
Zeitschrift: Helvetica Physica Acta

Band: 39 (1966)

Heft: 5

Artikel: Bemerkungen zur physikalischen Deutung der SU(6,6)-Theorie

Autor: Sheldon, E. / Baltes, H.P.

DOI: https://doi.org/10.5169/seals-113695

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-113695
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


404

Bemerkungen zur physikalischen Deutung der 57(6,6)-Theorie

von E. Sheldon und H. P. Baltes
Laboratorium für Kernphysik, Eidg. Techn. Hochschule, 8049 Zürich, Schweiz

(29. IV. 66)

Zusammenfassung. Auf Grund einer Matrixdarstellung der Gruppenalgebra A (S (7(6,6)) werden
die Unteralgebren A(SU(6)), A(SU(3)) und A{SU{2,2)) identifiziert. Aus der Unteralgebra
A (Qt ® S(7(3)) lässt sich ein maximaler Satz von kommutierenden physikalischen Observablen
gewinnen, deren simultane Eigenzustände (Quarks) die Darstellung 12 der S(7(6,6) aufspannen.
Die Darstellung 4 der SU(2,2) wird als Bispinordarstellung der eigentlichen Lorentzgruppe
Cf C S (7(2,2) erkannt. Dieser Sachverhalt begründet, dass der Übergang von 12 zu einer
äquivalenten Darstellung als Wechsel des physikalischen Bezugssystems zu interpretieren ist und dass
ferner die S(7(6,6)-Quarks einer (S!7(3)-erweiterten) Diracschen Gleichung zu unterwerfen sind.
Von dort führt die physikalisch inspirierte Forderung nach positiven Energieeigenwerten zu
(erweiterten) Bargmann-Wigner-Gleichungen, deren Lösungen diskutiert werden. Für die
Darstellungen 12+, 143 und 364 werden analoge Gleichungen und ihre Lösungen sowie insbesondere
die Untergruppenstruktur bezüglich Qt angegeben. So gelingt es, die S(7(6,6)-Theoric vollständig
aus dem A (S (7(6,6))-Matrixformalismus herzuleiten und insbesondere die von Salam, Delbourgo
und Strathdee eingeführten Bargmann-Wigner-Gleichungen gruppentheoretisch zu begründen.
Es wird gezeigt, dass sich auch die Raumspiegelung, die Zeitumkehr und die Teilchenkonjugation
zwanglos diesem Rahmen einfügen.

Einleitung
Die Invarianz eines physikalischen Systems unter einer Gruppe G von

Transformationen erlaubt die Einordnung der Zustände in Multipletts, d.h. irreduzible
Darstellungen von G, die unter der Wirkung von G in sich übergeführt werden. Eine
solche Klassifizierung der Zustände ist selbst dann noch möglich, wenn das System
nur angenähert symmetrisch bezüglich G ist. Von dieser Tatsache wurde bei Beschreibungen

der starken Wechselwirkung Gebrauch gemacht, die von den angenäherten
Symmetriegruppen [l]1) SU(3) D S7(2)IsospiI1 ® 7(l)Hyperladmlg bzw. [2] S7(6) D

S7(3) ® S7(2)Spin ausgingen.
Die Suche nach einer relativistischen Version der S 7(6)-Theorie führte im Frühjahr

1965 zur Betrachtung der Gruppe S 7(6, 6), die von Salam et al. [3] vorgeschlagen

wurde. (Gewisse Züge einer S7(6, 6)-Theorie sind auch in den Arbeiten von
BÉG und Pais [4] implizit enthalten.) Es ist das Ziel dieser Bemühungen, die «innere»

Symmetriegruppe S7(3) durch eine möglichst vollständige Raum-Zeit-Gruppe zu
erweitern, nämlich nicht nur, wie es bei der S7(6)-Theorie vorgenommen wurde,
durch die eigentliche Drehgruppe, sondern darüberhinaus durch die Lorentz- oder

gar die Poincaré-Gruppe.
Dabei stösst man auf die S 7(6, 6), wenn man von der erweiterten Symmetriegruppe

fordert, dass sie neben S7(3) noch S7(2, 2) als unabhängige Untergruppe

J) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 419.
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enthalten soll: SU(2, 2) ® SU(3) C S7(6, 6). Die Wahl von S7(2, 2) hinwiederum
wird getroffen, weil, wie Salam et al. zeigen [5], ihre Gruppenalgebra isomorph zur
Diracschen y-Algebra ist und so den Zugang zu einer Lorentz-kovarianten Theorie
bietet. Wir werden in Teil 2 darüberhinaus zeigen, dass die Selbstdarstellung 4 der
S 7(2, 2) genau die zur Diracschen Theorie für Teilchen vom Spin 1/2 gehörende
Bispinordarstellung t der eigentlichen Lorentz-Gruppe £{ C S7(2, 2) enthält. Wir
wollen bei der Entwicklung der S 7(6, 6)-Theorie mit rein gruppentheoretischen
Hilfsmitteln auskommen und insbesondere die von Salam et al. ad hoc eingeführten
Bargmann-Wigner-Gleichungen [6] aus der Gruppe 57(6, 6) heraus begründen.

Zur Bezeichnung der Gruppe : Unter Vfn, m) verstehen wir die Gruppe der
Automorphismen eines fn + w)-dimensionalen komplexen Vektorraumes, die zugleich die
hermitesche Bilinearform

n m

ExJyi-Exìyì
i 1 î=n+l

invariant lassen; für die Elemente von SUfn, m) ist ausserdem noch die Determinante
gleich 1 zu fordern. Es sei noch kurz daran erinnert, dass es sich bei den oben genannten

Gruppen um Liesche Gruppen handelt, deren Elemente analytisch von
Parametern ax, ar abhängen, so dass man von der infinitesimalen Methode [7] Gebrauch
machen kann : Oft genügt es, die Umgebung der Gruppeneins,

r
g(ax, ,afi « E +2JaiXi

i-l
zu betrachten und statt der Gruppe selbst die von den infinitesimalen Erzeugenden

V,-

aufgespannte Gruppenalgebra zu studieren. Ihre Elemente sind Operatoren auf dem
Hilbertschen Raum des Systems. Die Gruppenalgebra lässt sich durch zu ihr homo-
morphe Matrix-Algebren darstellen.

1. Die Gruppenalgebra

In diesem ersten Abschnitt werden wir eine Matrixdarstellung der Gruppenalgebra
konstruieren, mit deren Hilfe wir die von Salam et al. [8] angegebene Algebrastruktur
herleiten sowie ferner Matrixdarstellungen von gewissen, als physikalische Observable
interpretierbaren Algebraoperatoren gewinnen.

Sei mit A AfSU(6, 6)) die Gruppenalgebra der S7(6, 6) bezeichnet. Es lassen
sich 144 Elemente Mkl e A (mit k, l — 1, ,12) wählen, die durch die folgenden
Eigenschaften charakterisiert sind:

i. Es ist

EMkk 0 (1)
* i

II. Es gelten die Vertauschungsregeln

[Mkl,Mrs] ôrlMks-ôksMrl. (2)

in. Je 143 linearunabhängige unter den Mk l bilden eine Basis von A.
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Zum Beweise betrachte man den pseudo-unitären Vektorraum V F(6, 6) über C,
dessen Geometrie bezüglich einer geeigneten Basis durch die Matrix

O
(3)z, 0

beschrieben wird. Dabei ist Es die (6 x 6)-Einheitsmatrix, O die (6 x 6)-Nullmatrix.
Die abstrakte Gruppe S 7(6, 6) lässt sich durch die Gruppe der speziellen Isometrien
von V realisieren, diese letztere hinwiederum ist isomorph zur Gruppe der komplexen
(12 X 12)-Matrizen 7 mit

UG0VT=G0, (4)

det 7 1 (5)

Es hängt daher 7 analytisch von 143 reellen Parametern a{ e f— oo, oo) ab und wird
infinitesimal erzeugt durch

lFm= dam U\a} 0 (i-l 143)' ^
so dass

7 exp tjji am
Fm\ fl)

gilt. Man betrachte nun insbesondere die Gruppenelemente

Um =U fam= 1, a^m 0) exp (i Fm) (8)

Aus Gleichung (4) folgt :

exp (i F) G0 exp fi F) G0 (9)

Wie wir sehen werden, lassen sich alle F Fm reell oder rein imaginär wählen. Deshalb
ergibt sich

FT Gf1 F G0, (10)

d.h. Fm ist pseudo-hermitesch. Aus Gleichung (5) folgt

Spur F 0 (11)

Nun kann man stets höchstens 143 linear unabhängige (12 X 12)-Matrizen der Spur 0

wählen. Ein solcher Satz von Matrizen ist daher in jedem Falle zu einer Basis {Fm\
von A isomorph. Wir wählen die Matrizen darüberhinaus so, dass auch Gleichung (10)
erfüllt ist:

Seien

a, b= 1,2, ,6; x, ß 7, 8, 12

Es impliziert (10) für die Komponenten Fkl von F die Bedingungen

Fab Fba Faß Ffix (12)

Faß=-Fßa F«b=-Fb*- (13)
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Es ist also F hermitesch in «ungemischten» Indizes und schiefhermitesch in
«gemischten» Indizes. Daher werden die Gleichungen (10) und (11) erfüllt von den
Matrizen

Mab eab (für a + b) Maß eaß (für <x 4= ß) (14)

Maa eaa ~ jj E™ M«« *<*« ~~ "ll" ^12 ^
für ungemischte Indizes und

Mab ieab Maß ieaß (16)

für gemischte Indizes. Dabei ist (ekl) die (12 X 12)-Matrix, die an der Stelle fk, l) eine
Eins und sonst lauter Nullen hat, EX2 ist die (12 X 12)-Einheitsmatrix. Die Matrizen
Mkl erfüllen die Forderungen i, n und in. Zugleich haben wir durch sie eine
Matrixdarstellung von A gewonnen, die die Matrixdarstellung 12 der Gruppe erzeugt.

Da die Vertauschungsrelationen mit denen einer Basis von ^4(S7(12)) identisch
sind [9], ist A(SU(6, 6)) eine halbeinfache Algebra vom Cartanschen Typ Axx. Ferner
ist dim A 143 und Rang A 11, weil [Mkk, Mrr] 0 ist und 11 linear unabhängige
Mkk vorliegen. Daher erfüllt A den Zusammenhang dim r fr + 2) (mit r Rang)
des ^4r-Typus und nur diesen [10]. Auch das beweist, dass A isomorph zu Axx ist.
Mithin kann man bei der Ausreduktion von Tensorprodukten und Bestimmung der

Untergruppenstruktur von Darstellungen der S 7(6, 6) mit Hilfe der Youngschen
Tableaux wie bei der S7(12) verfahren [11].

Unsere Matrixdarstellung (14), (15), (16) der A(SU(6, 6)) gestattet uns, die

Unteralgebren A (SU (6)), A (SU (3)), A(SU(2, 2)) der AfSUfb, 6)) aufzusuchen [12] :

Wir betrachten zunächst

Kab=:Mab+Ma+e>b+6 (17)

aus A mit a, b 1,... 6. Es gilt

2Xa 0 (18)
a-l

und

Kab E2®fab (für a 4= b) Kaa E2 ® (faa - Ì Ee) (19)

mit ffab) (6 X 6)-Matrix mit einer Eins an der Stelle fa, b) und sonst überall Null.
Die Kab haben also, sieht man von dem Faktor E2 ab, die Gestalt der bekannten Basis

von A (SU(6)) [13] und sind zu dieser isomorph.
Eine Basis der Unteralgebra A (SU(3)) finden wir, wenn wir

L,j : M,j + Mi+SJ+3 + Mi+6J+6 + Mi+9J+, (20)

bilden (mit i, j 1, 2, 3). Die so definierten Lu e A haben die Eigenschaften

ELii ° (21)

i-l
Lfj Eiq) glJ (für i =t= /) Lit E, ® (gu - Z Es) (22)
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u) (3 x 3)-Matrix, die an der Stelle (i,j) den Wert 1 und sonst 0 hat. Die Ltj
sind isomorph zu der bekannten ^4(S7(3))-Basis [14].

Im Falle der ^4(S7(2, 2)) muss man ein wenig umständlicher verfahren und
definiert

N„=:M, M,. I. (23)'-st l ^1 s+i, (+4
'

für ungemischte Indizes s, t 1,2 oder s, t 3, 4,

Nst=:iMsl + Ms+i< M + i MJ+8; t+% (24)

für gemischte Indizes s 1, 2, t 3, 4 oder s 3, 4, t 1,2. Dann gilt nämlich

4

ls-1
ENss 0

N„ E3® hst Nss =E3® [hss - J Et)

für ungemischte Indizes, und für gemischte Indizes hat man

Nsl E3®i h„

(25)

(26)

• (27)

Dabei ist fhst) die (4 x 4)-Matrix mit 1 an der Stelle fs, t) und 0 auf allen anderen
Plätzen. Die Nst bilden, sieht man von fE3 ®) ab, eine zur Basis (14), (15), (16) der

^(S7(6, 6)) analoge Basis von ^(S7(2, 2)).

2. Physikalische Interpretation

Physikalisch von Bedeutung ist nur die Unteralgebra A (S 7(2, 2) ® S 7(3))
,4 (S 7(2, 2)) © A (S 7(3)). Sie wird aufgespannt durch

hst ® E3 (für s 4= t)

K

i hsl ® E3

Ei ® Kij (für *' * i)

^4® \gn--jE.

(ungemischt)

(gemischt)

¦¦¦¦n:

L„

(28)

Wir verstehen S7(3) als S7(3)7_ Y D 57(2)z ® 7(1)y mit 7= Isospin, V
Hyperiadung. Die beiden simultan diagonalen Operatoren sind z.B.

und

"1 0 0

z Y (Ln - L22) F4 ® 7 0

.0
- 1 0

0 0

"1 0 0'
Y - '¦ ~ -Z3 Ei®J 0 1

0 0 -

0

-2

(29)

(30)
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Daher erhält man in der vorliegenden Darstellung viermal das Triplett von
Eigenzuständen

h.y >

Dabei ist i3 : <73>, y : < Y>.

1 -)2 ' 3 /' 0, (31)

An der S 7(2, 2) interessiert vor allem die Untergruppe £| vom Range 2 (siehe
unten). Ihre beiden simultan diagonalen Operatoren sind

"1

¦N, ^33 -i
0 0 0"

1 0 0

0 1 0

0 0 -1
® E3

und

mit
G0=:2fNn + N22)=y0®E3

Yo

1 0

0 1

0 0

0 0

0

0

1

0

(32)

(33)

(34)

Es ist y0 zugleich die Matrix, die die Geometrie des Raumes V(2, 2) beschreibt, dessen

Isometrien die Gruppe S 7(2, 2) realisieren. Beide Operatoren entstehen aus der

Unteralgebra A (S 7(2)):

a3 E2 ®y
1 0"

0 - 1

G0
7 0

0 - 1
® E2

® E3 (35)

(36)

In der vorliegenden Matrixdarstellung hat a3 die Eigenwerte s3 1/2 und s3 — 1/2.
Man interpretiert s3 als die dritte Komponente des Spins. Der Operator G0 hat als

Eigenwerte die Vorzeichen v zur Ruhemasse m eines Zustandes: <G0> v + 1 oder
— 1. Anstelle von G0 kann man auch den Operator

Do : Po Go m Go

betrachten. Dann ist
<D0> m oder m

(37)

(38)

Hier ist p0 die Null-Komponente des Viererimpulses im Ruhsystem. In der vorliegenden

Darstellung erhalten wir dreimal das Quadruplett von Eigenzuständen

\s3y> ,i-|,i>. 7-7 (39)

Die Gruppe S 7(2, 2) und die eigentliche Lorentzgruppe C£ hängen auf die folgende
Weise zusammen :

I. Es ist £t Untergruppe von S 7(2, 2).

il. Die Darstellung 4 der S 7(2, 2) enthält genau die Bispinordarstellung x
DH2o ® Do 1/2 der Untergruppe QA
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Zum Beweis von i fasse man S7(2, 2) als die Gruppe der Isometrien von V(2, 2)
ani. Die Geometrie von F(2, 2) wird durch y0 beschrieben. Das heisst, man hat eine
Basis von F(2, 2) derart gewählt, dass die Skalarprodukte aller Basiselemente
miteinander gerade die Komponenten von y0 ergeben :

(4,. Av) (Yo)^ (40)

mit A Basis (pt 1, 2, 3, 4). Wir nehmen nun den Basiswechsel Br S Afl vor,
wobei S zu beschreiben ist durch die Matrix

s=i
1 1

1 -1
1 1

1-1

1 0 0 Ol
0 1 0 0

0 0 0 1

0 0 1 0

Bezüglich der neuen Basis wird die Geometrie beschrieben durch [15]

y'0=ABfl,Bv) STy0S,

also in unserem Falle durch

Yo

0 0 1 0]
0 0 0 1

1 0 0 0

0 1 0 0

(41)

(42)

(43)

Bezüglich der Basis Aß liess sich S7(2, 2) durch die (4 x 4)-Matrizen 7 der
Selbstdarstellung 4 realisieren mit

Uy0UT yü, (44)

det 7 1 (45)

Die Basistransformation S lässt 4 in eine äquivalente Darstellung übergehen: Es
wird 7 zu S-1 U S =: V, und die V erfüllen die Bedingung

Vy'0VT y0, (46)

det V 1 (47)

Man betrachte nun insbesondere die Untergruppe derjenigen V, die mit y0
kommutieren, für die also

Vy0 y0V (48)

gilt. (Vgl. die Methode von W. Rühl [16].) Schreibt man V in Blockform,

V
v,

V,

Z
17

(49)

so folgt aus Gleichung (48) Vx2 V2X 0. Ferner ist wegen Gleichung (46) Vxx V22

E2, so dass V die Form

V
0

0

WF1
(50)
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hat. Berücksichtigt man noch Gleichung (47), so ist weiterhin det A r mit r reelle
Zahl zu fordern. Wir beschränken uns auf die Untergruppe zu r 1. Für ihre
Elemente gilt : Es gehorcht V der Gleichung (50) mit A e SLf2, C). Nun ist aber SLf2, C)
(bis auf das Vorzeichen von A) isomorph zu £| [17].

Zum Beweise von ii erinnern wir uns daran, dass die Darstellung 4 von S7(2, 2)
die Menge der (2 X 2)-Matrizen 7 mit U y0UT y0 und det 7 1 ist. Bei
Beschränkung auf die Untergruppe £| nimmt, wie im Beweis von î gezeigt, 7 die Form

U=:S-
OifA1

(51)

an, wobei A e SL(2, C) ist. Das ist, bis auf Äquivalenz, die Bispinordarstellung [18]. -
Wir haben somit die physikalisch wichtige Untergruppenkette Q\ ® S 7(3) C
S7(2, 2) ® S7(3) C S7(6, 6).

3. Quarkzustände und Bargmann-Wigner-Gleichungen
Die Selbstdarstellung 12 der S7(6, 6) hat die Untergruppenstruktur

12 (4, 3) (r, 3) (52)

bezüglich S 7(2, 2) ® S 7(3) bzw. £{ ® 57(3). Das folgt aus den Ergebnissen des

1. und 2. Teils. Nach den Gleichungen (31) und (39) wird der Darstellungsraum von 12

aufgespannt von den simultanen Eigenzuständen der Operatoren cr3, D0, I3 und Y:

Wa \ s3,vm,i3,yy
: \s3, v my ® | ia, y} ip/À ® f} (53)

mit A 1, ,12 «S7(6, 6)-Index», pt 1, ,4 «Dirac-Index», j 1, 2, 3

« S 7(3)-Index». Das sind die zwölf Quarkzustände.
Natürlich ist die Darstellung 12 nur bis auf Äquivalenz definiert. Von nun an

wollen wir daher unter 12 die ganze Äquivalenzklasse von Darstellungen verstehen.
Die Quantenzahlen s3, vm, i3, y sind Invarianten auf der Klasse.

Die Geometrie des Darstellungsraums einer Darstellung aus der Klasse 12 werde
durch die Matrix G beschrieben. Dann bezeichnen wir diese Darstellung mit 12(G).
Ihre Matrizen erfüllen die Beziehungen U GUT G und det 7 1. Wir legen
darüberhinaus die folgende Zuordnung fest : Es soll 12(G0) : 12(0) zum simultanen
Ruhsystem der Quarks gehören, in welchem p (p0, 0, 0, 0) ist mit p0 m. Dabei
ist G0 durch Gleichung (3) definiert. Die Basis von 12(0) ist daher mit

I s8, v m, i3,y>{p,0) oder ipA (p 0)

zu bezeichnen. Wir deuten die Komponenten eines Vektors tpfO) e 12(0) als stationäre
ebene Wellen. So ist z.B. die Basis gegeben durch

Wa (x) Wa(P °) exP (-iPo H) (54)

mit y>Af0) Amplitude. Diese Auffassung liegt nahe, da wir freie Teilchen in ihrem
Ruhsystem betrachten.
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Sei Lfp) eine eigentliche Lorentztransformation aus £î die vom Ruhsystem zu
einem mit dem Impuls p bewegten System führt. Dann ist p Lfp) fm, 0, 0, 0). Die
Auswirkung auf 12(0) ist wie folgt [19] :

Wa(°) exP(- ipoxo) ->Wa(P) exP(~ * (PoX0-px))
Sfp)tpAfO)exp(-i(p0x0-px)).

Dabei ist

Sfp)=:Tfp)®E3
A\ 0

QUA A-i ®E3

(55)

(56)

und Tfp) der Darstellungsoperator zu Lfp) in der Bispinordarstellung x, Ae SLf2, C).
(«relativistic boost» [20]). Es führt Lfp) bzw. S(p) die Darstellung 12(0) in eine

äquivalente Darstellung 12(p) : 12(Gfp)) über mit G(p) : ST(p) G0 Sfp). Die Menge
der zugehörigen Darstellungsmatrizen kann man mit S7(6, 6)p bezeichnen.

Der lineare Operator D0 ani 12(0) (vgl. Gleichung (37)) geht über [21] in

Dfp) S-fp)D0Sfp) Py®E3 (57)

Dabei ist

Py PoYo-py und 7 o

wobei o (ax,a2, a3) Pauli-Matrizen. Da D0 my0 ® E3 ist, kann man auch

sagen: Es geht my0 über in T'^-fp) my0 Tfp) py. Wegen der Invarianz der Eigenwerte

unter Basiswechsel gilt nach wie vor Dfp) tpAfx) v m y>Afx) oder

(PY ® E3)y>Afx) =vm%pAfx)

Das ist die (S7(3)-erweiterte) Diracsche Gleichung. Für ebene Wellen

WaA) Wa(P) exp(- * (PoH~ P *))

erhält man nach Einsetzen bei Gleichung (58) für die Amplituden

(yrPY® E^ipAp) =*vy>A(p)

oder, ausgeschrieben,

(58)

(59)

(60)

Po 0

0 Po

-Pb -

~Pl-i Pi
- Pl + i P2

Ps

Ps Pi - i Pi
Pi + Ìp2 - iZ

-Po
0

0

- Po

®E3Wa(P) vWa(P). (61)

Gleichung (58) oder (60) bedeutet physikalisch: Wir haben jedes der 57(3)-
Quarks aus der Darstellung 3 der Diracschen Theorie für Spin-l/2-Teilchen mit nicht-
verschwindender Ruhemasse unterworfen. (Die Massen der drei Quarks wurden der
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Einfachheit halber als gleich angenommen.) Dabei stössen wir auf den folgenden
Widerspruch : Man pflegt die Zustände ip3 4

[ + 1/2, — my als Antiteilchen von
ipX2 | rt 1/2, + my zu deuten. Dem steht hier entgegen, dass die 57(3)-Quanten-
zahlen in allen vier Fällen solche von Quarks aus der Darstellung 3 sind und keine
Antiquarks vorkommen. Der Ausweg liegt in der zusätzlichen Forderung v — + 1 für
alle Quarks zur Darstellung 12. Das ist wegen (60) gleichbedeutend mit der Bedingung

(r^ P Y ® Es) Wa(P) Wa(P) (62)

für alle A 1, ,12 (früher nur für die ersten sechs Indizes). Das sind die sogenannten

(erweiterten) Bargmann-Wigner-Gleichungen [22].
Die Folgen der Bedingung (62) untersuchen wir zunächst für den Grenzfall

p -> 0 : Dann wird Gleichung (62) zu

Yo® E3y)AfO) =tpAfO)

Daraus folgt

^(0) (Vi(0),...,v6(0),0,

Im allgemeinen Fall lautet Gleichung (62)

,0).

(63)

(64)

z
/PoO

o p0
— a p

m

\ op -Po 0

0 -Po

— ® E3 y>A(p) yAfp) (65)

Um eine nicht-triviale Lösung zu erhalten muss man fordern

Pl-P2 m*

Dann findet man

Wa
01

R<f>
</>

'wi

.We.

'

R Rfp) - Pa ®E3.pa+m 3

(66)

(67)

Es ist Gleichung (67) der Ausgangspunkt der 5 7(6, 6)-Theorie bei Bég und Pais [23].
Die Forderung (62) macht also die sechs sogenannten kleinen Komponenten von den
sechs grossen abhängig fRfp) -> 0 für p -> 0).

Welche Auswirkungen hat Gleichung (62) auf die Darstellungsmatrizen von 12

Für ìp e 12 folgt durch Anwendung von Gleichung (62)

"

<f>'

Ref,
(68)
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Mit y> ist auch 7 tp e 12, falls 7 eine Darstellungsmatrix ist. Für die Wirkung von
Gleichung (62) machen wir den Ansatz

Uy)
Vcf>

RV cf

mit V unitäre (6x 6)-Matrix. Schreiben wir noch 7 in Blockform,

so erhalten wir

Daraus folgt

Uxxcf>+ UX2Rcf>=Vcf> U2X cf) + U22 R cf, R V cf,

Durch Grenzübergang R (p -> 0) -> 0 erhält man

7 uxx uxf
U2X (7 22

'

[ffu Uu [ ^ 7n cf)+UX2R cf Vcf,
-

(721 (7 jj Ref) U2Xcf> + U22 R 0j RV cf)

(69)

(70)

(71)

(72)

(73)

(74)

Dabei ist V als S7(6)-Matrix wählbar und mithin Ue S7(6) © S7(6).
Wir sind also mit Hilfe der Bargmann-Wigner-Gleichungen (62) zur maximalen

kompakten Untergruppe der 57(6, 6) übergegangen. Die (nicht-kompakte) Gruppe
57(6, 6) besitzt keine nicht-trivialen endlich-dimensionalen unitären irreduziblen
Darstellungen (Beweis: Andernfalls besässe auch die £|-Untergruppe solche
Darstellungen, was aber nicht richtig ist [24]). Daher ist z.B. die Invariante (tp,Gf)
von 12 nicht positiv-definit, mithin nicht als Wahrscheinlichkeitsdichte zu deuten.
Der Übergang zur kompakten Untergruppe behebt diese Schwierigkeit.

Das ganze Procedere lässt sich schematisch folgendermassen darstellen :

Uxl V, UX2 0 7, 0, -r> U22 R V R-
und somit

7 V 0

.0 R V R-\

S 7(6 6Ï 10tC\\ boost SUlfi 6) 10(A\JU\O,Uj0 J-^V"/ v(0) -> y>(p)

boost

ou\y>,v)p ±<-\y)

Massenoperator

D0y>(0) my>(0)

Bargmann-Wigner-Gleichungen

Dfp) ffp) m tpfp)D0->D(p)
*

Jfffff1 ' • '

S7(6)0 (57(6) ©57(6)),
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4. Die Bargmann-Wigner-Gleichungen für physikalische Multipletts
Die zu 12 konjugierte Darstellung 12+ der 57(6, 6) hat die Untergruppenstruktur

12+ (4+, 3+) (t, 3+) (75)
denn es ist

*+ fE>ii2o © Do 1/2)+ (A.i/2 © Dino) 1 (76)

Da alle zwölf Eigenzustände yA, die den Darstellungsraum aufspannen, nur Anti-
quark-S7(3)-Indizes tragen, ist

<y \D(p) \yAy m (77)

zu fordern. Daher lauten die zu Gleichung (62) analogen Bargmann-Wigner-Gleichungen
für die Antiquark-Zustände

Dfp) yA

mit Dfp) wie in Gleichung (57) definiert. Die Lösung ist

RT r=
yp '

[ V
y2.

R a p
Po + m

®E3

Das hat für die Darstellungsmatrizen zur Folge

7 RV R-1

0

0

V
RV R-AAAV,

(78)

(79)

(80)

mit F =57(6)-Matrix.
Nun betrachten wir das Tensorprodukt

12 ® 12+ 143 © 1

mit der Untergruppenstruktur

143 2(DXI2XI2, 8) © 2fDxl2XI2, 1) © fD0X, 8) © (Dox, 1) © (Dxo,

© (Dxo, 1) © 2(000, 8) © (D00, 1),

wobei D{J eine nicht-unitäre Darstellung der £| der Dimension (2 * + 1) (2j + 1) ist.
(Es steht 143 für die ganze Äquivalenzklasse 143(p) zu verschiedenen^.) Dieses
Überangebot von Multipletts wird durch die Bargmann-Wigner-Gleichungen reduziert:
Es wird 143 aufgespannt von den Zuständen

(81)

(82)

K Wa ® WB - Spur (y>A ® y>B) (83)

mit y>A e 12, y>B e 12+. Man fordere nun im Sinne von Gleichung (62) und (78) für
untere Indizes («Quark-Indizes») v + 1, für obere Indizes («Anti-Quark-Indizes»)
v — 1. Damit ist gemeint (es ist über A' bzw. B' zu summieren) :

(~d(p))a;0ba, 0ba (l D(p))i,0% -0 (84)
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Das sind die Bargmann-Wigner-Gleichungen für 143. Die Lösung ist

<Pf
Ref,"

R2cf>Dc Rfc)
(85)

mit C, D 1, 6, cpf. 35 von 57(6), d.h. das Mesonenmultiplett [25].
Auf ähnliche Weise kommt man zu Baryonenzuständen, wenn man betrachtet:

12 ® 12 ® 12 364 © (86)

mit der Untergruppenstruktur
364 (20, 10) © (20', 8) © (4+, 1) (87)

Dabei ist
20 W{aßy) total-symmetrischer 57(2,2)-Tensor

20' y)laß]y gemischter 57(2,2)-Tensor (88)

Die 57(2, 2)-Darstellungen 20, 20', 4+ zerfallen weiter gemäss

20 D0 3/2 © D3I2 0 © Dxl2 x © Dx 1/2 (89)

20' DXI2 x@Dxxj2®2 (D0 xl2 © Dxl2 0) (90)

4+ jD1,2o©^oi,2 t. (91)

Wir geben die Bargmann-Wigner-Gleichungen nur für Dirac-Indizes an; sie lauten
für 20

(^ Y ^>kw VwYi

und für 20'

\m Y PJa Wla'ßiy — 'Via,«]? > (m-y^r Wlaßiy' — W[aißiy ¦

(92)

(93)

Sie reduzieren [26] 364 auf ein Dekuplett zum Spin 3/2 und ein Oktett zum Spin 1/2;
das entspricht dem Baryonenmultiplett [27] 56 von 57(6).

5. Parität, Zeitumkehr und Teilchenkonjugation
Das S7(6, 6)-Symmetrie-Schema impliziert Invarianz unter Raumspiegelung,

und zwar bleibt auch nach Anwendung der Bargmann-Wigner-Gleichungen die
Parität eine Erhaltungsgrösse. Dieses von Salam et al. [28] mitgeteilte Ergebnis lässt
sich mühelos im Rahmen unseres ^4(S7(6, 6))-Formalismus gewinnen; darüberhinaus
können wir in formal analoger Weise dasselbe für die Zeitumkehr zeigen :

Die Matrix G0 (vgl. Gleichung (3)) beschreibt die Geometrie des Darstellungsraumes

F(6, 6) von 12. Sie stellt ferner den Operator (lfm) D0 aus A(SU(6, 6)) dar
(vgl. Gleichung (37)). Daneben ist G0 noch einer dritten Deutung fähig: Es ist G0

eine Matrix aus der Darstellung 12 der 57(6, 6), denn es gilt (vgl. Gleichung (4))

G0G0Gl=G0. (94)

Die Anwendung von G0 auf y>A aus 12 ergibt (vgl. Gleichung (67)) :

P° J JzJAAL. S)=: Va(- P) ¦ (95)
p0 + m Tf \ p0 + m Tj

GoWa(P)
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Es geht alsop über in — p. Das legt die Vermutung nahe, dass G0 den Paritätsoperator
P darstellt. Tatsächlich ist (vgl. Gleichung (33) und (34))

G0 y0 ® E3 (96)

und y0 stellt bekanntlich [29] den Operator p der Raumspiegelung aus der sogenannten

«vollständigen» Lorentz-Gruppe £t £^ + P £t dar, und durch Hinzufügen von
y0 zur Menge der Matrizen (von der Gestalt wie in Gleichung (50)) der Bispinordar-
stellung t der £.£ macht man diese zu einer irreduziblen Darstellung t' von £ t.
Mithin ist die Raumspiegelung Element von 57(6, 6), und 57(6, 6)-Symmetrie hat
Paritätserhaltung zur Folge.

Der^(S7(6,6))-Operator(l/w) Dfp) flfm)py ®E3(vgl.Gleichung(57) und (61))
geht unter p über in

G0--D(p)Gfi=(PoE* ~°(~t))®E3=: — D(-p). (97)0 m VI o ^_ p) - p0 Ej ^ 3 m v ^ v '

Wegen Gleichung (95) lauten daher die Bargmann-Wigner-Gleichungen nach
Anwendung von p :

J-D(-p)y,A(-f)=y,A(-p). (98)

Das ist aber gleichbedeutend mit den alten Bargmann-Wigner-Gleichungen (62), wie
das Ausschreiben der Gleichungen (98) und Multiplikation mit G0 von links her lehren.
Mithin sind die Bargmann-Wigner-Gleichungen invariant unter Raumspiegelung.

Die Wirkung der Raumspiegelungsoperation P betrifft nur Dirac-Indizes (vgl.
Gleichung (53)) :

P y>A fx0 ,x) p f^xç, x) ® yjj P f^, - x) ® y>j (99)

mit P =y0. Dasselbe lässt sich für die Operation der Zeitumkehr aussprechen, die
wir mit ü bezeichnen wollen :

VWa(xo. x) ÜWß(x0, x) ®fj=T %pß(- x0,x) ® fj (100)

Dabei ist T die Matrix, die Jim Rahmen der Diracschen Theorie (auf ganz £ erweiterte

Bispinordarstellung) darstellt; aus den Bedingungen, die z.B. Källen angibt
[30], errechnen wir für T im Zusammenhang unseres Formalismus'

t : "
„ : (wi)

0 10 0

10 0 0

0 0 0--1
0 0 1 0

Die Matrix (T ® Ea) stellt dann die Zeitumkehr in der Darstellung 12 der S 7(6, 6)

dar, falls (T ® E3) eine 57(6, 6)-Matrix ist. Das ist tatsächlich der Fall, denn es gilt

(T ® E3) G0 fT ® E3)T G0 (102)

Daraus folgt: Auch die Zeitumkehr ist Element von 57(6, 6), und S7(6, 6)-Sym-
metrie impliziert Invarianz unter Zeitumkehr. Dieser Tatbestand wird auch durch die

27 H. V. A. 39, 5 (1966)
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Bargmann-Wigner-Gleichungen nicht aufgehoben, denn diese lauten nach Anwendung
von CT:

(T ® E3) (Z £(£)) (T ® £,)-i (T ® E3) fA(p) (T® E3) fAfp) (103)

Multiplikation mit (T ® F3)_1 zeigt, dass (103) mit den alten Gleichungen (62)

äquivalent ist.
Die Operation C der Teilchenkonjugation ist formal anders zu behandeln als P

und U, da sie sich auch auf S7(3)-Indizes (vgl. Gleichung (53)) erstreckt. Es gilt

C Wi Wj (104)

mit fj | i3, y y Quark aus der Darstellung 3 der S 7(3) und fj \ — i3, — y y

Antiquark aus der konjugierten Darstellung 3+. Denn beim Übergang 7 exp (iF) ->
7 exp(«(— F)) zur konjugierten Darstellung ändern die Operatoren F und mithin
ihre Eigenwerte das Vorzeichen. Insbesondere geht y/2 + i3 q über in — y/2 — i3
— q («Ladungskonjugation»).

Im Rahmen der Diracschen Theorie wird die Ladungskonjugation C dargestellt
durch die Matrix [31]

C Yo 72 |
n n n |; (105)

und es gilt [32]

Cw^Cf^. (106)

(Diesen Dirac-Aspekt von C berücksichtigen auch Salam et al. [33].)
Insgesamt geht unter C die Darstellung 12 (t, 3) der 57(6, 6) über in die

konjugierte Darstellung 12+ (r, 3+) (vgl. Gleichung (75)):

C 12 12+, C 12+ =- 12 (107)

Es führt also C i.a. aus einer irreduziblen Darstellung der S7(6, 6) hinaus. Dann
kann C nicht Element von 57(6, 6) sein: 57(6, 6)-Symmetrie schliesst nicht
automatisch Invarianz unter Teilchenkonjugation mit ein. Man kann aber C leicht durch
den Übergang zu der erweiterten Gruppe S7(6, 6) ® [C] mit [C] {C, C2 E}
berücksichtigen. Irreduzible Darstellungen dieser erweiterten Gruppe enthalten dann
stets zugleich Teilchen und Antiteilchen, sind also invariant unter C Beispiele sind
12 © 12+ (Quarks und Antiquarks), 143 143+ (Mesonen) und 364 © 364+ (Baryonen
und Antibaryonen).

Schluss

Wir haben einige wesentliche Züge der S7(6, 6)-Theorie der starken Wechselwirkung

an Hand einer Matrixdarstellung der Gruppenalgebra entwickelt. Dabei
haben wir uns auf das Studium der Quarkdarstellung 12 konzentriert. Bei der
Behandlung der physikalischen Multipletts beschränkten wir uns auf die Berechnung der
(C\\ ® 57(3))-Untergruppenstruktur, da die weiteren Ergebnisse, wie insbesondere
die Konsequenzen der Bargmann-Wigner-Gleichungen, nicht über das hinausgehen,
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was auch Salam et al. erhalten haben. Durch die explizite Berechnung der Zustände
fA(P) aus 12 unter Berücksichtigung der Bargmann-Wigner-Gleichungen konnten wir
den Anschluss an die Arbeiten von BÉG und Pais herstellen.

Diese Arbeit wurde unterstützt vom Schweizerischen Nationalfonds. Einer der
Autoren (H.P.B.) ist dem Cusanuswerk dankbar für die geistige und materielle
Förderung seiner Studien.
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