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On the Spectra of Schriodinger Multiparticle Hamiltonians

by Walter Hunziker
Seminar fiir Theoretische Physik der ETH Ziirich

(23. V. 66)

Abstract. For two-body potentials which are locally square-integrable and vanish (arbitrarily
slowly) at infinity, the spectrum of the N-particle Hamiltonian in the center-of-mass frame is
shown to have the form which is commonly expected: it consists of a continuum ¢, (generated by
states in which the system is broken up into independent parts, and characterized, therefore, in
terms of the Hamiltonians of these parts), and, in the complement of ¢,, of eigenvalues only,
which are of finite multiplicity and can accumulate at most at the lower end of o,. Some properties
of the corresponding bound-state wave-functions are derived, and a problem is posed concerning
the generalization of Faddeev’s equations to N > 3.

1. Introduction

For the purposes of time-independent scattering theory, S. WEINBERG [1]?) and
C.vAN WinTER [2] have independently derived a functional equation for the N-particle
Green’s function which is superior, in many respects, to the usual resolvent equations.
In the present paper, we want to apply this functional equation to the simpler task of
discussing the bound states below the continuum. Some results in this direction have
also been obtained by C. van WINTER [2, 3], but since our objective here is not
scattering theory, we can manage with less restrictive assumptions on the potentials.
Essentially, we deal with potentials which are locally square-integrable and vanish
arbitrarily slowly at infinity (for the precise hypothesis see Theorem 2). The existence
of the continuum, which can be inferred from time-dependent scattering theory in the
case of short-range forces, is established as a consequence of the spatial cluster-
decomposition properties of the Hamiltonian.

2. The Spectrum of H

Using customary notation, we first recall some properties of the N-particle

Hamiltonian
N

H— ﬁ\-—+zv Hy+V (1)

on the Hilbertspace § = L2(R?*"). For simplicity, we only treat the case of two-body
forces. « labels the (§) pairs of different particles, and x, denotes the relative co-
ordinates of the pair a. The potentials V, are always supposed to be real.

1) Numbers in brackets refer to References, page 462.
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Theorem 1 (KaTo [4])

For any «, let
Vol+) € L3(R?) + L¥(R%) %) . (2)

Then D(V,) D D(H,) and, for any a > 0, there exists b <C oo such that
| Voull <al|Houl|| + b |[ul| (3)

foralla and allue D(H,). Hy + V, defined on D(H,), is self-adjoint and bounded
from below.

If the potentials V,(x,) vanish as | x, | > oo, we expect that the N-particle system
can break up into parts which are independent, it they are far separated from each
other. To formulate this, let D, = (C, ... C,) be a partition of the set of particles
(1... N) into k& subsets (clusters), and let I D, be the sum ot all two-body potentials

which link particles in different clusters. We define
H, =H-1I,, (4)

so that the Hamiltonian H D, describes the system of noninteracting clusters C; ... C,.

Let u be a state of the N-particle system in which the clusters are far separated from
each other, then H w = H p, #, approximately. Therefore, we expect

olH,,) C olH), 5)

where o(A4) denotes the spectrum of 4. From here on, we fix the center-of-mass of the
N-particle system without changing the notation: H,, H, and H p, are now Hamil-

tonians in the center-of-mass frame, acting on a Hilbertspace § = L2(3¥-3). Except for
the explicit form (1) of H, everything said so far applies word for word in this modified
situation. If governed by the Hamiltonian H Dy the clusters C, ... C, (A > 2) can

still move freely relative to each other, hence o(H Dk) is still continuous, extending
from some real number ép, to + oo. Detining

o.= U o(Hy) = [mine, , + o), (6)

k
Dy k>2 Dy k> 2
we can now state our main result, which will be proved in Sections 4-6:

Theorem 2

For any «, let
Val©) € LA(R?) + L¥(R?) (7)

such that the L*-component of I/, can be chosen arbitrarily small, in the sense
of the L*-norm. Then o, C o(H), and the part of ¢(H) in the complement of o,
consists of eigenvalues only, which are of finite multiplicity and can accumulate at
most at the lower end of g,.

®) fe L?+ L7 means that there exists an f, € L? and an f, € L7 such that f(x) = f,(#)+
Jq(x) almost everywhere.
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The hypothesis of this theorem is satisfied, for example, if, for any e,
V() e L¥R%) + LP(RY), 2<p <oo,

orif V_(x,) is locally square-integrable and vanishes (arbitrarily slowly) as | x, | > oo.
In particular, this covers the case of Coulomb-interactions.

Among other things, Theorem 2 provides a basis for perturbation theory. The
usual perturbation formalism for bound states has been justified to a large extent,
notably by F. RerLIcH [5] and T. Kato [6], but the underlying assumption is always
that one has to deal with an isolated eigenvalue of finite multiplicity.

3. Properties of Bound-State Wave-Functions

In this section, we want to apply Theorem 2 to obtain some information about the
behavior of bound-state wave-functions at infinity (in configuration space).

In the center-of-mass frame, we describe the positions of the N particles by relative
coordinates %, ... x,, m = 3 N — 3, which are taken as linear combinations ot the
cartesian coordinates of the N particles. For any multiindex # = (%, ...n,,), n; integer
> 0, let x* denote the operator of multiplication by the monomial «}» ... x7m, defined
on all elements of L2(R™) for which this product is again in L2(R™), and define

D,= ] Dzt HY),
k< n
L < |n]—|R|
where £ << n means k2, <<#n;, t=1...m, and |n|=n, + #ny+ -+ +n,. On D, we
introduce the norm

||| = sup [|% HE uf]. (8)
lékl;b\\lf %]
Since H! and #x* are closed, D,, normed by || ||,, is complete.

Theorem 3 [7]

Under the hypothesis of Theorem 1, D, is invariant under e=*#!, — oo < ¢ <C + o0.
Forany u e D, e="#* 5 is continuous in ¢ in the sense of the norm || [|,, and there
exists a constant ¢, such that

e ull, < e, 1+ [£])m [l .

Now let p be a compact isolated subset of ¢(H), and let P denote the spectral
projection corresponding to g: P = [ ¢ dE(L), where H = [ 1 dE(]) is the spec-
tral representation of H.

Lemma 1

(a) For any =, D, is invariant under P: P D, C D,,.

(b) If P is of finite rank and D, dense in §, then the range of P is contained
mD,:PHCD,.
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Proof:
(a) By hypothesis, there exists a C®-function f(4) of compact support such that

f(A) =1 for Aeg,
f(A) =0 for Ad¢p, Aco(H).

Its Fourier-Transform
j) = @m) [ e s

belongs to the space & of rapidly decreasing functions, and, for any u € §), the
projection P u can be expressed by

oo

~

Pu— / dt e HE f(t) .

Now let w € D,. Then, by Theorem 3, the integrand is a function of ¢ with values
in D, and, in the sense of the norm (8), this function is continuous in ¢ and vanishes
faster than any inverse power of ¢ as | # | > oo. Since D, is complete, this implies
that the integral (as the limit of Riemann sums) converges in D,. Hence u e D,
implies Pue D,

(b) If P is of finite rank and D, dense in §), we have

P$=PD,C PD,=PD,CD,.
Combining this lemma with Theorem 2, we obtain

T heorem 4

Under the hypothesis of Theorem 2, the eigenvectors of H corresponding to
eigenvalues in the complement of ¢,, belong to D(x") — for any multi-index » for
which D, is dense in §).

For|=n| =1, D,is dense in §. It is somewhat annoying that, under the hypothesis
of Theorem 1, we are not able to assert the same for arbitrary ». However, if, for
example, each V (x,) is a C®-function on an open set of R® whose complement has
measure 0, then D, = § for all # (7). Thus, in all the cases commonly considered in
physics, the bound states below the continuum belong to D(x") for all %, or, roughly
speaking, the bound-state wave-functions decrease faster than any inverse power of
| x| as | x| > oo. If the potentials ¥V, are C*®-functions on all of R3, vanishing for
| %, | > oo and having bounded derivatives to all orders, the wave-functions of the
bound states belong to GS(R™) [7].

4. The Continuous Spectrum

This section is devoted to the proof that o, C o(H). The argument given in
Section 2 can be made rigorous by aid of the following simple lemma, which we state
without proof:
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Lemma 2

Let H be a self-adjoint operator on a Hilbertspace §. Then A € ¢(H) if and only

if there exists a sequence {«,} C D(H) with || u, || = 1andlim || (A — H) u, || = 0.

In our case, the states #, will be constructed as states in which the clusters of a
given decomposition are more and more separated from each other. First, we want to
investigate in what sense the interaction between the clusters vanishes in this limit.

Let %, ... xy be the cartesian coordinates of the N particles. In (relative) con-
figuration space R*¥—3, we can choose, for any pair ¢, § (¢ # 7), the 3N — 3 independent
coordinates x = x; — x; and «x, (% + ¢, j), which shall be denoted by (x, x,). The norm
on § = L2(R*N=3) is then given by

||#]]? = cfff | u(x, %,) |2 d® [ [ d3x,,
KL
where ¢;; > 0 is the modulus of a jacobian depending only on the masses and on the
choice of the pair 1, 7.
Let D, = (C,...C,) be a decomposition of (1...N) into % clusters (k& > 2).
For any set s = (s; ... s;) of & 3-vectors we define the operator 7'(s) on $§ by

(T(s)m) (2, 24) = w0 (x + 2, — 4, 2, + 1)),

where ¢, = s, for /e C,,. In words: T(s) is the unitary operator which represents a
translation of each cluster C,, as a whole, by s,,. Let |s|=min,,  |s, —5s,]|.
As | s | > oo, the clusters become more and more separated from each other, and the
interaction between them vanishes in the following sense:

Lemma 3
Under the hypothesis of Theorem 2,
Jm ([ 2, T(s) ul] =0, ©)

for all w e D(H,).

Proof:

We only consider a single term ¥V, of 1 p, Foranye > 0, we can choose a splitting
V(&) = Vya(x) + V, (%) (a.€) such that V, ,(*) € L#(R?) and that || V, (") |l < &
Then ||V, o T(s) u|| < e||u]| for all s, hence it suffices to prove (9) under the
hypothesis that V,(*) € L3(R3). T'(s) is unitary and commutes with H, on D(H,).
Therefore, by (3),

|

for all s and all w € D(H,). Providing D(H,) with the norm || Hyu || + || # ||, we see
that V, T'(s) is a bounded operator from D(H,) into §, bounded uniformly in s. It is
sufficient, therefore, to prove (9) on a dense set in D(H,), for example on S(R*V?).
We can even restrict ourselves to states u of the form

VT u|| <al|Houl|| + b ||u]]

u(x, x,) = f(%) 8(xa) ,
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with f€ S(R3) and g € S(R3*N~F), since the finite linear combinations of such products
are dense in S(R*~?). Choosing the coordinates (x, x,) for the pair 4, j = «, we then
obtain

WV T(s)ul]2=cy HgHijd?'x|Vij(x)f(x+ti—tj) 2.

Now 7 and j belong to different clusters, so that |#; —¢;| = oo as | s | > oco. Since
V,(*) € L3(R3) and f e S(R?), the last integral vanishes as | s | = oc, by the dominated
convergence theorem.

It is now a simple matter to show that o, C o(H). Let A€ o(Hp ). By Lemma 2,
there exists a sequence {u,} C D(H,) with || #, || =1 and

lim]|(/1—HDk)unH:O. (10)

n—>00

On the other hand, the translation operators 7'(s) corresponding to the decomposition
D, commute with Hp, on D(H,), hence

(k= B) T(5) w,]| < |1 — Hp) ]| + || I, T(5) 1]

By (10) and Lemma 3, the right hand side can be made arbitrarily small by first
choosing # and then | s | large enough. Since T(s) u,€ D(H,) and || T(s) «, || = 1,
Lemma 2 applies and we conclude that A € o(H).

In the case of short-range forces, time-dependent scattering theory gives a
stronger result:

Theorem 5 (HACK [8])
For any «, let
V() e L¥RY) + LY(RY), 2<p<3. (11)

Then, for any decomposition D,, the two strong limits

s-lim ¢ ¢~ 8D} = QF
t—>+4 00 k

exist on all of §.

(In his proof, Hack assumes that V() € L3(R®) and he establishes strong conver-
gence only on a subspace of so-called channel states. It is not difficult, however, to
extend his proof so that it covers Theorem 5). It follows that the operators £2;; are

isometric and satisfy
g tH? “Qli)k _ Q;Ek 8'71HD;63 )

hence the ranges of ng reduce the group e~ and the parts of H in these invariant
subspaces are unitarily equivalent to H D, This is much more, of course, than
o, C o(H) only.

5. The Functional Equation for G(z)

The main tool for the proof of the second part of Theorem 2 is the functional
equation of S. WEINBERG and C. vAN WINTER for the resolvent G(z) = (z — H)™ L.
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In this section, we rederive this equation by analyzing perturbation graphs —a method
familiar to physicists, which can easily be justified in the present case.
Let Gy(z) = (2 — Hy) L. By Theorem 1, V, G,(2) is defined on all of § for z ¢ o(H,).
For Re 2 << 0 we have || Gy(z) || = | z|~! and, by (3),
b
|2 ]

Since a can be chosen arbitrarily small, we conclude that

||V, Gol2) || < 2a+

lim ||V, Gy(a)|| =0 (12)

Rez—>—o0

Let M < Obesuch that || V,Gy(2) || << (§) " foralla if Re z<C M. Thus, for Rez << M,
the iteration solution of the resolvent equation

G(2) = Golz) + Golz) V G(2)

exists and is given by the series
G(2) = Z Z Go(2) Vs Go(2) V,, -+ Gol2) Vaﬂ Gol2) , (13)
n=0 %yeen Oy

which converges absolutely, in the sense of the operator norm. (This also exhibits
that H is bounded from below). Following S. WEINBERG [1], we define the graph
representing the term G, V, G, V, ...G, V, G, of the series (13) to conmsist of N

horizontal lines (,particles’) and # vertical lines (interactions’) linking just the
pairs of particles o ... o, from left to right.
For example, the graph

l

l

E

!

|

|

3 |

: |

I

: |

N I

|

represents the term G, Voy Gy Vip Gy Vie Gy V13 Go- Now we turn to a classification
of these graphs:

(a) Each graph G consists of a certain number % of connected parts (1 << 2 << N)
— only the endpoints of the interactions counting as connections — and thus defines a
cluster-decomposition D, (G): two particles belong to the same cluster if their lines

belong to the same connected part of G.

(b) D, C D, means that D, is obtained by further partitioning the clusters of
D;({ < k). A graph G is called D,-disconnected if D, C D,(G), i.e. if none of the
interactions of G link different clusters of D,. Identifying graphs with terms in the
series (13), we find, for Re 2 << M,

. (all Ddisconnected graphs) = (z — Hp))™* = Gp,(2).
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(c) Let us cut a graph by a vertical line L (see Figure), and denote by D(L) the
decomposition defined by the subgraph to the left of L. First, let L be to the left of all
interactions, then D(L) = Dy = (1) (2) ... (V). If we now shift L gradually to the
right through the whole graph, D(L) assumes the sequence of values

8= (D, Dy oy oo 2B
D30, NZ=2EE1, (14)

where D, is the decomposition corresponding to the whole graph according to (a).
In this way, each graph G uniquely defines a sequence S(G) of type (14). Conversely,
for a given S of type (14), we define the class S to consist of all graphs G with S(G) = S.
-Any graph of class S has the form

G, f]_

1=N

{ (any interaction linking different) (any Di—disconnectedﬂ (1s)
1

clusters of D, ; but not of D, graph

where the ‘factors’ are ordered from lett to right as ¢ decreases.
Since the series (13) is absolutely convergent for Re z << M, we can rearrange it in
the following way: first, we sum over all graphs of a fixed class S. By (15), this yields

Gg(2) = ), (all graphs of class S)
Gyl2) ﬁ sum of all potentials linking different) /sum of all D;-discon-
= Gplz
0 clusters of D,,; but not of D,

1=N—1

nected graphs
(16)

- GDAr(Z) -VD‘I\yDAr_l GDN-_I(Z) VDN_]_ DN—2 b VDk+] Dk GDk(z) b

where Vy, p, = Ip, — Ip, ,, Ip, being defined by (4).

The remaining finite sum over classes is carried out in two steps: first, we sum over
allS = (Dy ... D)) with 2 > 2. This is the sum of all disconnected graphs and defines
the disconnected part D(z) of G(z):

D(z) = 2:' G(2) . (17)

all S
with £>2

Similarly, we obtain the connected part C(z) by summing over all S with £=1

(sum of all connected graphs):
Clz) = D, Gsla) . (18)

all S
with A=1

Noting that each term in the last sum ends with a factor Gy, (2) = G(z), we finally
arrive at

G(z) = D(z) + C(z) = D(2) + I(2) G(2) , (19)
I(z) = 2 Gp(2) Vouny o Goy_,(2) .- Gp () Vi, . (20)
with k=1

Note that D(z) and I(z) are defined for all z ¢ ¢,, but that the functional Equation (19)
for G(2) is established, so far, only for Re z << M. As it stands, I(2) is defined on the
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intersection of the domains D(V,) only. However, it has a unique bounded extension,
since (20) implies
Mok = 3 P, o, Gp,(2) -+~ Vpyny | Gp,(2) (21)

all 5
with k=1

which, by Theorem 1, is bounded for z ¢ o,. In the following, /(z) denotes the unique

bounded extension of the operator defined by (20).

Lemma 4

(a) I(z) and D(z) are holomorphic in z for z ¢ o,.
(b) lLim [[Z(z)]|=0.

Re z-—»>—m0

Proof;

If I(z)* is holomorphic in z for z ¢ o, so is I(z), hence it suffices to prove assertions
(a) and (b) for the operator V, Gj(z), where « is any pair and D any decomposition of
(1... N)into at least two clusters. Let D(Hp) be normed by ||« ||p=||Hpu || + || »||.
For z¢ 0., Gp(2) is a bounded operator from § onto D(Hp), and holomorphic in z for
z¢ o,. By Theorem 1, the norm || # || is equivalent to the norm || Hyu || + || # || on
D(H,) = D(Hp), hence V, is a bounded operator from D(Hp) into §. This proves (a).
To prove (b), we note that an estimate of type (3) also holds if H is replaced by Hp,
thus (b) follows in the same way as (12).

By Lemma 4(a), the functional equation

G(z) = D) + I(z) G(z) , (22)

with D(z) and I(z) defined by (16) (17) (20), extends by analyticity from Re z << M
toallz¢ o,, 2¢ o(H). This is the final step in the derivation based on the perturbation
series (13). Of course, (22) can also be obtained from the resolvent equations which
link the various resolvents GDk(z) [2].

6. The Discrete Spectrum

Lemma 5

If the potentials V, satisfy the hypothesis of Theorem 2, then I(z) is a compact
operator for z ¢ o, .

Proof:

For eacha, there exists asequence V, (*) € L¥(R®) suchthat V, (*) — V, ()€ L™(R?)
and, for n = oo, ||V, (") — V(") ||cc > 0. Let I,(z) be defined by (20), with the
proviso that in the terms VDk+1 p, (but not in the resolvents Gp, ) the potentials V, are
to be replaced by V, . Clearly, for z¢ o,

lim ||Z,(a) — I(:)|| = 0.

n— 00

On the other hand, it was shown by C. vaAN WINTER [2] and also by the author [9],
that each term in the sum (20) is a Hilbert-Schmidt operator, tor z ¢ o,, provided that
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all the potentials occurring explicitely (i.e.in theterms Vp,  p, ) are square-integrable.
Hence I(z), being the uniform limit of a sequence of Hilbert-Schmidt operators,
1s compact for z ¢ o,.

Combining Lemmas 4 and 5 we conclude (see appendix), that (1 — I(2))7! is
meromorphic in z for z € ¢,, and that

G(z) — (1 — I(z))"' D(2)

for all z ¢ o, for which (1 — I(2))! exists (it might happen that G(z) exists but not
(1 — I(2))~1. This point is further discussed in Section 7), thus G(z) too is meromorphic
in the complement of ¢,. This proves that the part of ¢(H) in the complement of o,
consists of eigenvalues only, which can accumulate at most at the lower end of o,.

To show the finite multiplicity, let z, be a pole of G(z) (eigenvalue of H) in the
complement of ¢,, and P the projection onto the corresponding subspace of eigen-
vectors:

P =1lim (2 — z,) G(z) .

2~ 2,

On the other hand, by (22),
(2 — 29) G(2) = (7 — 2) D(2) + I(2) (z — zp) G(2) .
Since D(z) and I(z) are holomorphic in a neighborhood of z,, we obtain, for z - z;:
P=1I()P, (23)
hence P is a compact projection and therefore of finite rank. This concludes the proof
of Theorem 2.

7. FaAppeev’s Equations

(23) shows that, for z ¢ o,

Hf=zf implies f=I(z) f.

For N > 2, however, the reverse is not proved and probably false. Thus we cannot
conclude that (1 — I(z))~! exists (for z¢ g,) whenever z is not an eigenvalue of H.
From all we know, the poles ot (1 — I(z))~! need not even be real.

In the case N = 3, this annoying feature is avoided by L. D. FADDEEV [10] in the
following way: he splits the GREEN’s function into components

G(z) = Golz) + 3 Ry(2)

where R, = G, VG or, in terms of graphs, R, = 2’ (of all graphs with ¥V, as the left-
most interaction). Instead of (22), L. D. FADDEEV treats a linked set of equations for
the components R, :

Ra: (Goc_ GO)—!_ZGoc VaRﬁ

B+
where G, = (z — Hy— V,)~! is the disconnected part of R,. This splitting into
components has the effect that, for z ¢ o, the homogeneous equations

Hf:zfandfa:ZGa Va/s

BHa
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are equivalent, if connected by
fZZfa’ fa:GOVaf'

The author has tried, unsuccessfully so far, to find a generalization of FADDEEV’s
equations to N > 3 which still has this property. The analysis of graphs suggests
several ways of splitting G(z) — or C(z) — into components (an example is (18)), and
linked sets of equations for these components can be derived along the lines followed
in Section 5. The unsolved problem is to show whether or not nontrivial solutions of
the homogeneous equations correspond to bound states.

Appendix

In this appendix we formulate and prove a theorem which seems to be known but
which we couldn’t find in the literature.

T heorem

(a) Let C be the closure, in the sense of the operator norm, of the set of operators
of finite rank on a Banachspace B.

(b) Let A(z) be a C-valued function of the complex variable z, which is holomorphic
in an open, connected region G.

(c) Suppose that (1 — A(z,))~! exists for some z,€ G. Then (1 — A(z))~! is mero-
morphic in z for z € G, i.e. its only possible singularities in G are poles.

Remark:

If B is a Hilbertspace, then C is the set of all compact operators on B. To our
knowledge, it is still open if the same is true for any Banachspace B.

Proof:

(a) The theorem holds if there exists a subspace R C B, dim R < oo, such that
the range of A4 (z) is contained in R for all z € G. To show this, let a(z) be the restriction
of A(z) to R. Then

(1=A4@)"=1+(1 - ax)™ 46), (24)
whenever the right-hand side exists. In any basis of R, the determinant of 1 — a(z) is
holomorphic in ze€ G and not identically zero, for a(z,) f= f implies f= 0, by (c).
Hence (1 — a(z))~! and, by (24), (1 — A(2))~! are meromorphic in G.

(b) Now let A(z) satisfy the hypothesis of the theorem. For any z € G there exists
an operator F(z) of finite rank such that || A(z) — F(2) || << 1/2, and, since A(z) is
continuous in z, a neighborhood U(z) C G of z such that

|A(z) — Fa)|| < 1if # e U(). (25)

Let z, be an arbitrary point in G. We have to show that (1 — A(z))~! is meromorphic
in a neighborhood of z;. By the Heine-Borel theorem, there exists a sequence of points
Sy ... Sy In G such that

g€ U(sy), z,€ U(sy), U(s;) n U(s;,,) non-empty fori =1...N — 1.
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Lete(z

= A(2) — F(s,). e(2) is holomorphic in G and || ¢(2) || << 1 for z € U(s,), by (25).
Thus (1 — e

(2))7! 1s holomorphic in U(s,), and
1—A(z) =[1— F(sy) (1 —e(2)™1 (1 —e(2)) .

For ze U(s,), F(sy) (1 — e(z))~! is of finite rank, with range contained in the range of
F(s;), and holomorphic in z. Also, by (¢), [1 — F(s;) (1 — e(z,))1]~? exists. Thus, by
part (a) of the proof, (1 — A(2))~! is meromorphic in U(s,). Since U(s;) O Ufsy) is
open and non-empty, there exists a new z,e€ U(s,) for which (1 — A(z,))™! exists.
By the same analysis, we find that (1 — A(z))-! is meromorphic in U(sy) ... U(sy).
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