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Bemerkungen zur physikalischen Deutung der SU(6,6)-Theorie

von E. Sheldon und H. P. Baltes
Laboratorium fiir Kernphysik, Eidg. Techn. Hochschule, 8049 Ziirich, Schweiz

(29. IV. 66)

Zusammenfassung. Auf Grund einer Matrixdarstellung der Gruppenalgebra A (SU(6,6)) werden
die Unteralgebren A(SU(6)), A(SU(3)) und A(SU(2,2)) identifiziert. Aus der Unteralgebra
A (Qj_ ® SU(3)) lasst sich ein maximaler Satz von kommutierenden physikalischen Observablen
gewinnen, deren simultane Eigenzustinde (Quarks) die Darstellung 12 der SU(6,6) aufspannen.
Die Darstellung 4 der SU(2,2) wird als Bispinordarstellung der eigentlichen Lorentzgruppe
I:_'{_ C SU(2,2) erkannt. Dieser Sachverhalt begriindet, dass der Ubergang von 12 zu einer dqui-
valenten Darstellung als Wechsel des physikalischen Bezugssystems zu interpretieren ist und dass
ferner die SU(6,6)-Quarks einer (SU(3)-erweiterten) Diracschen Gleichung zu unterwerfen sind.
Von dort fithrt die physikalisch inspirierte Forderung nach positiven Energiceigenwerten zu
(erweiterten) Bargmann-Wigner-Gleichungen, deren Losungen diskutiert werden. Fiir die Dar-
stellungen 12+, 143 und 364 werden analoge Gleichungen und ihre Losungen sowie insbesondere
die Untergruppenstruktur beziiglich Ejr angegeben. So gelingtes, die SU(6, 6)-Theorie vollstindig
aus dem A4 (SU(6,6))-Matrixformalismus herzuleiten und insbesondere die von SALAM, DELBOURGO
und STRATHDEE eingefithrten Bargmann-Wigner-Gleichungen gruppentheoretisch zu begriinden.
Es wird gezeigt, dass sich auch die Raumspiegelung, die Zeitumkehr und die Teilchenkonjugation
zwanglos diesem Rahmen einfiigen.

Einleitung

Die Invarianz eines physikalischen Systems unter einer Gruppe G von Trans-
formationen erlaubt die Einordnung der Zustinde in Multipletts, d.h. irreduzible
Darstellungen von G, die unter der Wirkung von G in sich iibergefiihrt werden. Eine
solche Klassifizierung der Zustinde ist selbst dann noch méglich, wenn das System
nur angenidhert symmetrisch beziiglich G ist. Von dieser Tatsache wurde bei Beschrei-
bungen der starken Wechselwirkung Gebrauch gemacht, die von den angeniherten
Symmetriegruppen [11 1) SU(S) < SU(Z)Isospin @ U(I)Hyperladung bzw. [2] SU(6) a
SU(3) ® SU(2)gpin ausgingen.

Die Suche nach einer relativistischen Version der SU(6)-Theorie fithrte im Friih-
jahr 1965 zur Betrachtung der Gruppe SU (6, 6), die von SALAM et al. [3] vorgeschla-
gen wurde. (Gewisse Ziige einer SU(6, 6)-Theorie sind auch in den Arbeiten von
B£G und Pais [4] implizit enthalten.) Es ist das Ziel dieser Bemiihungen, die «innere»
Symmetriegruppe SU(3) durch eine moglichst vollstindige Raum-Zeit-Gruppe zu
erweitern, ndmlich nicht nur, wie es bei der SU(6)-Theorie vorgenommen wurde,
durch die eigentliche Drehgruppe, sondern dariiberhinaus durch die Lorentz- oder
gar die Poincaré-Gruppe.

Dabei stosst man auf die SU(6, 6), wenn man von der erweiterten Symmetrie-
gruppe fordert, dass sie neben SU(3) noch SU(2, 2) als unabhingige Untergruppe

1) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 419.
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enthalten soll: SU(2, 2) ® SU(3) C SU(6, 6). Die Wahl von SU(2, 2) hinwiederum
wird getroffen, weil, wie SALAM e al. zeigen [5], ihre Gruppenalgebra isomorph zur
Diracschen y-Algebra ist und so den Zugang zu einer Lorentz-kovarianten Theorie
bietet. Wir werden in Teil 2 dariiberhinaus zeigen, dass die Selbstdarstellung 4 der
SU(2, 2) genau die zur Diracschen Theorie fiir Teilchen vom Spin 1/2 gehorende
Bispinordarstellung 7 der eigentlichen Lorentz-Gruppe £1 C SU(2, 2) enthilt. Wir
wollen bei der Entwicklung der SU(6, 6)-Theorie mit rein gruppentheoretischen
Hilfsmitteln auskommen und insbesondere die von SALAM et al. ad hoc eingefithrten
Bargmann-Wigner-Gleichungen [6] aus der Gruppe SU(6, 6) heraus begriinden.

Zur Bezeichnung der Gruppe: Unter U(n, m) verstehen wir die Gruppe der Auto-
morphismen eines (7 + m)-dimensionalen komplexen Vektorraumes, die zugleich die
hermitesche Bilinearform

n w

2 XY — Z X; Vi

i=1 1=n++1
invariant lassen; fiir die Elemente von SU (%, m) ist ausserdem noch die Determinante
gleich 1 zu fordern. Es sei noch kurz daran erinnert, dass es sich bei den oben genann-
ten Gruppen um Liesche Gruppen handelt, deren Elemente analytisch von Para-
meterna,, ..., a, abhdngen, so dass man von der infinitesimalen Methode[7] Gebrauch
machen kann: Oft gentigt es, die Umgebung der Gruppeneins,

glay, ..., a,) = E+Z“iXi
i=1

zu betrachten und statt der Gruppe selbst die von den infinitesimalen Erzeugenden

_ {92

aufgespannte Gruppenalgebra zu studieren. Thre Elemente sind Operatoren auf dem
Hilbertschen Raum des Systems. Die Gruppenalgebra lisst sich durch zu ihr homo-
morphe Matrix-Algebren darstellen.

1. Die Gruppenalgebra

In diesem ersten Abschnitt werden wir eine Matrixdarstellung der Gruppenalgebra
konstruieren, mit deren Hilfe wir die von SALAM ef al. [8] angegebene Algebrastruktur
herleiten sowie ferner Matrixdarstellungen von gewissen, als physikalische Observable
interpretierbaren Algebraoperatoren gewinnen.

Seimit 4 = A(SU(6, 6)) die Gruppenalgebra der SU(6, 6) bezeichnet. Es lassen
sich 144 Elemente M,, e A (mit k,/=1,...,12) wihlen, die durch die folgenden
Eigenschaften charakterisiert sind:

I. Esist
12
k=1
1. Es gelten die Vertauschungsregeln
[Mkl’Mrs] =6rl Mks_aks Mrl ¢ (2)

II1. Je 143 linearunabhingige unter den M, bilden eine Basis von A.
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Zum Beweise betrachte man den pseudo-unitidren Vektorraum V = V (6, 6) iiber C,
dessen Geometrie beziiglich einer geeigneten Basis durch die Matrix

E]| O y
G():('a_Eﬁ) ()

beschrieben wird. Dabei ist E4 die (6 x 6)-Einheitsmatrix, O die (6 x 6)-Nullmatrix.
Die abstrakte Gruppe SU(6, 6) lisst sich durch die Gruppe der speziellen Isometrien

von V realisieren, diese letztere hinwiederum ist isomorph zur Gruppe der komplexen
(12 x 12)-Matrizen U mit

UG, UT = G,, (4)
detU=1. (5)

Es hiangt daher U analytisch von 143 reellen Parametern a; € (— oo, oo) ab und wird
infinitesimal erzeugt durch

.a-=0 (i=1,..., 143) 7 ; (6)

so dass

gilt. Man betrachte nun insbesondere die Gruppenelemente
U,=Ula,=14a,,,=0) =exp(t F,). (8)
Aus Gleichung (4) folgt:

exp (i F) Gyexp (i F)T = G,. (9)

Wie wir sehen werden, lassen sich alle F = F, reell oder rein imagindr wéahlen. Deshalb
ergibt sich
FT =Gy F G,, (10)

d.h. F,, ist pseudo-hermitesch. Aus Gleichung (5) folgt
Spur I =0. (11)

Nun kann man stets hochstens 143 linear unabhingige (12 x 12)-Matrizen der Spur 0
wihlen. Ein solcher Satz von Matrizen ist daher in jedem Falle zu einer Basis {F,}
von A isomorph. Wir wihlen die Matrizen dariiberhinaus so, dass auch Gleichung (10)
erfiillt ist:
Seien
@, b=1,2..,6; o f8=1728,..,12.

Es impliziert (10) fiir die Ko.mponenten E,, von I’ die Bedingungen
Faﬂ = Fﬂa ‘_ (12)

Fdﬂ:—_Fﬁa F{xb:__Fba' (13)
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Es ist also I/ hermitesch in «ungemischten» Indizes und schiefhermitesch in «ge-
mischten» Indizes. Daher werden die Gleichungen (10) und (11) erfiillt von den
Matrizen

M,,=e, (fur a + b) M,z =¢,5 (fir o * f) (14)
1 1
Mﬂa = gaa - 127 E12 Moca. = 6060& - 71? Elz (15)

fiir ungemischte Indizes und

M, ,=1%e, M,z=1e, (16)

[+4

fiir gemischte Indizes. Dabei ist (¢, ,) die (12 x 12)-Matrix, die an der Stelle (%, /) eine
Eins und sonst lauter Nullen hat, E,, ist die (12 x 12)-Einheitsmatrix. Die - Matrizen
M, , erfiillen die Forderungen 1, 11 und 111. Zugleich haben wir durch sie eine Matrix-
darstellung von 4 gewonnen, die die Matrixdarstellung 12 der Gruppe erzeugt.

Da die Vertauschungsrelationen mit denen einer Basis von A(SU(12)) identisch
sind [9], ist A(SU(6, 6)) eine halbeinfache Algebra vom Cartanschen Typ 4,;. Ferner
ist dim 4 = 143 und Rang A = 11, weil [M,, M,,] = Oist und 11 linear unabhingige
M, , vorliegen. Daher erfiillt A den Zusammenhang dim = 7 (v + 2) (mit » = Rang)
des A4,-Typus und nur diesen [10]. Auch das beweist, dass 4 isomorph zu A4,, ist.
Mithin kann man bei der Ausreduktion von Tensorprodukten und Bestimmung der
Untergruppenstruktur von Darstellungen der SU(6, 6) mit Hilfe der Youngschen
Tableaux wie bei der SU(12) verfahren [11].

Unsere Matrixdarstellung (14), (15), (16) der A(SU(6, 6)) gestattet uns, die
Unteralgebren A(SU(6)), A(SU(3)), A(SU(2, 2)) der A(SU(6, 6)) aufzusuchen [12]:

Wir betrachten zunichst

Kop="M,+ M, 1640 (17)
aus A mita,b=1,...,6. Es gilt
) .
YK, =0 (18)
a=1
und
1
Kp=E,®f, ({ira+b)  K,=E®(fu—gBE) (19

N

mit (f,,) = (6 x 6)-Matrix mit einer Eins an der Stelle (a, ) und sonst iiberall Null.
Die K, , haben also, sieht man von dem Faktor E, ab, die Gestalt der bekannten Basis
von A(SU(6)) [13] und sind zu dieser isomorph.

Eine Basis der Unteralgebra A(SU(3)) finden wir, wenn wir

Lz‘j = Mij + Mi+3,j+3 ~+ Mi+6,j+6 + M9 ;19 (20)

bilden (mit ¢, 7 = 1, 2, 3). Die so definierten L;; € 4 haben die Eigenschaften
3
Z Lyy=10) (21)
i=1

e ; i 1
Li;=E,®g; (fir:+/) Li,=E,® (gn' -3 Es) (22)
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mit (g;;) = (3 x 3)-Matrix, die an der Stelle (7, /) den Wert 1 und sonst 0 hat. Die L;
sind 1somorph zu der bekannten A(SU(3))-Basis [14].

Im Falle der A(SU(2, 2)) muss man ein wenig umstdndlicher verfahren und
definiert

Nsl = Mst + Ms+4, t+a T Ms+8, t+8 (23)
fiir ungemischte Indizes s, ¢t = 1, 2 oder s, ¢ = 3, 4,
Nst =11 Mst i Ms+4,t+4 s < iMs+8,t+8 (24)

fiir gemischte Indizes s = 1,2, ¢ = 3,4 oder s = 3,4, t =1, 2. Dann gilt ndmlich

4
DN, =0 (25)
§=1

j 1
Nst$E3®hst Nss: E3® (h’ss_TEJ (26)

fiir ungemischte Indizes, und fiir gemischte Indizes hat man
N,=E;®1th,. . (27)

Dabei ist (4,,) die (4 x 4)-Matrix mit 1 an der Stelle (s, f) und O auf allen anderen
Platzen. Die N, bilden, sieht man von (E; ®) ab, eine zur Basis (14), (15), (16) der
A(SU(6, 6)) analoge Basis von A(SU(2, 2)).

2. Physikalische Interpretation

Physikalisch von Bedeutung ist nur die Unteralgebra A(SU(2, 2) ® SU(3)) =
A(SU((2, 2)) ® A(SU(3)). Sie wird aufgespannt durch

h,® Eg (fir s + 1)
1 (ungemischt)
th, 8 B, (gemischt) (28)
E,®g;; (fur 7 # j)
=:L..
1 o g
E4®(é’ii_‘3— Es) ’

Wir verstehen SU(3) als SU(3);y D SU(2); ® U(1)y mit [ = Isospin, Y =
Hyperladung. Die beiden simultan diagonalen Operatoren sind z.B.

1 00
Is=3‘; (Lll—LEZ):Erl@'% B =1 O] (29)
0 00
und
10 0
Y:L33E4®%—[0 1 o}. (30)
00 —2
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Daher erhilt man in der vorliegenden Darstellung viermal das Triplett von Eigen-
. 1 1
113’y>:|2')_‘7,">:

zustdnden
1 1
730
Dabei 8t 14 =3 &l 3 ¥ =3 <Y 5
An der SU(2, 2) interessiert vor allem die Untergruppe Ci vom Range 2 (siehe
unten). Ihre beiden simultan diagonalen Operatoren sind

?) (31)

1 00 0
2 . 1|10 —10 0
0'3=:N11+N33:w2m 0 01 0 ® E, (32)
0 00 —1
und
Gy = 2(N11+Né2) Yo ® E (33)
mit
10 0 0
01 0 0
= 34
00 0 —1

Es ist y, zugleich die Matrix, die die Geometrie des Raumes V(2, 2) beschreibt, dessen
Isometrien die Gruppe SU(2, 2) realisieren. Beide Operatoren entstehen aus der
Unteralgebra 4(SU(2)):

1110
oy =E, ® [O B 1} ® E, (35)
/|
Gy = 0_1 ®E,® E;. (36)
In der vorliegenden Matrixdarstellung hat o, die Eigenwerte sg = 1/2 und s3 = — 1/2.

Man interpretiert s; als die dritte Komponente des Spins. Der Operator G, hat als
Eigenwerte die Vorzeichen v zur Ruhemasse m eines Zustandes: <G,> = v = + 1 oder
— 1. Anstelle von G, kann man auch den Operator

Dy =: py Gy = m G, (37)
betrachten. Dann ist
{Dy> =+ m oder —m . (38)

Hier ist p, die Null-Komponente des Viererimpulses im Ruhsystem. In der vorliegen-
den Darstellung erhalten wir dreimal das Quadruplett von Eigenzustinden

s> =|3. 1) |-, 1) |3 = 1) |- 1), ()

Die Gruppe SU(2, 2) und die elgenthche Lorentzgruppe CT hingen auf diefolgende
Weise zusammen:

1. Esist Ei Untergruppe von SU(Z2, 2).
11. Die Darstellung 4 der SU(Z2, 2) enthdlt genau die Bispinordarstellung 7 =
Dyj3 9 @ Dy 45 der Untergruppe E.i
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Zum Beweis von I fasse man SU(2, 2) als die Gruppe der Isometrien von V(2, 2)
auf. Die Geometrie von V(2, 2) wird durch y, beschrieben. Das heisst, man hat eine
Basis von V(2, 2) derart gewiahlt, dass die Skalarprodukte aller Basiselemente mit-
einander gerade die Komponenten von y, ergeben:

(A A A v) = (yO) v (40)

mit 4, = Basis (¢ = 1, 2, 3, 4). Wir nehmen nun den Basiswechsel B, = S 4, vor,
wobel S zu beschreiben ist durch die Matrix

1 1 1 1 1
111 —1 -1 1 0
211 -1 1 =1 1o

1 1 -1 —1 0

e I, o )
—_ o O O
S =IO O

Beziiglich der neuen Basis wird die Geometrie beschrieben durch [15]
Yo=:(Bu B)=5"»S5, (42)

also in unserem Falle durch

Uy UT = p,, (44)
detU=1. (45)

Die Basistransformation S ldsst 4 in eine dquivalente Darstellung iibergehen: Es
wird U zu ST U S =: V, und die V erfiillen die Bedingung

Vs VT =yr, (46)
detV=1. (47)

Man betrachte nun insbesondere die Untergruppe derjenigen V, die mit y,
kommutieren, fiir die also

Vye=nV (48)
gilt. (Vgl. die Methode von W. RUHL [16].) Schreibt man V in Blockform,
Vil V;
V= Val Ve , (49)
Vzll Vas
so folgt aus Gleichung (48) Vi, = V,, = 0. Ferner ist wegen Gleichung (46) V;, V1, =

E,, so dass V die Form

[A
V=:1—
0

]
(50)
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hat. Berticksichtigt man noch Gleichung (47), so ist weiterhin det 4 = » mit » = reelle
Zahl zu fordern. Wir beschrianken uns auf die Untergruppe zu 7 = 1. Fiir ihre Ele-
mente gilt: Es gehorcht 7 der Gleichung (50) mit A € SL(2, C). Nun ist aber SL(Z2, C)
(bis auf das Vorzeichen von 4) isomorph zu £} [17].

Zum Beweise von II erinnern wir uns daran, dass die Darstellung 4 von SU(Z2, 2)
die Menge der (2 x 2)-Matrizen U mit Uy, UF =y, und det U =1 ist. Bei Be-
schrankung auf die Untergruppe £' nimmt, wie im Beweis von 1 gezeigt, U die Form

U=:8-1 Fl _?, ] S (51)
of(aT)-1

an, wobei 4 € SL(2, C) ist. Dasist, bis auf Aquivalenz, die Bispinordarstellung [18]. -
Wir haben somit die physikalisch wichtige Untergruppenkette £! ® SU(3) C
SU(2,2) ® SU3) C SU(®, 6).

3. Quarkzustinde und Bargmann-Wigner-Gleichungen

Die Selbstdarstellung 12 der SU(6, 6) hat die Untergruppenstruktur
12 = (4,3) = (7, 3) (52)

beziiglich SU(2, 2) ® SU(3) bzw. L1 ® SU(3). Das folgt aus den Ergebnissen des
1. und 2. Teils. Nach den Gleichungen (31) und (39) wird der Darstellungsraum von 12
aufgespannt von den simultanen Eigenzustinden der Operatoren oy, Dy, I3 und Y:

Yq = |s3,vm, i3’ y>
=] s, vm>® | i, > =y, @y (53)

mit A =1,...,12 = «SU(6, 6)-Index», u=1,...,4 = «Dirac-Index», j =1, 2,3 =
«SU(3)-Index». Das sind die zwolf Quarkzustidnde.

Natiirlich ist die Darstellung 12 nur bis auf Aquivalenz definiert. Von nun an
wollen wir daher unter 12 die ganze Aquivalenzklasse von Darstellungen verstehen.
Die Quantenzahlen s;, v m, 75, ¥ sind Invarianten auf der Klasse.

Die Geometrie des Darstellungsraums einer Darstellung aus der Klasse 12 werde
durch die Matrix G beschrieben. Dann bezeichnen wir diese Darstellung mit 12(G).
Thre Matrizen erfiillen die Beziehungen UG UT =G und det U = 1. Wir legen
dartiberhinaus die folgende Zuordnung fest: Es soll 12(G,) =: 12(0) zum simultanen
Ruhsystem der Quarks gehéren, in welchem p = (p,, 0, 0, 0) ist mit p, = m. Dabei
ist G, durch Gleichung (3) definiert. Die Basis von 12(0) ist daher mit

| Sg, VM, is; y>(}b=0) oder Py (P = 0)

zu bezeichnen. Wir deuten die Komponenten eines Vektors y(0) € 12(0) als stationédre
ebene Wellen. So ist z. B. die Basis gegeben durch

Pu(x) =p, (p=0) exp(— 7 pg %) (54)

mit y4(0) = Amplitude. Diese Auffassung liegt nahe, da wir freie Teilchen in ithrem
Ruhsystem betrachten.



412 E. Sheldon und H. P. Baltes ' H.P. A,

Sei L($) eine eigentliche Lorentztransformation aus E}: , die vom Ruhsystem zu
einem mit dem Impuls » bewegten System fithrt. Dann ist p = L(p) (m, 0, 0, 0). Die
Auswirkung auf 12(0) ist wie folgt [19]:

Y,4(0) exp(— 7 pg xy) — W 4(P) eip(— 7 (pg %o — P x))

= S(p) p4(0) exp(ﬁ 7 (po%o— P x)) . (55)
Dabei ist
’A‘ 0
S(p) =: T(p) ® Ey— (Elﬁ)j ® E, (56)

und 7' (p) der Darstellungsoperator zu L(p) in der Bispinordarstellung 7, 4 € SL(2, C).
(«relativistic boost» [20]). Es fithrt L(p) bzw. S(p) die Darstellung 12(0) in eine
dquivalente Darstellung 12(p) —: 12(G(p)) iiber mit G(p) =: ST(p) G, S(p). Die Menge
der zugehorigen Darstellungsmatrizen kann man mit SU(6, 6), bezeichnen.

Der lineare Operator D, auf 12(0) (vgl. Gleichung (37)) geht iiber [21] in

D(p) = S7Hp) Dy S(p) = by ® Ey (57)
Dabei 1st

0 —o
— o d =
Py =rtoye— Py und y (G‘ 0),
wobel ¢ = (0y, 03, 05) = Pauli-Matrizen. Da D, = my, ® E; ist, kann man auch
sagen: Es geht m vy, iiber in T-Y(p) my, T(p) = p v. Wegen der Invarianz der Eigen-
werte unter Basiswechsel gilt nach wie vor D(p) p4(x) = v m yp4(x) oder

Py ® Ey) wylx) =vmyy(x) (58)

Das ist die (SU(3)-erweiterte) Diracsche Gleichung. Fiir ebene Wellen

Ya(x) = v, (p) exp(— 7 (po %, — P %)) (59)

erhdlt man nach Einsetzen bei Gleichung (58) fiir die Amplituden

(5 27 ® Es) walh) = vpa(#) (60)
oder, ausgeschrieben,
Po 0 —fPs  —P1tipe
1 0 Po |—P1— 1D Ps
> . @ Esp (p) =vy,p) . (61)
" Ps Pr— 1Py — by 0 ! §
Prtip, — P 0 — Po

Gleichung (58) oder (60) bedeutet physikalisch: Wir haben jedes der SU(3)-
Quarks aus der Darstellung 3 der Diracschen Theorie fiir Spin-1/2-Teilchen mit nicht-
verschwindender Ruhemasse unterworfen. (Die Massen der drei Quarks wurden der
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Einfachheit halber als gleich angenommen.) Dabei stossen wir auf den folgenden
Widerspruch: Man pflegt die Zustdnde y;, = | £ 1/2, — m) als Antiteilchen von
Y12 = | 4 1/2, + m> zu deuten. Dem steht hier entgegen, dass die SU(3)-Quanten-
zahlen in allen vier Fillen solche von Quarks aus der Darstellung 3 sind und keine
Antiquarks vorkommen. Der Ausweg liegt in der zusdtzlichen Forderung v = + 1 fiir
alle Quarks zur Darstellung 12. Das ist wegen (60) gleichbedeutend mit der Bedingung

(% Py ® Es) V() = palp) (62)

firalle 4 =1, ..., 12 (frither nur fiir die ersten sechs Indizes). Das sind die sogenann-
ten (erweiterten) Bargmann-Wigner-Gleichungen [22].

Die Folgen der Bedingung (62) untersuchen wir zunichst fiir den Grenzfall
$ = 0: Dann wird Gleichung (62) zu

70 ® E3,(0) = 9,(0). (63)
Daraus folgt

P4(0) = (1,(0), ..., 4(0), 0, ..., 0). (64)

Im allgemeinen Fall lautet Gleichung (62)

= ——— | @ E3 p,(p) = pa(p) - (65)

Um eine nicht-triviale Lésung zu erhalten muss man fordern

e — pE=m?. (66)
Dann findet man
%1
QPA — R¢¢‘l 3 ¢ = ; )
t Ve (67)
- __ _bo
R=R(p) = 20 ® E;.

Es 1st Gleichung (67) der Ausgangspunkt der S U(6, 6)-Theorie bei BEG und Pais [23].
Die Forderung (62) macht also die sechs sogenannten kleinen Komponenten von den
sechs grossen abhingig (R(p) - 0 fur 4 > 0).

Welche Auswirkungen hat Gleichung (62) auf die Darstellungsmatrizen von 127
Fiir € 12 folgt durch Anwendung von Gleichung (62)

y- [ R‘m . (68)
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Mit o ist auch Uy e 12, falls U eine Darstellungsmatrix ist. Fiir die Wirkung von
Gleichung (62) machen wir den Ansatz

Vé
mit V' = unitdre (6 x 6)-Matrix. Schreiben wir noch U in Blockform,
Ly O
U = 11 12] , (70)
[U21 Usa

so erhalten wir

[Ull U12]{¢}=1>U11¢+U12R¢]=[ VQS} (71)
U21 U22 R¢ U21¢+U22R¢ RVQS .

Daraus folgt
U11¢+U12R¢:V¢ U21¢+U22R¢:RV¢- (72)
Durch Grenziibergang R (p - 0) > 0 erhdlt man

Upn=V,>Up=0 Up=0,->Uyp=RV R (73)

und somit

U = [K|_O_} (74)
O|RV R

Dabei ist V' als SU(6)-Matrix wéhlbar und mithin U e SU(6) & SU(6).

Wir sind also mit Hilfe der Bargmann-Wigner-Gleichungen (62) zur maximalen
kompakten Untergruppe der SU(6, 6) iibergegangen. Die (nicht-kompakte) Gruppe
SU(6, 6) besitzt keine nicht-trivialen endlich-dimensionalen unitiren irreduziblen
Darstellungen (Beweis: Andernfalls besdsse auch die £!-Untergruppe solche Dar-
stellungen, was aber nicht richtig ist [24]). Daher ist z.B. die Invariante (y, G )
von 12 nicht positiv-definit, mithin nicht als Wahrscheinlichkeitsdichte zu deuten.
Der Ubergang zur kompakten Untergruppe behebt diese Schwierigkeit.

Das ganze Procedere ldsst sich schematisch folgendermassen darstellen:

boost
SU(6,6),= 12(0 » S 6), =1
(6,6)0=12(0) |22 U(6,6), = 12($)
Massenoperator Liesast Bargmann-Wigner-Gleichungen

D(p) w(p) = m p(p)

Dy p(0) = my(0)| Do— DB)

4

SUE), |« | (SU(6) @ SU(6)),
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4. Die Bargmann-Wigner-Gleichungen fiir physikalische Multipletts
Die zu 12 konjugierte Darstellung 12+ der SU(6, 6) hat die Untergruppenstruktur

12+ = (4+, 3%) = (1, 31) , (75)
denn es ist
Th= (D1/20 @ Do) = (Dg12 @ D1120) =T. (76)

Da alle zwolf Eigenzustinde y4, die den Darstellungsraum aufspannen, nur Anfi-
quark-SU(3)-Indizes tragen, ist

@t | D(p) | p'> = —m (77)

zu fordern. Daher lauten die zu Gleichung (62) analogen Bargmann-Wigner-Gleichun-
gen fiir die Antiquark-Zustiande

D) = — (78)

1
m

mit D(p) wie in Gleichung (57) definiert. Die Lésung ist

7
RTI ¥ op
A4 _ |- _
?t’) _Iir}’ F_" ::lx R‘ PO-I—’V}Z ®E3' (79)
12
Das hat fiir die Darstellungsmatrizen zur Folge
x|
UgwRV@Jq:RVR4@V, (80)
0 V
mit V' = SU(6)-Matrix.
Nun betrachten wir das Tensorprodukt
12®12+=143 @1 (81)

mit der Untergruppenstruktur

143 = 2(D1/21/2’ 8) @ 2(D1/21i2’ 1) @ (DOD 8) @ (D()lr 1) @ (Dm; 8)
@ (D1, 1) ® 2(Dgo, 8) @ (Dyos 1), (82)
wobei D, ; eine nicht-unitire Darstellung der £} der Dimension (2 ¢ + 1) (27 + 1) ist.
(Es steht 143 fiir die ganze Aquivalenzklasse 143(p) zu verschiedenen p.) Dieses Uber-

angebot von Multipletts wird durch die Bargmann-Wigner-Gleichungen reduziert:
Es wird 143 aufgespannt von den Zustinden

Df =y, ®y” — Spur (y, ® p”) (83)

mit p, € 12, ¥ € 12+, Man fordere nun im Sinne von Gleichung (62) und (78) fiir
untere Indizes («Quark-Indizes») v = + 1, fiir obere Indizes («Anti-Quark-Indizes»)
v = — 1. Damit ist gemeint (es ist iiber 4’ bzw. B’ zu summieren):

(Lo@)yos=a (] w)p oy - o) -
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Das sind die Bargmann-Wigner-Gleichungen fiir 143. Die Losung ist
- D | 4D
7 — { R ¢'CD!¢C D} (85)
— B? C|R d¢
mit C,D=1,...,6, ¢2 = 35 von SU(6), d.h. das Mesonenmultiplett [25].
Auf dhnliche Weise kommt man zu Baryonenzustinden, wenn man betrachtet:

1212 12=364 @ ... (86)
mit der Untergruppenstruktur
364 — (20, 10) @ (20, 8) @ (41, 1) . (87)
Dabei ist
20 = w4, = total-symmetrischer SU(2,2)-Tensor
20" = 9y, 4, = gemischter SU(2,2)-Tensor . (88)
Die SU(2, 2)-Darstellungen 20, 20", 4+ zerfallen weiter geméss
20 =Dy g9 @ Dyjp @ Dyjp1 @ Dy qpe (89)
20" = D1/2 1 ® Dy 1z @ 2 (Do 12 @ Dllz 0) (90)
A =Dy @ Dyyp =7 (91)

Wir geben die Bargmann-Wigner-Gleichungen nur fiir Dirac-Indizes an; sie lauten
fur 20

1 ’
(E Y ?)2 Vi pvy = Viwpyy (92)

und fiir 20’

1 . (1 '
(;,; v ?5)3 Vi gly = Plaply: (Wj v 75),): Yply = Yupy - (93)

. Sie reduzieren [26] 364 auf ein Dekuplett zum Spin 3/2 und ein Oktett zum Spin 1/2;
das entspricht dem Baryonenmultiplett [27] 56 von SU(6).

5. Paritit, Zeitumkehr und Teilchenkonjugation

Das SU(6, 6)-Symmetrie-Schema impliziert Invarianz unter Raumspiegelung,
und zwar bleibt auch nach Anwendung der Bargmann-Wigner-Gleichungen die
Paritit eine Erhaltungsgrosse. Dieses von SALAM et al. [28] mitgeteilte Ergebnis ldsst
sich miihelos im Rahmen unseres A (SU (6, 6))-Formalismus gewinnen ; dariiberhinaus
kénnen wir in formal analoger Weise dasselbe fiir die Zeitumkehr zeigen:

Die Matrix G, (vgl. Gleichung (3)) beschreibt die Geometrie des Darstellungs-
raumes V (6, 6) von 12. Sie stellt ferner den Operator (1/m) D, aus A(SU(6, 6)) dar
(vgl. Gleichung (37)). Daneben ist G, noch einer dritten Deutung fihig: Es ist G,
eine Matrix aus der Darstellung 12 der SU(6, 6), denn es gilt (vgl. Gleichung (4))

Die Anwendung von G, auf ¢, aus 12 ergibt (vgl. Gleichung (67)):

4 ¢
Gowalp) = (ﬁ . ‘_,;) (p o ¢) - ((—p)o ¢) =val=B) (0
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Es geht also p tiber in — p. Das legt die Vermutung nahe, dass G, den Paritdtsoperator
D darstellt. Tatsédchlich ist (vgl. Gleichung (33) und (34))

Go =70 ® Ey (96)

und y, stellt bekanntlich [29] den Operator P der Raumspiegelung aus der sogenann-
ten «vollstindigen» Lorentz-Gruppe ct = El + P Ei dar, und durch Hinzufiigen von
vo zur Menge der Matrizen (von der Gestalt wie in Gleichung (50)) der Bispinordar-
stellung 7 der £ macht man diese zu einer irreduziblen Darstellung 7’ von £,
Mithin ist die Raumspiegelung Element von SU(6, 6), und SU(6, 6)-Symmetrie hat
Paritdtserhaltung zur Folge.

Der A(SU (6, 6))-Operator (1/m) D(p) = (1/m) pv ® E; (vgl. Gleichung (57) und (61))
geht unter P iiber in

1 _ Po £y —0(_75’)> .
5 D s E,=:
o DB Co (o(——p) —paBs) O

Wegen Gleichung (95) lauten daher die Bargmann-Wigner-Gleichungen nach An-
wendung von P:

D(— 7). (97)

1
m

1

) D(— p) wy(—p) = '/’A(* ) - (98)

Das ist aber gleichbedeutend mit den alten Bargmann-Wigner-Gleichungen (62), wie
das Ausschreiben der Gleichungen (98) und Multiplikation mit G, von links her lehren.
Mithin sind die Bargmann-Wigner-Gleichungen invariant unter Raumspiegelung.

Die Wirkung der Raumspiegelungsoperation P betrifft nur Dirac-Indizes (vgl.
Gleichung (53)):

D yalro, ) = Dy, (g, %) ® w; = Py, (2, — %) ®p; (99)

mit P = y,. Dasselbe lisst sich fiir die Operation der Zeitumkehr aussprechen, die
wir mit J bezeichnen wollen:

T p (%o, x) = Ty, (%o, ) @y, = T p,(— %, %) @y . (100)

Dabei ist 7" die Matrix, die Jim Rahmen der Diracschen Theorie (auf ganz L erwei-
terte Bispinordarstellung) darstellt; aus den Bedingungen, die z.B. KALLEN angibt
[30], errechnen wir fiir 7" im Zusammenhang unseres Formalismus’

(101)

O O = O
o O O =
- O O
(an = I ao I o

Die Matrix (I" ® E,) stellt dann die Zeitumkehr in der Darstellung 12 der SU(6, 6)
dar, falls (T ® E,) eine SU(6, 6)-Matrix ist. Das ist tatsdchlich der Fall, denn es gilt

(T ® Es) Go (T ® Ea)T - Go & | (102)

Daraus folgt: Auch die Zeitumkehr ist Element von SU(6, 6), und SU(6, 6)-Sym-
metrie impliziert Invarianz unter Zeitumkehr. Dieser Tatbestand wird auch durch die

27 H. P. A. 39, 5 (1966)
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Bargmann-Wigner-Gleichungen nicht aufgehoben, denn diese lauten nach Anwendung
von J:

(T ® Ey) (- DIp)) (T ® Ey)™ (T ® Ey) palp) = (T ® Eg) walp) . (103)

Multiplikation mit (7" ® E;)~! zeigt, dass (103) mit den alten Gleichungen (62)
dquivalent ist.

Die Operation C der Teilchenkonjugation ist formal anders zu behandeln als D
und J, da sie sich auch auf SU(3)-Indizes (vgl. Gleichung (53)) erstreckt. Es gilt

Cy =y’ (104)

mit y; = | 15, ¥> = Quark aus der Darstellung 3 der SU(3) und 9/ = | — 73, — y> =
Antiquark aus der konjugierten Darstellung 3+. Denn beim Ubergang U = exp (¢ F) -
U = exp(i(— F)) zur konjugierten Darstellung dndern die Operatoren F und mithin
ihre Eigenwerte das Vorzeichen. Insbesondere geht y/2 + i3 = g Giber in — y[2 — 13 =
— ¢ («Ladungskonjugationy).

Im Rahmen der Diracschen Theorie wird die Ladungskonjugation C dargestellt
durch die Matrix [31]

C= YoV2 = (105)

oz Ml s b oo g en

0
e
7
0

O O = O
O O O =,

und es gilt [32]
Cy,=Cuy,. (106)

(Diesen Dirac-Aspekt von C berticksichtigen auch SaLam et al. [33].)
Insgesamt geht unter C die Darstellung 12 = (7, 3) der SU(6, 6) iiber in die
konjugierte Darstellung 12+ = (z, 3+) (vgl. Gleichung (75)):

Cl2z2=12+ (C12t=12, (107)

Es fithrt also C i.a. aus einer irreduziblen Darstellung der SU(6, 6) hinaus. Dann
kann C nicht Element von SU(6, 6) sein: SU(6, 6)-Symmetrie schliesst nicht auto-
matisch Invarianz unter Teilchenkonjugation mit ein. Man kann aber C leicht durch
den Ubergang zu der erweiterten Gruppe SU(6,6) ® [C] mit [C] = {C, C* = E}
beriicksichtigen. Irreduzible Darstellungen dieser erweiterten Gruppe enthalten dann
stets zugleich Teilchen und Antiteilchen, sind also invariant unter C. Beispiele sind
12 ® 12+ (Quarks und Antiquarks), 143 = 143+ (Mesonen) und 364 & 364+ (Baryonen
und Antibaryonen).

Schluss

Wir haben einige wesentliche Ziige der SU(6, 6)-Theorie der starken Wechsel-
wirkung an Hand einer Matrixdarstellung der Gruppenalgebra entwickelt. Dabei
haben wir uns auf das Studium der Quarkdarstellung 12 konzentriert. Bei der Be-
handlung der physikalischen Multipletts beschrinkten wir uns auf die Berechnung der
(L1 ® SU(3))-Untergruppenstruktur, da die weiteren Ergebnisse, wie insbesondere
die Konsequenzen der Bargmann-Wigner-Gleichungen, nicht iiber das hinausgehen,
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was auch SALAM ¢f al. erhalten haben. Durch die explizite Berechnung der Zustdnde
w4(p) aus 12 unter Beriicksichtigung der Bargmann-Wigner-Gleichungen konnten wir
den Anschluss an die Arbeiten von B£G und Pais herstellen.

Diese Arbeit wurde unterstiitzt vom Schweizerischen Nationalfonds. Einer der

Autoren (H.P.B.) ist dem Cusanuswerk dankbar fiir die geistige und materielle
Forderung seiner Studien.
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