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Versuch einer konsistenten Theorie eines Spin-2-Mesons

von P. Minkowski
Seminar für theoretische Physik, ETH Zürich

(7. VI. 66)

Summary. The electromagnetic interaction of a charged spin 2 meson is considered. Several
canonical transformations of both the meson- and photon-field lead to an interaction representation.

The Hamiltonian expressed by the interaction picture fields is a noncovariant power series
in the charge. On the other hand the time-ordered products of the fields and their derivatives
contain noncovariant terms of a ôii\x) type, which give rise to higher order vertices compensating
the noncovariant contributions from the Hamiltonian. The latter is calculated in second order
approximation and reduced to a simple form making use of covariant contractions. The multipole
moments in nonrelativistic limit are obtained. The 'minimal coupling' admits a free parameter a
which corresponds to an anomalous magnetic moment
(e : charge, M : meson mass, S : meson spin).

_ a. e _** ~~ A Ym s

Problemstellung

Die grundlegende Arbeit von M. Fierz und W. Pauli [1] *) hat die Schwierigkeiten
gezeigt, die bei höherem Spin infolge der auftretenden Nebenbedingungen entstehen.

P. A. M. Dirac [2] hat für c-Zahlen den Hamiltonformalismus mit Nebenbedingungen

diskutiert. Es besteht eine weitgehende Analogie zwischen c-Zahl- und q-Zahl-
Theorie, die uns erlauben wird, die Resultate der genannten Arbeiten zu verwenden.
Lediglich der Begriff der Nebenbedingung muss präzisiert werden. Wir wollen unter
einer Nebenbedingung nicht eine Operatoridentität verstehen, sondern eine Funktion
der Felder, die auf einem geeigneten Teilraum des betrachteten linearen Raums mit
indefiniter Metrik verschwindet. Diese Definition der Nebenbedingung ist analog der
von S. Gupta [3] und K. Bleuler [4] eingeführten Methode zur Behandlung der
Lorentzbedingung in einem Raum mit indefiniter Metrik.

Die Wechselwirkung von Teilchen mit Spin > 1 wurde in neuerer Zeit im
allgemeinen Rahmen kovarianter Streuamplituden untersucht, wobei nur Eigenschaften
benutzt wurden, die von einem Modell unabhängig sind. M. Jacob und G. C. Wick [5]
haben die Reduktion von Matrixelementen im Helizitätsformalismus beschrieben.
K. Hepp [6] und D. Williams [7] gaben Entwicklungen einer kovarianten analyti-

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 506.
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sehen Funktion nach kovarianten Standardpolynomen an. D. Zwanziger [8]
beschreibt die elektromagnetische Wechselwirkung von Teilchen mit Ruhmasse und
beliebigem Spin. Unabhängig von einem Modell definiert er in Anlehnung an V.
Bargmann, L. Michel und V. L. Telegdi [9] ein «minimal coupling», welches einem
gyromagnetischen Verhältnis g 2 entspricht. Der universelle g-Faktor g 2 hat
zur Folge, dass die Erwartungswerte von Spin und Impuls in einem konstanten äusseren

elektromagnetischen Feld denselben Bewegungsgleichungen genügen. T. Regge
[10] hat für ein spezielles magnetisches Moment den Wirkungsquerschnitt für
Coulombstreuung eines Spin 2 Mesons angegeben. Beim Übergang zur
Wechselwirkungsdarstellung erhält Regge einen invarianten Hamiltonoperator. Dieser
erzeugt eine Streumatrix, die zunächst nicht lorentzinvariant ist, da die auftretenden
T-Produkte neben kovarianten auch nichtkovariante Ausdrücke enthalten, die von
einer raumartigen Oberfläche abhängen. H. Umezawa und Y. Takahashi [11, 12, 13]
haben gezeigt, dass 1liNT in der Wechselwirkungsdarstellung ebenfalls Oberflächen-
terme enthält, welche sich gegen die nichtkovarianten Beiträge der T-Produkte
wegheben. Die Transformation von der Wechselwirkungs- in die Heisenbergdarstellung
wird durch einen unitären Operator Ufa) vermittelt, der unter ad hoc eingeführten
Voraussetzungen konstruiert werden kann.

T. D. Lee und C. N. Yang [14] haben die elektromagnetische Wechselwirkung
eines Vektormesons mit beliebigem magnetischem Moment beschrieben. Dabei stellen
sie der kanonischen Behandlung der Bewegungsgleichungen ein Limitierungsverfah-
ren entgegen. Beide Methoden führen zu den gleichen Ergebnissen. Es gelingt ihnen,
die genannten Kompensationen explizit abzugrenzen und zu zeigen, dass die
Abweichungen des Hamiltonoperators von — CINT darauf zurückgeführt werden können,
dass die Reihenfolge von Feldoperatoren in einem Produkt nicht festgelegt ist, was zu
sogenannten «tadpoles» führt. Auch die Wechselwirkung eines Vektormesons mit
einem Leptonstrom erfüllt die Voraussetzungen von Umezawa und Takahashi, was
direkt verifiziert werden kann. Mit Hilfe dieser Voraussetzungen ist es S. Weinberg
[15] möglich, eine Brücke zur invarianten Störungsrechnung zu schlagen und
Feynmanregeln für Teilchen mit beliebigem Spin anzugeben.

In dieser Arbeit soll versucht werden, die elektromagnetische Wechselwirkung
eines geladenen Spin-2-Mesons mit beliebigem magnetischem Moment als kanonische
Theorie konsistent zu behandeln. Es gelingt, den Hamiltonoperator als Potenzreihe
in e anzugeben und zugleich zur Wechselwirkungsdarstellung überzugehen. Darauf
wird gezeigt, dass aus der Konstruktion der Wechselwirkungsdarstellung die
Voraussetzungen auf natürliche Weise folgen, aus denen Umezawa und Takahashi die
Reduktion von ît/yr zu — Cwt hergeleitet haben.

Es zeigt sich, dass der kanonische Formalismus der Bestimmung des Hamiltonoperators

und der S-Matrix in der Wechselwirkungsdarstellung gemäss S. Tomonaga
[16] und J. Schwinger [17] einerseits, der Konstruktion einer unitären und kausalen
S-Matrix nach E. C. G. Stückelberg [18, 19] anderseits äquivalent ist.

Die Methoden, mit denen hier anhand der elektromagnetischen Wechselwirkung
die Nebenbedingungen von Feldern zum Spin 2 behandelt werden, sind bei beliebigen
Kopplungen, etwa an einen Strom stark wechselwirkender Teilchen, anwendbar.
Hingegen bringt die Tatsache, dass es sich dabei um ein «nonderivative coupling»
handelt, keine wesentliche Vereinfachung.
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Inhaltsangabe

In einem ersten Abschnitt wird aus der Lagrangedichte des freien Mesons mit der
Masse M durch die Annahme eines «minimal coupling» die Lagrangedichte gewonnen,
welche die elektromagnetische Wechselwirkung beschreiben soll. Die dazugehörigen
Eulerschen Gleichungen haben 5 Nebenbedingungen zur Folge, welche die
Berührungstransformation, die von der Lagrange- zur Hamiltondichte überführt, ausarten
lassen.

Im zweiten Abschnitt wird die Lagrangefunktion durch eine neue ersetzt, so dass
die neuen Bewegungsgleichungen mit 5 Nebenbedingungen verträglich sind und die
Ausartung der Berührungstransformation aufgehoben wird. Setzt man die
Nebenbedingungen gleich 0, so erhält man die alten Bewegungsgleichungen zurück. Drücken
wir die Nebenbedingungen und ihre ersten Ableitungen nach der Zeit durch die
kanonischen Variablen aus und gehen wir zur Hamiltonfunktion über, so können wir
die Sätze von Dirac [2] über den Hamiltonformalismus mit Nebenbedingungen
benützen.

Der Hamiltonoperator ist nur modulo Nebenbedingungen erklärt, und wir
begnügen uns vorläufig mit einem beliebigen Repräsentanten. Daneben werden
erzeugende Funktionale von kanonischen Transformationen angegeben.

Im dritten Abschnitt werden die Nebenbedingungen durch eine Reihe kanonischer
Transformationen auf die Form gebracht, welche den freien Gleichungen entspricht.
Dies ist der wichtigste und zugleich komplizierteste Teil der Reduktion von "Uint zu
— Cint - Aus der Konstruktion dieser Transformationen geht hervor, dass sie von der
Wechselwirkung unabhängig ist.

Haben die Nebenbedingungen einmal die gewünschte Form, so wird im vierten
Abschnitt der Übergang zur Wechselwirkungsdarstellung vollzogen, geleitet durch die
Verhältnisse beim freien Meson. Es gelingt, einen ausgezeichneten Hamiltonoperator
zu finden, der mit allen Nebenbedingungen vertauscht, wodurch das Verschwinden
der letzteren aus entsprechenden Anfangsbedingungen folgt. Dabei erscheint der
Zustandsraum, der eine indefinite Metrik trägt, in ein direktes Produkt Rx ® R2
aufgespalten. Die Nebenbedingungen haben die Darstellung N — 1 ® N{2). Der physikalische

Teilraum §P entspricht den Zustandsvektoren x 0 ü2, wobei x im Faktor Rx

liegt und Q2 den Vakuumzustand im Faktor R2 bedeutet. §P ist ein Hilbertraum, in
welchem die Nebenbedingungen verschwinden.

Im fünften Abschnitt wird "UiNT in erster und zweiter Näherung diskutiert. Für
den nichtrelativistischen Grenzfall werden die Multipolmomente berechnet. Das
anomale magnetische Moment

— _ a e ç<" ~_TAAAò

gibt zu keinen besonderen Schwierigkeiten Anlass, weshalb die Auszeichnung eines
bestimmten g-Faktors im Gegensatz zum Falle des Elektrons sich nicht aufdrängt.
Alle Multipolmomente bis zur Ordnung 24 hängen von den Parametern e, x ab,
weshalb nur zwei beliebig gewählt werden können. Die höheren Momente verschwinden.
Die zweite Näherung gibt Anlass zu den genannten Kompensationen. Diese werden
mit Hilfe der entsprechenden Feynmangraphen klassifiziert und für einen Spezialfall
ausgerechnet.
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Im sechsten Abschnitt wird schliesslich der Zusammenhang mit den Arbeiten von
Umezawa und Takahashi [11, 12, 13] hergestellt. Der kanonische Formalismus
liefert auf natürliche Weise die Oberflächenterme im Hamiltonoperator, welche die
nichtkoVarianten Beiträge der zeitgeordneten Produkte kompensieren, wodurch
garantiert wird, dass die unitäre und kausale Transformation

Uft2,tx) T*exp * / Cint(x) dix

die zeitliche Entwicklung der Zustände in der Wechselwirkungsdarstellung beschreibt,
die aus den Bewegungsgleichungen folgt. Dabei ist unter T* die Operation der
Zeitordnung zu verstehen, welche nur kovariante Kontraktionen berücksichtigt.

Bezeichnungen und Definitionen

Elektromagnetische Potentiale AQ

Dazu kanonisch konjugierte Impulse m„
Mesonfeld y>ßV fv/l
Dazu kanonisch konjugierte Impulse cß*t"' cf>*vß

Elektromagnetische Feldstärken Fe(r= — Fag da Ae — dg Av

Ex

Ei
Bi

Bi

Griechische Indizes laufen von 0 bis 3, lateinische von 1 bis 3.

Metrik

«Minimal coupling»:
Impuls

5 /i V
- 1

0 - 1

P, >*>--*
d^D^dr + ie-^A,

hidp—> %idll--Ali
D : eichinvariante Ableitungen,
Bewegungsgleichungen einer Punktladung im elektromagnetischen Feld:

M itß — — F1"" uv : Ableitung nach der Eigenzeit

M u" ftß M : Masse des Teilchens

v Mc Fv
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C Ceim + CMat + Cixt £ : Lagrangedichte für elektromagnetisches Feld und
Materiefeld

1r, - f F1"
oder mit Hilfe der Lorentzbedingung:

1

2 "/i'^pvCelm -Jd„Avd»Ä"

Wir wählen rationale Einheiten.

c=H l

A. Bewegungsgleichungen, Nebenbedingungen

Der Darstellung von G. Wentzel [20] folgend suchen wir eine Lagrangedichte für
das freie Meson der Masse M, aus deren Eulerschen Gleichungen die Nebenbedingungen

dpip"" 0. V> y>t ° folgen:

CMat öe if*"v Z W/lp - 2 d" ip*v dQ if*
+ dv ip* dßip/lv+ dß ip*„ dvip- d" ip* dv ip

-M2[ip*^WliV-ip*ip] (A.l)

Aus A.l folgen die Gleichungen und Nebenbedingungen:

(U + M2)ipßv 0, d,y" 0, ip 0

Die Nebenbedingungen sind notwendig, damit keine Teilchen mit dem Spin 1 oder 0

auftreten. Sind sie erfüllt, so ist ausserdem die Energie positiv définit. Die Bedingungen

für ip0i: dvipvi 0 sind analog der Divergenzfreiheit der Vektorfelder in einer
Theorie zum Spin 1.

do ^oo + dkipk0 0 und ipw A- rp%= 0 zusammen mit D + M2) ip00 0 führen zu
der abgeleiteten Beziehung

dkdAvlk-glkfnn)-~M2ipl 0

Obschon diese Nebenbedingung den Anschein erweckt, nichtlokale Grössen in die
Theorie zu bringen, ist dies wie wir sehen werden nicht der Fall. Auch wenn die
Wechselwirkung einsetzt, bleiben alle Komponenten von ip/iv zueinander lokal. Auf
eine genauere Charakterisierung der Nebenbedingungen werden wir unter B. noch
zurückkommen. Der Ausdruck — 2 dßip*t dQipev ist für das freie Feld äquivalent

- (1 + <x) d"ip*v dQipQV - (1 - <x) dy*"' dßipev. Ersetzen wir d
^

durch D^= d^+ie Aß
nach dem Prinzip des «minimal coupling», so erhalten wir die folgende Lagrangedichte

Cfe, «) - \ d"A' dßAv + D*ey,*"' Dp ip^v

- (1 + a) D*" ip*v Dp ip*" - (1 - «) D* ip*v D" ipe*

A-D*vf*D'iipllv + D*lif*vDvip-D*vip*Dvip

-M2(ip*^ip/lv-ip*ip). (A.2)

31 H. P. A. 39, 6 (1966)
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Für die elektromagnetischen Potentiale soll eine Lorentzbedingung (d/tA")+ | z }p 0

gelten für alle physikalischen Zustände | z >^ (d„A"+: positiver Frequenzteil von
à,A").

Cfe, x) gibt Anlass zu den Bewegungsgleichungen

Ö2VV„ - ^ &,&%, + D* D%e) - ^T (DQDfPsv + D*Dviplle)

+ g.lv D* D?ipaß + \ (Dp Dv + Dv Dp) w-gßvD2ip + M2 (v„ - g/lv ip) 0

nA' f=-C,A, (A.3)

Aus A.3 folgen die Nebenbedingungen :

Nfe, x) D"ippV - Dvip - nfe, x) 0 „ 0, 1, 2, 3 Nfe, x) ip - nfe, x) 0

3-oc

M2

34-c
~2

1-a

QT jlV 2 V ff*Q

(àQFï)%li + l + a
n>ß.

+ y Fev Deip - y /„ ip

3Mi

34-aiefl+ a) fd'F»*) DsippV - -^- e2 Fn fr^
+ iex F«* DQ D'W/iv - i e(l - a) f D"ippQ

3 e3

(A.4)+ i e xfd' f) ipp„ + y- F*" FVQ ip + ie f Dgip

Für e 0 erhält man aus A.3 und A.4 die Gleichungen des freien Mesonfeldes zurück :

ü w» - (Z dV + Z àQipp6) + gp„d* dßipaß

+ àpò„ip-gpVnif + M2 fippV -gpvW) 0

D Av 0 dpip'" 0 y 0 (A.5)

Aus A.5 folgt schliesslich + M2) ip 0.

B. Kanonischer Formalismus, kanonische Transformationen,
Hamiltonoperator

Die zu £(«, a) gehörende Legendretransformation ist auf Grund der
Nebenbedingungen ausgeartet. Diese Ausartung wird aufgehoben, wenn wir C durch £'
ersetzen.

Cfe, «) Cfe,x) + £ c„N* Nt (B.l)
s,t- 0

fN&, N9) (d<yNQ, Ö„A74), c,, c*, c„: Konstante.
Es ist konsistent, die Eulerschen Gleichungen zu £' den Nebenbedingungen

(N0, N9) 0 zu unterwerfen, denn für (N0, NB) 0 gehen die Gleichungen
von C in diejenigen von C über, und aus den letzteren folgt wiederum (N0,..., N9) 0.
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Wir bestimmen den zu £' gehörenden Hamiltonoperator "W. Die Felder ippV, ^*"^ und
Ae, of seien kanonisch quantisiert.

&,.(*). P"<y)i*.y » «$ <5(3) (* - y) [Afx), affy)]x^y. d"Q #* fx - y) (B.2)

alle andern Kommutatoren 0

Oaß (SaSP + dßOa)

Wir lösen die Variationsgleichungen :

ô f dt dH 0*"' WpV + W*v $" -¦U'-vmNJ=0.
Die vm sind Lagrangesche Multiplikatoren, die es gestatten, ohne Berücksichtigung
der Nebenbedingungen zu variieren.

Wir fassen fipflv, <f>„v, Ag, coe) zu einem Vektor Xa zusammen. Es ergeben sich die

folgenden kanonischen Gleichungen:

H' / dsx "W -id0Xafy)H'+ £ dHvmNm, XJy)
t

L "-%o -I

Nk 0 k 0,1, 9 (B.3)

In B.3 ist die Hamiltonfunktion nicht eindeutig bestimmt. Ändern wir "W um
Vielfache der Nebenbedingungen:

W ìl' + JJ ^m Nm

Am : beliebige Funktionen der Felder
so erhalten wir die zu B.3 äquivalenten Gleichungen

9 r-

H" + £ / dHfvm-Xm)Nm, Xafy)
y0

id0Xxfy) Nk 0 H"= / WdH.

Der lineare Raum R, in welchem die Vertauschungsrelationen B.2 dargestellt werden,

trägt eine indefinite Metrik; ip*v ist der bezüglich dieser Metrik zu ip konjugierte
Operator. Wegen der Vertauschungsrelationen der Nebenbedingungen untereinander,
können sie nicht identisch verschwinden. Es wird sich zeigen, dass R in ein direktes
Produkt Rx ® R2 zerfällt, wobei die Nebenbedingungen Nk 1 ® N{2) ani den

Faktorraum Rx nicht einwirken. Der physikalische Teilraum $>p, den wir betrachten
wollen, besteht aus den Zustandsvektoren \Z }p \ZX ® ß2 wo fi2 der Vakuumzustand

im Faktorraum R2 ist. §>p ist ein Hilbertraum.
Für | Z yp verschwinden die Nebenbedingungen, sobald (Q2, Nf\ Q2 > 0 ist:

<Z' | Nk j Z'fp =<Z'X®Q2\. ® ]Vf | Z" ® ü2y <Z'X | Z[\ <ß2 | Af> | ß2>2 0

Das hier verwendete Skalarprodukt entspricht der indefiniten Metrik :

<Z; ®Z'2\ZX® Z2y <ZX ® Zf rp, zx ® za>.
rj: hermitischer Operator, <^ ^> positiv définîtes Skalarprodukt in R. Wenn wir
Nk 0 in der oben genannten Weise verstehen, lassen sich die Ergebnisse von
Dirac [2] auch auf die Gleichungen B.3 anwenden.
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Es existiert unter den Operatoren 14' + E A" Nm fXm : beliebige Funktionen der

Felder) ein ausgezeichneter Hamiltonoperator H, der mit allen Nebenbedingungen
vertauschbar ist.

[UiNk] Q k 0, 1, ...,9
Dann können die Gleichungen B.3 reduziert werden zu

H= J dH-U [H, Xfy)] -id0 Xa(y) (B.4)

Die Nebenbedingungen folgen aus den entsprechenden Anfangsbedingungen
Nk ft 0) 0. H wird in D bestimmt werden.

Zunächst wählen wir einen Repräsentanten der Operatoren H' + HXmNm aus.
Es genügt deshalb, Xa modulo Nebenbedingungen anzugeben, was mit tnfN)
abgekürzt wird. Um H zu bestimmen, wird es nötig sein, kanonische Transformationen
auszuführen, d.h. solche, bei denen die Vertauschungsrelationen B.2 nicht geändert
werden. Eine solche Transformation wird durch ein Funktional S erzeugt. Für S gibt
es u. a. folgende Möglichkeiten :

^rr Sx Sfip, tf>', A, co')

^^~~~-*- S2 Sfip', §, A', co)

Für Sx gilt: ip' -ip -ZZ ; $ - f 7
öip*

FürS2: y'_ y -**-; t-p ^r
ausführlich geschrieben: ip'ßvfx) —ip^fx) —

ÔSX

- co'.entsprechende Formeln gelten für A' — A, co

K(K) f Wd»x+d0Sl (B.5)
t

Dabei bedeutet ojocf>ßv*'(x) die Funktionalableitung nach tf>>"'*'fx). Wir verfügen nun
über die Konstanten cst in B.l, indem wir setzen

C C+fD*0ip*-n*9)fD0ip-n9)
+ (D*" f*i - Dt W* - K) x (DfPei - DS> - ri) (B-6)

fn9 D0nf

Wenn wir mit (0'^„ die bezüglich £' zu ip*"" konjugierten Impulse bezeichnen, folgt

«»^ £', d0ip*">

(0¥oo D0ip-ng-x Dkipk0

<%, i öfy[i-%-»r1r%+S% + y Dm*

w)<f>n D0 fipik - gik ipl) -—*- fD{ipok + Dkip0i) + glk Dmipm0 tnfN) (B.7)

% - M B
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Kanonische Hilfstransformation (0'S

Eine kanonische Transformation (0)S transformiert die Nebenbedingungen
D0tp — n9 0 und D"ippi — Dtip — n{ 0 ani die Form <^00 0, c/>0 ¦ 0.

<°>S MS(f, tf)', A,co')= f d3x «%

% (ip** + ip*'») [- 1±L DkWki + J D(fn + 1 AVoo] + h. c. (B.8)

(h.c. : hermitisch konjugiert).
Es gelten die Transformationsgleichungen

(°¥oo - r>oo - « D"Wko

(<¥<h -<f>oi=-1Ì^Dkipki + J DiW: + | D,ip00

{0)<f>ik <l>ik=
2 (Diip0k+Dkip0i) gikD"ipn0

(«cu, - cüj [- (1 + a) i e ipik + i e gik ipnn + iex gik ip00] ip*ok + h. c.

mco0 co0 (B.9)

y und y48 bleiben unverändert. Wir beachten, dass auch für e 0, (0)S fe 0)
eine Transformation der (0)^„„ bewirkt. Wir haben somit 5 Nebenbedingungen durch
die kanonischen Variablen ausgedrückt :

N}: <ß0i 0 «_? />>„, - A-v - ». o

iV4: ip — ni 0

N9: (f>oo 0 <—> D0ip -«9 0

Es gilt :

rZ A, (Vu - g;* Wn) - (Di Wok + Dk ipoi) + 2 gik Dmipm0

1

2
D0y,:=-Jfn + 2D"ipn0

DoWtk </>ik~Y &*& + DW°k + D*P°i (B-10)

D"ip 0 — ö0y — «0 geht über in 1/2 ^" — Dnip„0 — n0. Die Gleichungen A.3 für
ip0v liefern 4 weitere Nebenbedingungen. So erhalten wir die 10 Nebenbedingungen:

^o- y <t>l - Dyn0 -«o 0 < D"ipp0 -D0ip-n0 0

N1AS: <f>0i 0 < > D"fp} -D^-n^O
N4. ip — ni 0

N5: D' £>* (ipik - gikipl) - M2 ipl +i e x «»i™ ipok 0

t-_ d0N0 0

^e,7,8: M2ip0i - dk<f>ki -pt 0 < d0Nx, 3 0

iV9: ^00 0 < D0ip -n9 0 (B.ll)
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pfe.x) ieA*4kt -y«P*(ftj - SkiWl) + ie-~ »F, kipk0

+ ^ i0)Foi Voo - ~- mF°k Wk i (B.Ha)

Dabei müssen wir beachten, dass mFoi dAo + '°>a)! ^> un<^ sicn von Eoi
djAo + mt unterscheidet.

Die Lorentzbedingung fco0 — dkAk)+ | Z }p 0 hat sich unter (0,S nicht geändert.
In B.ll kommen die Funktionen n0, «4, fit vor. Die Argumente dieser Funktionen

enthalten auch ip0 v, d0ip0 „. Diese können mit Hilfe von

D"ippV-Dvip-nv 0 ip-ni 0 M2ipoi-dkcf,ki-pi 0

durch ipik, ipfk, <f>!k, cpAf., AQ, a)Q und räumlichen Ableitungen davon ausgedrückt
werden. Durch sukzessives Ersetzen der obigen Argumente erhalten wir nv, nt, fi{ als
Potenzreihen in e, welche nur noch von ipik, ip*k, tf>ik, cf>fk, Ag, coe abhängen.

N0, ,N9 zerfallen in zwei Gruppen: fNX23, Nt, 2V878, N9) und fN0, N5).
Die ersten acht Nebenbedingungen können dazu verwendet werden, ip0v tnfN) als

abhängige Grössen durch fipik, cf>ik, Ag, cog) auszudrücken, so wie beim Vektormeson
U0= U0(UX, U2, U3, Ag,coe) als abhängige Grösse behandelt werden kann (U :

Feldoperatoren des Vektormesons).
N0, N5 können dazu dienen, die Spuren von ipik, c/>ik zu eliminieren

Wik= Xik+-j8ikWni Z» °

4>ik nik + \giAnn. ynn-=o

N0, N5 können auf die Form gebracht werden

N0:MJcf>:-didkcf,ik-k 0

AZ d' dk fxpik - gikVQ -M2ipl+f=0 (B.12)

m ¦ r' '" didkriik

Daraus folgt

2
' 3.

2
A-M2)ipl=-d>dkXik+f,3

f=2ieAkdi fipik - gikipnfi +iedi Ak fipik - glkipnn)

- e2A'Ak fiplk-gikipl) + iex^F«kipok
k ieM2 Anipn0+ dnp" + M2n0 (B.12a)

ip", cpf, können als Raumintegrale dargestellt werden

Wn(%) I Qi(x, V) [- àyi dyk x,kfy) +ffy)] d3y

#(*) JQfA,y) [dyi dykri'k(y) +k(y)] d*y

qx q2 sind geeignet gewählte Funktionen von x und y. Dabei scheint es, dass die Felder
nichtlokalen Charakter bekommen. Diese Schwierigkeit besteht auch für e — 0,
wobei aber das freie Feld keineswegs nichtlokal ist. Wir werden die in B.12 sich
aufdrängende Elimination nicht ausführen, sondern unter C die Nebenbedingungen so

umformen, dass sie mit denjenigen für e 0 übereinstimmen.
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Der Hamiltonoperator hat modulo Nk die Form :

11' Bty*"» dof/tv + d0ip*»* «ty,, + «W At - £' tnfN)

n' -J^o)y + J d*A- dkAv + tf,*'"<f,ik - J cc
- 2 {(d'cjyffl ipoh + h.c] + 2 My°!' %;

- dkip*n dkipZ - dy*"" dkipnm + 2(dkipf,) (dmipmi)

+ M2(VrwZ-W*ikWik)

+ 2 i e A' [tp"fkipok — h.c] + i e (3 — x) Fikip*hip9i

+ ie(l-x) F"'(ipfk ipkn) +i e (1 + x) Fok [f*{ ipk * - h. c]
+ ieA0 fipfk jf * - h.c.) -iefl-x) Fok [ip*»kipnn - h.c]
-2ieAk [ip*{ d„ ip"l - h. c] + ie Ak [ip*n dkipZ - h- c]

+ ieAk[ip*m"dkipmn-h.c.]

- J (<V - co,) (<°W - co') -e2AkAkip*m ipmm',

-e2AnAnip*ikipik + 2e2AkAnipfiipi m(N) (B.13)

C. Transformation der Nebenbedingungen
Das Ziel dieses Abschnittes ist es, durch kanonische Transformationen zu neuen

Grössen Xx überzugehen, so dass die Nebenbedingungen N0, N9 durch Xa
ausgedrückt die gleiche Gestalt haben wie diejenigen des freien Feldes [Nk fe 0)],
wobei die Lorentzbedingung unverändert bleibt.

co0 — dk Ak •<—>- ft)0 — dk Ak

Dies hat zwei Gründe : Erstens ist eine Wechselwirkungsdarstellung nur möglich, falls
die Nebenbedingungen diejenigen des freien Feldes sind. Zweitens wird es in D
gelingen, die vm in B.3 zu bestimmen, wobei die freie Form der Nebenbedingungen
wesentlich ist.

Die auftretenden kanonischen Transformationen können nur rekursiv als Potenzreihe

in e angegeben werden. Wir zeigen zuerst, dass Nb in L Schritten auf die
gewünschte Form gebracht werden kann, wenn Terme höherer als L-ter Ordnung
vernachlässigt werden. Dann genügt ein Schritt, um N0 zu transformieren und ein
weiterer, um Nx23, Nt, Ne78, N9 umzuwandeln.

Die Transformationen erfolgen nach dem Schema

N0: MJ fi-d"d^nm 0 ^-> ^- fi - d" d" $nm - k 0

Nl,2,3-<l>0i 0 < >'f>Oi 0

Nt: tp 0 -< ip — m4 0

N,: d* dk Çpik - gikyl) - M2 v5 0 «t—? di dk fipik -gikipnn)

~M2ipl+f=0
Ne,,y M2y0i - dkcpki 0 <—> M2ip0i - dtyki -p,= 0

N9: ^00 0 < ^^0 0 (Cl)
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a) Reduktion von N5
00

à':dk (ipik - gikipl) - M2ipl + £ ek Fk

H. P. A.

(C.2)

à* dk (Vipik - gik Mipl] - M2 v-Yn + E ek {L)Fk
h-L+1

Wir beweisen die Behauptung, dass die Transformation möglich ist, durch Induktion
nach L. Für L 0 hat N5 die gewünschte Gestalt, so dass die Induktion für L 0

verankert ist. Es seien also N0, N5 auf die Form gebracht:

iV5: d* dk vL^Wik - eik {L-l)wZ\ - M2 (t-Vip:

+ 6L(L-l)pL + eL + l{L-l)pL^ + _
N0- [~ gik - àl Òkf~1]ct,lk e^-1) Kx + e2(L~1] K2 -

Wir wählen als erzeugendes Funktional der kanonischen Transformation

(L)S {L)S [(L-l)(f)t [L)f> (L-l)ft)) (L)A] y d3x {L)s

{L)s eL {["T" gi* ~ ö' ^i^"1'^} F + h.C

P= P [(i-D0, (iy (i-l)ft), (i)^]
(/-'S erzeugt modulo A^ die Transformation

~M2

ÒP*

(C.3)

(i).Va (i-i) Wik df dt

eL+UL-l)K

cf>ik-^cf,ik e^AiiL-i)K*

i uk

+ eL+2

eL + l{L-l)K ÔP
1

ò{L-1]<l>*ik

(i-l)

WA - il-1)A ¦¦

a q

ÔP

eL+l(L-l)K*

(i-i)r (i) ft>„

Ô{L) y>* i k
ÔP

<5P

gi+Mi-i)^

gi+Mi-i)^

ÔP*
<5(i> ip* i k

ÔP*

,L+2

,L+2

ei+i(i-i)iC*1 «5(L)^e
gL+1 (£-!)# **»

+eL+2(___

(i).Vo, ^y«,. {L)k : (i-i; 00, »(») (C.4)

Unter Kx òP*jòip*ik ist eine symbolische Schreibweise verstanden. Hängt z.B. P*
auch von dmipfk ab, so enthält KxòP*jèip*ik den Term - <)m {ü^ ôP*/ô dmip* ''*}.

Die Glieder der Ordnung L+ 1, brauchen wir nicht explizit zu kennen.
Dadurch wird C.4 reduziert zu

(£).Wik (i-l) Wik
M2

~y g'k di dk)

(i-iU., -<ßtk - {LHn

(i-i)(
(i).Vo„:

(i)0

(i-i)Vo„;(Z¥o, (i-l), '0,

ßi+1 (L)i7,.ft

gi+1 W0„
gi+1 (i)«p

ßi+1 {L\
tnfN) (C.5)
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Dabei ist P noch völlig willkürlich. Ersetzen wir (L-i)yj in NB gemäss C.5 so folgt

2V5: dl d" [<LV.* - gik {L)WZ\ - M2 {L)wl +tL {L~1] fl f{L~1]li>. [L-1]W. (L~1]A, <L-i>eo)

3 /W4

+ eL AAL. p ((ty (L-i)(f)i [L)A> (i-iiß,) + ei+i [...] 0 (C.6)

Wir sehen, dass die Argumente von (L~^FL und P nicht übereinstimmen. Aber
der Unterschied zwischen (L-i)FLf^f, (£-!></>, W>A, (">(») und 0--i)FL({L-i)ipi (L-i)(f>>

(i-i) A, (i-i)co) ist von der Ordnung eL, so dass sich dieser Unterschied erst in höheren

Ordnungen als L auswirkt. Wir wählen deshalb

Pf{L)Wik ^tik,...)-- 3Ì4 ^1'-^ ZV,-,. ^1^* - ¦ • •) (C.7)

Dadurch gehen die Nebenbedingungen N0, Ns über in :

N5: d' dk f^ipik - gik (LYn) - M2 C-Yn + eL+1 {L)FL+i + eL+2 ™Ft+i + 0

^Z pf r* - <?' d*] (^„ dL)Kx + e2 MKt + q. e. d. (C.8)

b) Reduktion von N0

'M2
(AA-g<k-d'dk)v<f>ik m

i*-0
î
i-

^Lgik_didkyL+i)(Pik

Wir vernachlässigen jetzt Terme der Ordnung L + 1, Es gilt

^V5: d« d* (^<4 - gjJt (i)^) - M2 Wfl 0

Wir wählen das erzeugende Funktional

(£4-1) S (i+i) s (i+iy (i)ç4, (lai) A, (ileo) <i+1> S / d3x <L+i)s

(i+Ds {d* d* Z+D v*4 - gik <L+1VD - ^2 (L+1V*"} Ç + b.c. (C.9)

Als neue Nebenbedingung N5 setzen wir

Nf: di dk {(L + l)Wik _ gik (L+l)w:) _ M2 (L+l)y)n 0 (C10)

Dies hat zur Folge, dass (L+1)ipik [L)ipik ist tn(N), woraus man ersieht, dass CIO
konsistent ist.

(i+^S erzeugt die Transformation:

gik fA - M2)} Q

{L+1)Wik={L)Wik

(i)^u-(£4-i)^ {dt dk -

(L + 1)A (L)A
e e

<L)ft)e (L+i)ft)c
{L + l)y)ov (L)^

(L¥o,= (L+1¥o, tnfN) (CU)
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Ersetzen wir in N0 Wj>ik durch (L+1)tf>ik, so folgt

(JJ. gik __ oi dk\ (i+i)^^ =J-MiQ ((i+Dy, <i)çi, (i+i)^, (û«)

4- Wk (<LV, <L>^, WA, Wco)

Wegen Cil sind die Argumente von Q und {L,k modulo Nk gleich. Deshalb wählen wir

0 - 7Ì4 (L)Ä ((i+1)^*- (L)^*. (L+1,^8. (LH) (c-12)

c) Reduktion von Nx>23, Nit Ne7 a, N9

(L+Dy, _ (£+i)% 0 < >- (i+2>yj 0

M2 (i+D y.0J - 0* {L+1)c/>ki - <L+1>^ 0 < M2 <i+2yoJ - dk {L+2)cf>ki 0

Sei

(£+2)£ (£+2)5 ((£+2)^ (£+1)^ (£42)ft)) (£4-1)^4)

(i+2>S /ft73*(£+2)s
(£+2)s (i+2)^*v T" + h.c. (C.13)

Wie in b) setzen wir als neue Nebenbedingungen

{L+2)K - 0

Daraus folgt {L+2)cj)0v {L+X)tf>0v tnfN).
(L+2)S erzeugt die Transformation:

Setzen wir T0 — (L+1)w0

(i+2Voo -
lL+2)Woi-
iL+2)Wik

(L+2)rV
(Ì4-2M

e

(£+1Voo ^0

{L+1)Woi r,
=(L+iy *

(£+1)^4

(1+2)% <L+l)ft)g tnfN)

z - A (£ + lU.

(C.14)

so erfüllen die (L+2)Voi. die Nebenbedingungen

(L+2V00 + {L + 2)Wnn »

M2(£+2)%._ öA(i+2)^.= 0

Dabei haben wir die Nebenbedingungen N0, N9 auf die gewünschte Form
gebracht.

Xa ((i+2y (£+2>f <£+2M, (i+2)cu)

iV0: ^l # - d» d^„m 0

^1,2,3: ^o; 0

Ni:ip 0

Ni:d'dk(flk-glkf:)-M2yi: 0

Ne,7y-M2yoi-dktf>ki 0

N9: <pm 0 (C.15)
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In den Funktionen P, Q, T, kommen cot und A0 nur in der eichinvarianten Kombination

F9i djA0 + cot vor. Daraus folgt

A'.-A,- ÔE
ÔFOi OJ0-O)0

dAA'i-Ai)-fco'0-co0) 0

6S_
ÔFOi

o d, a:
I

A' -œ0 0

Damit haben wir gezeigt, dass die Lorentzbedingung durch die kanonischen
Transformationen ihre Gestalt nicht ändert.

Berechnung der Transfortnationen bis zur zweiten Näherung

Das unter a), b), c) vorgelegte Programm führen wir bis zur zweiten Ordnung in e

durch. Wir geben nur die Resultate der etwas verwickelten Rechnung :

Wmn -Wmn= - e ^M* (~2~ gmn ~ ^ Ò") ^' ^ ^' ^

Tmn Tmn

2
2 /Mfe

3 M* \ 2 &mn

e2 TTe 11mn

2

àmàn)
A (ip — ip, cf) — cf), A, '

3 M4

d<dkfnik-gikn:) + M*n:

e [d. dn + gmn fA - M2)] KfXfi

3 Mi dn + gmn fA - M2)]

Ki
fip — ip, cfi — cf>, A, l

K,
M2
AA d{ dk) 6j

+ *2 6> (C.16)

M2fWoi-Woi) -e
„ 2 i a r—.

{Pii + ^àiKx)+en..A
A

3 M4

3 M2

[ip*iKx-h.c.] + e3[.

2ia
co0-co0 -e2 ^y [dk fy,*»k Kx) - h.c]

- 2 i a [ 2 [dk Ap*hi - gkiwtn)] Kx - h.c
fi),- — COi ¦

¦ (C16a)3Mi \-dk{fiP*l-gkiiPr)Kx} + h.c.\

ip0y wird im weiteren nur in erster Näherung gebraucht. Es bedeuten Fx, Kx, JAmn,

0mn, Pj, das Folgende:

Fx i [2 Ak dl ffik - gik ÏÏ) + fd' Äk) y-* - gik ÏÏ) + x F«kipok]

2M2Ä»yn9+fVAk)']>ik~A + x)F<lkdlfpnn
Kx i _ _ _- d0 (F>» f0m) + xF»>kdk ym0 - *(d, F»k) ipki
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TZ
3 M1

3 M4

P. Minkowski

[dJKx F0n) + dfKx F0m)]

-{dmfKxIn) + dnfKxAm)}

+¦ y (dm Ân + àn A A Kx

4- 2 gmn dfl* Kx)

- ëmnfdi Ä') Kx

H. P. A.

P^i[Akcf>kî-.±±AFokipk. l-a F,iWl
3 - œ T,i

Wok (C.17)

Zum Schluss dieses Abschnitts transformieren wir den Hamiltonoperator li auf die

Felder Xa.
Bei der Rechnung stellt sich heraus, dass wir ipmn — ipmn, tf>mn — cf>mn vereinfachen

können, da die Terme

3 M1

3 M*

[~2~ ëmn- dmà„\ und

[dmdn + gmAA-M2)]f..A

in der betrachteten Näherung keine Änderung von li bewirken. Aus dem gleichen
Grunde brauchen wir K2 und F2 für die zweite Näherung nicht zu kennen.

U'
1 -,
A ft/ cov+^ dkA' dkAv + pt'fat - -7 cf,*: cfA„

+ 2 M2 ip*oi ip0i - 2 [dlcf>fk ipok + h.c ]

- d* y*n dky£ - dy*-» d&mn + 2 dy*. dnfni

+ 2ieAl [tf>fkipok - h.c] + (3-x)ie Fikîp~$kïpoi

-iefl-x) P" tf„ ykn+iefl- x) Fok Ap*»k \fn - h.c]

+ ieÄ0 [ffk cJik-V.c.] + iefl + x) Fok ßfcy*« - h.c]

- 2 u I* fyfc d„y"' - h.c] + * e I* fy*K d*v£ - h.c]

+ ieAk\Ap*""'d^pmn-V.c.)

A-<A(wtiWl-wtnWoò

-fl + x)Çp~*°ky{k-ffky°k)

- e2 Ak Akf*n \Af - e2 AkAky*>»" fmn

+ 2e2 AkAnW*kifp1 +e2h tnfN)

fl-x)fip*oiipnn-li.c.)

-fl + x)fAp*kYk-V.c:

(C.18)
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h A p* pi
M2 »il

2

Tm4

3 M4

XK*KX 3 M4

i(d,Fîi)K1 + h.c.-]

[(2 M2 + A) F*] Fx

- a-mT (do F*) Kx + h.c] + (V* Kx + h.c]

?ik-d{dk)w*'JFl + h.c.

3 Mi
2 if/ M2

~3AA \\[~2~

F2
2i

3 M*
2d'àk(Aiip0k) + 2(A-M2)AkVk0

- d< dk(ÂoW-ik) - (A - M2) (10ÏÏ)

W,

A - «) -Z* v* + A + «) Zh ro*

(1 - «)&* F„» ^>» - I0 f-, + 2 d( (Z« y4J
2jid-^,-gj,dr(i^:)
f« ^r Z C - dr(Ir y>ik) - Âr dr fik (C.19)

D. WechselWirkungsdarstellung
In diesem Abschnitt werden wir, ausgehend von den Nebenbedingungen C.15 die

Felder yßV, <f>pV aufspalten in yi^, tf>P/tv und yw^, r'i-p^,- so dass fWp> <f>p) mit

(y>i_p <f>i-p) vertauschen :

a) (f, (f>) (Wp, tf>P) + fWi-p: <f>i-p)

/9 9

b) fft.„L) ^xaz;2Xiv,
c) [(%,(*), ^W), (%-p(y), ri*-p(y)]^.y» o

Diese Aufspaltung ist davon unabhängig, ob fip, cf>) freie Felder sind oder nicht. Aus

ffp, cf>p, A, co) Xa und H'fXJ mfN) werden wir den Hamiltonoperator HfXf)
9

li + JJ lm Nm bestimmen, welcher mit den Nebenbedingungen N0,...,N9 ver-
w 0

tauscht. Dann erst ist es möglich, zur Wechselwirkungsdarstellung überzugehen.
Zuerst sei kurz das bisher Erreichte zusammengefasst : wir sind von den Feldern

(W/iv fi/tv Ag, coe) Xa, die den Nebenbedingungen B.ll genügen und H'(Xf) in
B.13 übergegangen zu Xa und

oo

lifK) ZeLU'L (Vgl. C.18)
£-0

Xx genügen den Nebenbedingungen

Nno-^r<f>:-d™d»tf>nm 0

Ni,zA- <Ah °
N4: f 0
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Ni:d'dkffik-gikfnfi-M2fl 0

N^f.M^9i-dkJki 0

N9: fiw 0

o30-dkÄk 0 (C.15)

Die Bewegungsgleichungen lauten in den neuen Variablen

H f dH UfXfi
t

H'+ / d>x2J^Nm, Xfy)
t ~~°

ià0Xfy)

Nm 0 m 0,1,..., 9 (D.l)

Die kanonischen Vertauschungsrelationen sind unverändert geblieben

Appfx), t*"ß(y)]x,=r i öfv rF> fx - y)

[Äefx), Z'(y)]*m, i ö°e d» fx - y) (D.2)

Alle andern Kommutatoren sind 0.

Zerlegung von (fp„v, fi „„) mit Hilfe des Projektionsoperators für freie Felder

Wir betrachten für einen Moment Felder ipf>v, fif>v, die für t 0 mit fipliv, fiflv)
zusammenfallen und den freien Gleichungen genügen. Dann gilt für fi{fv gemäss B.10

fili do [wïl - gik wT^ - (di wïi + dk ipï\) + 2 gik d* ip^o

« $2 - \ gik fiT + diwXl + « m(N) (D.3)

Die Nebenbedingungen entsprechen d ip{l]"v 0, y(/) 0 genau deshalb, weil sie die
Form der freien Nebenbedingungen für r 0 haben. Wir können £' £ 4- EcstN* N\
so wählen, dass die ip^v die Klein-Gordon Gleichung erfüllen.

(D + M2)V«Z=0

Diese Gleichungen gelten nicht nur modulo Nk.
Die kanonischen Vertauschungsrelationen

[wiifx) t J>*(')«ß(y)]x,__r i Ö*J «5<3> (* - y)

können integriert werden.

[wm {x) t ^*w«/.(y)] i g*ß A(x~y, M2) (D.4)

Wir sehen aus D.4, dass der Hilbertraum R eine indefinite Metrik trägt2). Für
freie Tensorfelder beliebiger Stufe hat M. Fierz [21] einen Projektionsoperator ange-

2) Vgl. S. Gupta [3], K. Bleuler [4].
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geben, der aus Tensoren, die der Klein-Gordon Gleichung genügen, die irreduziblen
Anteile ausprojiziert. Wir setzen

wZv - 1 K y," + i» f%] -JdpV d«ß ip% (D.5)

[Z- - (e„, + dlMi-)}

dfPpnflV °. Vp °
es gilt

und
1

T
daßw{±«=0

- A tj«,,,(/) _i_ ßf,,,(/) ,,,(')
2 \aßWpxv r av ipPlJ,ß) — Wpnv

D.5 lautet in Matrixschreibweise

Wp(f) Pw(f): P2=P (D.6)
Ausserdem gilt

(1 - P) ipd) 0 tnfN)
- 1

f1~P)ip^=ipxflp ZemNm (D.7)
w 0

Qm : Differentialoperator mit konstanten Koeffizienten.
Aus D.4 folgt

[fit), VW *] i 1 A [P ipW, P iff) *] iPA (P %pß, (1 - P) v*(/)] 0 (D.8)
und

[V?W.^«(y)] 0 m 0,...,9 (D.9)

Jetzt betrachten wir ipl-f/iv, fi{ßßV zur Zeit t 0. In P kommen 4 Ableitungen vor.
Die Ableitungen nach der Zeit müssen ersetzt werden. Dies geschieht folgendermassen :

doW?v^->fipv entsprechend D.3 und C.15 d20 A - M2; d% (A- M2) d0; d*

(A - M2)2. fff, fi^) definieren für t 0 (jpp fif) und ffx_p fix„p) ff - fP, fi- fiP).
Es gilt [fp, ip*_P] 0 und auf Grund von D.9

[fWP,fiP),Nm] 0 tn 0,1,. ..,9)

fWi-p fii-p) fZeî Nm, Zeî Nm) (D.10)

(ßi> Qz '¦ Differentialoperatoren mit konstanten Koeffizienten)

Bestimmung des ausgezeichneten Hamiltonoperators

n=n + z xm Nm
m 0

Wir setzen

Ufo/tv fiflv. Äe, mf) UfWppv, fip ßv,
ÄQ, côg) (DAI)
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Aus D.10 folgen die gewünschten Eigenschaften von H:

U=lf + £*mNm [H,Nk] 0 Ä 0,l,...,9 (D.12)
m 0

D.l lautet durch ?/ ausgedrückt

H f d3x H [H, XJy)] -id0 Xafy) [H, Nm] -id0Nm=0 (D.13)

Es sei nochmals betont, dass obschon xpp über das freie Feld gefunden wurde, die

Projektion für t 0 unabhängig ist von der Bewegungsgleichung + M2) y>(/) 0

und durch die Nebenbedingungen Nk allein bestimmt wird. Dabei spielt die Tatsache,
dass die Nebenbedingungen die freie Form haben, eine entscheidende Rolle.

Wir erhalten H, indem wir in H als Argumente nicht (y>, fi) sondern (fp, fif)
einsetzen.

oo ~

H H(e, x)=£e" d3x U'n(Wp, fip, A, w) H0 + HINT H0 H(e 0)
»-0 J

Es gilt nicht nur [H, TVJ 0 sondern auch

[H0,Nm] 0; [HINT,Nm] 0

Übergang zur Wechselwirkungsdarstellung

Erst jetzt sind wir in der Lage, die Schrödinger- und Wechselwirkungsdarstellung
zu definieren.

Wir gehen zuerst zur Schrödingerdarstellung über

Xa e~iHt Xa etHt ; [ Z >s e~im \ Z >H
s

oo „
H 2Je" dHH'n(X^p)

n - 0 j S

-id0Xa 0; idQ\Zys H\Z\
s

Nm Nm(Xa)
s s

[H, Nm] [H0, Nm] [HINT, Nm] 0 (D.14)
S SS SS

Operatoren in der Wechselwirkungsdarstellung seien mit 0 bezeichnet.

iH„t -iH„t i~H„t
Xa e s Xae s-\Zy e s \zys

s
oo

H= 2> dH U'n(Xalp)

[Hß, Xa(y)] -id0Xa; id0\Z> HINT \ Z >

Nm NJXf), [H0, 7VJ (HINT ,Nm] 0 (D.15)
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ftp, fi, A, co) gehorchen den Gleichungen des freien Feldes :

(n + M2)fp„ 0, UAg 0

Wir können in den Impulsraum übergehen

v=(zrz-*""Tft«
AAfA^jS:™ (D16>

(cok ]lk2 + M2)

apv und b lassen sich zerlegen

«/«.(*) anv(k) anv < b^(k) hp,v(k) + hp,v(k)
P 1—P P 1—P

[«„„(*). aì-p(k')ì M*). &?-/(*')] °
*

Der lineare Raum i?, in dem die Vertauschungsregeln D.2 dargestellt werden, spaltet
auf in

(\a*pfffiv)x,kx)...a%ff,j,v)n,kn) \.„\RX=U | Q >

Vl^^^jj+i.Z+i), ...é*((^i')„+m, Z+m)|
' /

und

R2 { \Q>]
\b*_p fn + 1) b*_p fn + m) j

(| Q_ >: Vakuumzustand in i?)
d.h. in die Fockräume, die durch a*, è* bzw. a\_p, b*_p erzeugt werden.

Der ganze Hilbertraum ist das direkte Produkt von Rx und R2

R= Rx ® R2.

Damit können die Feldoperatoren folgendermassen dargestellt werden

W» VV + W VZ1) ® 1 + 1 ® Vi-Z2) (D17)
- -/> -i-/> - -

H0, Ü/Arr un(i -^Z haben die Form

H0 Hfl) ® 1 #/2VT ifmr(l) ® 1 2Vt 1 ® 7V,(2) (D.18)

Der physikalische Hilbertraum §>p besteht aus den Zustandsvektoren

| z yt \ZX ® Q2 > | Q > | ßx ® Q2 >

Die Bedeutung von Nk 0 kann jetzt präzisiert werden:

Z £' I ^ | Zf yp < Zj ® Q211 ® Nk(2) | z;' ® ß2 yp

<Z[\ Z[ yx < Q2 j Nk(2) \Q2y 0 (D.19)

32 H. P. A. 39, 6 (1966)
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E. Diskussion des Hamiltonoperators in der WW-Darstellung

a) Erste Näherung, nichtrelativistischer Grenzfall, Multipolmomente

r U"f*°°d,w |
e i / d3x l \ + e [•¦¦]

|+(l-a)F"'y»,e^J
^^(vr^^.i.-h-z

+f32[--7
-xjd*xFf'fpvefpß

t

\LpQ"\t> "j» WpQo ~ 2 ^e Wpafi 2 "WpQßj

E.l gibt Anlass zu einem Dreiervertex:

Coc fiJ

Fig. 1

p, p'\ Impulse des Mesons, k: Impuls des Photons

H. P. A.

(E.l)

P'

Co)

C/uvJ

+ (l-x)e

„pv. „vß _,_ nß v<x\

?a.(oQP oP" _1_ aS" oPf\

(p + pr
fi a<XV i „QV „<X{1\

kßfgea g>
,Q<X „ßV ] 0Qß (y<Xv\ oa aPix | Qß „am

(E.2)

Im folgenden werden die Multipolmomente von HINT bestimmt. Der
nichtrelativistische Grenzfall ergibt sich, indem wir in fPpv den Anteil des Antiteilchens

weglassen, nach Potenzen von pfM (pr. Impuls) entwickeln und einen Faktor e~,Mt

abspalten :

WPßV e Wp,

^=(aaTJ „-- P*t qx l
6

2M
e

j/2 M AM* I'
p

aßAP) d»P (E.3)

Berücksichtigen wir, dass pß ap 0 ist, so können alle Komponenten durch apik
oder cpik ausgedrückt werden. Die a%ik erzeugen aus dem Vakuum nicht Zustände des

Fockraums, weil sie den Vertauschungsrelationen

s ] /SAik i mn o ik ^mn

1 / PiPm^kn + PkPmÔiA

2M \+PiPnàkm + PkP„àim/

(PmPnÔik + PiPk^mn)

[*ik(P),<„(P')]
p p

3M2

+ YMÏ &* ^k £"> P«)

<5<3) (p - p') (E.4)
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genügen. Wir bestimmen die neuen Operatoren %ikfp) als Funktionen der apik, mit
den Vertauschungsrelationen

IXikfP) Xtn(P')i ((àik I mn ™ | <^0) #» (P ~ P')

XikfP) aPik(P) - r m2 tt* fi" a"> + fik fi' V<]
P

1 3 *2
+ AAA* fi1 fik fi* fi' aP" + TW (fi* fi' a,k + fik fir V >) + Z • •

p

apik(P) XikfP) + Yüp (Pt Pr Xrk + Pk Pr Xr i)

1 *2
+ AAW fi* fi" fi' fi* X" ~ AIA (fi1 fi" Xrk + PkPrXri) + (¦¦¦) (E-5)

Die Aufgabe besteht weiter darin, H_INT durch Xik auszudrücken und nach Multipolen
zu ordnen. Für a 0 erhalten wir für das elektrische Multipolmoment der Ordnung
24= 16:

s(E M 24) 0

(s(E M 2") : Energie des elektrischen Multipols der Ordnung 2"

s(M M 2") : Energie des magnetischen Multipols der Ordnung 2").
Die weiteren Multipolenergien und -momente sind : (x 0)

s(E M 22) ^y<J (dt Ek + dk E,) x*ki Xr, >

J\- (3 z2 - r2) q (Sz 2) dH TeM2- (E.6)

(q (Sz 2) : Ladungsdichte im Zustand Sz 2)

s(MM23) .' < (d, dr Fki) i fx*ri %sk - X*k Xri) y
8 M3

mt i S Ç — ?\\ JS-r
A M3-, f Pfcosiï) r3 (x rot j {Sz 2}) d3x -^ (E.7)

(/ (S, 2) : Stromdichte im Zustand Sz 2)
Die anomalen Momente :

ea(E M 2*) - -AA, < {{ dm d„ (dk Et + d{ Ej} (X*h Xmn + fmn Xik) >

J Pfcosû) r* q(Sz 2) d3x J -A (E.8)

ea(E M 22) £=L < 1 (dk Et + d, Ek) x*r Xrk >

\\(3A~ r2) q(Sz 2) d3x A^, (E.9)

ea(M M23) - AAL3- < (ds dr Fki) i (X*{ Xsk - X% Xri) >
8 Af3

i t Ç _ 0\ \ J3V _ AM3~fps (cos#) r3 (x rot / (Sz - 2) d3x - 3. !"- (E.10)
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Magnetisches Moment

P. Minkowski H. P. A.

e(MM2^) -^-e<JBSy,;=l-A1AM.S
tot

(S: Spinoperator) (pt: magnetisches Moment)

b) Die zweite Näherung

p2 ai' _ _ p1 A k A ,,,*« ,,,»» _ JL A k A m*mn m — p2 A' Ak m* in"e -H2 — e £ï {fkWpmWpn e tf AkWp Wpmn * e ff A WpinWph

(E.ll)

~(l-a)(y>*oi^„-h.c.)

-fl + x)ffpühipJilc-h.e.)

+ e2h

^°>"m-h.c.)(1 - a) ffp

-fl + x)ff*p0mWpm~li.e.)

(E.12)

(Vgl.C.18)
Viele der in H2 vorkommenden Terme werden von den nichtkovarianten Anteilen

der T-Produkte kompensiert. Die Felder y>VT, r_crTl/l, A_Q, F_aß geben folgende
Kontraktionen : p p

TfWporfx), Wpo'AV)) >o *
(C-^T'+C ZZ

-Jd<rrda'r'
AF fx - y)

+ ÌQar,,-Adx)ò^fx-y)
< T ffparfx), r*a,T,lß(y)) >0 i A^^fdfi AF (x - y)

-iCaT;a,T,lß(dx)oW(x-y)

< T &«/„(*). E*poJ',Jy) >o * Bazlli;a.z^fdx) AF (x - y)

-iDBZJIi;a,x,llt.(dx)ôW(x-y)

< T (F,JA, Haß(y)) >o * (g?« Z dß - gva Z dß - gpß dv da + gvß d„ df) x

xDF(x-y)+ i Vß,.aß ÒW fx - y) (E.13)

Q, A, C, D, V sind Differentialoperatoren mit konstanten Koeffizienten. Es seien

hier lediglich Q und V angegeben :

urn'i'
1

Tf2

k uiw FRSiTE '

ICH AH

Y Ker' ^Or «W + Zr' <W ^0 r + Z o' ^0 a <W + Zr' ^Oo <W}

~"3 (Zr<V<W + Z't'^O^Ot)

+ ~Mi [j ^""' *"' + 'à*-' ~A°'*~A ^« d°'-~A Ô*° Ô»* Ô°°' Ô°*'\ (E-14a)

(daß \a dß + 00ß da~2 Ô0a Öoß d0)

Vpv,aß (ipa ô0fi àov - g„x ô0 ß ö0 p ~ gpß \a è0v + gvß ^Oa &0 ß) (E.14b)

Oy
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Die einfachsten Graphen führen zu den Kompensationen
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1) 6wU-y) 1)'

2)
6rv:>C>c-y)

—o 2)'

3) 6wU-y) \ 3)'

3a) /i
6(*>(*-y)

o—- 3a)'

4)
ó^Cx-yJ W

5)
6<*J(*-y)

5)'

5a)
6MU-y)
—-o

Fig. 2

5a)'



502 P. Minkowski H. P. A.

Als einfachste Kompensationserscheinung betrachten wir

{-JJ- e2 «2 fd*x d*y F fx) ip*" ip';fx) Faß(y) f*/° f^fy)J L z z 1 - _
(5<4 (x - y)

Jf ifd*x fp** ifpg i/^ß ff° iß„

i ~fd*x [y,*0* ifpg - h.c] (fl0afPai - h.c] (E.15)

Der Selbstwechselwirkungsterm in E.12 liefert einen Gegenterm proportional oc2:

- iJffd'x [jy°Wpg - h.C] [f*°"fpffi - h.c]

der E.15 kompensiert.
Die Graphen 1)', 2)', 3)', 3a)', 4), 5)', 5a)' kommen in H2 alle vor. Die S-Matrix,

die durch H erzeugt wird, kann nachdem alle Kompensationen ausgeführt sind, auch
durch einen äquivalenten invarianten Hamiltonoperator erzeugt werden, wobei in
allen Kontraktionen nur invariante und kovariante Ausdrücke vorkommen.

F. Reduktion des Hamiltonoperators; kovariante Kontraktionen

In diesem Abschnitt wird gezeigt, dass der kanonische Formalismus die
Voraussetzungen zur Folge hat, die Umezawa und Takahashi [11, 12, 13] verwenden, um
die Reduktion des Hamiltonoperators durchzuführen. Die Reduktion beruht darauf,
dass ein Zusammenhang besteht zwischen T-Produkten und den Oberflächentermen,
die im Hamiltonoperator auftreten. Dabei kompensieren sich alle Grössen, die die
Oberfläche explizit enthalten. HINT lässt sich als Summe — Cint + % darstellen,
wobei Z nur Beiträge enthält, die von der Normalen einer raumartigen Fläche
abhängen.

UINT(x, n) - CINT(x) + e2 w"'(x) npfx) nfx) + e3 [... ] (F.0)

Der kanonische Formalismus erzeugt in natürlicher Weise die Zusatzterme Z, indem
alle Felder fp auf neue Felder fp transformiert werden, die den Übergang zur
Wechselwirkungsdarstellung erlauben.

In F.0 spielt — Cjnt die Rolle einer Anfangsbedingung. Die weiteren Terme in Z
entsprechen der Konstruktion einer kausalen und unitären S-Matrix, wie sie von
E. C. G. Stueckelberg und D. Rivier [18, 19] angegeben wurde.

Um den Anschluss an die Bezeichnungen von Umezawa und Takahashi [11]
herzustellen, zeigen wir zuerst, dass die Feldoperatoren fp in der Heisenbergdarstellung
im physikalischen Hilbertraum §>p reduziert werden (vgl. D). fp ist als Potenzreihe der
Felder fp gegeben. Es genügt also zu zeigen, dass die Aussage für fp richtig ist.

Der Projektor auf §>p sei E. Es gilt auf Grund der speziellen Form von H0, HINT
und Nk (D.18)

E f E fp f(x) (C/_1(ff) y(x) Ufa)) fa j x)

Eip_E ip_p fpfx) (U-\a)fpfx)Ufa))fa\x) (F.l)

a: raumartige Fläche, fajx) bedeutet: a ist so gewählt, dass x darauf liegt.
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Ufa) ist zunächst nur bezüglich r\ unitär :

< Z'x ® Zf, r,; Ufa) ZX®Z2^> <^U~\a) Z'x ® Zf, rp, Zx ® Z2>
=>fU-1)+=7) Uf]'1

rj lässt sich zerlegen :

ri E+QrlQ Q 1~E (F.2)

Aus F.2 zusammen mit Ufa) E E Ufa) folgt, dass Ufa) auf §>p ein unitärer Operator
ist. Wir verwenden im folgenden nicht fp,ipp, die durch D.14, D.15 auseinander

hervorgehen, also für t 0 übereinstimmen, sondern îpp,fp, die für t — oo

zusammenfallen. F. 1 gilt auch für f'P. Die Felder fp, die entsprechend den in C konstruierten

Transformationen mit f'p zusammenhängen, erfüllen die Gleichungen A.3 :

G(d, M2) fp j G G-A-ß (dx, M2)

Wp Wpa.ß'< Ì' — laß ~~ C-INT,v*aß + "e *~INT,OQy>*aß (F-3)

Es existiert eine Matrix P P:fß (d, M2) mit

P G= GP= - (a+M2)l
P kommt in den Vertauschungsrelationen D.8 vor:

[fp(x), f*fx')] i P(dx, M2) Afx- x', M2) (F.4)

Die Greenschen Funktionen der Gleichungen F.3 hängen ebenfalls von P ab

Grfx-x') =1 öfx-x');PGr= - (D + M2) t + Pô (x-x')
=f> t"" fx-x') - P Aret fx - x', M2) (F.5)

Neben ip'p betrachten wir
Wp (x> o) U-\a) fpfx) Ufa)

Dabei muss a nicht durch den Punkt x hindurchgehen, fpfx, a) ist ein freies Feld und
genügt den Vertauschungsrelationen

[fpfx, a) f'p*fx'', a)] i P A fx - x')

Wir formen F.3 zu einer Integralgleichung um:

Wp(x) Wp(x) + j irel (x - x') l(x') dx' (F-7)

Ufa) genügt der Gleichung

ô

âa(x)
Ufa) Hfx, n) Ufa) Ufa) Hfx \ a, n) (F.8)

Unter den folgenden Voraussetzungen konstruieren Umezawa und Takahashi [11]
Hfx/a, n) und Ufa), was in unserem Fall eine Rekonstruktion von Hj^t bedeutet:
(i) Ufa) hängt nur von der raumartigen Fläche a ab.

(ii) fpfx) ist ein lokales Funktional von f'p fx) ip'Pfx, a){aix).
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Die in D.14 und D.15 vorkommenden Operatoren H und H0 sind zeitunabhängig,

woraus (i) unmittelbar folgt, (ii) ist auf Grund der Transformation fp *—* f'p, die in C

konstruiert wurde, erfüllt.
In der genannten Arbeit werden Hfx'/a, n') und [7(er) aus den Gleichungen

fp fx, a) fp(x) + j Da P(dx) A(x- x') jfx') dx' + e2 J Ç(x, x') dx'
— OO —OO

[U(x' | a, n'), f'p (x)] - i Da(dx) P(dx) A (x - x') ja(x') - i e2 S(x, x') (F.9)

errechnet. Dabei bedeutet in Vektorschreibweise

L'a A< ~ df), 1a — fClNT,yi*> £>INT,diit>*) •

F.9 wird durch Iteration gelöst, wobei f fx, x') so bestimmt werden muss, dass
a

J dx' ifx, x') nicht von der Vorgeschichte der Felder abhängt. Hfxfa, n') und
— oo

ifx, x') werden nach Potenzen von ffpfx, a))^ajx) entwickelt, mit Hilfe der Beziehung

Mfd) y>p(x) [Mfd) f'p fx, a)](alx) + \ [Mfdf Da P(dx) e(x - x')] A (x - x') ja(x') dx'

- e2\ j Mfdx) ifx, x') dx'\ (F. 10)
I—oo l(alx)

Mfd) : beliebiger Differentialoperator.
Dabei werden im wesentlichen die in C angegebenen Transformationen durchgeführt,
wobei aber die Kompensationen gegenüber den T-Produkten dank der folgenden
Gleichung übersehen werden können.

< T (Mfdx)fp(x), Mfd'fi fp(x')) >0 i MfdfMf- dx) PAFfx- x')

- Z [Mfdx) Mt(- àx), s (x - x')] A(x- x') (F.ll)

Mx, M2: Differentialoperatoren.
Aus (i), (ii), F.9 und F.10 folgt der Anfang der Entwicklung von Hfx, n) nach e:

Hfx, n) - ClNTfWp) + A w"fx) n^nv+e3[...] (F.0)

F.0 zusammen mit F. 10 sind zunächst nur formal. Hingegen sind alle in diesem
Abschnitt ausgeführten Operationen durch die kanonischen Transformationen in C

gegeben und bedeuten daher eine Rekonstruktion des Hamiltonoperators.
w'ivnllnv kompensiert den nichtkovarianten Beitrag von (C/.vr(x) C/vrM)-

Führt man die kovarianten T*-Produkte ein

< T* fMx yp(x), Mfd'fi fpfx') )y0 i Mfdf Mf- dx) PAFfx- x') (F.12)

so kann die S-Matrix durch

%nt - C1NT (fp(x), f*(x), dp fp(x), dß f*(x), Afx) (F.13)

erzeugt werden.



Vol. 39, 1966 Versuch einer konsistenten Theorie eines Spin-2-Mesons 505

In allen betrachteten Reihenentwicklungen ist die Reihenfolge der Operatoren
nicht festgelegt. Die Reduktion von Hfx, n) ist nur bestimmt modulo Kommutatoren
der Form

[Mfàf fpfx), Mfd'x)f*fx')]x^

welche explizit unendliche Ausdrücke zur S-Matrix beitragen. Als Beispiel dienen die
Graphen 3)', 4)' und 5)' des Abschnitts E.

Ein anomales magnetisches Moment des Vektormesons hat ebenfalls solche
Terme zur Folge (vgl. Lee und Yang [14]).

Der Hamiltonoperator ist somit reduziert zu

Hfx) * e {Af [fp° rpgalix - If*pgalß fj] - x Fff* f*pvg fpfl}

+ e2^Agf*^fppv-2e2AfAff*vgi£Pß (F.14)

Damit die angegebenen Regeln Anwendung finden, müssen die Ableitungen der Ap
auf die Mesonfelder übergewälzt werden.

Zu Hfx) gehören die Vertices :

ieC"'ea-e'a' fp,k,p')
(Dreiervertex)

ff'J
(Q'CT'J

g2 LTß P,Q " Q a<

(QOr)
Cu)

Fig. 3

(Vierervertex)

C und K können aus F.14 bestimmt werden.
Die kovarianten Kontraktionen ergeben die folgenden Regeln für eine innere

Mesonlinie :

P-5>
Cq,cr) (q'cr1) < >¦ einer inneren Mesonlinie entspricht der Propagator

(2ji)4 P2-M* + ie \2 \CIqq' doa' -{~ dqa' daq') — -^- dga dq'o')

l PQP°\
aea - (ggo rp-J

Fig. 4

Zum Schluss ist es mir eine angenehme Pflicht, meinen hochverehrten Lehrern,
den Herren Professoren M. Fierz und R. Jost, für die Unterstützung bei der Ausführung

dieser Arbeit, meinen verbindlichsten Dank auszusprechen, ganz besonders



506 P. Minkowski H. P. A.

Herrn Prof. Fierz für die Anregung zu diesem Thema und die weiteren
richtungweisenden Ratschläge und Fragen.

Ich möchte auch Herrn Dr. D. N. Williams verbindlichst danken für die
wertvollen Hinweise auf die Literatur, ferner den Herren Dr. W. Wyss, Dr. W. Schneider,
S. Albeverio und R. Seiler für die lehrreichen Diskussionen und Frl. R. Hintermann

für ihre Hilfe bei der Anfertigung des Manuskripts.
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