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Erginzung der linearen Feldtheorie

von Willy Scherrer
Bern, Justingerweg 18

(5. IV. 66)

Zusammenfassung. Die das Gravitationsfeld bestimmende Wirkungsfunktion der linearen
Feldtheorie bedarf einer Ergdnzung, da die zu ihr gehérigen antisymmetrischen Feldgleichungs-
terme V ,, identisch verschwinden. Diese Ergdnzung wird in zwei Stufen vollzogen.

Bei verschwindendem Gravitationsfeld liefert die 1. Stufe in erster Niherung

Vieo~17v,40.
die 2. Stufe

Voo ~[v,00+ 327,00 -

Dabei ist a eine kleine universelle Linge.

§1. Einleitung
Aus meinen letzten Arbeiten geht hervor, dass die Grundinvarianten H, H, H der

linearen Feldtheorie aus folgenden Griinden Interesse verdienen: 1oz 3
1. Wihlt man die Kombination
= H+H-2H (1.1)
I 1 2 3

als Wirkungsfunktion, so erhilt man genau die Einsteinschen Vakuumsgleichungen
der Gravitation [1]!) und iiberdies eine invariant lokalisierbare Feldenergie [2].

2. Ergédnzt man (1.1) gemiss
W=H+x=xM (1.2)
z
durch die Wirkungsfunktion M der Vakuumselektrodynamik, so ergibt sich das Feld
eines geladenen Teilchens mit endlicher Totalenergie [3].

In beiden Fillen jedoch sind die zum System gehérigen 6 antisymmetrischen
Feldgleichungen identisch erfiillt. In der 16gliedrigen Basis sind somit noch 6 Frei-
heitsgrade verflighar. Es besteht daher ein Bediirfnis zu untersuchen, ob vermittels
einer geeigneten Zusatzkombination der Grundinvarianten diese Liicke in natiirlicher
Weise ausgefiillt werden kénne.

Meine weiteren Untersuchungen haben nun ergeben, dass in dieser Hinsicht die
Kombination

1

H =

II

Interesse verdient. Sie ist ndmlich in folgendem Sinne zu H komplementir: Die zu
I

ihr gehorigen 10 symmetrischen Feldgleichungsterme enthalten keine Ableitungen,
deren Ordnung héher als 1 ist.

It

H—H (1.3)
1 2

1) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 522.

32 H, P. A, 39, 6 (1966)
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Trotzdem reicht — wie man an Beispielen ersehen kann — H allein zusammen mit H
1 1

noch nicht aus, um eine befriedigende Ergdnzung zu erhalten. Wir fiigen daher noch H
hinzu oder, was rechnerisch bequemer ist, R
H=4H (1.4)
I 3
und bilden nun die Kombination
H=H+tH+¢H. (1.5)
I o I

Die Koeffizienten { und ¢ sind reine Zahlen und miissen natiirlich so klein sein,

dass das durch H bestimmte Gravitationsfeld nicht in unzuldssiger Weise gestort wird.
I

Ein erstes Ziel der vorliegenden Arbeit ist nun der Nachweis fiir folgende Aussage:

Satz 1: Fiir § = € liefert die Wirkungsfunktion H ein System von antisymmetvischen
Feldgleichungen, das in erster Niherung und fiir verschwindendes Gravitationsfeld
folgende Gestalt besitzt:

Ov,,=0. (1.6)

Dabei bedeutet [] den kovarianten d’Alembert-Operator angewendet auf den anti-
symmetrischen Tensor v ,,.

Bekanntlich erfiillen die Feldstarken F ,, der Vakuumselektrodynamik ebenfalls
die Gleichungen (1.6). Trotzdem besteht ein wesentlicher Unterschied zwischen den
Tensoren v ,, und F ,,. Das H in Satz 1 liefert ndmlich nicht die Maxwellschen
Gleichungen 2. Art fiir » ,, und dementsprechend kann dieser Tensor nicht aus einem
Vektorpotential genommen werden,

Ein weiteres Ziel fiir die vorliegende Arbeit ergab sich aus der Feststellung, dass
im Rahmen unserer Theorie ableitungsfreie Invarianten existieren. Da solche
Invarianten in der Wellenmechanik eine wesentliche Rolle spielen, stellt sich die
Frage, ob in der linearen Feldtheorie Wellengleichungen gebildet werden kénnen.

Tatsédchlich ist dies der Fall, denn es gibt folgende Aussage:

Satz2: Evginzt man die Wirkungsfunktion H von Satz 1 durch eine ableitungsfreie Inva-
riante | gemdss dem Ansatz
W=H+A42], (1.7)

so tritt anstelle des Systems (1.6) das System
00 6+ @20 ,,=0. (1.8)

Dabei sind 4 und a universelle Lingen, die miteinander durch die Relation

a=)eA (1.9)
verkniipft sind.

Offenbar wird das Gravitationsfeld umso weniger gestort, je grosser 4 und je
kleiner & 1st. Wahlt man also fiir A den Weltradius und fiir ¢ eine sehr kleine Zahl,
so kann a eine atomare Linge annehmen.

Wir befassen uns zuerst mit Satz 1. Die Hauptarbeit liegt in der Entwicklung der
zu seiner Begriindung erforderlichen Hilfsmittel.
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§2. Die Feldgleichungen

In meiner letzten Arbeit habe ich die Feldgleichungen in Gestalt von Formen-
tensoren geschrieben. Dies ist zweckmissig, wenn man die allgemeinen Zusammen-
hiinge iiberblicken oder Felder von ganz ausgezeichneter Symmetrie behandeln will.
Sobald man es aber mit Aufgaben zu tun hat, zu deren Bearbeitung Ndherungen er-
forderlich sind, empfiehlt es sich, die Feldgleichungen in Gestalt von Koordinaten-
tensoren zu schreiben.

Den zu einem kovarianten Formentensor 2. Stufe 7 ,, gehérigen Koordinaten-
tensor T ,, erhdlt man definitionsgemass durch die Identitét

T,00=€"08" 0 Do, - i)
Da wir nun die zu einer beliebigen Kombination
H=AH+AH+AH (2:2)
11 22 B3
gehorigen Feldgleichungsterme 3
| W, =] AW,, (2.3)
=14 i
schon kennen ?), erhalten wir 3
W,e=2 AW, (2.4)

i=1141 1

und die Aufgabe reduziert sich auf die Ermittlung der einzelnen W ;.

Fiir diese und dhnliche Umformungen wichtig sind folgende Relationen:

i, _
o,vg N7 iﬂ,vu (251)
0,8 " =g:" 1", (2.59)
o,v gj:v = r}., (253)
0,G ,=Visu+ i (2.64)
0, G =— (Phu+ 140 (2.6,)
0, = = ok (2.6)
Die Berechnung ergibt folgende Tabelle:
H=[g 0% H=pp 17 H=],]°, (2.7a)
1 2 3
Woe=2(0 ,+T1 V0% =200l + 20 s 18+ 2055, 1200 — G, H, (2.7by)
1 1
T;VQGE(O at o) (et et T Fapola®—Faas 120 42025, 18%:—G @afzi’ (2.7by)
PSVQUEGQU()GT“—0’Qi’a+i,ai;°_‘e',(;. (2.7by)

Aus dieser Tabelle kann man nun die Feldgleichungsterme W ,, fiir jede Kombi-
nation (2.2) ermitteln und anschliessend gemiss

1 1
Uge=—5 Wt W, V=

,00 ,00 _2—

w., . — W (2.8)

,00 ,O'Q)

die Symmetrisierung vornehmen.

?) A.a.0. [3], §3.
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Von den nach §1 in Betracht kommenden Méglichkeiten notieren wir nur das zu

(1.1) gehorige V ,,, weil es die fundamentale Eigenschaft besitzt, identisch zu ver-
schwinden: [

V,QUE(O,a_i,a) i:o.‘é;'—i_o,gi,o“d,ai’gf(). (29)
z
Die zu Satz 1, d.h. zur Wirkungsfunktion
H=H+¢(H+ H) (2.10)
I I I

gehdrigen symmetrisierten Feldgleichungen haben daher symbolisch abgekiirzt
folgende Gestalt:

U,,+ellU, ,+ U,M) =0,
I’ T 117

eV oo+ V o) =0. (2.11)
i’ ur

Satz 1 besagt nun also, dass die zweite der Gleichungen (2.11) in erster Nidherung und

fiir verschwindendes Gravitationsfeld dquivalent sei mit (1.6).

§3. Invariantes Nidherungsverfahren

Wir gehen aus von der Darstellung der Basismatrix g, als Produkt aus einer
«Tradgheitsmatrix» ¢*, und einer Matrix %%, gemiss

&=t (3.1)

2 [ AN
wie wir sie schon in einer fritheren Arbeit3) geschildert haben.

Diese Triagheitsmatrix reprisentiert im allgemeinsten Falle den Kosmos, in dem
sich das Feld ausbreitet,

Im einfachsten Fall, auf den wir uns hier beschrinken, ist tA:H eine Basismatrix
des Lorentzraumes.

Die Tragheitsmatrix ist, wie ich vermute, zur Energiedarstellung unentbehrlich.
Ihre spezielle Wahl bringt diejenige Symmetrie zum Ausdruck, welche man fiir die
Energieverteilung in Aussicht nimmt.

Es ergibt sich somit der Schluss, dass zur Bestimmung eines Feldes die Trigheits-
matrix ¢*; , frei gew#hlt und hierauf die Matrix /4’ .. aus den Feldgleichungen berechnet
werden muss.

Wir kénnen jetzt angeben, wie man zu einer 0*® Niherung, das heisst zu einer
strengen Loésung /##;, der Feldgleichungen (2.11) fiir ¢ = 0, vermittels kleiner Ande-
rungen dieser Lésung zu einer Niherungslosung der Feldgleichungen fiir kleine ¢ + 0
gelangt: Wir «variieren» die Basis der Grundlésung gemiss den Vorschriften

o, =0; ol 0, (3.2)
denn die Symmetrie der Grundlésung muss sinngeméss erhalten bleiben.
Neben den in (3.1) enthaltenen Matrizen benétigen wir natiirlich auch die Inversen

oder — was fiir unsere Technik bequemer ist — deren Transponierte. Ich habe sie
«Transverse» genannt und mit

g t* und A j¥ (3.3)

3 A.a.0.[2], §2.
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bezeichnet, so dass sich aus (3.1) unmittelbar die Relation

gt =1" }_105” (3:4)
ergibt, :
Wegen (3.2) folgt weiter aus (3.1) und (3.4)
o, =1th 0mt, gt =1%o (3-5)
Aus der Definition von 7;;;1‘,‘ aber errechnet man
Ohit = — Ty  heph ot (3.6)
Machen wir nun den Ansatz fiir die #»'® Niherung
ot Elzl‘pl:.}v,; gl (3.7)
6%:;1‘_‘ =) 'prt et (3.7)
=1
So ergibt sich aus (3.6) die Rekursionsformel
n—1
pn:ltu = h:ﬂa (pn:ﬁa h’:ﬁﬂ + Z?n*ljea pl:ﬁu) (3'8)
I=1

zur Berechnung der $,;# aus den p,% .

Nun besitzen die Gleichungen (2.11) die strenge Losung &% = ;. Wahlen wir
dieselbe als Grundlosung, so vereinfacht sich wegen A% = 8% (3.6) zu

Oy H = — 6 (3.9)
und (3.8) geht iiber in
Pt =—buts— 2 bt a b (3.10)
I=1

Eine Ndherung heisse «stark» oder «schwach», je nachdem fiir die 0' Naherung
gilt bt =£ 0% oder %, = &%,

Fiir starke Ndherungen wird der Formelapparat schon in der 1. Ndherung sehr
kompliziert. Doch lassen sich unsere Thesen vermittels der 1. schwachen Naherung
beweisen. Ich beschrianke daher die weitere Entwicklung auf diesen Fall.

In 0*" Ndherung haben wir also

g’ljﬂ = tlzu st =t (3.11)
und der metrische Tensor
G,gcr =8y ga:g gazo (312)
spezialisiert sich auf denjenigen der Lorentzwelt
Lope S BT, 0%, . (3-13)
Die allgemein durch
e 1 (ogh,  ogh, 2. 1 [ogh, Og"_:ﬂ_)
y-”uv = '_é— ( Ox.” + 70;;—“) i' ny — _2_ ( Oxnu = Tx” (3.14’1)
und
Pl = Vs s V= Mo (3.14,)

definierten Dreizeigersymbole und Feldstirken spezialisieren sich auf

i STy e=0. (3.15)
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Fiir die 1. Ndherung erhalten wir aus (3.5, 7, 10)
0, =eth bt Ogpt=—ety pt, . (3.16)

Aus der weiteren Entwicklung kann man unschwer entnehrﬁen, dass die 1. Nihe-
rung von der Tensoranalysis der Lorentzwelt beherrscht wird, was folgende Verein-
fachungen mit sich bringt:

1. Die vertikalen Zeigerverschiebungen werden von Tensor L ,, besorgt.

2. Fiir die kovariante Ableitung gelten die Regeln
0,0,=0,8,; 0,.L,, =0, (3.17)
Im Sinne von 1 ergibt sich z.B. |

0G s =8P ga+ Py -
Setzen wir also
Poo=%est Vs Piog="%oa—¥gas (3.18)
so folgt
6G’QG:2eu,Qﬂ; 0G'° = — 2egu?®. (3.19)

Die Berechnung der Variationen der Feldgrossen (3.14,) schliesslich fiihrt auf
folgende Formeln:

Syl =5 0.+ 0,800 =5 0,0+ 0,8:%) (3:20)

=5 0,87 = 0,55 0= (00— 0,0%).  (3.20)

Dabei bedeutet hier 0 , die kovariante Ableitung in bezug auf die Basis (3.11), also
mit den Dreizeigergrossen ¢ ; und die Terme y ;; | ; und  sind definiert durch die
Identitdten

P12 LSl gl SRt =R, (3.21)

Gemass den in der Lorentzwelt wirksamen Vereinfachungen 1 und 2 kénnen die
Koordinatenzeiger miihelos herauf- und heruntergezogen werden. Fiir diese Technik
empfiehlt sich daher die Einfithrung des Symbols

¥ (3.22)

§4. Die Feldgleichungen in erster Niherung

Die zu einer beliebigen Kombination (2.4) gehérigen Feldgleichungen der ersten
Naherung lauten symbolisch

3
SW o= 1AW

100

(4.1)
i—1i i
und unsere ndchste Aufgabe besteht darin, die expliziten Ausdriicke fiir die Terme

OW ,, zu ermitteln.
i
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Da, wie elementare Rechnungen zeigen, kovariante Ableitung 0 und «Variation» ¢
in erster Ndherung miteinander vertauschbar sind, ergeben sich aus der Tabelle (2.7)
folgende Ausdriicke:

W o =20, (01,%), (+.2)
dg;zoﬂw;n+wﬁxa, (4.2,)
W gy =L 0,0 (31 = 0,01, (42
Gestiitzt auf (3.20,) erhdlt man daraus
OW g =2 (0,40 P00 — 0,0 P00, (+.3)
W oo =5 (0007 bag= 0,0 b0 + 5 (0,07 D= 0,00, (43
OW o =5 Lo (0 0% p— 0% 0P p ) — 5 (0,0, —0,0%P,0). (43

3

Der zu beweisende Satz 1 bezieht sich auf die zu (2.11) gehorigen Naherungs-
gleichungen 1. Ordnung, die offenbar dquivalent sind mit dem System

oU ,,=0; oV, +4oV,, 4.4)
I i’ 1r
Die in ihm enthaltenen Terme gewinnen wir, indem wir die Ausdriicke (4.3) ent-
sprechend den Definitionen (1.1), (1.3) und (1.4) kombinieren und hierauf gemdss (2.8)
symmetrisieren.
Um die Ergebnisse iibersichtlich schreiben zu kénnen, empfiehlt es sich, folgende
Symbole einzufithren:

1. Die Vektoren

u, = 0’“14’9&; v, =0"%0 ,,- (4.5;)
2. Die Invariante
w=0°* O’ﬁu’aﬁ. (45,)
3. Den absolut kovarianten d’Alembertoperator
D=8, Oa—L’“ﬁO 0 g (4.55)

Dle Berechnung liefert dann fiir die Terme des Systems (4.4) folgende Ausdriicke:
0%+ 0,0, u
— (0,4 ,+0 % )0,

9
S
If

L@~ 0 W
57/,13553(5'”,@64“0,9”,5_0,(;7",9): (4.6,)

O,UUaQ - O,QU,G ]
+ OFQMIU__ O’G M’Q
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Fiir die Divergenzen der Feldvektoren # , und v , gelten, wie man leicht feststellt,
die Identitdten

0tu,=0,u=w, (4.7,)
0tv,=0,v°=0. (4.7,)
Dem System (4.4) koénnen wir jetzt folgende Gestalt geben:
O#,o— (0 ,4,+0,u,)+0,0,u+L (w—DOu=0 (4.8,)
Ov e+ 0,%,—0,4,=0. (4.8,)

Die u ,, reprasentieren das Gravitationsfeld, das in erster Naherung durch die
Gleichungen (4.8,) bestimmt ist. Aus (4.8,) folgt also unmittelbar Satz 1.

§5. Ableitungsfreie Invarianten

Das Auftreten des Tensors h’f ., ldsst unmittelbar erkennen, dass im Rahmen der
linearen Feldtheorie ableitungsfreie Invarianten existieren. Eine erste Serie wird
gegeben durch

I=he; ]zk:"_‘éhi‘?o‘cetc. (5.1)
1 2

Eine zweite Serie ergibt sich aus den Transversen geméss

J=h,; J=h,Ph;* et (5.2)
1 2

Da es in der quadratischen Feldtheorie derartige Invarianten nicht gibt, ist von
besonderem Interesse die Frage, was sich ergibt, wenn man etwa die Wirkungs-
funktion (2.10) durch eine ableitungsfreie Invariante | ergidnzt geméiss dem Ansatz

W=H+eH+H +A4732]. (5.3)
1 I
Die zugehorigen Feldgleichungen schreiben wir in Analogie zu (2.11) in der Gestalt
Uet+eU,,+U,)+42U ,,=0, (5.4))
I I 111 J
e(Vigo T Voo + A2V, =0. (5-4,)
I i J

Wie man aus der ersten Gleichung unmittelbar ersieht, muss 4 eine grosse Linge
sein, damit das Gravitationsfeld nicht unzuldssig gestort wird.

Die entsprechenden Ndherungsgleichungen 1. Ordnung kénnen wir in Analogie zu
(4.4) folgendermassen schreiben:

oU ,,=0 (5.5,)
I
6V}Qd+6V’Qd+a*2éV,M:O. (5.55)
T I 7
Dabei ist natiirlich
a=J)eA (5.6)

wiederum eine Linge.
Der Einfluss der Ergédnzung vermittels J ist also in erster Ndherung ganz in dem
Term 6V, enthalten.
T
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Die Analyse zeigt, dass dieser Einfluss in erster Naherung fiir alle Invarianten
abgesehen vom Vorzeichen im wesentlichen derselbe ist. Ich begniige mich daher mit
einer Detailangabe fiir den einfachsten Fall:

J =17 ergibt 0V, =ev (5.7)
1 J

’\QG *

Nach (4.6, und 4.6;) geht also (5.5,) fiir verschwindendes Gravitationsfeld {iber in
Ov,,+a2v,,=0. (5.8)

womit nun auch Satz 2 bewiesen ist.

Zur Erleichterung des Lesers fiige ich noch einige Hinweise tiber die Herleitung
von (5.7) hinzu.

Die zu einer beliebigen Wirkungsfunktion W gehoérigen Feldgleichungen lauten

0 oW o
P — —_—fe—_——— =5
" = o ) ~ G O 9
Der durch J bewirkte Zusatz in den Feldgleichungen ist also gegeben durch
- _2 00 J)
2R 4 = _ 42
A Q?l’p =— A4 Feda - (5.10)

Von der Tensordichte zum Tensor iibergehend haben wir also

0 0
Wyt = — gt (g{: o f,u — T (5.11)

zu berechnen. Da nun die J Funktionen der /%, bzw. &’ ;* sind, benétigt man zuerst
die Auflésungen von (3.1) bzw. (3.4) nach diesen Gréssen:

i o=to08 s =18, (5.12)
Hierauf ergeben sich die Formeln

0h)% 5
0g4:

A
0gt:,

=1,"% 04 = — tljyﬁ:};{g Z:o;’“_‘ (5.13)

mit deren Hilfe man fiir jedes J (5.11) berechnen kann. Speziell in unserem Falle
J = J, erhilt man B
Wik =tk kgt — T e

1

T
und weiter
",eo = k,oo‘ - J G,oa’
J1 1
und hieraus schliesslich
1
Kga=“2“(h,@a—h,o@) . (5.14)
J1
Nach (3.7) und (3.18) ist die 1. Ndherung dazu gegeben durch
51/,@0:3”,90- (5.7)

Ja
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§6. Schlussbemerkungen

Wie schon im Anschluss an die Gleichungen (1.6) erwdhnt wurde, kann der Tensor
v, .0 Nicht mit der elektrischen Feldstirke F ,, identifiziert werden. Ein weiteres
Argument in dieser Richtung ergibt sich aus der Tatsache, dass in unserer Theorie die
Komponenten v ,, die Rolle von Potentialen spielen. In anderen Worten: Die Er-
gianzung der Theorie gemdss Satz 1 liefert sicher keinen direkten Ersatz fiir die
Vakuumselektrodynamik.

Damit komme ich zuriick auf die Ergdnzung gemiss Satz 2. Die daselbst gegebene
Herleitung der Wellengleichungen (1.8) mag auf den ersten Blick phantastisch an-
muten. Ich méchte daher zum Schluss diejenigen Argumente zusammenstellen, welche
mir diese Herleitung als beinahe zwingend erscheinen lassen.

1. Die Annahme einer grossen Linge, ndmlich des Weltradius 4, ist nach dem
heutigen Stande der Kosmologie eine Notwendigkeit.

2. Die Einfithrung einer sehr kleinen reinen Zahl ¢ bei der Ausfilllung der anti-
symmetrischen Liicke ist unumgénglich, damit das Gravitationsfeld nicht unzuldssig
gestort wird.

3. Nachdem die Notwendigkeit der Vereinheitlichung anerkannt wird, ist die
Heranziehung ableitungsfreier Invarianten geboten, sobald solche zur Verfiigung
stehen.

4. Einzig dank der fundamentalen Identitit (2.9) ergibt sich bei dieser Ergédnzung
zwangsldufig eine kleine Linge

a=)eA. (6.1)

5. Da jede ableitungsfreie Invariante in erster Niherung bei verschwindendem
Gravitationsfeld Gleichungen vom Typus (1.8) liefert, bleibt als einzige Willkiir die
Wahl des Vorzeichens von [ in (1.7).

Die Auswahl einer besonders geeigneten Invarianten J bildet natiirlich eine Auf-
gabe der weiteren Entwicklung.
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