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Versuch einer konsistenten Theorie eines Spin-2-Mesons

von P. Minkowski
Seminar fiir theoretische Physik, ETH Ziirich

(7. VL. 66)

Summary, The electromagnetic interaction of a charged spin 2 meson is considered. Several
canonical transformations of both the meson- and photon-field lead to an interaction represen-
tation. The Hamiltonian expressed by the interaction picture fields is a noncovariant power series
in the charge. On the other hand the time-ordered products of the fields and their derivatives
contain noncovariant terms of a ®)(x) type, which give rise to higher order vertices compensating
the noncovariant contributions from the Hamiltonian. The latter is calculated in second order
approximation and reduced to a simple form making use of covariant contractions. The multipole
moments in nonrelativistic limit are obtained. The ‘minimal coupling’ admits a free parameter a
which corresponds to an anomalous magnetic moment

(e: charge, M: meson mass, S: meson spin).
x e _

M=—77_S

Problemstellung

Die grundlegende Arbeit von M. F1Erz und W. Paur1 [1]?) hat die Schwierigkeiten
gezeigt, die bei hoherem Spin infolge der auftretenden Nebenbedingungen entstehen.

P. A. M. Dirac [2] hat fiir ¢c-Zahlen den Hamiltonformalismus mit Nebenbedin-
gungen diskutiert. Es besteht eine weitgehende Analogie zwischen ¢-Zahl- und ¢g-Zahl-
Theorie, die uns erlauben wird, die Resultate der genannten Arbeiten zu verwenden.
Lediglich der Begriff der Nebenbedingung muss prazisiert werden. Wir wollen unter
einer Nebenbedingung nicht eine Operatoridentitit verstehen, sondern eine Funktion
der Felder, die auf einem geeigneten Teilraum des betrachteten linearen Raums mit
indefiniter Metrik verschwindet. Diese Definition der Nebenbedingung ist analeg der
von S. GUPTA [3] und K. BLEULER [4] eingefithrten Methode zur Behandlung der
Lorentzbedingung in einem Raum mit indefiniter Metrik.

Die Wechselwirkung von Teilchen mit Spin > 1 wurde in neuerer Zeit im allge-
meinen Rahmen kovarianter Streuamplituden untersucht, wobei nur Eigenschaften
benutzt wurden, die von einem Modell unabhingig sind. M. Jacos und G. C. WickK [5]
haben die Reduktion von Matrixelementen im Helizitdtsformalismus beschrieben.
K. Hepp [6] und D. WiLLiams [7] gaben Entwicklungen einer kovarianten analyti-

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 506.
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schen Funktion nach kovarianten Standardpolynomen an. D. ZwANZIGER [8] be-
schreibt die elektromagnetische Wechselwirkung von Teilchen mit Ruhmasse und
beliebigem Spin. Unabhingig von einem Modell definiert er in Anlehnung an V. BARG-
MANN, L. MicHEL und V. L. TELEGDI (9] ein «minimal coupling», welches einem
gyromagnetischen Verhiltnis g = 2 entspricht. Der universelle g-Faktor g = 2 hat
zur Folge, dass die Erwartungswerte von Spin und Impuls in einem konstanten dusse-
ren elektromagnetischen Feld denselben Bewegungsgleichungen gentigen. T. REGGE
[10] hat fiir ein spezielles magnetisches Moment den Wirkungsquerschnitt fiir
Coulombstreuung eines Spin 2 Mesons angegeben. Beim Ubergang zur Wechsel-
wirkungsdarstellung erhdlt REGGE einen invarianten Hamiltonoperator. Dieser
erzeugt eine Streumatrix, die zun4chst nicht lorentzinvariant ist, da die auftretenden
T-Produkte neben kovarianten auch nichtkovariante Ausdriicke enthalten, die von
einer raumartigen Oberfliche abhingen. H. UMEzZAWA und Y. TAkaHASHI [11, 12, 13]
haben gezeigt, dass H,;ns in der Wechselwirkungsdarstellung ebenfalls Oberflichen-
terme enthilt, welche sich gegen die nichtkovarianten Beitriage der 7-Produkte weg-
heben. Die Transformation von der Wechselwirkungs- in die Heisenbergdarstellung
wird durch einen unitdren Operator U(s) vermittelt, der unter ad hoc eingefithrten
Voraussetzungen konstruiert werden kann.

T. D. LEE und C. N. YANG [14] haben die elektromagnetische Wechselwirkung
eines Vektormesons mit beliebigem magnetischem Moment beschrieben. Dabei stellen
sie der kanonischen Behandlung der Bewegungsgleichungen ein Limitierungsverfah-
ren entgegen. Beide Methoden fithren zu den gleichen Ergebnissen. Es gelingt ihnen,
die genannten Kompensationen explizit abzugrenzen und zu zeigen, dass die Ab-
weichungen des Hamiltonoperators von — C;yr darauf zuriickgefiihrt werden kénnen,
dass die Reihenfolge von Feldoperatoren in einem Produkt nicht festgelegt ist, was zu
sogenannten «tadpoles» fithrt. Auch die Wechselwirkung eines Vektormesons mit
einem Leptonstrom erfiillt die Voraussetzungen von UMEZAWA und TAKAHASHI, was
direkt verifiziert werden kann. Mit Hilfe dieser Voraussetzungen ist es S. WEINBERG
[15] moglich, eine Briicke zur invarianten Stérungsrechnung zu schlagen und
Feynmanregeln fiir Teilchen mit beliebigem Spin anzugeben.

In dieser Arbeit soll versucht werden, die elektromagnetische Wechselwirkung
eines geladenen Spin-2-Mesons mit beliebigem magnetischem Moment als kanonische
Theorie konsistent zu behandeln. Es gelingt, den Hamiltonoperator als Potenzreihe
in e anzugeben und zugleich zur Wechselwirkungsdarstellung iiberzugehen. Darauf
wird gezeigt, dass aus der Konstruktion der Wechselwirkungsdarstellung die Voraus-
setzungen auf natiirliche Weise folgen, aus denen UMEzAwA und TAKAHASHI die
Reduktion von H;yr zu — L;yr hergeleitet haben.

Es zeigt sich, dass der kanonische Formalismus der Bestimmung des Hamilton-
operators und der S-Matrix in der Wechselwirkungsdarstellung geméss S. ToMONAGA
[16] und J. SCHWINGER [17] einerseits, der Konstruktion einer unitiaren und kausalen
S-Matrix nach E. C. G. STUCKELBERG [18, 19] anderseits dquivalent ist.

Die Methoden, mit denen hier anhand der elektromagnetischen Wechselwirkung
die Nebenbedingungen von Feldern zum Spin 2 behandelt werden, sind bei beliebigen
Kopplungen, etwa an einen Strom stark wechselwirkender Teilchen, anwendbar.
Hingegen bringt die Tatsache, dass es sich dabei um ein «nonderivative coupling»
handelt, keine wesentliche Vereinfachung.
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Inhaltsangabe

In einem ersten Abschnitt wird aus der Lagrangedichte des freien Mesons mit der
Masse M durch die Annahme eines «minimal coupling» die Lagrangedichte gewonnen,
welche die elektromagnetische Wechselwirkung beschreiben soll. Die dazugehérigen
Eulerschen Gleichungen haben 5 Nebenbedingungen zur Folge, welche die Beriih-
rungstransformation, die von der Lagrange- zur Hamiltondichte {iberfiihrt, ausarten
lassen.

Im zweiten Abschnitt wird die Lagrangefunktion durch eine neue ersetzt, so dass
die neuen Bewegungsgleichungen mit 5 Nebenbedingungen vertriglich sind und die
Ausartung der Berithrungstransformation aufgehoben wird. Setzt man die Neben-
bedingungen gleich 0, so erhilt man die alten Bewegungsgleichungen zuriick. Driicken
wir die Nebenbedingungen und ihre ersten Ableitungen nach der Zeit durch die
kanonischen Variablen aus und gehen wir zur Hamiltonfunktion iiber, so kénnen wir
die Sdtze von Dirac [2] iiber den Hamiltonformalismus mit Nebenbedingungen
beniitzen.

Der Hamiltonoperator ist nur modulo Nebenbedingungen erklirt, und wir be-
gniigen uns vorldufig mit einem beliebigen Reprisentanten. Daneben werden er-
zeugende Funktionale von kanonischen Transformationen angegeben.

Im dritten Abschnitt werden die Nebenbedingungen durch eine Reihe kanonischer
Transformationen auf die Form gebracht, welche den freien Gleichungen entspricht.
Dies ist der wichtigste und zugleich komplizierteste Teil der Reduktion von H;yr zu
— Lrnr. Aus der Konstruktion dieser Transformationen geht hervor, dass sie von der
Wechselwirkung unabhingig ist.

Haben die Nebenbedingungen einmal die gewiinschte Form, so wird im vierten
Abschnitt der Ubergang zur Wechselwirkungsdarstellung vollzogen, geleitet durch die
Verhiltnisse beim freien Meson. Es gelingt, einen ausgezeichneten Hamiltonoperator
zu finden, der mit allen Nebenbedingungen vertauscht, wodurch das Verschwinden
der letzteren aus entsprechenden Anfangsbedingungen folgt. Dabei erscheint der
Zustandsraum, der eine indefinite Metrik trigt, in ein direktes Produkt R, ® R, auf-
gespalten. Die Nebenbedingungen haben die Darstellung N = 1 ® N, Der physika-
lische Teilraum $p entspricht den Zustandsvektoren x ® £,, wobei x im Faktor R,
liegt und 2, den Vakuumzustand im Faktor R, bedeutet. §p ist ein Hilbertraum, in
welchem die Nebenbedingungen verschwinden.

Im fiinften Abschnitt wird H;y+ in erster und zweiter Niherung diskutiert. Fiir
den nichtrelativistischen Grenzfall werden die Multipolmomente berechnet. Das
anomale magnetische Moment

& (¢4 1
“==23m>

gibt zu keinen besonderen Schwierigkeiten Anlass, weshalb die Auszeichnung eines
bestimmten g-Faktors im Gegensatz zum Falle des Elektrons sich nicht aufdringt.
Alle Multipolmomente bis zur Ordnung 2* hiangen von den Parametern e, « ab, wes-
halb nur zwei beliebig gewdhlt werden kénnen. Die hoheren Momente verschwinden.
Die zweite Naherung gibt Anlass zu den genannten Kompensationen. Diese werden
mit Hilfe der entsprechenden Feynmangraphen klassifiziert und fiir einen Spezialfall
ausgerechnet.
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Im sechsten Abschnitt wird schliesslich der Zusammenhang mit den Arbeiten von
UMEzawA und TaAxkaHasHI [11, 12, 13] hergestellt. Der kanonische Formalismus
liefert auf natiirliche Weise die Oberflichenterme im Hamiltonoperator, welche die
nichtkovarianten Beitrige der zeitgeordneten Produkte kompensieren, wodurch

garantiert wird, dass die unitidre und kausale Transformation

ty
Ult,, t,) = T* exp [z f Conrl®) d4x]
t

die zeitliche Entwicklung der Zustdnde in der Wechselwirkungsdarstellung beschreibt,
die aus den Bewegungsgleichungen folgt. Dabei ist unter 7* die Operation der Zeit-

ordnung zu verstehen, welche nur kovariante Kontraktionen beriicksichtigt.

Bezeichnungen und Definitionen

Elektromagnetische Potentiale A 4

Dazu kanonisch konjugierte Impulse OR

Mesonfeld Vi = Vo

Dazu kanonisch konjugierte Impulse G¥HY = FH

Elektromagnetische Feldstiarken Foo=—Fgp=0,4,— 0,4,
0O —E, —E, —E,

ee”\ E,—B, 0 B,

Griechische Indizes laufen von 0 bis 3, lateinische von 1 bis 3.
Metrik

1
-1 0
Sw=lo -1
—1
«Minimal coupling»:
Impuls
€

fbu—’fbﬂ_?A.u
| . ; 1
g Oﬂ-—>Dﬂ—0ﬂ+zeﬂAﬂ

. z e
hz%——» ﬁzdﬂ—?Aﬂ

D ,: eichinvariante Ableitungen,

Bewegungsgleichungen einer Punktladung im elektromagnetischen Feld:
Mut = — % F*Y u, . : Ableitung nach der Eigenzeit
M u* = p* M : Masse des Teilchens

e

p‘uz_MC Y 2 pu




Vol. 39, 1966 Versuch einer konsistenten Theorie eines Spin-2-Mesons 481

L=2L,,+ Lyn+ Ling L : Lagrangedichte fiir elektromagnetisches Feld und
Materiefeld

Celm: *—'%FMVF#:'
oder mit Hilfe der Lorentzbedingung:

Cam=— 5 0,4,0" 4"

Wir wiahlen rationale Einheiten.
c=h=1

A. Bewegungsgleichungen, Nebenbedingungen

Der Darstellung von G. WENTZEL [20] folgend suchen wir eine Lagrangedichte fiir
das freie Meson der Masse M, aus deren Eulerschen Gleichungen die Nebenbedingun-
gen 0, " =0, p = g, = 0 folgen:

Cotar = 0°9**" 0,9, — 20" yj, 0, 9"
+ 0 y* 0"y, + 0" yE, 0"y — 0" y* 0,y
— M2 [p*"y,, — yp*y] (A.1)
Aus A.1 folgen die Gleichungen und Nebenbedingungen:
(O+M¥)y,, =0, 0,9"=0, p=0

Die Nebenbedingungen sind notwendig, damit keine Teilchen mit dem Spin 1 oder 0
auftreten. Sind sie erfiillt, so ist ausserdem die Energie positiv definit. Die Bedingun-
gen fiir yy;: 0,9"* = 0 sind analog der Divergenzfreiheit der Vektorfelder in einer
Theorie zum Spin 1.

0o Yoo + 0F w9 = 0 und 4,y + 37 = 0 zusammen mit ([ + M?) yy, = 0 fithren zu
der abgeleiteten Beziehung

0" o* Wik — guxty) — M2y, =0

Obschon diese Nebenbedingung den Anschein erweckt, nichtlokale Gréssen in die
Theorie zu bringen, ist dies wie wir sehen werden nicht der Fall. Auch wenn die
Wechselwirkung einsetzt, bleiben alle Komponenten von y,, zueinander lokal. Auf
eine genauere Charakterisierung der Nebenbedingungen werden wir unter B. noch
zuriickkommen. Der Ausdruck — 2 0%y¥%, 0,4°” ist fiir das freie Feld dquivalent
— (1 + o) 0"y, 0,9°” — (1 — «) 0%**” 0 ,,. Ersetzen wir 0, durch D, =0,+1e4,
nach dem Prinzip des «minimal coupling», so erhalten wir die folgende Lagrange-
dichte

Lle,a) = — 2 04" 0,4, + D¥y** Dy,
— (1 + o) D**y¥, D, 9" — (1 — o) Dy 9, D* 9’
+ D*"y* D'y, + D*#y%, D'y — D** y* D,y
— M2 (p**" y,, —p*y) . (A.2)

31 H.P.A. 39, 6 (1966)
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Fiir die elektromagnetischen Potentiale soll eine Lorentzbedingung (0,4%), | z >, =0
gelten fir alle physikalischen Zustinde |z >, (0,4“,: positiver Frequenzteil von
0,A").
Iz
L(e, @) gibt Anlass zu den Bewegungsgleichungen

1+ 1_ 0 o
Dzy}yv - == (DILLDQTPQV + Du ngp‘u,g) - =~ (Dh Dﬂwgv + D* Dvag)

2 2
1
o g,wv DGD'BQPGL/?_F*Z" (D/LDV+DVD;L)w_g/LVD2w+M2 (Qp,uv—'g,uvw) =0
nA—p— g, (A.3)

Aus A.3 folgen die Nebenbedingungen:
N,e,a) = D"y, — Dy —n(e,0) =0 ,=0,1,2,3 Nyle,x) =9 — nyle,t) =0

3+a 3—a
5 F‘“QDQQ,UM — g F2 D‘”y)M
ie l-—uo . 1+o .
n,= o | = 5% (0F p, + 2 i,

3 0 1 .
e E_FVDQ.IP——_Z_?VVJ

[ie(1+a) (0F*9) Dy, — 1% @FFy,, |

+ica F¢D, Dy, —ie(l —a) 2 D'y,

. . 3 e ..
+iea(0") p,,+ 5 F” F,,y+ie? Dy (A.4)

—

Fiir ¢ = 0 erhilt man aus A.3 und A.4 die Gleichungen des freien Mesonfeldes zuriick:

0 w,uv - (Oﬂ OQQPQV + 01} ng,ug) + gpw 0* Oﬁq}aﬂ
+0,0,9—g,, Op+ M (yp,, — g,y) =0
04*=0 04 =0, p=0 (A.5)

Aus A.5 folgt schliesslich (O + M?) y,, = 0.

B. Kanonischer Formalismus, kanonische Transformationen,
Hamiltonoperator

Die zu L(e, «) gehérende Legendretransformation ist auf Grund der Neben-
bedingungen ausgeartet. Diese Ausartung wird aufgehoben, wenn wir £ durch £’

ersetzen.
9

C'le,w) = Lle,a) + ) ¢, N¥N, (B.1)

S, t=0

(Ng, ..., Ng) = (0gNNy, ..., 06N ), ¢, = c¥, c;;: Konstante.
Es ist konsistent, die Eulerschen Gleichungen zu L' den Nebenbedingungen
(Ny, ..., Ng) = 0 zu unterwerfen, denn fiir (N,, ..., Ny) = 0 gehen die Gleichungen

von £’ in diejenigen von L iiber, und aus den letzteren folgt wiederum (N, ..., Ng) = 0.
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Wir bestimmen den zu £’ gehérenden Hamiltonoperator #'. Die Feldery,,, #**f und
A,, o’ seien kanonisch quantisiert.

[9,,(0), $**P() oo = 50200 (x — ) [A,(x), 0" ¥)]po_ o = 18709 (x — y) (B.2)
alle andern Kommutatoren = 0
o __1 o 8B B sa
éy'f = (6“ or + au 0%)
Wir 16sen die Variationsgleichungen:
O [ dt d®x (§**" y,, + ¥, ¢ — W —»"N,)=0.

Die »™ sind Lagrangesche Multiplikatoren, die es gestatten, ohne Berticksichtigung
der Nebenbedingungen zu variieren.

Wir fassen (,,, 4,,, 4,, w,) zu einem Vektor X, zusammen. Es ergeben sich die
folgenden kanonischen Gleichungen:

9
o~ [ & w [H’u‘? [ @ N, X,00 =~ 0 X,00)
t m=0y0

N,=0%k=0,1,...,9 (B.3)

In B.3 ist die Hamiltonfunktion nicht eindeutig bestimmt. Andern wir ¥ um
Vielfache der Nebenbedingungen:

?F’=fn'+32:lmlv

A™: beliebige Funktionen der Felder
so erhalten wir die zu B.3 dquivalenten Gleichungen

{H”+Zfd3x ~ N, X0)| = —i0,X,0) Ne=0 H'= [ W

t

Der lineare Raum R, in welchem die Vertauschungsrelationen B.2 dargestellt werden,
tragt eine indefinite Metrik; %, ist der beziiglich dieser Metrik zu y,, konjugierte
Operator. Wegen der Vertauschungsrelationen der Nebenbedingungen untereinander,
kénnen sie nicht identisch verschwinden. Es wird sich zeigen, dass R in ein direktes
Produkt R, ® R, zerfillt, wobei die Nebenbedingungen N, =1 @ N auf den
Faktorraum R; nicht einwirken. Der physikalische Teilraum §,, den wir betrachten
wollen, besteht aus den Zustandsvektoren | Z >, = [ Z; ® 0, >, wo 2, der Vakuum-
zustand im Faktorraum R, ist. §, ist ein Hilbertraum.

Fiir | Z », verschwinden die Nebenbedingungen, sobald ¢ £2,, N@, 2, > = 0 ist:

(Z'|Ng| 275y =<Z1 @ 2,1 @ NP | Z" ® Qy> = <Z; | Z1>1 <23 | NP | 290, =0.
Das hier verwendete Skalarprodukt entspricht der indefiniten Metrik:
(Zy @ Zy | 2y @ Zyp = K2y @ Zy;m; Zy @ Zp> .

n: hermitischer Operator, € > positiv definites Skalarprodukt in R. Wenn wir
N, =0 in der oben genannten Weise verstehen, lassen sich die Ergebnisse von
DirAc [2] auch auf die Gleichungen B.3 anwenden.
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Es existiert unter den Operatoren #' + 2’4" N,, (A": beliebige Funktionen der
Felder) ein ausgezeichneter Hamiltonoperator ¥, der mit allen Nebenbedingungen
vertauschbar ist.

(H,NJ=0 £=0,1,...,9

Dann kénnen die Gleichungen B.3 reduziert werden zu

H= [ @3 [HX,00]=-i0X,0) (B4

Die Nebenbedingungen folgen aus den entsprechenden Anfangsbedingungen
N, (¢t =0) = 0. # wird in D bestimmt werden.

Zunichst wihlen wir einen Reprisentanten der Operatoren ' + 2'A” N, aus.
Es geniigt deshalb, X, modulo Nebenbedingungen anzugeben, was mit m(N) abge-
kiirzt wird. Um # zu bestimmen, wird es notig sein, kanonische Transformationen
auszufiithren, d.h. solche, bei denen die Vertauschungsrelationen B.2 nicht gedndert
werden. Eine solche Transformation wird durch ein Funktional S erzeugt. Fiir S gibt
es u.a. folgende Moglichkeiten:

o S5,=Sp ¢, A, o)

S/

T S, =S, 4,4 o
Fir Slgilt:y)’——w:%; ¢— ¢ = 551
Fir Sy ¢ —p = ;ff D¢ = 6‘;?,
ausfiihrlich geschrieben: %v( ) — qplw( x) = (5¢u§i1’(;)
entsprechende Formeln gelten fiir 4" — 4, o — o'.
K(X,) = f Ha%x + 0, S; (B.5)

Dabei bedeutet 8/d¢#”*’(x) die Funktionalableitung nach ¢#**’(x). Wir verfiigen nun
iiber die Konstanten ¢,, in B 1, indem wir setzen

C' =L+ (Dyy* —n)) (Dew — ny)
+ (D** gk, — Df y* — nf) x (Dy*' — Dy — w) (B.6)
(1 = Doy
Wenn wir mit ¢ v die beziiglich £’ zu yp*#” konjugierten Impulse bezeichnen, folgt
O, = L', Op*+”
Oboo = Doy — 19 — ot Doy g
Ody; = D?py; — Dy — m; — 1;1 D¥yy; + ; Dy, ‘1‘% D apgo

n 1= ",
O, = Dy (Wik — ik ¥n) — —fo_ (Dor + Dywos) + 8ix D" mo m(N) (B-7)
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Kanonische Hilfstransformation S

Eine kanonische Transformation (©S transformiert die Nebenbedingungen
Dyp — ng = 0 und D"y, — D;p — n; = 0 auf die Form ¢y = 0, ¢y; = 0.

0S = OS(y, ¢', 4, 0) = [ @ s

1+o
2

; 3 1
Os = (y*0 + y*i0) [_‘ D¥y,; + 2 Dy, + ‘;" Dz"‘l’oo] + h. c. (B.8)

(h.c.: hermitisch konjugiert).
Es gelten die Transformationsgleichungen

(0)9500 - ¢’00 = -« Dk'l)ko

1+ 1 "
(0)¢05_¢05=“ za Dk‘Pki‘f‘?Diwn+%Di"Poo

1+
(0}¢ik — = Ta (Dpor + Diywos) — i Do
Ow, —w;=[— 1 +a)iey,+reg v, +1exg;,Po v*°* + h.c.
Oy = w, (B.9)

¥,, und 4, bleiben unverdndert. Wir beachten, dass auch fiir e = 0, 05 (e = 0)
eine Transformation der ©¢ ,, bewirkt. Wir haben somit 5 Nebenbedingungen durch
die kanonischen Variablen ausgedriickt:

Nidy;=0<«— D”?P,ui_Di‘P“”izo
Nywy—n,=0

Ny oo=0 «—> Dy — ny=0
Es gilt:
bir = Do Wi — ix W) — (DiWor + Do) + 2 ik D™y

H 1 " n
DOI‘/)nz - ?Sﬁn +2.8 Yno
1 "
Dy = b — > ik ¢n + Doy + Dy (B.10)

Dty o — Doy — my geht tiber in 1/2 ¢, — D™,y — 1. Die Gleichungen A.3 fiir
Y, , liefern 4 weitere Nebenbedingungen. So erhalten wir die 10 Nebenbedingungen:

Ny: %%ﬁg_pnwno*”o:o*—“’D#‘Fﬂo—Dquﬂnozo
Nis s $o; =0 o D'u‘/’,ui —Dyp—n;=0
Ny p—mn=0

Ngt DPD* (i — gin ¥) — MPy, +1ea OF% 9y, =0

T———)- 00N0= O
Ng 28 Mz'%i - 0k¢ki — 9 =0<«— 00N1,2}3 =0

2
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pile,ox) =1eA* Py, — L;“ OFOk (y, ; — gr:%,) + 1.83_;;1 OF; g

1ea lea

g Vel g Py =

OF0kq (B.11a)

Dabei miissen wir beachten, dass OF,; = 0,4, + Yw,
0,4, + o, unterscheidet.
Die Lorentzbedingung (w, — 0%4,), | Z >, = 0 hat sich unter )S nicht gedndert.
In B.11 kommen die Funktionen #,, #,, p; vor. Die Argumente dieser Funktionen
enthalten auch yp,,, Oy, ,. Diese kénnen mit Hilfe von

D“‘Pw_Du'P“”u:O p—ng=0 My, — 0", —p;=0

durch vy;, ¥, bix, ¢i%, A, o, und riumlichen Ableitungen davon ausgedriickt
werden. Durch sukzessives Ersetzen der obigen Argumente erhalten wir » ,, n,, $; als
Potenzreihen in e, welche nur noch von v, ,, v, é:x, ¢%, A,, w, abhdngen.

Ny, ..., Ny zerfallen in zwei Gruppen: (N; .3, N4, Ng o4, Ng) und (Ny, Ny).

Die ersten acht Nebenbedingungen kénnen dazu verwendet werden, y,, m(N) als
abhéingige Grossen durch (y;;, ¢, 4,, w,) auszudriicken, so wie beim Vektormeson
Uy = Uy(U,, Uy, Uy, 4,, »,) als abhingige Grosse behandelt werden kann (U ,:
Feldoperatoren des Vektormesons).

Ny, N; kénnen dazu dienen, die Spuren von ;,, ¢;, zu eliminieren

ist, und sich von F,; =

1 . n
Vik = Xix + 3 Eix¥us Xn=10
1 ne m
Gir = Mix + 3 Bik $u My =0
Ny, N kénnen auf die Form gebracht werden
M2, .
Ny 00 0% (w; — gix ¥h) — M2y, +f=0 (B.12)
Daraus folgt
2
2 Y .
('3’*4 - Mz) Yo=— 000y, +f
f=21e A% 0" (y; — gux %) + 1 ¢ 0" A* (1 — .5 ¥))
— AT A* (y,, — g ¥)) +1 e OF %y, ,
k=ieM2Ary, o+ 0, 9" + M2n, (B.12a)

(- +5) da = 0F 0 o+ &

¥y, ¢, konnen als Raumintegrale dargestellt werden

Yale) = [ 01(x, ¥) [= 0,4 0yx 2/*(¥) + f(7)] A

$nx) = [0alx,y) [0,; 0,5 pi*(¥) +k(¥)] d®
01, 02 sind geeignet gewihlte Funktionen von x und y . Dabei scheint es, dass die Felder
nichtlokalen Charakter bekommen. Diese Schwierigkeit besteht auch fiir ¢ = 0,
wobei aber das freie Feld keineswegs nichtlokal ist. Wir werden die in B.12 sich auf-

dringende Elimination nicht ausfithren, sondern unter C die Nebenbedingungen so
umformen, dass sie mit denjenigen fiir ¢ = 0 iibereinstimmen.
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Der Hamiltonoperator hat modulo N, die Form:

H = Og* " 0gp ,, + 0gp*” O, + Ow® AQ — L' m(N)
W=y 0,45 O 0, + 4%~ b4
— 2[(0'gf) ¥°F + h.c.] + 2 MPy*0i g,
— ORpX" Oyl — O™p*"™ Oy, + 2(0%py) (0,9™)
+ M2 (pr” y— p*r )
+21¢ A7 [d¥ p°* —h.c]+ie (3 — o) FiryE, v,
e (1= ) Frilyhyf) +ie (L+«) Fog [yl "' — hoc)
iedy(ph % — hoc) —ie(l—a) Fy, [p*0%yl — hc]
—21e A% [y¥ 0, 9" — h.c.] + i e A% [y*" 0y, — h.c.]
+ie A* [p*"" O,,, — h.cC.]
(00, — ) (V0 — ) — e AF A, "yl

— AT A, yFiky, + 22 AR Arykiy, m(N) (B.13)

C. Transformation der Nebenbedingungen
Das Ziel dieses Abschnittes ist es, durch kanonische Transformationen zu neuen

Grossen X, iiberzugehen, so dass die Nebenbedingungen N, ..., Ny durch X, aus-
gedriickt die gleiche Gestalt haben wie diejenigen des freien Feldes [N, (e = 0)],
wobei die Lorentzbedingung unverindert bleibt.
Wy — 0% Ay «<—> wy — 0% 4

Dies hat zwei Griinde: Erstens ist eine Wechselwirkungsdarstellung nur moglich, falls
die Nebenbedingungen diejenigen des freien Feldes sind. Zweitens wird es in D ge-
lingen, die ¥™ in B.3 zu bestimmen, wobei die freie Form der Nebenbedingungen
wesentlich ist.

Die auftretenden kanonischen Transformationen kénnen nur rekursiv als Potenz-
reihe in e angegeben werden. Wir zeigen zuerst, dass Ny in L Schritten auf die ge-
wiinschte Form gebracht werden kann, wenn Terme hoherer als L-ter Ordnung ver-
nachldssigt werden. Dann geniigt ein Schritt, um N, zu transformieren und ein
weiterer, um Ny 4 3, Ny, Ng 7 5, Ny umzuwandeln.

Die Transformationen erfolgen nach dem Schema

2__ —
N i 0n0m, =0 gt 0nomd,, k=0
Nyssi o =0 > ;=0
N, P = «—>p—n,=0

Ny 0" 0% @ik"gika:) _M2;P-Z=O*"* 07 0% (Wix —8ik¥h)
— My, +f=0
Ng 28 MZ?”O:‘ — 0%, = 0 «—> M? Yoi — 0%, — ;=0
Nyt =10 > gy =10 (€:1)
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a) Reduktion von Ny
0F 0% (i — i W) — M2y, + 2 e* Fy
k=1

!

0 0% [Dly,, — gup Pyl — M2 Dy - 2 ek M F

kL1
Wir beweisen die Behauptung, dass die Transformation mdéglich ist, durch Induktion
nach L. Fir L = 0 hat Ny die gewiinschte Gestalt, so dass die Induktion fiir L =0
verankert ist. Es seien also N,, N, auf die Form gebracht:
Ng: 0 0% [E=Vy,, — g E V] — M2 (E-Dy
+ eLE-VF, 4 1 EDE 4

Mz , (L—-1) (L-l)
NO: [_?gszOz 0k:| ¢zk L 1) K +6 Kz+ (C2)

Wir wiéhlen als erzeugendes Funktional der kanonischen Transformation
S = WS [L-Dg, Liy, L=V, LA] = [ @3 D
L—
Bl = (314{[&2 gik _ i Ok]( Y ;“k} P+ h.c.

2
P = P[L-1g Dy L-1g L4] (C.3)
S erzeugt modulo N, die Transformation
B M2 —" SP
Wy — E-Dy,, = - [7“ gir — 0; ok} P gl =iey "(S'(WE
pelrra-vg, O ree )
! L -1) o* ik
or oP*
E-2id. . — (B, — JLAYE—T1) Jo* Lyl (L~Y . 927 4 iie
bir Py = & K; D v ik +e K, D gr iz +elt2 (L))
épP 6P*
L _(L=1 — pL+1(L-1) * L41(L—1 o L4-2
DA, A, = Lt =D K] SE 2 + gFHLIL-D K - SE-1 +elt2(...)
6P 6P
L—1 (L — pL+1(L—1 * s L+1(L—1 _ L+2
C-Ng, — Dy, = eL+1 C-1) K} T 4 + gL+ 'K, S0 (...)
By, = E=Uy,,, By, = E-Nd,, m(N) (C.4)

Unter K, 6 P*[dy*i¥ ist eine symbolische Schreibweise verstanden. Hingt z. B. P*
auch von 0,3y}, ab, so enthilt K, P*/dy*i*¥ den Term — 0,, {K, dP*[d 0,p**}.

Die Glieder der Ordnung L + 1, ... brauchen wir nicht explizit zu kennen.
Dadurch wird C.4 reduziert zu

MZ
By, — E=Vyp,, — eb (S gie+ 0; ) P+ 1 BT,

L=, — D = eb+t1 @,
B4, - N4 = elt1 g
LNy, — By, = eL+1 (D)

(]

'Po = (= Vo, L)Qso (L~ 1)¢0 m(N) (C.5)
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Dabei ist P noch véllig willkiirlich. Ersetzen wir =1y in N, gemdiss C.5 so folgt
Ng: 0F 0% (D, — g, O] — M2 Ly f oL (L-DF, (=1 L=y =14 (L))
+e L3M P (g, C=1 (D4 L) 4+ L+1[ .. ]=0 (C.6)

Wir sehen, dass die Argumente von (L—=1F; und P nicht iibereinstimmen. Aber
der Unterschied zwischen C-1F, (Dy, L-1¢, (D4, (L-1 ) und C—1F;(L-1y, L-1)¢,
(L=1) 4, L=1) ) ist von der Ordnung e, so dass sich dieser Unterschied erst in hoheren
Ordnungen als L auswirkt. Wir wihlen deshalb

P(Bpy BNy, ) = — 3 ]2W4 EDEL (B, BV, -00) (C.7)

Dadurch gehen die Nebenbedingungen N,, Ny tiber in:

NS: 0t 0k ((L)'q)ik — in (L)w;:’) — M2 (L)w: + eL+1 (L)FL+1 + el+2 (L)FL-]-Z +...=0
M2 . ,
Ny; [”é‘ gk — 0 O8] W, = DK, + WKy + ... q.e.d. (C.8)

b) Reduktion von N,
(_Mzi gik i Ok) @O, = O
i
M2 .
(_2_ gik _ i 0;:) L+1)g,, =0
Wir vernachlissigen jetzt Terme der Ordnung L + 1, ... Es gilt
Ng: 0° 0% (D, — g5 D) — M2 Byl = 0
Wir wihlen das erzeugende Funktional
L+ S = L+ § LDy, D LD 4, D)  EH+DS = [ dog E+Ds
(4105 — {07 0% (14 gl — g, E+yR") — MRE4DYI} Q4 B, (C)
Als neue Nebenbedingung N; setzen wir
Ny: 06 0% (B0, — gy G-+yl) — M2 00y = 0 (€10

Dies hat zur Folge, dass L+, = Ly, ist m(N), woraus man ersieht, dass C.10
konsistent ist.
(L+1) S erzeugt die Transformation:

EtDy, = By,
By — LG = {0; 0p + gix (4 — M?)} Q
@ty g =g,
(L)a)g = (L+1)a)g
(L+1)1p = (L)TPO
DO, = C+1g,  m(N) (C.11)
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Ersetzen wir in Ny W¢,, durch Z+1¢,,, so folgt
(A;m gik — Qi ()k) C+1 g, — % M Q (L+Dy, D, L+ 4, (Dgy)
+ (DR (D, O, 04, D)
Wegen C.11 sind die Argumente von Q und 'k modulo N, gleich. Deshalb wihlen wir
Q= = o W (i, Wy A, Be ) (C.12)

QJ

c) Reduktion von Ny 44, Ny, Ng 74, Ny
(L'H)TP e (L+1)n4 = () «—> (L+2)w = ()
M2 E+Y) gy — gk EAD G Bt p = ) e M2 E+gy — Ok T2, —

Sel
(L42)§ = (L+2) S (L+2) LDy Li2)g (EL+D) 4)

(L+2) § — f d3x (L+2) g

(L+2)s = (L+Ag% T¥ L h.c, (C.13)
Wie in b) setzen wir als neue Nebenbedingungen
gy, = 0

Daraus folgt F+2d,, = T+, m(N).
L+2)S erzeugt die Transformation:

(L+2)1P (L+1) 1/)00 = T,

(L+°)1Pm (L+1) T/’Oz’ =T,

(L+2)1p i = (L-l-l)qpik

424 —wig

(L+2)4 _ (L+1)AQ

42y — g m(N) (C.14)

Setzen wir Ty = — L+Uy,
1
T;=— 3“0

so erfiillen die “*+2y,  die Nebenbedingungen
L2y 4 L2y — 0
L TR

Dabei haben wir die Nebenbedingungen N, ..., Ny, auf die gewiinschte Form
gebracht.

X, = (Lt2y, L2)g L42) 4, (L+2)g)
2 pra—
Nyt o g — 0n0m g, = 0
Ny o3 ¢ﬂi =
N4: g} — 0
Ny: 0% 0% @ik - gik@z) - Mz@: =0
N 78 Mz%i —0%¢; =0
Ny: gy =0 (C.15)
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In den Funktionen P, Q, T, kommen w; und 4, nur in der eichinvarianten Kombina-
tion Fy; = 0,4, + w; vor. Daraus folgt

A': Ai = §F0i ? Wy — Wy = — 0! SEF0i
0' (A; — A4;) — () — w) = 0

T

v

Damit haben wir gezeigt, dass die Lorentzbedingung durch die kanonischen Trans-

formationen ihre Gestalt nicht dndert.

Berechnung der Transformationen bis zur zweiten Ndherung

Das unter a), b), c) vorgelegte Programm fithren wir bis zur zweiten Ordnung in e
durch. Wir geben nur die Resultate der etwas verwickelten Rechnung:

Prin —Vnn = — € 505 (5 &mn — O 0,) Falp, 6, 4, )

N - —
— 5 -y d—¢ 4,0 +F,

— &® 3]2\44 (MTz Bmn — Om On)
— 07 0k (IT;, —g;, IT7) + M2 1T}
&I,

¢mn - gmn: 3 M4 € [0 T B (A - MZ)] Kl()?oa)
~ D G-vd-4 4w

2 20, 0, + gun (4 — MH] | +

T3 M*

N

(2 gzkédzok)@k |
+eo,, (C.16)
MZ@M—TPM):_E(PAJV 3 0; K)+62["-]

= 210
A~ 4= 20 K —hel+ e[ ]
g — By = — €& 2% [0, (*9% K;) — h.c.]

2 210 IZW’“( * — gy K, — h.c.
3 l~ {(@kzﬁgkqun 1}+h.C.

9o, wird im weiteren nur in erster Niherung gebraucht. Es bedeuten F,, K, I1,,,,
0,.,, P; das Folgende:

F,=1 [2 A* o' (%k — ik @:) + (0t 4¥) @ik — ik %—UZ) + o FOk‘POk]
2 M2 A Yoo + (0 Zk) aik — 1+« Fox O
G 00 (Fom @_Uom) + & F'"k ok 1;mﬂ - O‘(Oi FOk) Ekz‘

(C.16a)

mn?
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I, = — i 53 [0,(Ky Fo,) + 0,(Ky Fy,)]

@mn:z? T4 _
+ 2 gmn ()z(AZ Kl)
T gmn(o'i Al) Kl N
o e 1 -, - 1-— = s ¥, = e
Py=1 [Ak¢“_ Za FUk‘Pki"‘TmFoﬂPg + 20C FfWOk] (C.17)

Zum Schluss dieses Abschnitts transformieren wir den Hamiltonoperator ' auf die
Felder X, .

Bei der Rechnung stellt sich heraus, dass wir ,,, — Y, .;Imn — ¢,,, vereinfachen

kénnen, da die Terme
2 M2
— g2 [

BT *Z*gmn—omon] (...) und

2
— & 3 M [Gm On + Eon (A - IWZ)] ( )
in der betrachteten Niherung keine Anderung von ¥ bewirken. Aus dem gleichen

Grunde brauchen wir K, und F, fiir die zweite Naherung nicht zu kennen.

r 1 PN 1 g a1 _z' r 1 T
W= =g oo+ 5 FA 04, + $* 154y — 5 ¢ 4
2 MOy, — 2 (0% p°F + b
— 0% E:}:W Okaz - aka*m" 01:%“: + 2 Ok‘;;fi 05"”.

Tkn W

+ M2 g, — 9, Y)

+ 246 A [§5 3% — hoc] + (3 — o) i e F* pf o,
—de(l —a) Frigk ul+ie(l—a) Fo, [p*°% 3" — h.c.]
tiedy [k dik—hoc]+ie(l+ o) Fop 9k 9 —hoc]
—24¢A*pr, 0, 9" —h.c]+1e A% [P 00 — h.c.]

+ie A [p*mn 9, — h.c.)

1 (1 — o) (%90 — 9" o)) ] [(1 — &) (p*%i gyt —h.c) ]

+ - €2 _ L o
z — (1 + o) (p*F g, — 59" | | — (L + o) (w5r9'F—h.c)

DA - A,

+2R2 A, A,y kit 2 h m(N) (C.18)
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h=— S 3‘?144 [(0; P¥) K, + h.c.]
LT g sz [(2 M2+ 4) F¥ F,
= 3M4 (04 FT) Ky + h.c] + [V K, + h.c.]
R (G YNEECEREYS
Vee - 20 204 0% (d,og) + 2 (4 — 1) k_%
— 01 OM(Ao i) — (4 — M) (4, %))
(=0 Fo i+ (14 9) For o 1
oo g | T 8 Fon ¥ — Ao it 20: (47 i)

+ 2 Ai 0™ P — Eix 0-(A" 9))
| = A0, Y — 0,(A7 ;) — A7 0,9, (C.19)

D. Wechselwirkungsdarstellung
In diesem Abschnitt werden wir, ausgehend von den Nebenbedingungen C.15 die
Felder y,,,, ;6;“, aufspalten in g_up ¢p,“, und y,_ P, ¢1 p,, SO dass Wy 9;6;) mit
(w1_p, g75-1_ p) vertauschen:

a) @ g "PP’¢P 1:”1 P’¢1 P)
b) 7P1 P’¢1 ?) (szN Zﬂm )

c) ¢P ‘Pl P 9’51 Py x"—" =1

Diese Aufspaltung ist davon unabhanglg, ob (v, g{)) freie Felder sind oder nicht. Aus
(vp, ¢P, A, ) X und H'(X,) m(N) werden wir den Hamiltonoperator X)) =

W+ 2 Am N, bestimmen, welcher mit den Nebenbedingungen N, ..., N, ver-
m=0

tauscht. Dann erst ist es mdoglich, zur Wechselwirkungsdarstellung iiberzugehen.

Zuerst sel kurz das bisher Erreichte zusammengefasst: wir sind von den Feldern
Wups bups 4g, ®) = X, die den Nebenbedingungen B.11 gentigen und #'(X,) in
B.13 iibergegangen zu X und

= 2 e, (Vgl. C.18)
_ L=o
X, geniigen den Nebenbedingungen
M2 - —
NO: T2 ¢:;'_... 0m0n¢nm: 0

Ny o5 $g; = 0
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Ny: 0t 0% @ik - gik@;) — M %’; =0
N6,7,83 M? 1_001' — 0% ¢ki =0
Ny: ¢’00 =0
Wy — 0k A, =0 | (C.15)

Die Bewegungsgleichungen lauten in den neuen Variablen

H’ :fd3x W(X,)

9 — i
[H'+ [ XN, X6)| = —i0,X,0)
: m=0 .
N,=0 m=0,1,...,9 (D.1)

Die kanonischen Vertauschungsrelationen sind unverdndert geblieben

[9,,(®), $**P ()]0 e = 1 2660 (& — )
(A, (%), @ 3)]go_po = 66709 (x — ) (D.2)

Alle andern Kommutatoren sind 0.

Zerlegung von (w - ;S—ﬂ o) mat Hilfe des Projektionsoperators fiir freie Felder
Wir betrachten fiir einen Moment Felder (), ¢{,, die fiir £ =0 mit (g, &;w)

wyr Puvo
zusammenfallen und den freien Gleichungen geniigen. Dann gilt fiir ¢!/, gemiss B.10

¢ = 00 [w} — gix pP™) — (0: 0% + 0, 9l)) + 2 g5 0™ 9
1
Ogpih = ¢l — o Eik ¢ + 0l + 0l m(N) (D.3)

Die Nebenbedingungen entsprechen 0 4#* = 0, ! = 0 genau deshalb, weil sie die
Form der freien Nebenbedingungen fiir = 0 haben. Wir kénnen L' = L+ 2'¢c,, N¥ N,
so wihlen, dass die ¢!/, die Klein-Gordon Gleichung erfiillen.

(O+ M) !, =0

Diese Gleichungen gelten nicht nur modulo N,.
Die kanonischen Vertauschungsrelationen

), $2O%0) )00 = 1638 89 (5 — )
kénnen integriert werden.
[yl (x) , g*N=B(y)] =658 A (x — v, M?) (D.4)

Wir sehen aus D.4, dass der Hilbertraum R eine indefinite Metrik tragt?). Fiir
freie Tensorfelder beliebiger Stufe hat M. F1erz [21] einen Projektionsoperator ange-

2) Vgl. S. Gurra [3], K. BLEULER [4].
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geben, der aus Tensoren, die der Klein-Gordon Gleichung gentigen, die irreduziblen
Anteile ausprojiziert. Wir setzen

1 1 y
Yiur = — 5 [yl + &yl — 5 4, d*Fyp (D.5)

es gilt

und

1 f f
— 5 (@ + & Ys) = Vo

d“ﬁipg)aﬁ =0

D.5 lautet in Matrixschreibweise

v, (f) = Py(f); P2=P (DD.6)
Ausserdem gilt

(1~ Py =0  m(N)

I

9
(1 —P)yph =4l , = 2 o™ N, (D.7)
. m=0

o™: Differentialoperator mit konstanten Koeffizienten.
Aus D .4 folgt

WD, "% =14 [Py, Py¥] =i PA [PyD, (1 P)y*)] =0 (D.8)
und

[wg)(x), N, (¥]=0 m=0,...,9 (D.9)

Jetzt betrachten wir y{),,, #¥,, zur Zeit { = 0. In P kommen 4 Ableitungen vor.

Die Ableitungen nach der Zeit miissen ersetzt werden. Dies geschieht folgendermassen:
0y < Pu» entsprechend D.3 und C.15 05 =4 — M?; 0} = (4 — M?) 0,; 05 =

(4 — M2)2. (), ¢1)) definieren fiir £ = 0 (y, , 6,) und (Pr_p b1_p) = @ — Pp, ¢ — B5)-
Es gilt [p, f_p] = 0 und auf Grund von D.9

(@ 6,), Nyl =0 m=0,1,...,9)
@rp> b1y) = (XV N, S o0 N,) (D.10)

(o7, o' Differentialoperatoren mit konstanten Koeffizienten)

Bestimmung des ausgezeichneten Hamiltonoperators

9
H—W+ 3 inN,
m=0
Wir setzen
#(@yv’ ¢ﬂV’AQ’ag) = y’(al’ﬂw gbp B2 Ag’ag) (Dll)
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Aus D.10 folgen die gewiinschten Eigenschaften von ¥:
9
H=W+D N, [¥NJ=0 k=0,1,..,9 (D.12)
m=0

D.1 lautet durch W ausgedriickt

H= [ @3 [H X)) -—i0,X,0) [HN)=—i0N,—0 (D13

Es sei nochmals betont, dass obschon y, tiber das freie Feld gefunden wurde, die
Projektion fiir £ = 0 unabhingig ist von der Bewegungsgleichung ([0 + M?) ") = 0
und durch die Nebenbedingungen N, allein bestimmt wird. Dabei spielt die Tatsache,
dass die Nebenbedingungen die freie Form haben, eine entscheidende Rolle.

Wir erhalten 3, indem wir in %’ als Argumente nicht (y, ¢) sondern (,, ¢_p) ein-
setzen.

H = Hfe, o) :Eg"fd?*x q‘[;z@p:gp,ia) =Hy+ Hjyy  Hy=H(e=0)
n=0 ;

Es gilt nicht nur [H, N, ] = 0 sondern auch
[Ho, Nl =0 [Hpyg, Nl =0

Ubergang zur Wechselwirkungsdarstellung

Erst jetzt sind wir in der Lage, die Schrédinger- und Wechselwirkungsdarstellung
zu definieren.
Wir gehen zuerst zur Schrédingerdarstellung iiber

X, = e iHt X it | Z 5 =e—iHt| Z 5y
s
H ==

Sror [ a2, 05,
- t

n

— 0, X, =0; i0,|Z>=H|Z>
S

S

N, = N,(X,)
S S
[H: le = [H(): Nm] = [HINT': Nm:l =0 (D-14)
S s S S S

Operatoren in der Wechselwirkungsdarstellung seien mit 0 bezeichnet.

iHot —iH, i Hyt

¢
X =¢ S X ¢ S;|£>:e S | Zy,

s
o
H=) e f &% W, (X))
t

:Nm(Xa)t [EO’Nm]:[gINT’ Nm]zo (DIS)
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(v, (,é A, w) gehorchen den Gleichungen des freien Feldes:

(O+M)y,,=0, O4,=0

Wir kénnen in den Impulsraum iibergehen

1 \8f2 )
= _ —Z(k,x __._..'u__ 3
Yuv (2n) f" : V—""dk

2 wy,
1 \8/2 ) v* (k) ’
- + ik, x) MV 3 _]_6
+(am) [ Voar e

(cok = I/EZ - M2)
a,,und b,, lassen sich zerlegen
a‘,u;v(k) - a,uv(k) =Ayy b,uv(k) - bpv(k) ¥ b,uv(k)
i—p P 1-P

[@,,(R), at22(k)] = b, (R), BE2E(®)] = O
p P

Der lineare Raum R, in dem die Vertauschungsregeln D.2 dargestellt werden, spaltet

auf in
. (a;':(wn, Br) e ab((1 ), B) 1 0 >)
. b:((,u v)n+1, k,ﬂq) PR b;((ﬂ v)n-i—m’ kn-i-m)]
R, = ’a 1) .. af p("’) },Q)
\b O (et m) T

(| £ >: Vakuumzustand in R)
d.h. in die Fockrdume, die durch aﬁ, b* bzw. at_,, b} _, erzeugt werden.
Der ganze Hilbertraum ist das d1rekte Produkt von R; und R,

Damit kénnen die Feldoperatoren folgendermassen dargestellt werden

Vv = Pw T ¥pr = p,(1) ®1+1 @p,_,(2) (D.17)
¥ e, 7

Hy, H;y7und N, haben die Form
Hy=Hy1) ® 1 Hiny = Hinr(1) ® 1 N = 1® N(2) (D.18)
Der physikalische Hilbertraum §), besteht aus den Zustandsvektoren
| Z5=1Z,®8,> |2>= 'Ql ® 2>
Die Bedeutung von N, = 0 kann jetzt prézisiert werden:
pZ N2y =<2 @2 |1 @N(2) [ 2] @82, |
=CZ1 | Z{ 51 < 2o | Ni(2) | 255> =0 (D.19)

32 H. P. A. 39, 6 (1966)
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E. Diskussion des Hamiltonoperators in der WW-Darstellung

a) Erste Naherung, nichivelativistischer Grenzfall, Multipolmomente

A“ Y5 0, 9,40
H,NT—ez'fdi"x =P l+32[...]
+ (1—0() FMVT/}{)VQ Tppyl

dei"xA” ol G h.c.)‘

+e2[...] (E.1)
l—a/d%F””y)p”tppﬂ J

1
(I_1P90|# - 0# Yoo — 2 09 Yoou = 7 dd?? e.u)

E.1 gibt Anlass zu einem Dreiervertex:

(xg)
pl
............ £
p ‘g) Fig. 1
Cuv) ., 7 Impulse des Mesons, £: Impuls des Photons
1 ox AV VoL no
e PP+ gt? %) B+ )
1 [RH(E g gt )+ (e g+ g ) ]
1l =] 8. (B2

* l"“ RH(g0% P + g2 g**) — R (g°* g7 + g°f gw)]
Im folgenden werden die Multipolmomente von H;y; bestimmt. Der nicht-
relativistische Grenzfall ergibt sich, indem wir in v, ,, den Anteil des Antiteilchens

weglassen, nach Potenzen von p,/M (p,: Impuls) entwickeln und einen Faktor e=*M!
abspalten:
iMt

?pyv =& (p,uv
N (LN P pE ] p?
o (za) [ o T g - )
Berticksichtigen wir, dass " a,,, = 0 ist, so kénnen alle Komponenten durch a,;,

oder g, ausgedriickt werden. Die a};, erzeugen aus dem Vakuum nicht Zustdnde des
Fockraums, weil sie den Vertauschungsrelationen

1

61’/&7 ! mn ? 6ik 5mn
1 ?i?makn_]—pkpmain
& o ey 3 5 o
[a;.(p),ak,(p")] = T PibaOkm + PiaOin/ |50 (p—p) (EA)
P b

- 2 (Pm pn 6ik 5 Pi Ibk CSmn)

]214'44 (pl pk ﬁm pn)
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geniigen. Wir bestimmen die neuen Operatoren y; k(;) als Funktionen der a,;,, mit
den Vertauschungsrelationen

! e 1

2itB) L)) = (Oik 1 mn = 5 S10ma)) 09 (6 — )

Xik(P) = ap;(p) — ‘21142 [P Pr “rk + Pr br April
+ ﬁ Pibrbr b5 0pys + 217:;4 (i aﬁrk + b br @prd) + (-00)

—_— —_—

ayix(P) = 2:ix(P) + 'Q’%g”’z‘ (2: Br 2k + Pr 2 Xr)

+ Tjw?pipkprﬁs erﬁ 8?\;4 (pzpr Zrk+pkprxri) + () (ES)

Die Aufgabe besteht weiter darin, H;y, durch y;, auszudriicken und nach Multipolen
zu ordnen. Fiir « = 0 erhalten wir fiir das elektrische Multipolmoment der Ordnung
2% = 16:

gEM2=0.

(e(E M 27): Energie des elektrischen Multipols der Ordnung 2*
e(M M 27): Energie des magnetischen Multipols der Ordnung 27).
Die weiteren Multipolenergien und -momente sind: (« = 0)

1
S(EM2) =~ < (0, B+ 0. E)) ki 40>

f—;— B3z2—1r)p(S,=2) d* = 2—;42 (E.6)

(0 (S. = 2): Ladungsdichte im Zustand S, = 2)

E(MM23) = s M3 (O 0 'sz) (x;kt Xsk — ka Xri) >
1 ; 3
; f Py(cos®) 7 (x 1ot j {S, = 2}) d% = > (E.7)
(7 (S, = 2): Stromdichte im Zustand S, = 2)
Die anomalen Momente:
1
e (E M 2% = — 8_6;/;4‘ < {"2‘ 0,0, (0. E; + OiEk)} (X% Xmn T Zmn Xik) >
f Py(cos®) r*q(S, = 2) d = 5 % (E.8)
1
e, (E M 2%) = '2'81{.;2“ <o (0L E; + 0, Ef) &, Ao >
1
f , (322 — ) oS, = 2)d%x = 12 (E.9)

Sa(MM 23) = 8 M3 (0 0 Fk;) . (Z;kz Xsk — %:gk XH‘) >

1 p 3
TfPs (cosd) 73 (x roty (S, —2))d%x = — —4 ;}; (E.10)
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Magnetisches Moment

1—w 1 == - 1—o e

tot

(§: Spinoperator) (u: magnetisches Moment)

b) Die zweite Ndiherung
= — A A YRy, — E AR A S Yy, — 2 AT AR YR Y,
o [(1 — a) (?1;01' Epn — h.c) (1 —a) ("P;m Tﬂfm —h.c)
(

2 im

— (14 &) (z_p_:(’k Ypir — b.e.) — 1+ a) (fgom Py — h.c.)
+e2h (E.12)
(Vgl. C.18)

Viele der in H{; vorkommenden Terme werden von den nichtkovarianten Anteilen
der T-Produkte kompensiert. Die Felder 1,00_7, Lypyr Ay, F,p geben folgende
Kontraktionen:

1
T(z)pdr(x)t _y_);ba’t’(y)) >0 =i

(do'cr” d'r 7’ + do‘f’ drr"r)

i Ap (x — )
——d__d

3 Yot Po'r
+1 Qor,c’r’(ox) o™ (x - y)
< /4 (_’y_)por( ) F{,’*G' rf,u( )) >0 =1 Ar-r;a’t’u(dx) AF (x - y)

¥ - iCa"r;o"r’/,u (ox) 0@ (x - y)
< T (E;bat/,u( ) F:a vl (y) >0 =1 Barf,u;o"r’/y'(ox) AF (x - y)
- iDar/y;a'r’/,u' (Ox) 6(4) (x - y)

<T (E,uv(x)’ Eaﬂ(y)) >0 =1 (g;ux ov Oﬂ — &va 0;1, Oﬂ - g,uﬂ ov Oa : 3 gvﬁ o,u, Oaf.) X
X Dy (8 = 9) + i Vs 0 (x — ) (E.13)
Q, 4, C, D, V sind Differentialoperatoren mit konstanten Koeffizienten. Es seien

hier lediglich Q und V angegeben:

1
7 {daa’ 501: 601’ + dor’ (500.' 60r + dro' C300 601’ + drr’ 600‘ 600’}

Qar,o't’ = - ME 1
Y (do'r Cs00" 601’ o dcr’t’ 500 aﬂr)
L fiFg 5 .3 %7 15 5 _ 8
+ M [42~ (doa' dtt’ s ddr’ da’-r Y dar do"r' 3 600 601’ 600” 601'] (E14a)
(Ao g = 004 05 + 8o 5 0 — 2 Gy, Oy 4 O)
|4

unap = €ua 00400, — 8200400, — 8upOoadoy + 8 p00a0o,)  (E.14D)
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‘Die einfachsten Graphen fithren zu den Kompensationen
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Als einfachste Kompensationserscheinung betrachten wir

G ew [axvay F 0y v, 0 E, «60) 977 ¥3a0)
o (x —y)
/d4x vy "° wﬁe V.uv af w*ﬂg ‘l’;a

Der Selbstwechselw1rkungsterm in E.12 liefert einen Gegenterm proportional «?2:

[w*ogqppe — h.c] [1/)*0" Yooi — h.c.]

der E.15 kompen51ert.

Die Graphen 1)’, 2)’, 3)’, 3a)’, 4), 5)’, 5a)" kommen in #, alle vor. Die S-Matrix,
die durch H erzeugt wird, kann nachdem alle Kompensationen ausgefiihrt sind, auch
durch einen dquivalenten invarianten Hamiltonoperator erzeugt werden, wobei in
allen Kontraktionen nur invariante und kovariante Ausdriicke vorkommen.

F. Reduktion des Hamiltonoperators; kovariante Kontraktionen

In diesem Abschnitt wird gezeigt, dass der kanonische Formalismus die Voraus-
setzungen zur Folge hat, die UMEZAWA und TAKAHASHI [11, 12, 13] verwenden, um
die Reduktion des Hamiltonoperators durchzufithren. Die Reduktion beruht darauf,
dass ein Zusammenhang besteht zwischen T-Produkten und den Oberflichentermen,
die im Hamiltonoperator auftreten. Dabei kompensieren sich alle Gréssen, die die
Oberfliche explizit enthalten. H{;y; ldsst sich als Summe — L,y + Z darstellen,
wobei Z nur Beitrdge enthilt, die von der Normalen einer raumartigen Fliche ab-
hédngen.

Hinr(x, 1) = — Lryp(x) + 2w (x) n,(x) 7, (%) + €[ ...] (F.0)

Der kanonische Formalismus erzeugt in natiirlicher Weise die Zusatzterme Z, indem
alle Felder y, auf neue Felder y, transformiert werden, die den Ubergang zur Wechsel-
wirkungsdarstellung erlauben.

In F.0 spielt — L;y7 die Rolle einer Anfangsbedingung. Die weiteren Terme in Z
entsprechen der Konstruktion einer kausalen und unitdren S-Matrix, wie sie von
E. C. G. STUECKELBERG und D. RIVIER [18, 19] angegeben wurde.

Um den Anschluss an die Bezeichnungen von UMEzZAWA und TAkAHASHI [11] her-
zustellen, zeigen wir zuerst, dass die Feldoperatoren v, in der Heisenbergdarstellung
im physikalischen Hilbertraum §, reduziert werden (vgl. D). g, ist als Potenzreihe der
Felder y, gegeben. Es geniigt also zu zeigen, dass die Aussage fiir y, richtig ist.

Der Projektor auf §), sei E. Es gilt auf Grund der speziellen Form von Hy, Hyr
und N, (D.18)

EyE=y, y(=(U"0)yk) Ul)(@|
EpE=y, u,x)=(U"0)ypx Ul))(]| _ (F.1)

o: raumartige Fliche, (o/x) bedeutet: ¢ ist so gewihlt, dass x darauf liegt.
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U(o) ist zundchst nur beziiglich # unitar:
LZy®Zyn U Zy ® Z,> =<€U o) Z, ® Zo;m; Zy ® Zp>
= (U = Uy

7 ldsst sich zerlegen:
n=E+QnQ Q=1-F (F.2)

Aus F.2 zusammen mit U(o) E = E U(o) folgt, dass U(c) auf §, ein unitérer Operator
ist. Wir verwenden im folgenden nicht {p'p,zpp, die durch D.14, D.15 auseinander

hervorgehen, also fiir £ = 0 iibereinstimmen, sondern @;, y,, die fiir /= — oo zu-

sammenfallen. F.1 gilt auch fiir ;. Die Felder y,, die entsprechend den in C konstruier-
ten Transformationen mit v, zusammenhingen, erfiillen die Gleichungen A.3:

GO, M) yp,=7 G= G‘;y"fﬁ (0,, M?
Yo = Ypap 1=192p=— Lint,pxap T O LinT,00vxas (F.3)
Es existiert eine Matrix P = P, ,*# (0, M?) mit
PG=GP=—(O+ M1
P kommt in den Vertauschungsrelationen D.8 vor:
[wp(x), w5 (x")] = @ P(0,, M%) A (x — «', M?) (F.4)
Die Greenschen Funktionen der Gleichungen F.3 hingen ebenfalls von P ab
Gr(x—x)=18(x—);PGr=—(O0+M)7v=4+Pd (v — x')
=t (x — ') = — P A (x — x', M?) (F.5)

Neben y, betrachten wir
B, (6, 0) = U0) p,x) U(o)

Dabei muss ¢ nicht durch den Punkt x hindurchgehen. v, (x, o) ist ein freies Feld und
geniigt den Vertauschungsrelationen

[@ﬁfv (xr G) ) @1;*(%,1 0')} =1 PA (x - x’)

Wir formen F.3 zu einer Integralgleichung um:

W) = w ) + [T — #) i) dx’ (F.7)
U(o) gentigt der Gleichung
ig-;(-;j— Ulo) = (%, n) Ulo) = Ulo) H(x | o, n) 98

Unter den folgenden Voraussetzungen konstruieren UMEZAWA und TAKAHASHI [11]
H(x/o, n) und U(o), was in unserem Fall eine Rekonstruktion von H;y bedeutet:
(i) U(o) hiangt nur von der raumartigen Fliche o ab.

(i) w,(x) ist ein lokales Funktional von g, (x) = 94(%, 0) (o) -
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Die in D.14 und D.15 vorkommenden Operatoren H und H, sind zeitunabhingig,

s

woraus (1) unmittelbar folgt. (ii) ist auf Grund der Transformation ¢, <« ,, die in C
konstruiert wurde, erfiillt.
In der genannten Arbeit werden #(x’/o, #') und U(o) aus den Gleichungen

17); (x, 0) = ?p(x) 4 [ D,P(0,)A (x—x")7,(x") dx" + €2 f E(x, x') dx’

[H&' |0, n), , (0)] = — £ Dy(0,) P(0) 4 (v — &) fo(x) — 12 &(x, ') (F.9)

errechnet. Dabei bedeutet in Vektorschreibweise

Da - (1’ - O,u)’ :';a - = (‘CINT,zp*’ EINT,()ﬂw*) s
F.9 wird durch Iteration geldst, wobei &(x, ") so bestimmt werden muss, dass

| dx" &(x, ') nicht von der Vorgeschichte der Felder abhidngt. }(x'/o, n') und

— o0

&(x, x") werden nach Potenzen von (yj (%, 0)) (5, entwickelt, mit Hilfe der Beziehung

M(0) y,(x) = [M(0) %) (¥, o)) + 5 [M(0)) D, P(0), elx — #')] A (x — &) (') dx’

— e2

f M(0,) E(x, x') dx’} (F.10)
—00 (ofx)

M (0): beliebiger Differentialoperator.
Dabei werden im wesentlichen die in C angegebenen Transformationen durchgefiihrt,
wobel aber die Kompensationen gegeniiber den 7-Produkten dank der folgenden
Gleichung iibersehen werden konnen.

¢ T (Ml(ox) :{’p(x): Mz(aé) q_u;(x')) Yo =1 M(0)My(—0,) PAp (x — x')
— 2 [My(0) My(— 0,), & (x — #)] 4 (x — &) (F.11)

M,, M,: Differentialoperatoren.
Aus (i), (i1), F.9 und F.10 folgt der Anfang der Entwicklung von F(x, #») nach e:

Hx, m) = — Loyrlyy) + w0 (x) mym, + [ ... ] (F.0)

F.0 zusammen mit F.10 sind zunichst nur formal. Hingegen sind alle in diesem Ab-
schnitt ausgefithrten Operationen durch die kanonischen Transformationen in C ge-
geben und bedeuten daher eine Rekonstruktion des Hamiltonoperators.

w*”n,n, kompensiert den nichtkovarianten Beitrag von (Ly7(¥) Linr(x)).
Fiihrt man die kovarianten 7*-Produkte ein

(T* (M, ¥p(%), M,(0,) !f?(x')) >o =1 My(0,) My(—0,) PAg (x — ') (F.12)
so kann die S-Matrix durch

Hivr = — Linr (3’;;(“5): }/32‘(96), Oﬂ fp(x): O,,L f:(x): 4,(x) (F.13)

erzeugt werden.
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In allen betrachteten Reihenentwicklungen ist die Reihenfolge der Operatoren
nicht festgelegt. Die Reduktion von #(x, #) ist nur bestimmt modulo Kommutatoren
der Form

[M(0,) p,(x), My(0,) w5 (x)],

welche explizit unendliche Ausdriicke zur S-Matrix beitragen. Als Beispiel dienen die
Graphen 3)’, 4)’ und 5)" des Abschnitts E.

Ein anomales magnetisches Moment des Vektormesons hat ebenfalls solche
Terme zur Folge (vgl. LEE und YANG [14]).

Der Hamiltonoperator ist somit reduziert zu

F A A gy, — 268 AN Ay, 0, (F.14)

W) =i e {A" W37 Ly poty = Lpoon 957 — ¢ E*" 9500 Yhu3

Damit die angegebenen Regeln Anwendung finden, miissen die Ableitungen der 4,
auf die Mesonfelder iibergewilzt werden.
Zu H(x) gehoren die Vertices:

pl
(9ol .
K <> 1eCh2%2% (p k, P
() (o0) (Dreiervertex)
()
S (¢al
3 « > 2 KFmedeo
/” y (9o’ (Vierervertex)
7]

Fig. 3

C und K konnen aus F.14 bestimmt werden.
Die kovarianten Kontraktionen ergeben die folgenden Regeln fiir eine innere
Mesonlinie:

P

(¢,0) (¢’c’)  <«—> einer inneren Mesonlinie entspricht der Propagator
i 1 1 1
2n)?* PP—M’+ic {? (Gog’ dao’ + doo’ dog’) = 7 deo dg""}
P, P
dgg — (ggo— §W2 0’)
Fig. 4

Zum Schluss ist es mir eine angenehme Pflicht, meinen hochverehrten Lehrern,
den Herren Professoren M. F1Erz und R. JosT, fiir die Unterstiitzung bei der Austiih-
rung dieser Arbeit, meinen verbindlichsten Dank auszusprechen, ganz besonders



506

P. Minkowski H..E. A,

Herrn Prof. FIErz fiir die Anregung zu diesem Thema und die weiteren richtung-
weisenden Ratschlige und Fragen.

Ich moéchte auch Herrn Dr. D. N. WiLLiams verbindlichst danken fiir die wert-

vollen Hinweise auf die Literatur, ferner den Herren Dr. W. Wyss, Dr. W. SCHNEIDER,
S. ALBEVERIO und R. SEILER fiir die lehrreichen Diskussionen und Frl. R. HINTER-
MANN fiir ihre Hilfe bei der Anfertigung des Manuskripts.
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