^

(0) (0)
lot» ^r"S0bo>

Ho °

(0)
|nk) vgl. Gig. (7)

Matrixelemente der elektrischen

Dipolübergänge

4j "tOOH

Ü2(ü!.üi!
iO E» E2

:-2D-r^(g-f)]
fc2J SO t21

:«< «2 (f - fKEI0 E2I 0

W L

E,o VE,0 Ea/J

fijllBOO]

-5 w2

©: (5 :)<
vgl. Gig.

Figur 4

Aufspaltung der Energieniveaux durch schwaches elektrisches Gleichfeld £0 parallel [001].
Darstellung der Eigenfunktionen. Matrixelemente der elektrischen Dipolübergänge induziert durch

elektrische Wechselfelder £m parallel zu [001] und parallel zu [100].

Die Übergänge ©, ® und © werden durch ein Wechselfeld parallel zum Gleichfeld
f£a\\z), die Übergänge ®-® durch ein Wechselfeld senkrecht zum Gleichfeld
(Sa || x) erzeugt. Die Übergänge ® und ® sind im ungestörten Oktaederpotential
verboten und werden erst durch die Störung mit dem Gleichfeld ermöglicht. Um die
Grösse der Matrixelemente abzuschätzen, machen wir folgende Vereinfachungen, die
für kleine Überlappungen, d.h. für kleine Tunnelaufspaltungen, zutreffen

4,<1 HXi<^Hx2.

Damit erhält man für die Energiedifferenzen Eik Ei — Ek

E2X -2HX2 A E10=-4HX2 2A

und für die Matrixelemente für die Übergänge © und ®, beispielsweise,

<52

®:oczxx (1+ —-J ®:ocòzxx

wobei ô q £0 zxx\A <^ 1 ist, da die Störenergie des Gleichfeldes als klein gegen die

Tunnelaufspaltung vorausgesetzt wurde. Nach dieser Abschätzung wird also das

Matrixelement des Überganges © durch das Gleichfeld nur sehr wenig beeinflusst,
während das Matrixelement <D für kleine Felder praktisch noch verschwindet. Die
Übergänge ©, <D und ® wurden kürzlich beobachtet [8, 9].

In der Figur 5 sind die Korrekturen der Eigenwerte (6) und der Eigenfunktionen
(7), sowie die Matrixelemente der elektrischen Dipolübergänge für den Fall £0 || [110]
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und £u\\ [001] und £w|[110] zusammengestellt. Es wurde bei der Berechnung
berücksichtigt, dass z.B. zxx x22 ist.

Aufspaltung im elektrischen
Gleichfeld £0 II CUOI

-^=iE, E 2E,21t.-

® ® ®®(6)/ E, (TJ
/2wf wg 2 w2

E|0 2Ea

\ 2w 2 J.2r fi

Eo(Ato)
®

1 5a.n2é-2i £

Energieänderungen

¦2- w2 a2;?2
e„ "2 " so

2 2 *2*21 «b

Eigenfunktionen

A<Kx! _(o
I2i> Z&iSM

E21

Ij*'*»
Ha)

-.(oirwiV?, »)w2 JO),
h1> ¦%M> 'fi;1205 >

(0) w.W -lo)
loo} •^E.qS.TO

-,(01 1 (0) (0)
I» =%¦(!"> *H2>

_(0) < /_(°> (OK
H2>(0,=^r(nO -H2>

Ubergangsmatrixelemente
der elektrischen
Dipolübergänge

II [001]

©:»,

ew iiciioi

2,2 2

EfO %) 2%'"

iw2ri.i!S(5i "22 ¦

^"L EJ0 ^0 2E2I '

Figur 5

Aufspaltung der Energieniveaux durch schwaches elektrisches Gleichfeld £0 parallel [110].
Darstellung der Eigenfunktionen. Matrixelemente der elektrischen Dipolübergänge induziert durch

elektrische Wechselfelder £m parallel zu [001] und parallel zu [110]. W{ vgl. Gig. (10)).

Mit den in Figur 4 und Figur 5 angegebenen Energieverschiebungen kann man die
mittlere elektrische Polarisierbarkeit ä fT) des Systems berechnen. Die Polarisierbarkeit

oc,- des Teilchens im Energieniveau Ei ist

oc,-
Ò^EfEf,

(H)

Mit (11) erhält man für die mittlere Polarisierbarkeit oc(T) des betrachteten Systems
bei einer Boltzmannverteilung über die Energieniveaux in Figur 4

-m o 2 wìlEw- (i»ìlEX0-wllEìx) e-ßE»-w\IEiX e-ßE»
y > q -

lA-3e-ßE,oA2e-ßEm
wobei ß 1/k T ist.

Für k T > £10, E20 geht (12) in das klassische Curiegesetz über

(12)

a(T) 3 k T (wl + w22 (13)

und für k T <ç Exo, E20 erhält man die Polarisierbarkeit des Grundzustandes

4-T 2

E Wl- (14)
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Mit den Näherungen Aik -4 1 und zX2 < zxx gehen (13) und (14) in die bekannten
Formeln

2 p2
a(T) p' a„3 k T ' ° 3 Elc

über, wobei für q < 1 [ z | 1> das klassische Dipolmoment pt gesetzt wurde.

b) Elastische Deformation
Durch eine elastische Deformation längs der [001]-Richtung werden die Potentialmulden

(1) und (4) (vgl. Figur 2) vor den übrigen ausgezeichnet. Sie bleiben unter sich
aber äquivalent. Der Störoperator V2 ist von der Symmetrie Eg +AXg, d.h. wir
können uns auf die Störungsrechnung erster Ordnung beschränken. V2 hat in den
Eigenfunktionen (7) folgende Matrixelemente

<00

<10

<11

<20

<21

F2|00> 2 2V20(F11 + 8F1

U2|10> 2 2V?0(F11-FU)

V2 | 11> <12 | Fa | 12

V» 2 V,, 4 K. + 2 K

2N\0(V22-V2i) (15)

K | 20> 2V220 (2 Vxx - 8 Vxi

K|21> 4 2V221(K2+F25-

2F„ K2 + 2 U2£

2K
wobei Vik (i\ V2 | ky ist. Die resultierenden Energieänderungen und die Korrekturen

der Eigenfunktionen sind in der Figur 6 zusammengestellt.

Aufspaltung für eine elastische
Deformation längs der tOOll Achse.

^iL( 'is®

MTJJ

Eq(AJ

+ ß

©®@

_ Vj *0

Energieänderungen

<20|V2 |20>

<21|V2 l2t>

<jo|v2 Ho>

<I2|V2 H2 >-<«! vz m>

<ool v2 loo)

Eigenfunktionen

l2c»lo).aloo>lc

|21>

I«))"

(0) (0)
MD i U2>

<00|V2 |20>

Matrix elemente der

elastischen bezw. elektrischen

Dipolübergänge

Vw IIIOOU

©: <20l vu loo> - a
<a (<oo| vw loo> -

<20| Vw |20>)

£, Il COO«:

\3>: w2 »aw,

£„ IIHOOI:

@:w4.a^

Figur 6

Aufspaltung der Energieniveaux durch schwache elastische Deformation längs der Achse [001].
Darstellung der Eigenfunktionen. Matrixelemente für elastischen Dipolübergang induziert durch
oszillierende Deformation Va längs [001] und für elektrische Dipolübergänge, induziert durch

elektrische Wechselfelder £m parallel zu [001] und parallel zu [100]. (Wj vgl. Gig. (10)).

39 H. P. A. 39, 7 (1966)



610 G. Piister H. P. A.

Wir haben in dieser Tabelle noch die Matrixelemente für die elektrischen
Dipolübergänge, die durch ein elektrisches Wechselfeld £a parallel zu den [001]- und [100]-
Richtungen induziert werden, angegeben. Eine longitudinale Ultraschallwelle Vu, die
sich parallel zur statischen Störung längs der [001]-Richtung fortpflanzt, induziert
einen elastischen Dipolübergang, dessen Matrixelement ebenfalls in der Tabelle
angegeben ist. Die Störenergie der periodischen Störungen wurde als klein gegen die
Störenergie der statischen Störungen vorausgesetzt, so dass zur Berechnung der
Matrixelemente die Wellenfunktionen der Figur 6 benutzt werden konnten.

4. Einfluss einer äusseren Störung, die gross ist gegen die Tunnelaufspaltung

a) Elektrisches Feld

Wird dem kubischen Kristallfeld ein starkes elektrisches Feld längs der [001]-
Richtung überlagert, dann können die Wellenfunktionen ipk des Teilchens nicht mehr
nach den Basisfunktionen cpit die wir als Ausgangsfunktionen bei kubischer
Symmetrie gewählt haben, entwickelt werden. Wir ersetzen die Basisfunktionen cpi (3)

durch ein Basissystem (tpx, ¦¦ ¦ ,cpe), welches der C4„-Symmetrie des Kristalles

Rechnung trägt. Beschreibt ?/0 ein geladenes Teilchen in einem Potential mit der
Symmetrie Civ, dann hat die Hamiltonmatrix in den neuen Basisfunktionen cpi die
Form

Hu «p, | % I <Pj> I r r> r> r r> r> (16)

und ist in den Elementen DFS zyklisch. Die Säkulargleichung kann deshalb mit der
Transformation

0 0 0 0

110 1

i 1 0 -i ¦

0 0 2 0

1-1 0 1

i -1 0-i
1/4

(17)

teilweise diagonalisiert werden, da die Überlappungsmatrix dieselbe Form wie (16)
hat. Mit (17) und (16) erhält man dann für die Hamiltonmatrix

2R

Hh i ; ; „ i ° : : s m*i

2B
2 B

2R G

0
0

wobei P D + 2F+ S; Q D-S; T D-2F
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(18) kann durch Transformationen nicht vereinfacht werden, und man muss die
kubische Gleichung

det I H, ea:. 0 (19)

für die Ermittlung der restlichen Eigenwerte lösen. A\-} ist die mit (17) transformierte
Überlappungsmatrix. Mit (18) und (19) erhält man dann

y>x cx Cxx cpx + C2X (cp2 + cp3 + q>5 + cpe) + C3X tpt

f2 cx CX2 cpx + C22 (cp2 + cp3 + cps + lp~s) + C32 ip4

Wa N3 fq>2 - (ff
We -^3 (% - 9e)

W* c* Zs <Pi + C23 fcp2 + cp3 + cpi + cp%) + C33 cpi

Wc Nn 1(92 + 9s) - (Va + 9e)i

wobei Ex, E2 und £4 die Wurzeln der kubischen Gleichung (19) und

2V3 [2 (1 - J„)]-w 2V5 [4 (1 - 2 Ä23 + !„)]-«*
die Normierungsfaktoren der Eigenfunktionen ip3, ips und y>s sind. In Klammern sind
in (20) die zu den Energieniveaux gehörenden Darstellungen der Gruppe C4„
angegeben, die man durch Reduktion der Darstellungen AXg, Eg und TXu der Gruppe 0h

erhält. Wir wollen die Formeln (20) für den «quasiklassischen Grenzfall» spezialisieren.
In diesem Grenzfall vernachlässigen wir die Matrixelemente Hxk, Hik, Axk und Aik

EfAf
EfAf

E„ — E fE) ^22"~H25
l,3 i^

1- z25

EfAx)

Efßx) -
H22 -2H23 + ^25

1--2Äl3AÄ25

I 1

z
Et(EJ

EijTJ m

^\E0(A„)

Symmetrie

•

°h

tollCOOl]

Energie - Matrixelemente der elektri

eigenwerte sehen Dipolübergänge

»" 'H-So «lü utooi:

©: 4N2Z,2

©: 4N2 Z24

H22-2H23tH25y =1-2523.525
@: ?J4

H22-H25
*»*• VA25

X c
H22*2H23»H25

2 <.2fi23.S25

4.
®

©

Il BOO]

2N3*<2

2 N3 j<24

© 2 N5 NjlX^-»^)

® 2N5 N2(X22.2X23)

¦-/i<0 »i <TlX|k>

<i|Z|k>

Figur 7

Aufspaltung der Energieniveaux durch starkes elektrisches Gleichfeld £0 längs [001].
Matrixelemente der elektrischen Dipolübergänge induziert durch elektrische Wechselfelder £m parallel zu

[001] und parallel zu [100].
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(k =r- 4), d.h. wir lokalisieren das Teilchen in den Potentialmulden (1) und (4)

vollständig, lassen es aber noch zwischen den Mulden (2), (3), (5) und (6) durch Tunneleffekt

bewegen.
In diesem Grenzfall ist (18) diagonal, und man erhält

Ex HX1 fx q>x

E2 *m+o2t*+/* V» [4 (1 + 2Ä23 + !„)]-«« fo + ^3 + ^5 + ?e) (21)
2 1 + 2 A23A-A25

E± #44 yj4 Ç94

£3=^6; ^5 vgl. (20)

wobei i/j! und #44 gegen die klassischen Grenzwerte — pt £0 und + pi £0 konvergieren.
pt ist das klassische Dipolmoment.

In der Figur 7 sind die elektrischen Dipolübergänge eingezeichnet, welche durch
ein Wechselfeld £m [| [001] und £a || [100] erzeugt werden. Die Störenergie des Wechselfeldes

wurde dabei als so klein gegen die Energieaufspaltung im statischen Feld
vorausgesetzt, dass die Matrixelemente der Dipolübergänge mit den Eigenfunktionen
(21) berechnet werden konnten.

b) Elastische Deformation

Im Fall starker elastischer Deformationen längs der [001]-Richtung müssen die
Eigenfunktionen des Teilchens nach Basisfunktionen fcpx, tp6) entwickelt werden,
die der Dih-Symmetrie des Kristallfeldes Rechnung tragen. Die Darstellungen Eg und
TXu der Gruppe 0h werden in AXg + BXg und Eu + A2u ausreduziert. Die Hamiltonmatrix

H{j und die Überlappungsmatrix A{j können mit der Transformation (17)
und der Transformation

0 0 10
2 0 0 0

0 2 0 0

0 0 10
0 0 0 2

0 0 0 0

1/2
(22)

auf die Form

'a + c 2 b

2b p

H^\ q

a-c I <23)

C

gebracht werden, wobei a HX2; c Hxi; b HX2; q H22 — H2i; p H22

2 H23 + H25; t H22 — 2 H23 + H2b ist.
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Die Überlappungsmatrix ÄVi hat nach den Transformationen (17) und (22)
dieselbe Form wie (23), d.h. die Säkulargleichung kann nun durch Quadratur gelöst
werden.

Im klassischen Grenzfall erhält man ein zwei- und ein vierfaches Niveau. Die
Energiedifferenz dieser Niveaux beträgt ß0 X0 wie in den Arbeiten über das 0^-

Zentrum [7] gezeigt wurde. ß0 ist der Kopplungsparameter des Defektes an das Gitter,
und X0 ist die an den Kristall angelegte einachsige mechanische Spannung. Für

genügend grosse mechanische Spannungen X0 kann man HX2 und AX2 vernachlässigen
(quasiklassischer Grenzfall), und damit wird (23) diagonal. Die Eigenwerte und
Eigenfunktionen sind dann

EfAXg) *"+ *" rpx [2 (1 + Axi)]-W (f, + p4)
1+^14

E2(AXg) AA^Al^iA^ y, t4 (i + 2223 + A25)}-w [fö + %) + §3 + m
lA-2A23A-A2!i

E3 EfE ff«~^ fv» t2 (1 - las)]-1'2 fn - fe)
(24)

1+J14

H22A-2 H,23 + -^25

l + 2Z2a
¦, +Äft

• ^ -^22"'H2b
J

1- 4i5

^11-^14
1-^14

H22 — 2H,!3 + "^25

\xp,= [2fl-A2i)A^fp3-\

EfA2u) ""-"" ^ [2 (1 - Iu)]"1'2 ffi - &)
1 -^14

£e(ß H„-2HU+Hm _ ^ + Jb) „, [(= + _ += }] _

1-2J23 + Zl25

In Klammern sind die zu den Energieniveaux gehörenden Darstellungen der Gruppe
Dih angegeben.

Das Energieschema (24) ist in der Figur 8 eingezeichnet. In dieser Tabelle findet
man auch die Matrixelemente der elektrischen Dipolübergänge, welche durch ein
Wechselfeld //[001] und //[100] induziert werden. Diese Matrixelemente wurden mit
den Wellenfunktionen aus (24) berechnet. In dem längs der [001]-Richtung elastisch
stark deformierten Kristall kann ein longitudinales Ultraschallfeld Vu längs [001]
einen elastischen Dipolübergang zwischen dem tiefsten und dem höchsten Niveau
induzieren. Das Matrixelement dieses Überganges ist proportional zu <tpi | Fw | ff>
und ist ebenfalls in der Figur 8 angegeben.

Zur Berechnung der mittleren Polarisierbarkeit HfT) des Teilchens, in einem
Kristallfeld der Symmetrie Dih, überlagern wir der elastischen Deformation längs
[001] ein kleines elektrisches Gleichfeld als Störung in derselben Richtung. Die
Polarisierbarkeiten der einzelnen Niveaux können dann durch Störungsrechnung und
mit Hilfe der Wellenfunktionen (24) berechnet werden. Daraus erhält man für die
mittlere Polarisierbarkeit bei einer Boltzmannverteilung

=/<r\ a.xA-a.2e-ßEn + a.ie-ßEtl
[ > lA-e-ßBnA-2e-ßEn + e-ßE.iA-e-ßEn v '

wobei

ax — 4 q -p— a2 — z q -=— a4 — /, q l -= l a3 — a6 — a5 — u
^14 •E42 \ £ll -^42 /

die Polarisierbarkeiten der einzelnen Niveaux sind.
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ß

Ferner ist

1

k T

uX2 =8N2Ni zX2.uxx 2NxNi Zxx

Für /jT> Eih geht (25) in die klassische Formel

HfT)=fA

(2Vj Normierungsfaktor von ipt)

über.
3 kT

Energieeigenwerte

Symmetrie

H„.H,4
EjfA.J

"* -"14

E4(A2u)

©

6(EU)

¦I® H„,- H22 "25

m«*»

H22-2H23 »H25

\ H22*2H23'H25

t'ZÄjs'Sjü
elastische Deformation

longs [0011

(26)

Matrixelemente der

elektrischen Dipolübergänge:

ÇjlltOOH

©: 8N2 N4 Z12

@: 2N, N4 2,,

^11 BOO]

© 4N, Nj X,2

®: 2N2 N3(X22.2X32)

© 2N3N6(X22-2X32)

Matrixelemente des elastischen

Dipolüberganges:

V<j II [0011

©: e^Nj^lv^lfj)

xik =tf,|X|?4)

zik -ffilzl^
Nj 5 Normierung

Figur 8

Aufspaltung der Energieniveaux durch starke elastische Deformation längs der Achse [001].
Matrixelemente für elastischen Dipolübergang induziert durch oszillierende Deformation Vm längs
[001] und für elektrische Dipolübergänge induziert durch elektrische Wechselfelder £m parallel zu

[001] und parallel zu [100].

Für sehr grosse elastische Deformationen kann man Ex — E{ und Ei — Et fi —

2, 3, 5) gleich ß0 X0 setzen. Damit vereinfacht sich (25) zu

S(T) q*uyß0X0{eßßoXo-l)+ß-ß2
2eßßoX<>+l

wobei pt q uxx ist.
Für k T <^ ß0 X0 geht (27) über in

(27)

(28)

Die mittlere Polarisierbarkeit AT) strebt somit bei tiefen Temperaturen gegen den
konstanten Wert (28), der mit zunehmender elastischer Deformation abnimmt.
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5. Diskussion

Die dielektrische Funktion efT) von Alkalihalogenidkristallen mit Zusätzen von
Fremdionen wie OH~, CN-, N02~, Li+ steigt bei tiefen Temperaturen nach einem
Curiegesetz an, geht durch ein Maximum und sinkt bei noch tieferen Temperaturen
wieder ab [3, 4]. Nach Messungen am System KCl:KOH [3] hängt die diesem Maximum

zugehörige Temperatur von der Konzentration der OH_-Dipole ab und
verschiebt sich mit zunehmender Konzentration nach höheren Temperaturen. Der Abfall
von efT) bei tiefen Temperaturen wird deshalb der Wechselwirkung der Dipole
zugeschrieben [3, 10, 11]. Auf eine andere Interpretationsmöglichkeit haben Baur und
Salzmann hingewiesen [12]. Nach diesen Autoren soll das Maximum der dielektrischen

Funktion efT) die Folge eines Maximums der mittleren Polarisierbarkeit öc(T)
der einzelnen Dipole sein. Sie kamen auf diesen Schluss durch Analyse der experimentellen

dielektrischen Funktion mit Hilfe der Beziehung von Clausius-Mossotti. Nun
mussten aber nach dieser Beziehung die Maxima von afT) und von efT) bei derselben
Temperatur Tmax auftreten, unabhängig von der Konzentration. Die Analyse von
Baur und Salzmann enthält also einen Widerspruch in sich selber. Trotzdem ist die
Möglichkeit des Auftretens eines Maximums von öc(T) interessant und soll hier
diskutiert werden. Die Bedingung für das Auftreten eines Maximums von öc(T) lautet
[12]

2

> iA. (29)
PX1 > 3A2 {^>

wobei ptx und pt2 empirische Dipolmomente sind. Sie haben in unserem Formalismus
folgende Werte (vgl. (10), (11), (12))

fix q 2V00 2V10 fzxx + 2 zX2) fi2 q 2V10 2V20 (*u - 2 zX2) j/jj (30)

und es ist

4x=Ex- E0 A2 E2-E0. (31)

Damit wird die Bedingung für das Auftreten eines Maximums zu

-^20 Vn~2 zX2) 2^ E2X i^/)\
^o(^ii+2 *12)2 ^ 3 £10

¦ * ;

Unter Vernachlässigung der Überlappungsintegrale geht (32) über in

\z-\i — 2z,9) Hx2 — Hxi {-*-%}> rrr r, • W3)

/jM\fi!

[zxx + 2zX2)2

Mit den Werten pix, pt2, E20 und Exa aus der Arbeit von Baur und Salzmann
erhält man folgende Abschätzung der Matrixelemente : HxfHxi ~ 2 und zxxjzX2 ~ 7.

Feher et al. [9] gaben für das Verhältnis E2XjEX0 den Wert 1/2 an. Das ist nur möglich,
wenn Hxi gegenüber HX2 vernachlässigbar ist. In diesem Punkt, der entscheidend ist
für das Verständnis der Bewegung des Ions, besteht zwischen diesen beiden Arbeiten
[9, 12] also eine Diskrepanz. Allerdings muss beachtet werden, dass sich unsere Theorie
auf die Bewegung eines Massenpunktes im oktaedrischen Potential beschränkt. Die
Bewegung des OH- ist in Wirklichkeit viel komplizierter. Man nimmt an, dass das

Hydroxylion um den Gitterplatz eine Rotations-Translationsbewegung ausführt
[8, 13], d.h. das Ion kann als geladenes Teilchen zwischen den sechs Potentialmulden
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«tunnelieren» und zusätzlich sein eigenes Dipolmoment parallel zu den [001]-Rich-
tungen stellen. Welcher Bewegung die hier entwickelte Theorie entspricht, muss näher
untersucht werden.

Wir erwähnen schliesslich, dass wir die Gleichungen (12) und (32) für einen idealen
Kristall berechnet haben. Nach Feher et al. [9] sind die inneren Spannungen in
realen Kristallen jedoch beträchtlich und durchaus nicht zu vernachlässigen.

Dielektrische Messungen an elastisch deformierten Kristallen sind im Gang. Wir
hoffen zu entscheiden, wie weit in diesem Falle das Maximum von efT) mit einem
Maximum der mittleren Polarisierbarkeit ofT) erklärt werden kann.

Für einen längs der [001]-Richtung stark deformierten Kristall lautet die
Bedingung für ein Maximum von ä(T) (27)

[3u\2-2u\x(X(T)~l)-\ -u
wobei X(T) — ßcXJk T ist. In dieser Gleichung sind ß0, uxx und uX2 unbekannt.
Diese Grössen können durch unsere dielektrischen Messungen bestimmt werden.

Diese Arbeit ist ein Teil eines Forschungsprojektes, welches vom Schweizerischen
Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt wird.

Ich möchte Herrn Prof. Dr. W. Känzig für die vielen Diskussionen danken.
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