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Das Blochsche Theorem fiir unendliche Systeme

von G. Scharf
Institut fiir Theoretische Physik der Universitit Ziirich

(16. VII. 66)

Summary. BLocH's theorem concerning the eigenfunctions of a periodic Hamiltonian is
derived from very general asumptions. This gives an illustration to a general method of con-
structing eigenfunctions for the continuous spectrum.

1. Einleitung

In der Quantenmechanik pflegt man die Betrachtung unendlicher Systeme gern
zu vermeliden. Das hat seinen guten Grund immer dann, wenn der Hamiltonoperator
im unendlichen Raum ein kontinuierliches Spektrum besitzt. Dann ist ndmlich zu-
ndchst unklar, wie man Eigenfunktionen definieren soll. Die fiir das endliche Volumen
bequeme Methode, die Eigenfunktionen durch Randbedingungen auszuzeichnen, ist
nicht anwendbar. Eine gewisse Klasse von Lésungen (zum Beispiel die beschrankten
Losungen) der Eigenwertgleichung als Eigenfunktionen zu definieren, ist unzweck-
mdssig, weil man die Gesamtheit der Lésungen von partiellen Differentialgleichungen
in der Regel nicht iibersehen kann. Falls vom Hamiltonoperator nur Selbstadjungiert-
heit vorausgesetzt wird, ist man bei der Charakterisierung von Eigenfunktionen im
kontinuierlichen Spektrum durchaus in Verlegenheit. Das ist sofort anders, wenn der
Hamiltonoperator eine Symmetriegruppe besitzt (oder auch nur eine approximative
Symmetrie im asymptotischen Bereich, wie in der Streutheorie). Dann kann man
fordern, dass die Eigenfunktionen (oder ihre asymptotischen Grenzwerte) Darstellun-
gen der Symmetriegruppe liefern sollen.

In der folgenden Notiz soll an einem einfachen Beispiel gezeigt werden, wie man in
einem solchen Falle die Eigenfunktionen explizit konstruieren kann und ihre wichtig-
sten Eigenschaften (Vollstdndigkeit, Entwicklungssatz) erhalt. Dabei wird die Theorie
der Eigenfunktionale von Gelfand, Kostjutschenko und anderen verwendet. Als
Invarianzgruppe soll die diskrete Translationsgruppe gewahlt werden, so dass die
Ergebnisse beispielsweise auf selbstadjungierte Differentialoperatoren mit periodi-
schen Koeffizienten zutreffen. Wir erhalten eine Verallgemeinerung des Blochschen
Theorems.

Der Schrédingeroperator mit periodischem Potential im unendlichen Raum wurde
bereits von ODEH und KELLER [1]?) behandelt, doch lisst sich deren Methode nicht
auf allgemeinere Verhiltnisse iibertragen.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 560.
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2. Form und Eigenschaften der Eigenfunktionale

Wir legen den Hilbertraum L?(R”) zugrunde sowie den Testfunktionenraum S(R")
der C*-Funktionen, die samt allen Ableitungen fiir | x | = oo schneller als jede Potenz
gegen O streben. S ist dicht in L2, .2 dicht im dualen Raum S’ von S (beziiglich der
schwachen Topologie in S’),

SciIi:cs (1)

ist ein sogenanntes Gelfandsches Raumtripel [3].

L sei ein selbstadjungierter Operator in L2(R"), der S in sich abbildet; also zum
Beispiel eine selbstadjungierte Erweiterung eines hermiteschen Differentialoperators
mit beliebig oft differenzierbaren Koeffizienten, die samt allen Ableitungen durch
Polynome beschrinkt sind (die Forderung der unendlichen Differenzierbarkeit kann
abgeschwicht werden, [2] Seite 176). Ausserdem sei L beziiglich einer diskreten
Translationsgruppe invariant:

Seien Uy, U,, ... U, deren primitive Translationen, die ohne Verlust an Allgemein-
heit gleich 1 gewahlt werden kdnnen ‘

U, f(x,...x)=f (%, ...2;+1,...x,) [felL? (2)

und E{” die Spektralschar von L, also

+00
L= f ko dEY . 3)
Dann soll B
[EQ,U]=0 (4)
gelten fiir alle ko und z =1, 2, ... n. Unter diesen Voraussetzungen wollen wir Eigen-

funktionale von L bestimmen,
Weil die U, unitire Operatoren in L2 sind, besitzen sie ebenfalls Spektralscharen

EL  EW

wo - B

24
7 = f & dED |
2
0

Alle E}:i) kommutieren, deshalb ist
ER) = EQ ED ... EP k= (k, &)
—o L < +oo, 0K E<22r i=1,...% (5)

eine # + 1-dimensionale Spektralschar. Weil das Spektrum von Translationsopera-
toren in L2(R') einfach ist, existiert ein erzeugender Vektor e e L2(R"), so dass die
Menge der Vektoren E}) ... E{"e, 0 < k; < 27 in L*(R") dicht liegt. Erst recht ist
dann die Menge der E(k) e, — co << ky << + o0, 0 < k; < 27 dicht in L2(R"). Wir
bilden

olk) = || E(h) e ||

o(k) ist ein nichtnegatives volladditives Mass im # - 1-dimensionalen Raum:
— 0L Ry<+00, 0Lk <20,1=1,2,...n.
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Wegen (1) kann E(k) e als Funktional in S” betrachtet werden. Es ist von schwach
beschrinkter Schwankung hinsichtlich £ ([2] S. 165). Da S ein nuklearer Raum ist,
existiert daher fast iiberall eine schwache Ableitung nach jedem nichtnegativen voll-
additiven Mass im A-Raum. Also definiert

'd;(g)‘ (E(k) €, (P) = (Yx,9) @E€ES (6)

o — fast iiberall Funktionale ¢, € S, dieses sind die Eigenfunktionale. Als temperierte
Distributionen haben sie die Form

onp
(V’k! 99) = ffk D? @ d*x Dt = ()xf 0%5 , (7)

wobei f,(x) stetig und durch ein Polynom beschrinkt ist.

Die y, sind schwache Losungen der Eigenwertgleichungen:
Sei A ={k|kl <k, <k, i=0,1..n}ein Wirfel im k,-Raum, der sich auf den
Punkt %k zusammenzieht, so ist

(o L) = lim L ((Eé‘i’—Ek‘?)H (B - E) f b dEY qo>

i=1

A—)—k o(d) (fk* dEO)H (P) (k 01/)1:: ®)

ebenso
Ve, U @) = (e iy, @)

Die letzte Gleichung lautet ausgeschrieben:

ffk(éz) Dbo(xy, ..., 4+ 1,...x) d"x:ffk (g, o %, — 1, ... x) Db @(F) dix
= fe“ikif(;) Dto(x)dx  g@eS.

Da f,(x) stetig ist, folgt

oo, ooz, — 1, ..5,) = e i ()
Setzen wir

so folgt, dass u,(x) stetig und periodisch in ¥ ist. Insgesamt ergibt sich fiir g, die
folgende Form

e

(Wi, @) = (6% wy(x), D? @) = (¢** D2 v,(x), )
oder

ikx
Yp=¢€6 Wy,

wobel w, eine periodische Distribution ist, das heisst eine Ableitung einer stetigen
periodischen Funktion ([5] S. 62). Dieses ist eine Verallgemeinerung des Blochschen
Theorems.
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Hinsichtlich der weiteren Eigenschaften der Eigenfunktionale kann die allgemeine
Theorie zitiert werden [2]. Die verallgemeinerte Fourier-Transformation F
9ES—> (. ¢) = k) € L;.

vermittelt eine isometrische Abbildung von S - LZ,

(91,93 = [ Wi 9 (s, ) do(B),

die sich wegen der Dichtheit von S auf ganz L%*(R") ausdehnen ldsst. Die inverse
Abbildung wird durch die Formel

?= [ (e 9) pido(t ®

beschrieben. Damit ist die Entwicklung nach den Eigenfunktionalen gefunden.

3. Spezialfille

Zunichst sei angemerkt, dass im Falle eines elliptischen Differentialoperators L
die Eigenfunktionale ¢, C*-Funktionen sind und im gewohnlichen Sinn der Eigen-
wertgleichung gentigen ([4] S. 136). Sodann wird auffallen, dass die Eigenfunktionale
von dem # + 1-dimensionalen Parameter (%,, k) abhdngen. Im Falle des Schrédinger-
operators weiss man, dass sich die Eigenfunktionen durch den Wellenvektor 2 und
einen diskreten Bandindex / beschreiben lassen. Der Wert der Energie %, ist durch
diese beiden bestimmt, es gibt eine Dispersionsbeziehung. Die Integration in der
Entwicklungsformel (8) reduziert sich dann auf eine n#-dimensionale Integration iiber
den %-Raum und eine Summation iiber den Bandindex I. Wir priifen, wann dieses
allgemein zutrifft. ,

Nach einem bekannten Satz iiber Abelsche Operatoralgebren [7] existieren ver-

tauschbare selbstadjungierte Operatoren A4,, ... 4,, so dass L und alle U, Funktionen
der 4, sind:

L=ay(4,,...4,), U;=0a,(4,,...4,) 1=1,...n. (9)
Seien

4, = f A, dpy

die Spektraldarstellungen der 4, so folgt fiir die Spektralscharen von L beziehungs-
weise U,;:

EV=¢, (4,,...4,) i=0,1,...n,
wobei

1 fir ,eSp(4,) v=1,...n a;(44,...4,) <&
eki(j'l""lﬂ)=

0 sonst

ist, Sp(4,) = supp P bezeichnet das Spektrum von A4,. Damit ergibt sich
EY — f dPQ ...apy
&
mit

—_—

D, = {i| A € Sp(A4,), a;(h) < k)
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und
E(R) = [[E = [ apQ...apy
L0 i 5 n

mit

D~ (D= |4 €SplA,), ah) <hy,i=0,1,...n}.
i=0

Daraus sieht man, dass das Mass do(k) bzw. die Eigenfunktionale ¢, nur dann nicht
verschwinden, wenn die » + 1 Bedingungen
a; Ay, .. A)=Fk;, L, €S5Pp4,), 1=0,1,...n (10)

erfiillt sind. Sie sind als Parameterdarstellungen einer Punktmenge M im (&, &)-
Raum zu betrachten, iiber die effektiv integriert wird. Wenn die &; etwa stetig partiell
nach den 4; differenzierbar sind, und der Rank der Matrix (0k;/04;) n ist, so ist dies
eine n#-dimensionale Mannigfaltigkeit M, so dass die Eigenfunktionale nur noch von
7 1-dimensionalen Parametern abhingen. Wenn iiberdies die Funktionaldeterminante

Oky, .. k)

ist, kann man M, im Kleinen eindeutig durch k parametrisieren; im Grossen tritt
Mehrdeutigkeit auf, die durch einen Index [ abgezihlt werden moge. Trifft dies o —
fast iiberall zu, so schreibt sich die Entwicklungsformel (8) in der gewohnten Form

¢ = ;’ f (Y, @) 9t doy(k)

als Integral iiber den k-Raum. Fiir ko = konst bestimmt dann (10) eine héchstens

n — 1-dimensionale Untermannigfaltigkeit im £-Raum, die Fermifliche im Fall des
Schrédingeroperators.

Es ist auch moglich, an Stelle der » Parameteroperatoren in (9) weniger, ja sogar
einen einzigen zu wahlen ([8] 5.66). Doch erhilt man dann «pathologische» Parameter-
darstellungen fiir M in der Art der Peanoschen Kurve. Weil die bekannten Sitze {iber
Funktionen von Operatoren solche Pathologien stets mit einschliessen, ist die Be-
schaffenheit der Integrationsmannigfaltigkeit M in allgemeinen Féllen durchaus ein
delikates Problem. Falls man dieses auf anderemm Wege 16sen kann (wie beim Schré-
dingeroperator) erhdlt man umgekehrt Aufschluss iiber die funktionale Abhingigkeit
zwischen dem Operator L und den Translationen.
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