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Ergänzung der linearen Feldtheorie

von Willy Scherrer
Bern, Justingerweg 18

(5. IV. 66)

Zusammenfassung. Die das Gravitationsfeld bestimmende Wirkungsfunktion der linearen
Feldtheorie bedarf einer Ergänzung, da die zu ihr gehörigen antisymmetrischen Feldgleichungs-
terme Vga identisch verschwinden. Diese Ergänzung wird in zwei Stufen vollzogen.

Bei verschwindendem Gravitationsfeld liefert die 1. Stufe in erster Näherung

die 2. Stufe

V,ea~0 vtg<,Aa-2viga ¦

Dabei ist a eine kleine universelle Länge.

§ 1. Einleitung
Aus meinen letzten Arbeiten geht hervor, dass die Grundinvarianten H, H, H der

linearen Feldtheorie aus folgenden Gründen Interesse verdienen: ' 2 3

1. Wählt man die Kombination

H =~H + H -2H (1.1)/12 3

als Wirkungsfunktion, so erhält man genau die Einsteinschen Vakuumsgleichungen
der Gravitation [l]1) und überdies eine invariant lokalisierbare Feldenergie [2].

2. Ergänzt man (1.1) gemäss

WrH+xM (1.2)
i

durch die Wirkungsfunktion M der Vakuumselektrodynamik, so ergibt sich das Feld
eines geladenen Teilchens mit endlicher Totalenergie [3].

In beiden Fällen jedoch sind die zum System gehörigen 6 antisymmetrischen
Feldgleichungen identisch erfüllt. In der lögliedrigen Basis sind somit noch 6

Freiheitsgrade verfügbar. Es besteht daher ein Bedürfnis zu untersuchen, ob vermittels
einer geeigneten Zusatzkombination der Grundinvarianten diese Lücke in natürlicher
Weise ausgefüllt werden könne.

Meine weiteren Untersuchungen haben nun ergeben, dass in dieser Hinsicht die
Kombination

Hr,J-H~H (1.3)
II 12

Interesse verdient. Sie ist nämlich in folgendem Sinne zu H komplementär: Die zu
i

ihr gehörigen 10 symmetrischen Feldgleichungsterme enthalten keine Ableitungen,
deren Ordnung höher als 1 ist.

1) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 522.

32 H. P. A. 39, 6 (1966)
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Trotzdem reicht - wie man an Beispielen ersehen kann - H allein zusammen mit H
n i

noch nicht aus, um eine befriedigende Ergänzung zu erhalten. Wir fügen daher noch H
hinzu oder, was rechnerisch bequemer ist, 3

H =4 H (1.4)
III 3

und bilden nun die Kombination

H rH + ÇH + eH (1.5)
i ii in

Die Koeffizienten £ und e sind reine Zahlen und müssen natürlich so klein sein,
dass das durch H bestimmte Gravitationsfeld nicht in unzulässiger Weise gestört wird.

Ein erstes Ziel der vorliegenden Arbeit ist nun der Nachweis für folgende Aussage :

Satz 1 : Für (~ e liefert die Wirkungsfunktion H ein System von antisymmetrischen
Feldgleichungen, das in erster Näherung und für verschwindendes Gravitationsfeld
folgende Gestalt besitzt:

Dv:ga 0. (1.6)

Dabei bedeutet den kovarianten d'Alembert-Operator angewendet auf den
antisymmetrischen Tensor v ga.

Bekanntlich erfüllen die Feldstärken F ga der Vakuumselektrodynamik ebenfalls
die Gleichungen (1.6). Trotzdem besteht ein wesentlicher Unterschied zwischen den
Tensoren vtSa und F ga. Das H in Satz 1 liefert nämlich nicht die Maxwellschen
Gleichungen 2. Art für vga und dementsprechend kann dieser Tensor nicht aus einem

Vektorpotential genommen werden.
Ein weiteres Ziel für die vorliegende Arbeit ergab sich aus der Feststellung, dass

im Rahmen unserer Theorie ableitungsfreie Invarianten existieren. Da solche
Invarianten in der Wellenmechanik eine wesentliche Rolle spielen, stellt sich die

Frage, ob in der linearen Feldtheorie Wellengleichungen gebildet werden können.
Tatsächlich ist dies der Fall, denn es gibt folgende Aussage :

Satz 2: Ergänzt man die Wirkungsfunktion H von Satz 1 durch eine ableitungsfreie
Invariante f gemäss dem Ansatz

W=H + A-2f, (1.7)

so tritt anstelle des Systems (1 .6) das System

aviga + a-2vtga 0. (1.8)

Dabei sind A und a universelle Längen, die miteinander durch die Relation

a )/eA (1.9)

verknüpft sind.
Offenbar wird das Gravitationsfeld umso weniger gestört, je grösser A und je

kleiner e ist. Wählt man also für A den Weltradius und für s eine sehr kleine Zahl,
so kann a eine atomare Länge annehmen.

Wir befassen uns zuerst mit Satz 1. Die Hauptarbeit liegt in der Entwicklung der
zu seiner Begründung erforderlichen Hilfsmittel.
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§2. Die Feldgleichungen
In meiner letzten Arbeit habe ich die Feldgleichungen in Gestalt von Formentensoren

geschrieben. Dies ist zweckmässig, wenn man die allgemeinen Zusammenhänge

überblicken oder Felder von ganz ausgezeichneter Symmetrie behandeln will.
Sobald man es aber mit Aufgaben zu tun hat, zu deren Bearbeitung Näherungen
erforderlich sind, empfiehlt es sich, die Feldgleichungen in Gestalt von Koordinatentensoren

zu schreiben.
Den zu einem kovarianten Formentensor 2. Stufe TXli, gehörigen Koordinatentensor

Toa erhält man definitionsgemäss durch die Identität

,qa — & ,g 6 ,a À[i, x '

Da wir nun die zu einer beliebigen Kombination

H=AH + AH + AH (2.2)
11 2 2 3 3

gehörigen Feldgleichungsterme 3

W^,^ZAW^, (2-3)
i 1 i i

schon kennen2), erhalten wir 3

Wtta=£AWiP0 (2.4)
i= 1 i i

und die Aufgabe reduziert sich auf die Ermittlung der einzelnen Wpa.
i

Für diese und ähnliche Umformungen wichtig sind folgende Relationen :

d,vg"f=lKfß (2.5J

d,vgf» gfal,:A (2-5*)

<ZZ;" Z (2.5J

d,vG^=\-jL-v-ß+]yli-vi (2.6,)

d <7A" - (f;*;? + ]fAf (2.6,)

d, &Xv Vx. (2.63)

Die Berechnung ergibt folgende Tabelle :

H \\ayv\'fJA. Hr\:-ß--\fAJ. H^U'A (2.7a)12 3

^>Ca=2(da+F)jf;-;-2F;-^f;;^+2f;-^faf; + 2f;^-f:«?;-G8(rÄ, (2.7b,)
i " i
^ea-(aa+ï,ja;;z+î:Z;) + î7^ï;Z'-f;^Z;a^+2î;^Z;'Z-Z8^- (2-7b*)
2 ' 2

w.** G.toà,*\"-dta u+U:?-;. (2.7b3)
3

Aus dieser Tabelle kann man nun die Feldgleichungsterme W>ga für jede Kombination

(2.2) ermitteln und anschliessend gemäss

U =— (W + W V — (W - W (2.8)

die Symmetrisierung vornehmen.

a) A.a.O. [3], §3.
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Von den nach §1 in Betracht kommenden Möglichkeiten notieren wir nur das zu
(1.1) gehörige V ga, weil es die fundamentale Eigenschaft besitzt, identisch zu
verschwinden : r

Z^(<Z-Uf;aZ + <ZZ-<ZZ o. (2.9)
i

Die zu Satz 1, d.h. zur Wirkungsfunktion

H rH + e(H + H) (2.10)
i n in

gehörigen symmetrisierten Feldgleichungen haben daher symbolisch abgekürzt
folgende Gestalt:

U!Oa + efU:Oa+UtQa) 0,
i ii in

e(Zeo + Fea)=0. (2.11)
// in

Satz 1 besagt nun also, dass die zweite der Gleichungen (2.11) in erster Näherung und
für verschwindendes Gravitationsfeld äquivalent sei mit (1.6).

§3. Invariantes Näherungsverfahren

Wir gehen aus von der Darstellung der Basismatrix g*> als Produkt aus einer
«Trägheitsmatrix» tx\ß und einer Matrix A;Z gemäss

g*:„ **:«*:";. t3-1)

wie wir sie schon in einer früheren Arbeit3) geschildert haben.
Diese Trägheitsmatrix repräsentiert im allgemeinsten Falle den Kosmos, in dem

sich das Feld ausbreitet.
Im einfachsten Fall, auf den wir uns hier beschränken, ist tx' eine Basismatrix

des Lorentzraumes.
Die Trägheitsmatrix ist, wie ich vermute, zur Energiedarstellung unentbehrlich.

Ihre spezielle Wahl bringt diejenige Symmetrie zum Ausdruck, welche man für die
Energieverteilung in Aussicht nimmt.

Es ergibt sich somit der Schluss, dass zur Bestimmung eines Feldes die Trägheitsmatrix

f'tM frei gewählt und hierauf die Matrix h''-' aus den Feldgleichungen berechnet
werden muss.

Wir können jetzt angeben, wie man zu einer 0ten Näherung, das heisst zu einer
strengen Lösung h'^'y, der Feldgleichungen (2.11) für e 0, vermittels kleiner
Änderungen dieser Lösung zu einer Näherungslösung der Feldgleichungen für kleine e 4= 0

gelangt: Wir «variieren» die Basis der Grundlösung gemäss den Vorschriften

ft*:„=0; cVZ^O, (3.2)

denn die Symmetrie der Grundlösung muss sinngemäss erhalten bleiben.
Neben den in (3.1) enthaltenen Matrizen benötigen wir natürlich auch die Inversen

oder - was für unsere Technik bequemer ist - deren Transponierte. Ich habe sie
«Transverse» genannt und mit

gy" ; tr" und hf/. (3.3)

3) A.a.O. [2], §2.



Vol. 39, 1966 Ergänzung der linearen Feldtheorie 517

bezeichnet, so dass sich aus (3.1) unmittelbar die Relation

ergibt.
Wegen (3.2) folgt weiter aus (3.1) und (3.4)

&A t\àh:% òg>:f t>:fòhfA. (3.5)

Aus der Definition von hft aber errechnet man

òhfA. -hff htf ôhffa (3.6)

Machen wir nun den Ansatz für die nte Näherung

Ôh:-^ÊPJ^1 (3-7)

i-i

tätf=ZPtfe'. (3-7)

j-i
So ergibt sich aus (3.6) die Rekursionsformel

Kx". - KA (Pf.« Kß" + ZPn-lf.« PAß") (3-8)

__
J-1

zur Berechnung der p„\\t aus den pi'x.j,.
Nun besitzen die Gleichungen (2.11) die strenge Lösung h\x.'ß ò*. Wählen wir

dieselbe als Grundlösung, so vereinfacht sich wegen hf! à\ (3.6) zu

òh'ff -òh'f\ (3.9)
und (3.8) geht über in

Kx". - Pn,"\- tpn-C\~PtÀ" ¦ (3-10)
J-1

Eine Näherung heisse «stark» oder «schwach», je nachdem für die 0te Näherung
gilt Ä;Z^^ oder ä;Z=^.

Für starke Näherungen wird der Formelapparat schon in der 1. Näherung sehr

kompliziert. Doch lassen sich unsere Thesen vermittels der 1. schwachen Näherung
beweisen. Ich beschränke daher die weitere Entwicklung auf diesen Fall.

In 0ter Näherung haben wir also

g*:, <*:„; gx,"=h\" (3-n)
und der metrische Tensor

6,. «.«*:,«":. (3-12)

spezialisiert sich auf denjenigen der Lorentzwelt

£.,. ««<":,<";„¦ (3-13)

Die allgemein durch

¦/,.. _ 1 /¥:, ag*;ß\ fA.. _
1 /dg*;„ dgf^f ,_ ^ >

'•<»» 2 \ dxf "*" d** / '•'"' 2 \ d*P d*» / ^ ' x/

und
X.. A «,-• r,A.. A ra,-. (314/ ,• fiv oa, f • ,ftv > 1, • fiv oa, 1. ,fiV * ^'

definierten Dreizeigersymbole und Feldstärken spezialisieren sich auf

*•*¦•=*•**«' • pA-- =0. (3.15)
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Für die 1. Näherung erhalten wir aus (3.5, 7, 10)

sZaZZ; àgf» -et,fpfa. (3.16)7
Aus der weiteren Entwicklung kann man unschwer entnehmen, dass die 1. Näherung

von der Tensoranalysis der Lorentzwelt beherrscht wird, was folgende
Vereinfachungen mit sich bringt :

1. Die vertikalen Zeigerverschiebungen werden von Tensor L Pa besorgt.

2. Für die kovariante Ableitung gelten die Regeln

ded03dede; dtLeo=o. (3.17)

Im Sinne von 1 ergibt sich z.B.

àGgo s (p,ea + ptag) ¦

Setzen wir also

P,Qa= », Qa + V, QO P,ot U,Qö-V,QO> C3'18)

so folgt

ÔGiQa=2auea; ÔG-"" - 2ew" (3.19)

Die Berechnung der Variationen der Feldgrössen (3.142) schliesslich führt auf
folgende Formeln:

öy;?;; -f (d,pf; + d,pff) ¦ dyiX \ (d,p + d„£;?;) (3.20J

«F:*;; -f (d, „ P\J - d, /Z;,) ; «[,, *T (diX p - d £;«;). (3.202)

Dabei bedeutet hier d A die kovariante Ableitung in bezug auf die Basis (3.11), also

mit den Dreizeigergrössen t'f'fv und die Terme y x; ] x und p sind definiert durch die
Identitäten

y,x r;Za ; Z [;?;; ; P ZZ «;Z « • ß.21)

Gemäss den in der Lorentzwelt wirksamen Vereinfachungen 1 und 2 können die
Koordinatenzeiger mühelos herauf- und heruntergezogen werden. Für diese Technik
empfiehlt sich daher die Einführung des Symbols

&x =L'Zada. (3.22)

§4. Die Feldgleichungen in erster Näherung

Die zu einer beliebigen Kombination (2.4) gehörigen Feldgleichungen der ersten
Näherung lauten symbolisch

3li 1 i i
ÔW<ga=£AôWiea (4.1)

und unsere nächste Aufgabe besteht darin, die expliziten Ausdrücke für die Terme
ÒW„„ zu ermitteln.
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Da, wie elementare Rechnungen zeigen, kovariante Ableitung à und «Variation» ô

in erster Näherung miteinander vertauschbar sind, ergeben sich aus der Tabelle (2.7)

folgende Ausdrücke :

ÔWiQe=2dia(d]fe%),

àW!ga^djò\-;Afg + ò\f.-ga),
2

ÔWtga=Lieadi0ifôn-àJÔla).

(4-Z)

(4.22)

(4.2.)

Gestützt auf (3.202) erhält man daraus

^e^7Zö'Z,s„-Z^ZZ
dW:

2
' 6S | (d,a d-« piae - dtt d>«p>aa) + f fd:S d-« p,aa - d a d-' p>ag)

ÔW,ea -i-L.io (d,a d-°p- d'' d-ßp>ßa) - -f (d>e d>aP- d>g d'«P:J

(4.3J

(4.32)

(4.3,)

Der zu beweisende Satz 1 bezieht sich auf die zu (2.11) gehörigen
Näherungsgleichungen 1. Ordnung, die offenbar äquivalent sind mit dem System

<5<7 =0; ÔVga + ÔVea 0. (4.4)

Die in ihm enthaltenen Terme gewinnen wir, indem wir die Ausdrücke (4.3)
entsprechend den Definitionen (1.1), (1.3) und (1.4) kombinieren und hierauf gemäss (2.8)
symmetrisieren.

Um die Ergebnisse übersichtlich schreiben zu können, empfiehlt es sich, folgende
Symbole einzuführen :

1. Die Vektoren

Ae^d'*A^ v,e 0'*v,ea- (4-Z)
2. Die Invariante

w d'a d'ßuaß (452)

3. Den absolut kovarianten d'Alembertoperator

D^Z'"El,I'ô,Z,r (4-5s)

Die Berechnung liefert dann für die Terme des Systems (4.4) folgende Ausdrücke:

àUìga=e
i

nU,pa+ d,Pd,aU

-fdtPua+daug)

+ L,pa (W ™ Z

àVpose (nv + d>gfa-d>avg),
ii

ÔV,po=Z
III

\d,ov,e- d,gv,a I

1+ d,eu,°- <Z#J

(4.6J

(4.62)

(4.63)
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Für die Divergenzen der Feldvektoren u „ und vg gelten, wie man leicht feststellt,
die Identitäten

d-eue diewe =w, (4.70

d-e ve diPve =0 (4.7,)

Dem System (4.4) können wir jetzt folgende Gestalt geben:

«,,.- (d,eu,°+d,oAf + d,gdiau + Lgafw- D«)=0 (4.80

nw,,a + d,«„-d0«e o. (4.8,)

Die w e„ repräsentieren das Gravitationsfeld, das in erster Näherung durch die

Gleichungen (4.80 bestimmt ist. Aus (4.82) folgt also unmittelbar Satz 1.

§5. Ableitungsfreie Invarianten
Das Auftreten des Tensors hf'ß lässt unmittelbar erkennen, dass im Rahmen der

linearen Feldtheorie ableitungsfreie Invarianten existieren. Eine erste Serie wird
gegeben durch

J=h---a; /=*;?;*;?-etc. (5.1)
1 2

Eine zweite Serie ergibt sich aus den Transversen gemäss

/=Ä;;a; Jrhfjhfß« etc. (5.2)
1 2

Da es in der quadratischen Feldtheorie derartige Invarianten nicht gibt, ist von
besonderem Interesse die Frage, was sich ergibt, wenn man etwa die Wirkungsfunktion

(2.10) durch eine ableitungsfreie Invariante / ergänzt gemäss dem Ansatz

W =H + e(H + H)+A-2 f (5.3)
i n in

Die zugehörigen Feldgleichungen schreiben wir in Analogie zu (2.11) in der Gestalt

U,ta + e (U:0a + Ut0a) + A-2 U>oa 0 (5.40
i n m j

efVga+Voa)+A-2Vga 0. (5.42)
n m J

Wie man aus der ersten Gleichung unmittelbar ersieht, muss A eine grosse Länge
sein, damit das Gravitationsfeld nicht unzulässig gestört wird.

Die entsprechenden Näherungsgleichungen 1. Ordnung können wir in Analogie zu
(4.4) folgendermassen schreiben :

OUiQa 0 (5.50

àV>ga + ÒVoa + a-2ÒVga 0. (5.5,)
n m jDabei ist natürlich

a |/e A (5.6)
wiederum eine Länge.

Der Einfluss der Ergänzung vermittels / ist also in erster Näherung ganz in dem
Term öV oa enthalten.
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Die Analyse zeigt, dass dieser Einfluss in erster Näherung für alle Invarianten
abgesehen vom Vorzeichen im wesentlichen derselbe ist. Ich begnüge mich daher mit
einer Detailangabe für den einfachsten Fall:

/ / ergibt ÔVga=8Viea. (5.7)
i /

Nach (4.62 und 4.63) geht also (5.52) für verschwindendes Gravitationsfeld über in

nv,ea + a-2v!ta 0. (5.8)

womit nun auch Satz 2 bewiesen ist.
Zur Erleichterung des Lesers füge ich noch einige Hinweise über die Herleitung

von (5.7) hinzu.
Die zu einer beliebigen Wirkungsfunktion W gehörigen Feldgleichungen lauten

m.*- à [ MB 1 m -Q (5 9)

A~2,mx-ß -A-2fAff-. (5.10)

Der durch f bewirkte Zusatz in den Feldgleichungen ist also gegeben durch

,_2 à(gj)
>x,' — r

J

Von der Tensordichte zum Tensor übergehend haben wir also

wf*-!*%£ - T&r-Jtf ("D

zu berechnen. Da nun die f Funktionen der hfp bzw. Tt'ff sind, benötigt man zuerst
die Auflösungen von (3,1) bzw. (3.4) nach diesen Grössen:

Z-; ZV;,7 kA.=t*:xga-f. (5.12)

Hierauf ergeben sich die Formeln

dgX,ß X, ß dgX,^ X, ,r- ,a- V /

mit deren Hilfe man für jedes f (5.11) berechnen kann. Speziell in unserem Falle
7 =¦ Jx erhält man

Wxf-=tx:«hf/hfß».-Jgxf
A i

Wga h>oa-jGiga
/i i

Vga \fh,ga-htaQ). (5.14)
h

und weiter

und hieraus schliesslich

Nach (3.7) und (3.18) ist die 1. Näherung dazu gegeben durch

àVga evga. (5.7)
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§6. Schlussbemerkungen

Wie schon im Anschluss an die Gleichungen (1.6) erwähnt wurde, kann der Tensor

»j„ nicht mit der elektrischen Feldstärke F ga identifiziert werden. Ein weiteres
Argument in dieser Richtung ergibt sich aus der Tatsache, dass in unserer Theorie die

Komponenten vtta die Rolle von Potentialen spielen. In anderen Worten: Die
Ergänzung der Theorie gemäss Satz 1 liefert sicher keinen direkten Ersatz für die

Vakuumselektrodynamik.
Damit komme ich zurück auf die Ergänzung gemäss Satz 2. Die daselbst gegebene

Herleitung der Wellengleichungen (1.8) mag auf den ersten Blick phantastisch
anmuten. Ich möchte daher zum Schluss diejenigen Argumente zusammenstellen, welche
mir diese Herleitung als beinahe zwingend erscheinen lassen.

1. Die Annahme einer grossen Länge, nämlich des Weltradius A, ist nach dem
heutigen Stande der Kosmologie eine Notwendigkeit.

2. Die Einführung einer sehr kleinen reinen Zahl s bei der Ausfüllung der
antisymmetrischen Lücke ist unumgänglich, damit das Gravitationsfeld nicht unzulässig
gestört wird.

3. Nachdem die Notwendigkeit der Vereinheitlichung anerkannt wird, ist die
Heranziehung ableitungsfreier Invarianten geboten, sobald solche zur Verfügung
stehen.

4. Einzig dank der fundamentalen Identität (2.9) ergibt sich bei dieser Ergänzung
zwangsläufig eine kleine Länge

a ]/sA. (6.1)

5. Da jede ableitungsfreie Invariante in erster Näherung bei verschwindendem
Gravitationsfeld Gleichungen vom Typus (1.8) liefert, bleibt als einzige Willkür die
Wahl des Vorzeichens von J in (1.7).

Die Auswahl einer besonders geeigneten Invarianten f bildet natürlich eine
Aufgabe der weiteren Entwicklung.
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