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Paraelektrische und Paraelastische Resonanz

von G. Pfister

Laboratorium fiir Festkorperphysik der Eidgendssischen Technischen Hochschule Ziirich

(14. VII. 66)

Abstract: A simplified model for paraelectric and paraelastic systems is discussed. The energy
levels and eigenfunctions of a charged point mass moving in a sixwell potential of octahedral
symmetry are investigated. The energy shifts and splittings induced by externally applied electric
fields and uniaxial stresses have been calculated for the following two cases: a) perturbation energy
small compared to the tunneling splitting and b) perturbation splitting large compared to the
tunneling splitting. For both cases the matrix elements for the electric and elastic dipole transitions
induced by small periodic perturbations have been evaluated (paraelectric and paraelastic reso-
nance). Expressions for the polarizability of the system are also given.

1. Einleitung und Modell

Molekiilionen, wie OH—-, CN- konnen in Alkalihalogenid-Kristalle eingebaut
werden. Aus optischen Messungen [1, 2]1) an den Systemen KCl: KOH und KC1: KCN
weiss man, dass diese Molekiilionen an Stelle der Halogen-Ionen ins Gitter eingebaut
werden und im Gleichgewicht ihr Dipolmoment parallel zu den [001]-Richtungen
stellen. Dielektrische Messungen [3, 4] zeigen, dass diese Molekiilionen noch bei sehr
tiefen Temperaturen (0,3 °K) einen temperaturabhingigen Beitrag zur dielektrischen
Suszeptibilitit liefern, d.h. dass die Energieaufspaltung, welche vom «Tunnelieren»
zwischen den sechs Gleichgewichtslagen herriihrt, kleiner ist als 0,3°K. In dieser
Arbeit sollen die Energieniveaux und Eigenfunktionen berechnet werden, welche die
Reorientierung eines Dipols im Kristall beschreiben. Dazu betrachten wir folgendes
(stark vereinfachendes) Modell: Ein Massenpunkt mit der Ladung ¢ bewege sich im
Raum, welcher sonst vom Halogenidion eingenommen wird. Er habe 6 Lagen mini-
maler potentieller Energie, welche in den [001]-Richtungen aus dem Gitterplatz des
Halogenidions verschoben sind, d.h. die Scheitel der sechs Potentialmulden bilden ein
reguldres Oktaeder, dessen Zentrum im Halogenplatz liegt (Figur 1). Das Potential
erfiille folgende Bedingungen:

a) Die Potentialminima sollen so tief sein, dass in nullter Ndherung jede Potential-
mulde fiir sich allein betrachtet werden kann.

b) Die angeregten Zustdnde, welche den Schwingungen des Teilchens in einer
einzelnen Potentialmulde entsprechen, sollen so weit vom Grundzustand entfernt sein,
dass sie vernachldssigt werden kénnen.

1) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 616.
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c) Die Ionen, die das kubische Potential erzeugen, sollen an ihre Gleichgewichts-
lagen fixiert sein, d.h. die Potentialmulden sind starr.

Mit diesen Voraussetzungen kénnen die Wellenfunktionen des Teilchens im be-
trachteten oktaedrischen Potential nach den Eigenfunktionen, die das Teilchen in den
einzelnen Potentialmulden beschreiben, entwickelt werden. Wegen der Voraus-
setzung b) miissen in die Entwicklung nur die Eigenfunktionen der sechs Grundzu-
stinde einbezogen werden. Wir bezeichnen im folgenden diese Eigenfunktionen als
Basisfunktionen ¢,. Sie sind in der nullten Ndherung orthogonal, d.h. der Grundzu-
stand des Teilchens ist sechsfach entartet. In der ersten Naherung werden wir dann
die Uberlappung der Basisfunktionen beriicksichtigen, wodurch der Grundzustand
teilweise aufgespalten wird (Tunnelaufspaltung).
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Figur 1

Gleichgewichtslagen der Modell-Ladung im KCl-Gitter

Von einer ganz anderen Ndherung ging DEVONSHIRE [5] in seiner Arbeit aus. Er
betrachtete einen starren Rotator, dessen potentielle Energie als Funktion der
Orientierung im Raum oktaedrische Symmetrie hat und entwickelte die Wellen-
funktionen des so gehinderten Rotators nach den Eigenfunktionen des freien starren
Rotators. Diese Approximation darf nur angewendet werden, wenn die Stérung durch
das Potential klein ist gegen den Abstand der Rotationsniveaux.

In einem &usseren elektrischen Feld werden die Energieniveaux des Teilchens
teilweise aufgespalten oder verschoben. Durch ein elektrisches Wechselfeld kénnen
Dipoliibergiange zwischen den Niveaux induziert werden. Solche resonanten Uber-
gidnge bezeichnen wir als «paraelektrische Resonanz»?). Ebenso werden die Energie-
niveaux durch eine elastische Deformation des Wirtgitters aufgespalten oder ver-

2) Ahnliche Rechnungen iiber paraclektrische Resonanz wurden von P.SAUER, O. SCHIRMER
und J. ScHNEIDER in Phys. Stat. Sol. 76, 79 (1966) versffentlicht.
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schoben. Mit einem Ultraschallfeld konnen «elastische» Dipoliibergdnge zwischen den
Niveaux induziert werden, die wir als «paraelastische Resonanz» bezeichnen.

Fir folgende zwei Fille werden wir den Einfluss stationdrer elektrischer und
stationdrer elastischer Felder auf die Energieniveaux und Eigenfunktionen unter-
suchen:

1. Stérung klein gegen die Tunnelaufspaltung und

2. Stérung gross gegen die Tunnelaufspaltung. In beiden Féllen berechnen wir die
Matrixelemente fiir die elektrischen und elastischen Dipoliibergidnge, welche durch
periodische elektrische und elastische Felder induziert werden.

[

2. Tunnelaufspaltung

Das Teilchen wird beschrieben durch den Hamiltonoperator

B A5 (1)

2m

yo:_

wobei das Potential V; oktaedrische Symmetrie hat und die in Abschnitt 1 gemachten
Voraussetzungen erfiille. Fiir die Losung der Schrédingergleichung

How = Expy (2)
entwickeln wir die Eigenfunktionen y, nach den Basisfunktionen ¢; (¢ =1, ..., 6;
vgl. Figur 2)

’Pk=z_'cik ®; . (3)

Aus (2) und (3) erhalten wir dann das homogene Gleichungssystem
Z(Hu“EkAij) ¢ir=0 (4)
)

fiir die Koeffizienten ¢;,, wobei H,; = < | #y | 7> und 4;; = < | j> (Uberlappungs-

integral).

Z $(1)
y »(3)

(5)

" (2

(6)
(4)

Figur 2

Numerierung der Potentialminima und der zugehorigen Basisfunktionen

Wegen der oktaedrischen Symmetrie von ¥V} sind die Matrizen H,;; und 4;;
zyklisch. Sie lassen sich mit derselben unitiren Transformation

t, = N-12 gm-0(-1 (5)

m
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diagonalisieren, wobei w = exp(— ¢2x/N) und /, m =1, ..., N [6] ist. Mit (3), (4) und
(5) erhélt man dann folgende Lésungen von (2)

Hy,+4 H,+H
Eody) = 57 a0 i (et @l + (@2 + @) + (95 + 7

Ye o< a* (p1 — @g) + (@2 — @5) + a* (p5 + @4)
Ey(Ty) = — 5 Yao<— (@ — 1) + (92— 95) — (95— @9 ©
Yo o< a* (1 — @s) — a (@2 — @) — (@5 — Po)
_ Hy—2Hyu+H, [P~ a* (@ + @5) — a (2 + @5) + (@3 + @)

Eo(E,)
¢ L—Suly+2Ase Yy o< — a* (¢ — @) + (@2 + @5) — @ (@3 + @e)

wobei a = exp (— 2 71/3).

Der sechsfach entartete Grundzustand spaltet somit durch die Uberlappung der
Basisfunktionen in einen einfachen, sowie in einen zwei- und dreifachen Zustand auf
(vgl. Figur 3). Die Eigenfunktionen (6) transformieren sich nach den in Klammern
angegebenen Darstellungen der kubischen Gruppe 0,. Die Charaktere der Symmetrie-
transformationen von 0,, ausgeiibt auf einen linearen Dipol, von dem ein Ende am
Gitterplatz festgehalten wird, sind

0, | E 8C, 3C, 6C, 6C, 1 8Cysi 3Cyi 6Cyi 6C,1
rle 0 2 0 2 0 0 4 2 0
I"kann in die Summe 4, , + E, + T, ausreduziert werden. Die Reihenfolge der Ni-
veaux E, und 7, hingt vom Verhiltnis H,,/H,, ab. H,, beschreibt z. B. das "Tun-
nelieren‘ von der Potentialmulde (1) in eine der Potentialmulden (2), (3), (5) und

(6) (90°-Spriinge, vgl. Figur 2); H,, z. B. das "Tunnelieren zwischen den Potential-
mulden (1) und (4) (180°-Spriinge).

NULLTE TUNNEL - ENERGIE - EIGENFUNKTIONEN
NAHERUNG AUFSPALTUNG EIGENWERTE
E, (E)
= Hy ~2Hp * Hyg {la)w) Ny [(P2+ Ps)-(Par %)l

(2) —_—
1-20p * D 120 < Naol(P 4 + Pa)-2( Pp* P+ P5* Fell
- E(Ty,) 125 = mol B %)
M #y (O)=N{0(<P3- ?:6)

(3)
1A
" ]1@(0) =Nqo( ?1' ?4)

EolAy) P ¥ (0
m %H 100y =Noo( Py+ Por Pa+ P4+ Ps f6)
Figur 3

Tunnelaufspaltung, Energieeigenwerte und Eigenfunktion im mechanisch und elektrisch un-
beanspruchten Kristall
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Fiir die im néchsten Abschnitt folgende Stérungsrechnung ist es zweckmaissig, die
Eigenfunktionen (6) wie folgt zu orthonormieren
| 2150 = [4 (1 ~ 2435 + A1)172 [(g2 + @5) — (@3 + @4)]

E,: 1
[ 2050 =[3 (1 — 2435+ A;)172 [(py + @a) — 7 (@2 + @3 + @5 + )]

| 1250 = [2 (1 — Ay,)]72 (@, — @)
E: {1150 =2 (1 — A,)]7Y2 (g3 — ) (7)
| 1050 = [2 (1 — A;)]72 (@, — @a)

| 005@ = [6 (1 +4 4y, + A1) (@1 + @5 + @3 + @4 + @5 + @e)-

In der Notation | # k> bezeichnet # das Energieniveau und % die zu diesem Niveau
gehorenden Eigenfunktionen. Der Index (9 weist darauf hin, dass die Eigenfunktio-
nen (7) Ausgangsfunktionen fiir die Stérungsrechnung sind.

3. Der Einfluss einer dusseren Storung, die klein ist gegen die Tunnelaufspaltung

a) Elektrisches Feld

Ein elektrisches Feld, parallel zur [001]-Richtung, erniedrigt die Symmetrie des
Potentialfeldes. Die Potentialmulden (1) und (4) (Figur 2) werden dadurch vor den
iibrigen ausgezeichnet. Den Term V), = — ¢ &, z im Hamiltonoperator #¥ = H, + V;
behandeln wir als Stérung. Dieser Stéroperator hat die Transformationseigenschaften
von T,, d.h. die Matrixelemente von der Form <nj| V; | n B> verschwinden und
damit auch die Energieinderungen in erster Ordnung. Fiir die Energieinderungen in
zweiter Ordnung miissen wir Matrixelemente der Form <uj| V, | m ¢> berechnen,
von denen aber aus Symmetriegriinden nur

von Null verschieden sind. Bezeichnet man mit N, , den Normierungsfaktor der Eigen-
funktion | % £>©®, dann werden die in (9) eingefiihrten Grossen zu:

wy =2 Nog Nyg (211 + 2 219) Wy = 2 N1y Ny (211 — 2 219) (10)

wobel 2z, = & | 2| k) ist.

Bei der Berechnung von (9) und (10) haben wir verwendet, dass, z.B., 2 = — 2,
i1st. Die mit (9) berechneten Energieinderungen zweiter Ordnung, sowie die bis zur
ersten Ordnung korrigierten Eigenfunktionen (7) sind in der Figur 4 eingetragen.

Mit einem elektrischen Wechselfeld &, konnen elektrische Dipolitbergange
zwischen den Energieniveaux induziert werden. Die Ubergangsmatrixelemente
{mj|r]|mq> der Dipoliiberginge wurden fiir verschiedene Richtungen des Wechsel-
feldes mit den gestorten Wellenfunktionen (Figur 4) unter der Annahme berechnet,
dass die Storenergie des Wechselfeldes vernachldssighbar sei gegeniiber der Stérenergie
des statischen Feldes. Diese Matrixelemente sind ebenfalls in der Figur 4 zu finden.
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Aufspaltung im Energie - Eigenfunktionen Matrixelemente der elektri-
elektrischen Gleichfeld dnderungen schen Dipoliibergdnge
& 1l CooM ..2 2 o e . &, toou
o VITTES |25 s
E I-—=(=

ElEg) " 12 O = (:10 Ez1

w 1 ngsa,,z w2
- o i o e
@ B51® (o © @:x Ea (an Eay "
© E(W) | @ vy > b2 L,
ol B ©) © @:wy wy (— - —)a
) 3 ®I % -2 2,)“5’0 o) .(E; |20) _‘L|oo>5g;) 1 \gg T %
%) &w 1111001
O @
@: w
EolAy) “)
* @2 wo
£ 111001 AR 00y &l @ -y w
1
© @: (zgi so)"go
Eyx “E; —Ey [nk) vgl Glg. (M
w; vgl Glg. (0
Figur 4

Aufspaltung der Energieniveaux durch schwaches elektrisches Gleichfeld &, parallel [001]. Dar-
stellung der Eigenfunktionen. Matrixelemente der elektrischen Dipoliiberginge induziert durch
elektrische Wechselfelder £, parallel zu [001] und parallel zu [100].

Die Uberginge ®, ® und ® werden durch ein Wechselfeld parallel zum Gleichfeld
(E,| 2), die Uberginge @—@ durch ein Wechselfeld senkrecht zum Gleichfeld
(€, | ») erzeugt. Die Uberginge ® und @ sind im ungestérten Oktaederpotential ver-
boten und werden erst durch die Stérung mit dem Gleichfeld ermdglicht. Um die
Grosse der Matrixelemente abzuschitzen, machen wir folgende Vereinfachungen, die
fiir kleine Uberlappungen, d.h. fiir kleine Tunnelaufspaltungen, zutreffen

4;<LK1 Hy < Hyy.
Damit erhélt man fiir die Energiedifferenzen E,, = E, — E,
E21=“"‘2H12:A Eloz—'4H12=2A

und fiir die Matrixelemente fiir die Uberginge ® und ®, beispielsweise,
62
®: o< 214 (I—i— ?1“) - @o<d g

wobei § = g &, 2;,/4 <€ 1 ist, da die Stérenergie des Gleichfeldes als klein gegen die
Tunnelaufspaltung vorausgesetzt wurde. Nach dieser Abschdtzung wird also das
Matrixelement des Uberganges @® durch das Gleichfeld nur sehr wenig beeinflusst,
wiahrend das Matrixelement ® fiir kleine Felder praktisch noch verschwindet. Die
Uberginge ®, ® und ® wurden kiirzlich beobachtet [8, 9].

In der Figur 5 sind die Korrekturen der Eigenwerte (6) und der Eigenfunktionen
(7), sowie die Matrixelemente der elektrischen Dipoliiberginge fiir den Fall &, | [110]
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und &,| [001] und &, | [110] zusammengestellt. Es wurde bei der Berechnung
beriicksichtigt, dass z.B. z;; = #,, ist.

Aufspaltung im elektrischen Energiednderungen| Eigenfunktionen Ubergangsmatrixelemente
Gleichfeld &, Il [II0] . der elekirischen Dipol-
Ez_21 wg q2502 Iz‘)(ohg_ &, 112)‘0) ubergdnge.
& 1oon
[ ] 2 (o) o) w
E2(Ey) J R L LA o
.W‘
© .
Dl @@IG) '/022 2\ 2.2 Hdto; L) ®."22 2
2wy M2 eSS M kdnd "L (M e
‘ (5!02 2Em)q & | [w loo) |z§ ]%@.-(%rz?ﬁ)qgo
2 2 2 °)waf (0)
Q| Er <% R
&, IILIO]
EolAsg)
@ @ @wel: gl_wn__m)]
2wl 2g? loc mr a8, M T Eio ‘o 2Ex
Eo © j
®:-wp 2[t- vz]
& 1101 _(0) 4 , (0) (0
o W gl ) @3 h Lo@f ~E )
© 1 /= ol BEED B 2By
2 -E.(IW -1 )
; '
D@: v, WZ(EQ"ETO) a&
Figur 5

Aufspaltung der Energieniveaux durch schwaches elektrisches Gleichfeld £, parallel [110]. Dar-
stellung der Eigenfunktionen. Matrixelemente der elektrischen Dipoliiberginge induziert durch
elektrische Wechselfelder £, parallel zu [001] und parallel zu [110]. w; vgl. Glg. (10)).

Mit den in Figur 4 und Figur 5 angegebenen Energieverschiebungen kann man die
mittlere elektrische Polarisierbarkeit « (7) des Systems berechnen. Die Polarisierbar-
keit a; des Teilchens im Energieniveau E, ist

0E,(E,
o = — is(f (11)

Mit (11) erhdlt man fiir die mittlere Polarisierbarkeit ;( T) des betrachteten Systems
bei einer Boltzmannverteilung iiber die Energieniveaux in Figur 4

P 2 w}|E g — (w3 E g— w§|E,y) e—FEw— w}|Ey  e—BExn

a(T) - zq 1+3e—BEw+2e¢—BExn (12)
wobel = 1/k T ist.
Fir 2T > E,,, Ey, geht (12) in das klassische Curiegesetz {iber
o 2
a(T) = 57 (@1 + ) (13)
und fiir 2 T € E,,, E,, erhdlt man die Polarisierbarkeit des Grundzustandes
2
ag = =L uf, (14

EIO
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Mit den Nidherungen A;, € 1 und z;, < z;; gehen (13) und (14) in die bekannten
Formeln

- wo 2
WT) = 557 %= T

iiber, wobei fiir ¢ << 1| z | 1) das klassische Dipolmoment y gesetzt wurde.

b) Elastische Deformation

Durch eine elastische Deformation ldngs der [001]-Richtung werden die Potential-
mulden (1) und (4) (vgl. Figur 2) vor den iibrigen ausgezeichnet. Sie bleiben unter sich
aber dquivalent. Der Stéroperator V, ist von der Symmetrie E, + 4,,, d.h. wir_
kénnen uns auf die Stérungsrechnung erster Ordnung beschranken. 7, hat in den
Eigenfunktionen (7) folgende Matrixelemente

00 | Vo | 00> =2 Ngo (Vig+ 8 Vig+ Vig + 2 Vip + 4 Vig + 2 Vi)

A0 [ V| 10> =2 N3, (Vi — Vi)

(11 } V, 1 11> = <12 { V2[12>:2N?0(sz— Vas) (15)
20 [ V3 [20> = N3 (2 Vi —8 Vig+ 2 Vi + Voo + 2 Vg + V)

21| V3| 21y =4 N3, (Vas + Va5 — 2 Vyy)

wobel V,, = <& | V, | k> ist. Die resultierenden Energieéinder.ungen und die Korrek-
turen der Eigenfunktionen sind in der Figur 6 zusammengestellt.

Aufspaltung fiir eine elastische Energiednderungen | Eigenfunktionen | Matrixelemente der

Deforniation langs der LOON Achse. elastischen bezw. elekiri-

schen Dipoliibergdnge

Vo IIoo
(o) 0
E2E) /] 118 e 120 e 100 | @: 20l v, loo» - a°)
f © ©) sa (€00l v, lod> -
‘ (a1l v, 21 l2)
) ) © @ol vy [20%)
(6) E1 (-Eu) ] @ (40l VZ ho? [40)
&, Il Coon:
12V 12 )= (i v, 1) 111)(0), @ |
®: w.| - aQws
@ @ ®: W, +aw;
Eo(Ayg) ‘ &, IIHOOX:
)
’ (ool v, 100 00 at 12y @: w, .al’zi
; W
V2=0 |V, 40 o LYz 120 ©): aw - 22

€20

®: w,

Figur 6

Aufspaltung der Energieniveaux durch schwache elastische Deformation langs der Achse [001].

Darstellung der Eigenfunktionen. Matrixelemente fiir elastischen Dipoliibergang induziert durch

oszillierende Deformation ¥V, lings [001] und fiir elektrische Dipoliiberginge, induziert durch
elektrische Wechselfelder £, parallel zu [001] und parallel zu [100]. (w; vgl. Glg. (10)).

39 H.P. A. 39, 7 (1966}
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Wir haben in dieser Tabelle noch die Matrixelemente fiir die elektrischen Dipol-
iibergidnge, die durch ein elektrisches Wechselfeld £, parallel zu den [001]- und [100]-
Richtungen induziert werden, angegeben. Eine longitudinale Ultraschallwelle I, die
sich parallel zur statischen Stérung lings der [001]-Richtung fortpflanzt, induziert
einen elastischen Dipoliibergang, dessen Matrixelement ebenfalls in der Tabelle ange-
geben ist. Die Stérenergie der periodischen Stérungen wurde als klein gegen die Stor-
energie der statischen Stérungen vorausgesetzt, so dass zur Berechnung der Matrix-
elemente die Wellenfunktionen der Figur 6 benutzt werden konnten.

4. Einfluss einer dusseren Storung, die gross ist gegen die Tunnelaufspaltung

a) Elektrisches Feld

Wird dem kubischen Kristallfeld ein starkes elektrisches Feld lings der [001]-
Richtung tiberlagert, dann kénnen die Wellenfunktionen v, des Teilchens nicht mehr
nach den Basisfunktionen ¢,, die wir als Ausgangsfunktionen bei kubischer Sym-
metrie gewdhlt haben, entwickelt werden. Wir ersetzen die Basisfunktionen ¢; (3)
durch ein Basissystem (¢y, ..., @), welches der C,,-Symmetrie des Kristalles
Rechnung trigt. Beschreibt 3, ein geladenes Teilchen in einem Potential mit der

Symmetrie C,,, dann hat die Hamiltonmatrix in den neuen Basisfunktionen ¢; die
Form

Hi; = ;| %o | 9 = (16)

O W
M RN O W
RO TW
MRS
Sy RE= Ve BREPRvy
SR I= - IR Bl v

und ist in den Elementen D F S zyklisch. Die Sikulargleichung kann deshalb mit der
Transformation

2 0 0 0 0 0
o 1 1 o 1 1
r_t [0 i 1 0 -i -1 )
v# o o o 2 o o0
¢ I -1 B & 1
0 i —1 0 —i 1

teilweise diagonalisiert werden, da die Uberlappungsmatrix dieselbe Form wie (16)
hat. Mit (17) und (16) erhilt man dann fiir die Hamiltonmatrix

A 2B 0 C 0 0
2B P 0 2R 0 0
—, 0 0 0 0 0 0
- 1
i C 2R 0 G 0 0 (18)
0 0 0 0 T 0
0 0 0 0 0 0

wobei P=D+2F+5S; Q=D—-S; T=D—-2F+ S
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(18) kann durch Transformationen nicht vereinfacht werden, und man muss die
kubische Gleichung
det | H;; — E 4;;

—0 (19)

fiir die Ermittlung der restlichen Eigenwerte 16sen. A; ; ist die mit (17) transformierte
Uberlappungsmatrix. Mit (18) und (19) erhilt man dann

E,(4,) Py < Cyy ¢y + Coy (@3 + @5 + @5+ Pa) + Ca1 @4

Ey(4y) P2 X Cia @1 + Cop (@2 + @3 + @5+ @) + Cs2 4

Fy= By5) = ozl [=Nalpa— (20
1-dy Yo = N3 (@5 — @)

E,(4,) pyox Cr3 @1 + Cog (s + @5 + (_?25 + @g) + Cas 54

Ey(By) = —= 0008 g N [(g, + 3) — @ + o)

1-2 Agy+ 4y
wobei E;, E, und E, die Wurzeln der kubischen Gleichung (19) und

(2 (1 — Aygg)]712

N, Ny=[4 (1 — 2 Agy + Ag5)] 2

die Normierungsfaktoren der Eigenfunktionen y,, ys und o, sind. In Klammern sind
in (20) die zu den Energieniveaux gehorenden Darstellungen der Gruppe C,, ange-
geben, die man durch Reduktion der Darstellungen A4,,, E, und 7, der Gruppe 0,
erhidlt. Wir wollen die Formeln (20) fiir den «quasiklassischen Grenzfall» spezialisieren.
In diesem Grenzfall vernachlissigen wir die Matrixelemente H,,, H,;, 4, und 4,,

Energie - Matrixelemente der elektri-
_/ eigenwerte schen Dipoliibergdnge
A —— & udo &, ltoon
@: an g
Do4N T
2] |G 5 o g N2 Zz4
; Haz 2Ho3 +Hp5 .3
EE(E ) 81 /E5 q- 2E23 '525 1
Bl E ¥© Aag—Fizs &, 11 00
Ex=E.= ") ]
EolArg \ R
¢ A @ e @ 2n,%,
— Eg.”zz*Zst*“zs
4'25234525 © g N3 §24
D3| @ o
Symmetrie A, ® 2 Ng Ny (Xyp2Xpy)
/ \ RIR @ 2N Np(Rap Ty
Op Cav \ By » e B T =CTIxI0
_Z'ik = (Tl z l—k)
&, 11 coon
Figur 7

Aufspaltung der Energieniveaux durch starkes elektrisches Gleichfeld £, lings [001]. Matrix-
elemente der elektrischen Dipoliiberginge induziert durch elektrische Wechselfelder £, parallel zu
[001] und parallel zu [100].
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(k = 4), d.h. wir lokalisieren das Teilchen in den Potentialmulden (1) und (4) voll-
standig, lassen es aber noch zwischen den Mulden (2), (3), (5) und (6) durch Tunnel-
effekt bewegen.

In diesem Grenzfall ist (18) diagonal, und man erhilt

Ey=Hy "/)1=$1
H oo+ 2 Hyy+ H, = » o
E,= 122+2A_ 2:_2 oy =[4(1+ 2455 + Ay5) 172 (@2 + @3 + @5 + @6) (21)
23t os
Ei=H, -

E,=E; E; wvgl (20)

wobei H,; und H,, gegen die klassischen Grenzwerte — u &, und + u &, konvergieren.
w ist das klassische Dipolmoment.

In der Figur 7 sind die elektrischen Dipoliiberginge eingezeichnet, welche durch
ein Wechselfeld €, || [001] und &, | [100] erzeugt werden. Die Stérenergie des Wechsel-
feldes wurde dabei als so klein gegen die Energieaufspaltung im statischen Feld
vorausgesetzt, dass die Matrixelemente der Dipoliibergdnge mit den Eigenfunktionen
(21) berechnet werden konnten.

b) Elastische Deformation

Im Fall starker elastischer Deformationen lings der [001]-Richtung miissen die
Eigenfunktionen des Teilchens nach Basisfunktionen (@, ..., @) entwickelt werden,
die der D,,-Symmetrie des Kristallfeldes Rechnung tragen. Die Darstellungen E_, und
T,, der Gruppe 0, werden in 4,, + B,, und E, + A,, ausreduziert. Die Hamilton-

matrix H, ; und die Uberlappungsmatrix 4;; kénnen mit der Transformation (17)
und der Transformation

1 0 0 1 0 0
0 2 0 0 0 0
1 0 0 2 0 0O 0
e 22
V2 -1 0 0 1 0 O (22)
0 0 0 0 2 0
0 0 0 0 0 2
auf die Form
a+c 20
2 5 O
=I q
i = 4 (23)
2
~
O g

Zﬁz3+ﬁzs;t:H22—2E3+E25iSt.
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Die Uberlappungsmatrix Z;j hat nach den Transformationen (17) und (22)
dieselbe Form wie (23), d.h. die Sikulargleichung kann nun durch Quadratur gelost
werden.

Im klassischen Grenzfall erhilt man ein zwei- und ein vierfaches Niveau. Die
Energiedifferenz dieser Niveaux betrigt f, X, wie in den Arbeiten iiber das 0,-
Zentrum [7] gezeigt wurde. §, ist der Kopplungsparameter des Defektes an das Gitter,
und X, ist die an den Kristall angelegte einachsige mechanische Spannung. Fiir

geniigend grosse mechanische Spannungen X, kann man H, 1'2 und Z_I—-12 vernachldssigen
(quasiklassischer Grenzfall), und damit wird (23) diagonal. Die Eigenwerte und Eigen-
funktionen sind dann

E\(4,,) = s M w,o=[2(1+

147, A 1a)]712 @1 g 34)
Hy+2 Hy+-H = = N
Ez(Alg) - :2+2 22:152:5 Yo = [4 (1 4+ 2 A9 + Ag5)]172 [{@2 + @5) + (@5 + @g)]
E; = E4E,) = 52—?25_ wy=1[2(1— %1:25)]_1!2 @2 - 55) (24)
1 - We = [2 (1 — dyg5)] 712 (as — @)

ﬁ _‘:__H. == — —
E,(4,,) 111 5 - Ye=[2(1 —4;9)]72 (@1 — @o)
— 4
Es(Blg) . H22—2H23+f{_25

e Yo B 24w ARt ) — G

In Klammern sind die zu den Energieniveaux gehérenden Darstellungen der Gruppe
D, , angegeben. '

Das Energieschema (24) ist in der Figur 8 eingezeichnet. In dieser Tabelle findet
man auch die Matrixelemente der elektrischen Dipoliibergdnge, welche durch ein
Wechselfeld //[001] und //[100] induziert werden. Diese Matrixelemente wurden mit
den Wellenfunktionen aus (24) berechnet. In dem ldngs der [001]-Richtung elastisch
stark deformierten Kristall kann ein longitudinales Ultraschallfeld V, langs [001]
einen elastischen Dipoliibergang zwischen dem tiefsten und dem hdchsten Niveau
induzieren. Das Matrixelement dieses Uberganges ist proportional zu <y, | V, | w>
und ist ebenfalls in der Figur 8 angegeben.

Zur Berechnung der mittleren Polarisierbarkeit «(7") des Teilchens, in einem
Kristallfeld der Symmetrie D,,, iiberlagern wir der elastischen Deformation ldngs
[001] ein kleines elektrisches Gleichfeld als Stérung in derselben Richtung. Die
Polarisierbarkeiten der einzelnen Niveaux kénnen dann durch Stérungsrechnung und
mit Hilfe der Wellenfunktionen (24) berechnet werden. Daraus erhidlt man fiir die
mittlere Polarisierbarkeit bei einer Boltzmannverteilung

= . 0Ly + 0ty e—BEy+ oy e—BEyu 25
C(.(T) - 14¢—BEu+2¢e—BEsu+e—BEu+ e—BEs ( )
wobel
sl 72 » m
B s e PR o 3 . M2 o, — 2 2( i1 12) B = B = i == 0
1 q By 2 q By 4 9 E, e 3 6 5

die Polarisierbarkeiten der einzelnen Niveaux sind.
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Ferner ist
1
P=%r
Wiq =2 Ny N,zq g = 8B Ny N, 245 : (N, = Normierungsfaktor von ¥,) .

Fir R T > E;, geht (25) in die klassische Formel

2 2
S(T] = g2 irt®s 26
iiber.
Energieeigenwerte Matrixelemente der
elektrischen Dipoliibergdnge:
&, I1oo
Hyg +Hyq
E (Ayg) T A @: 8Ny Ny 2
N | \ o @: 2N Ng 2y
3 & IIHO0
EalAs,) 1-Byq w
_—l-‘.:‘a’ @: 4N1 N3 x12
I @: 2np Ny, 02X3p)
® ® ®
—_— . 2N3NglX 5o- 2X 32)
ES:EG(EU) ﬁzz'z:'gg "?'25 Matrixelemente des elasti-
Symmetrie / i= 8 R B schen Dipoliiberganges:
/ V,, Il LOOH]
F,,- A -
On Dan { I@ :2 B:: ®: 8N Np(®, 1y l?z)
'@! Jr
\ M__zs_ﬁas_ x, =@ 1x1%4)
142093 Aos L
elastische Deformation 7 <P 1z195)
Iﬁngs [0011 Ni = Normierung

Figur 8

Aufspaltung der Energieniveaux durch sfarke elastische Deformation lings der Achse [001].

Matrixelemente fiir elastischen Dipoliibergang induziert durch oszillierende Deformation V,,langs

[001] und fiir elektrische Dipoliibergdnge induziert durch elektrische Wechselfelder £, parallel zu
[001] und parallel zu [100].

Fiir sehr grosse elastische Deformationen kann man E;, — E, und E, — E; (i =
2, 3, 5) gleich f, X, setzen. Damit vereinfacht sich (25) zu

(12 %%2/50 XO (BﬁﬂoXo— 1) +ﬂ !'12

«(7) = 2 eFBoXo+ 1 (27)
wobel u = ¢ u,, ist.
Fir kT <€ B, X, geht (27) iiber in
= q* uf,
TS A (28)

Die mittlere Polarisierbarkeit &(7) strebt somit bei tiefen Temperaturen gegen den
konstanten Wert (28), der mit zunehmender elastischer Deformation abnimmt.
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5. Diskussion

Die dielektrische Funktion &(7) von Alkalihalogenidkristallen mit Zusitzen von
Fremdionen wie OH-, CN—, NO,~, Li+ steigt bei tiefen Temperaturen nach einem
Curiegesetz an, geht durch ein Maximum und sinkt bei noch tieferen Temperaturen
wieder ab [3, 4]. Nach Messungen am System KCIl: KOH [3] hdngt die diesem Maxi-
mum zugehorige Temperatur von der Konzentration der OH—-Dipole ab und ver-
schiebt sich mit zunehmender Konzentration nach héheren Temperaturen. Der Abfall
von &(T) bei tiefen Temperaturen wird deshalb der Wechselwirkung der Dipole zuge-
schrieben [3, 10, 11]. Auf eine andere Interpretationsméglichkeit haben BAUR und
SALZMANN hingewiesen [12]. Nach diesen Autoren soll das Maximum der dielektri-
schen Funktion (7)) die Folge eines Maximums der mittleren Polarisierbarkeit o (7)
der einzelnen Dipole sein. Sie kamen auf diesen Schluss durch Analyse der experimen-
tellen dielektrischen Funktion mit Hilfe der Beziehung von CLausius-MossoTTI. Nun
miissten aber nach diegser Beziehung die Maxima von «(7") und von ¢(7') bei derselben
Temperatur T, auftreten, unabhingig von der Konzentration. Die Analyse von
BAUR und SALzZMANN enthilt also einen Widerspruch in sich selber. Trotzdem ist die
Moglichkeit des Auftretens eines Maximums von «(7) interessant und soll hier

diskutiert werden. Die Bedingung fiir das Auftreten eines Maximums von «(7) lautet
[12]

(> 44

wobel u; und u, empirische Dipolmomente sind. Sie haben in unserem Formalismus
folgende Werte (vgl. (10), (11), (12))

I,
p1 = q Nog Nyg (211 + 2 2y9) po = q Nyg Ny (211 — 2 21) E—:Z (30)
und es ist

4,=E, - E, Aszz—EO' | (31)
Damit wird die Bedingung fiir das Auftreten eines Maximums zu

Moy 249" o 2 By

e o 32
No (211 +2 29)° 3 Ey ( )
Unter Vernachldssigung der Uberlappungsintegrale geht (32) iiber in
(11— 2 299)* Hy—Hyy 33
(21142 239 = 2Hy,—Hyy (33)

Mit den Werten u,, ug, Ey und E;, aus der Arbeit von BAUR und SALZMANN er-
hdlt man folgende Abschitzung der Matrixelemente: Hip/Hyy ~ 2 und 2zy1/2y5 ~ 7.
FEHER et al. [9] gaben fiir das Verhiltnis F, /E;,den Wert 1/2 an. Das ist nur méglich,
wenn H,, gegeniiber H,, vernachldssigbar ist. In diesem Punkt, der entscheidend ist
fiir das Verstdndnis der Bewegung des Ions, besteht zwischen diesen beiden Arbeiten
[9, 12] also eine Diskrepanz. Allerdings muss beachtet werden, dass sich unsere Theorie
auf die Bewegung eines Massenpunktes im oktaedrischen Potential beschrinkt. Die
Bewegung des OH~ ist in Wirklichkeit viel komplizierter. Man nimmt an, dass das
Hydroxylion um den Gitterplatz eine Rotations-Translationsbewegung ausfiihrt
[8, 13], d.h. das Ion kann als geladenes Teilchen zwischen den sechs Potentialmulden
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«tunnelieren» und zusitzlich sein eigenes Dipolmoment parallel zu den [001]-Rich-
tungen stellen. Welcher Bewegung die hier entwickelte Theorie entspricht, muss nédher
untersucht werden.

Wir erwdhnen schliesslich, dass wir die Gleichungen (12) und (32) fiir einen idealen
Kristall berechnet haben. Nach FEHER et al. [9] sind die inneren Spannungen in
realen Kristallen jedoch betrdchtlich und durchaus nicht zu vernachldssigen.

Dielektrische Messungen an elastisch deformierten Kristallen sind im Gang. Wir
hoffen zu entscheiden, wie weit in diesem Falle das Maximum von &(7') mit einem
Maximum der mittleren Polarisierbarkeit «(7) erklidrt werden kann.

Fiir einen langs der [001]-Richtung stark deformierten Kristall lautet die Be-
dingung fiir ein Maximum von a(7) (27)

D [3uify — 20fy (W(T) — 1)] = — 3y

wobei A(T) = B, Xo/k T ist. In dieser Gleichung sind f,, #;; und #;, unbekannt.
Diese Grossen konnen durch unsere dielektrischen Messungen bestimmt werden.

Diese Arbeit ist ein Teil eines Forschungsprojektes, welches vom Schweizerischen
Nationalfonds zur Forderung der wissenschaftlichen Forschung unterstiitzt wird.
Ich méchte Herrn Prof. Dr. W, KAnzic fiir die vielen Diskussionen danken.
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