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Das Blochsche Theorem für unendliche Systeme

von G. Scharf
Institut für Theoretische Physik der Universität Zürich

(16. VII. 66)

Summary. Bloch's theorem concerning the eigenfunctions of a periodic Hamiltonian is
derived from very general asumptions. This gives an illustration to a general method of
constructing eigenfunctions for the continuous spectrum.

1. Einleitung

In der Quantenmechanik pflegt man die Betrachtung unendlicher Systeme gern
zu vermeiden. Das hat seinen guten Grund immer dann, wenn der Hamiltonoperator
im unendlichen Raum ein kontinuierliches Spektrum besitzt. Dann ist nämlich
zunächst unklar, wie man Eigenfunktionen definieren soll. Die für das endliche Volumen
bequeme Methode, die Eigenfunktionen durch Randbedingungen auszuzeichnen, ist
nicht anwendbar. Eine gewisse Klasse von Lösungen (zum Beispiel die beschränkten
Lösungen) der Eigenwertgleichung als Eigenfunktionen zu definieren, ist unzweckmässig,

weil man die Gesamtheit der Lösungen von partiellen Differentialgleichungen
in der Regel nicht übersehen kann. Falls vom Hamiltonoperator nur Selbstadjungiert-
heit vorausgesetzt wird, ist man bei der Charakterisierung von Eigenfunktionen im
kontinuierlichen Spektrum durchaus in Verlegenheit. Das ist sofort anders, wenn der
Hamiltonoperator eine Symmetriegruppe besitzt (oder auch nur eine approximative
Symmetrie im asymptotischen Bereich, wie in der Streutheorie). Dann kann man
fordern, dass die Eigenfunktionen (oder ihre asymptotischen Grenzwerte) Darstellungen

der Symmetriegruppe liefern sollen.
In der folgenden Notiz soll an einem einfachen Beispiel gezeigt werden, wie man in

einem solchen Falle die Eigenfunktionen explizit konstruieren kann und ihre wichtigsten

Eigenschaften (Vollständigkeit, Entwicklungssatz) erhält. Dabei wird die Theorie
der Eigenfunktionale von Gelfand, Kostjutschenko und anderen verwendet. Als
Invarianzgruppe soll die diskrete Translationsgruppe gewählt werden, so dass die

Ergebnisse beispielsweise auf selbstadjungierte Differentialoperatoren mit periodischen

Koeffizienten zutreffen. Wir erhalten eine Verallgemeinerung des Blochschen
Theorems.

Der Schrödingeroperator mit periodischem Potential im unendlichen Raum wurde
bereits von Odeh und Keller [1]*) behandelt, doch lässt sich deren Methode nicht
auf allgemeinere Verhältnisse übertragen.

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 560.
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2. Form und Eigenschaften der Eigenfunktionale

Wir legen den Hilbertraum L2(Rn) zugrunde sowie den Testfunktionenraum S(Rn)
der C°°-Funktionen, die samt allen Ableitungen für | x | -> oo schneller als jede Potenz

gegen 0 streben. S ist dicht in I2, I2 dicht im dualen Raum S' von S (bezüglich der
schwachen Topologie in S'),

SCL2CS' (1)

ist ein sogenanntes Gelfandsches Raumtripel [3].
L sei ein selbstadjungierter Operator in L2(Rn), der S in sich abbildet; also zum

Beispiel eine selbstadjungierte Erweiterung eines hermiteschen Differentialoperators
mit beliebig oft differenzierbaren Koeffizienten, die samt allen Ableitungen durch
Polynome beschränkt sind (die Forderung der unendlichen Differenzierbarkeit kann
abgeschwächt werden, [2] Seite 176). Ausserdem sei L bezüglich einer diskreten
Translationsgruppe invariant :

Seien UX,U2,... Un deren primitive Translationen, die ohne Verlust an Allgemeinheit

gleich 1 gewählt werden können

Uiffxx,...xn)=ffxx,...xi+l,...xn) fcL2 (2)

und Ef} die Spektralschar von L, also

+ 00

L Jk0dEfJ. (3)

Dann soll

[E^,U(] 0 (4)

gelten für alle k0 und i 1,2, n. Unter diesen Voraussetzungen wollen wir
Eigenfunktionale von L bestimmen.

Weil die Ui unitäre Operatoren in L2 sind, besitzen sie ebenfalls Spektralscharen
£(1), E{n),

2|ji

U. J fh dE(t)

o

Alle Ef. kommutieren, deshalb ist

E(k) E%E$...E%> k=fk0,k)

-~oo<k0<+oo, 0<,ki<2m i=l,...n (5)

eine n + 1-dimensionale Spektralschar. Weil das Spektrum von Translations Operatoren

in L2fR1) einfach ist, existiert ein erzeugender Vektor eeL2fRn), so dass die
Menge der Vektoren Ef} EJ>> e, 0 < k{ < 2 m in L2fR") dicht liegt. Erst recht ist
dann die Menge der Efk) e, — oo < k0 < + oo, 0 < ki < 2 m dicht in L2fR"). Wir
bilden

afk) || Efk) e ||2.

afk) ist ein nichtnegatives volladditives Mass im n + 1-dimensionalen Raum:

- oo < k0 < + oo, 0 < k{ < 2 m, i 1, 2,... n.
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Wegen (1) kann Efk) e als Funktional in S' betrachtet werden. Es ist von schwach
beschränkter Schwankung hinsichtlich k ([2] S. 165). Da S ein nuklearer Raum ist,
existiert daher fast überall eine schwache Ableitung nach jedem nichtnegativen
volladditiven Mass im /e-Raum. Also definiert

^f^r(Efk)e,cp) fxpk,cp) cp G S (6)

a - fast überall Funktionale y>ke S', dieses sind die Eigenfunktionale. Als temperierte
Distributionen haben sie die Form

fn,<P) [fkD*cpd»x DP= J"Pdxt (7)

wobei fffc) stetig und durch ein Polynom beschränkt ist.
Die ipk sind schwache Lösungen der Eigenwertgleichungen :

Sei A {k | k) < ki < k2, i 0,1 w} ein Würfel im Ä-Raum, der sich auf den
Punkt k zusammenzieht, so ist

(+00 \

fE%-E%)n{EU-E%)e,f k0dE^cpj

ebenso

fWk.U.tp) fe~tkiy,k,tp)

Die letzte Gleichung lautet ausgeschrieben :

Jffx) DPtpfx1,...xi+l,... xn) d«x Jfk fxx,... x{ - 1,... xf Df cpfx) d"x

/ e~ihif(x) Df cpfx) dnx cp e S

T)affx) stetig ist, folgt

fkfxx, ...Xi-1, ...xn) e-ikifk(x)
Setzen wir

ffx) e'^ ufx) l=(kx,...kn),
so folgt, dass ufx) stetig und periodisch in lc ist. Insgesamt ergibt sich für ipk die
folgende Form

fWk, cp) (/^ ufx), Df cp) ffr* Df vfx), cp)

oder

Wk eihx w>k

wobei wk eine periodische Distribution ist, das heisst eine Ableitung einer stetigen
periodischen Funktion ([5] S. 62). Dieses ist eine Verallgemeinerung des Blochschen
Theorems.
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Hinsichtlich der weiteren Eigenschaften der Eigenfunktionale kann die allgemeine
Theorie zitiert werden [2]. Die verallgemeinerte Fourier-Transformation F

epe S —£-? fy)k, cp) cpfk) e L2a

vermittelt eine isometrische Abbildung von S -A>- L%a,

(9>i. 9>a) j (V*. 9>i)* (V*. 9t) dafk)

die sich wegen der Dichtheit von S auf ganz L2fRn) ausdehnen lässt. Die inverse
Abbildung wird durch die Formel

9=1 (Vk>9)Vkdo(k) (8)

beschrieben. Damit ist die Entwicklung nach den Eigenfunktionalen gefunden.

3. Spezialfälle
Zunächst sei angemerkt, dass im Falle eines elliptischen Differentialoperators L

die Eigenfunktionale %pk C°°-Funktionen sind und im gewöhnlichen Sinn der
Eigenwertgleichung genügen ([4] S. 136). Sodann wird auffallen, dass die Eigenfunktionale
von dem n + 1-dimensionalen Parameter fk0, k) abhängen. Im Falle des Schrödinger-

operators weiss man, dass sich die Eigenfunktionen durch den Wellenvektor k und
einen diskreten Bandindex l beschreiben lassen. Der Wert der Energie k0 ist durch
diese beiden bestimmt, es gibt eine Dispersionsbeziehung. Die Integration in der
Entwicklungsformel (8) reduziert sich dann auf eine M-dimensionale Integration über

den /e-Raum und eine Summation über den Bandindex l. Wir prüfen, wann dieses

allgemein zutrifft.
Nach einem bekannten Satz über Abelsche Operatoralgebren [7] existieren

vertauschbare selbstadjungierte Operatoren Ax, An, so dass L und alle Ut Funktionen
der A

v
sind :

L a0fAx,...An), Ui a.fAx,...An) i=l,...n. (9)

Seien

Av fxvdP?v

die Spektraldarstellungen der Av, so folgt für die Spektralscharen von L beziehungsweise

V{:
Ef=ekAAlt...An) i 0,l,...n,

wobei

fl für AreS^y v=l,...n a, (Ax ,...!„)< A,
ehAK. ¦¦¦*»)

10 sonst

ist, SpfAfi supp dPf> bezeichnet das Spektrum von Av. Damit ergibt sich

Ef,= JdPA...dP%
Di

mit
Di={ï\X,eSp(Av),afX)<ki}
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und

Efk)=fjElfi=fdPA...dpM
i-o D

mit
n -^ —*

D fl D. {X | Xv e SpfAf, afX) < *,, t 0,1,... »}
i-0

Daraus sieht man, dass das Mass ät(A) bzw. die Eigenfunktionale tpk nur dann nicht
verschwinden, wenn die n + 1 Bedingungen

«!.(A1,...2„) /e!.,A„eS^(^)) / 0,1,...« (10)

erfüllt sind. Sie sind als Parameterdarstellungen einer Punktmenge M im (k0, k)-
Raum zu betrachten, über die effektiv integriert wird. Wenn die k{ etwa stetig partiell
nach den Xj differenzierbar sind, und der Rank der Matrix fdkfdXf) n ist, so ist dies
eine «-dimensionale Mannigfaltigkeit Mn, so dass die Eigenfunktionale nur noch von
n 1-dimensionalen Parametern abhängen. Wenn überdies die Funktionaldeterminante

d(kx, ...k„)
d(lx,...~An) ^"

ist, kann man Mn im Kleinen eindeutig durch k parametrisieren ; im Grossen tritt
Mehrdeutigkeit auf, die durch einen Index l abgezählt werden möge. Trifft dies a -
fast überall zu, so schreibt sich die Entwicklungsformel (8) in der gewohnten Form

9=Z f(V>l).9)¥£dal(k)

als Integral über den /V-Raum. Für k0 konst bestimmt dann (10) eine höchstens

n — 1-dimensionale Untermannigfaltigkeit im Ä-Raum, die Fermifläche im Fall des

Schrödingeroperators.
Es ist auch möglich, an Stelle der n Parameteroperatoren in (9) weniger, ja sogar

einen einzigen zu wählen ([8] S.66). Doch erhält man dann «pathologische»
Parameterdarstellungen für M in der Art der Peanoschen Kurve. Weil die bekannten Sätze über
Funktionen von Operatoren solche Pathologien stets mit einschliessen, ist die
Beschaffenheit der Integrationsmannigfaltigkeit M in allgemeinen Fällen durchaus ein
delikates Problem. Falls man dieses auf anderem Wege lösen kann (wie beim Schrö-
dingeroperator) erhält man umgekehrt Aufschluss über die funktionale Abhängigkeit
zwischen dem Operator L und den Translationen.
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