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Eine Bemerkung zu einem «Letter» von L. O’ RAIFEARTAIGH
und einer Entgegnung von M. FLATO und D. STERNHEIMER

von Res Jost
Seminar fiir Theoretische Physik, ETH

(3. IV. 66)

Abstract. A proof of the following theorem is given:
Theovem: Let I' be a continuous unitary representation of a finite connected Lie group ® in a
Hilbert space . Let ® contain the inhomogeneous Lorentz group as an analytic subgroup. Let
finally the spectrum of the energy-momentum vector be contained in {0} U V. If m; >0 is
an isolated eigenvalue of the mass operator then the corresponding eigenspace is invariant under

().

This theorem is a consequence of a more general theorem given in the text.

1. Einleitung

Die vorliegende kleine Note entspringt der mehr zufilligen Lektiire des Briefes
von M. FLATO und D. STERNHEIMER in Phys. Rev. Letters 75, 934 (1965). In diesem
Brief werden mehrere Arbeiten von L. O’RAIFEARTAIGH einer sehr scharfen Kritik
unterzogen. Uns interessiert hier die Kritik an O’RAIFEARTAIGH, Phys. Rev. Letters
14, 575 (1965). Da die Autoren keine Gegenbeispiele 1) geben, nahm es mich wunder,
wie weit die interessante Aussage von O’RAIFEARTAIGH mit einfachen Hilfsmitteln
aus der Funktionalanalysis zu retten sei. Wie das Weitere zeigt, war ich in dieser
Hinsicht nicht sehr erfolgreich. Es gilt der folgende

Satz: Sei ® eine endliche zusammenhidngende Liesche Gruppe, die die inhomogene
Lorentzgruppe als analytische Untergruppe enthilt. Sei [” eine stetige unitére
Darstellung von & und P der Energie-Impulsvektor. Sei das Spektrum von P
in {0} u V., (V. der offene Vorkegel) enthalten und sei M = }/(P, P) der Massen-
operator. Falls M den isolierten Eigenwert m,; > 0 besitzt, dann ist der zuge-
hérige Eigenraum §, unter & invariant.

Wie man sieht, bleiben alle isolierten Massen, also z. B. die kleinste positive Masse
(bei Abwesenheit der Masse 0), unter & entartet.

Der obige Satz scheint mir hinreichend, um Versuche (stabile) Massenmultipletts
in eine irreduzible Darstellung einer endlichen Lieschen Gruppe ® zusammenzufassen,
zum Scheitern zu verurteilen; denn in einer solchen (freilich hypothetischen) Theorie
diirfen vermutlich keine Teilchen der Ruhmasse 0 auftreten (da sonst wohl keine
positiven Eigenwerte des Massenoperators vorhanden sind); es muss also, soll die
Theorie iiberhaupt eine verniinftige Partikelinterpretation besitzen, eine kleinste

1) Am «Colloque sur I'extension du group de Poincaré aux symetries internes des particules
élementaires» in Gif sur Yvette haben M. FLaTo und D. STERNHEIMER ecin Gegenbeispiel zur

urspriinglichen Aussage von L. O’'Raifeartaigh vorgetragen. Siehe Phys. Rev. Letters, 76, 1185
(1966).

24 H. P, A, 39, 4 (1966)
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isolierte Masse auftreten, die dann notwendigerweise ®-entartet ist. Ireilich hat sich
das O’'RarFearTAIGHSChe Resultat, unbewiesen wie es ist, bei den Physikern schon
durchgesetzt, so dass ich mit meinen mathematischen «Klugscheisseleien» offene
Tiiren einrenne.

Abschliessend machte ich betonen, dass das urspriingliche allgemeine O’RAIFEAR-
TAIGHsche Resultat, mathematisch verniinftig prazisiert, sehr wohl richtig sein kann.
Ein strenger Beweis, falls er moglich ist, wiirde aber wohl einen Aufwand bedingen,
den ich jetzt nicht aufbringen méchte oder konnte.

Herrn Kollegen WALTER HuNzIKER danke ich fiir anregende Diskussionen, die
sich auch auf die Abfassung der nachfolgenden Ausfithrungen ausgewirkt haben,
herzlich. Ebenso danke ich meinen Freunden in Princeton, dass sie mitgeholfen
haben, die Herren FLATO und STERNHEIMER von der Richtigkeit der nachfolgenden
Ausfithrungen zu tiberzeugen. Mir allein wire das nicht gelungen.

2. Bezeichnungen aus der Gruppentheorie

Sei ® eine zusammenhidngende Liesche Gruppe, g die (reelle) Liesche Algebra der
infinitesimalen Elemente von 6. Wir bezeichnen Gruppenelemente mit g, Elemente
aus der Lieschen Algebra mit x, y.

g enthalte als Unteralgebra die Algebra [ der infinitesimalen Lorentztransforma-
tionen. p, und m;, = — m, ., 4, k =0, 1, 2, 3 bilden die iibliche Basis von [ mit den
Klammerausdriicken [p;, p,] = 0, (M, p,] = gx1 P: — 811 Px

(#7050 Mg] = 8y My — 8y My — Bis Mgy + Bis M -
Unter der adjungierten Darstellung von g verstehen wir wie iiblich die Darstellung
von g durch die linearen Transformationen
ady: x->[y,4], 1)

unter der adjungierten Darstellung von ® die Darstellung von ® durch die linearen
Transformationen

Adg: x—>gxg? (2)

Die O'RAIFEARTAIGHSchen Schliisse beruhen auf der Feststellung, dass ad (a, ) =
ad (2 a* p,), a € R4, nilpotent ist. Es gibt also eine (positive) natiirliche Zahl N, fiir die

[ad (a, )" = 0 3)
richtig ist.
Sei [,(y)e ® die durch ye g eindeutig bestimmte einparametrige analytische
Untergruppe, dann hat man

Ad L,(y) = etady, (4)
Insbesondere gilt daher
N-1,, .
Adl ((a,p)) =2 ) [ad (a, p)]
v=0

d.h. Ad [,((a, p)) 1st ein reelles Polynom in den 4 Komponenten von a. Wir schreiben
speziell

Adly ((a, p)) = Cla),
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wobei C(a) ein Polynom (mit linearen Transformationen als Koeffizienten) hochstens
(N — 1)-sten Grades in a ist.

3. Bezeichnungen aus der Darstellungstheorie

Es sei I' eine stetige unitire Darstellung von ® iiber einem Hilbertraum $.
Nach dem Stoneschen Satz ist

I'(l(x)) = '* (5)

mit selbstadjungiertem Operator X. Wir schreiben ¢+ X = I'(x), ¥ € g. Der Definitions-
bereich von X wird mit A(X) bezeichnet.
Nun sei

D= [/l de, (6)

teD
peD

wobei D [1]2) alle C*-Funktionen mit kompaktem Triger auf ® enthilt und dg das
linksinvariante Haarsche Mass auf ® ist, der Gardingsche Bereich [2] von I". D hat
die folgenden fiir uns fundamentalen Eigenschaften:

I D ist dicht in §,
II D ist invariant unter I'(®): I'(g) D C D,
IIT D ist invariant unter I'(g): X D C D,

IV die Restriktion X; = X/D von X auf D ist wesentlich selbstadjungiert, d.h.
es gilt X; = X3* = X.
Da IV fiir uns besonders wichtig ist, will ich hier den einfachen Beweis eines

Satzes von E. NELsoN reproduzieren, von dem IV eine Folgerung ist.

Satz (E. NELsON [3]): Sei X selbstadjungiert und D C A(X) dicht in § und invariant
unter ¢'*%, dann ist die Restriktion X, = X/D wesentlich selbstadjungiert.

Beweis: Wir zeigen, dass die Defektindices von X verschwinden. Seiy € 4(X7) und
Xyw=1zy, Imz+ 0. Es gilt fiir jedespe D

(X5 y, &% @) = z(p, ¥ ) . (7)
Weiter ist
i 3 . d i
(Xop, e g)=(p, X' o) = —i - (p.6' " 9) (8)
also aus (7) und (8) |
d it . "
i (‘/’:EH(P) =zz(¢»3tX‘P) (9)
oder
(TP, eitX gp) s K 6z’zt . (10)

Nun ist die linke Seite von (10) beschriankt durch || ¢ || || ¢ ||. Die rechte Seite ist dies
aber, wegen Im z + 0, nur, falls K = 0 ist. Also ist (p, ¢) = O fiir alle ¢ € D und daher
w=0. X ist daher selbstadjungiert, qed.

%) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 375.
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Wir wollen fiir unsere Zwecke IV noch anders formulieren und beachten dazu, dass
der Graph von X;* die Abschliessung des Graphen von X ist [4]. Daher gilt

IV" Sei we A (X), dann existiert eine Folge {(pk, @y € D} so dass s — lim ¢, =
und s — lim X, ¢, = X ¢. Falls umgekehrt eine Folge {g,; ¢, € D} vorliegt, fur
welche s — lim ¢, = ¢ und s — lim X, ¢, = y existieren, dann ist ¢ € 4(X)

und ¥ = X ¢.
Fir ¢ € D gilt nun weiter
N XI'gep=AdgXeg an
und speziell
FaP) X ¢l g — Cla) X @ (12)
oder
X P g — b Cla) X g 13)

Dabei bedeutet hier Ad g diejenige lineare Transformation der X, die durch Ad g
X@=—11"(Ad g x) ¢ bestimmt ist. :

4. Anwendung von IV’ auf (13)
Aus (13) folgt natiirlich fiir eine endliche Menge {a,} und Konstanten {c,}

Xche Hag B) g — ch Clay) X ¢. (14)

Unser Ziel ist es, durch Grenziibergang aus dieser Formel mit Hilfe des Prinzips IV’
neue Vektoren aus A(X) zu konstruieren. Seien ¢(a) = e "*F ¢ und y(a) =
e~'®P) C(a) X ¢. ¢(a) und y(a) sind C®-Funktionen von a. Weiter ist ¢(a) mit allen
Ableitungen beschrinkt, y(a) ist mit allen Ableitungen polynomial beschrankt. Sei

f € §(a)%), dann existieren also die beiden Integrale

[f a)d*a und ff y(a) d*a

und sind die Grenzwerte ihrer (endhchen) Riemann-Summen, also Grenzwerte von
Summen, wie sie in (14) auftreten. Gemiss IV’ gilt daher

ff a)d*aed (X) (15)

und
X [fla)ye P dtag= [ fla)Cla)e P ataX g feS(a). (16)
Nun sind aber sowohl der Ausdruck (15) wie auch die rechte Seite von (16) stetige

Funktionale von f, sie sind also (vektorwertige) temperierte Distributionen und lassen
sich Fourier-transformieren, d.h. durch

= [P fla) d*a (17)

ausdriicken. Dies geschieht mit Hilfe der Spektralzerlegung der stetigen unitdren
abelschen Gruppe {e~"® £}

g~ = [eminN JE(R) (18)
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in der Form
X [fk)dE®R) @ = [ (C(P)f) (k) dE(R) X ¢ (19)

wobei [/ = 7 0/0k ist. Der Ausdruck C(F) f ist dabei wie folgt zu verstehen. Man ent-
wickle die lineare Transformation C(a) nach Potenzen von a und substituiert fiir a
den Operator V. Den entsprechenden Differential-Operator mit linearen Transforma-
tionen als Koeffizienten wendet man auf f an und erhilt die lineare Transformation
C(V) f. Hier erweist sich die Tendenz, die Formeln ohne Bezug auf eine Basis zu
schreiben, als nicht sehr gliicklich: Sei also {¢,} eine Basis von g und ¢ X = I'(X A* ¢;),
dann lautet (19)

—i ()2 8k)f(P)(p:§(C(V)?f) (P)2H (=) e o (20)

wobei C(a)f die Matrixelemente von C(a) zur Basis {e,} sind.
Im Sinne der Operatorrechnung kann (19) ndmlich auch in der Form

Xf(P)p=(C0N/)(P)Xp, feS(). peD (20)

geschrieben werden.

Auf (20) wenden wir unser Prinzip IV’ weiterhin an, wobei wir den folgenden
bekannten Sachverhalt bentitzen:
Seien die Funktionen {f,}, n € Z__ stetig und gleichmissig beschrankt und konvergiere
fiir jedes & f,(k) > g(k) fir n &> oo, dann gilt

s —lim f,(P)y = g(P)y (21)
fur alle wy € § [6].
Sei g € Oy [7] und sei g mit all seinen Ableitungen bis zur Ordnung N — 1 be-
schrinkt. Wir behaupten, dass dann auch gilt

XgP)o=(ClA)g)(P)Xp. (22)

Zum Beweis wihlen wir eine Funktion ¢ € D(k) mit den Eigenschaften 0 < p(k) <1,
o(R) =1fur || k]| =1, o(k) =0 fiir || 2 || = 2 und setzen

flk) = (k) o(/(n + 1)) . (23)

Offenbar ist f, € §. Ausserdem sind alle Ableitungen von f, bis zur Ordnung N — 1
gleichmdssig beschrinkt. Schliesslich gilt fiir jeden Multiindex m

lim D™ f (k) = D™ g(k) . (24)
Es gilt also o
s —1limf,(P) g = g(P) ¢ (25)
und
s —lim (C(V) f,) (P) X ¢ = (C(F) g) (P) X ¢ (26)

und schliesslich (22).
Zum Schluss verwenden wir die Eigenschaft III des Garding-Bereichs. Wir ver-
stehen unter

| P|[2=P§+ P+ Py + Py = [ ||k|[PAE(R). (27)
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Fiir jedes ¢, € D und jedes n € Z, existiert (1 + || P||?) *p, € D und kann daher an
die Stelle von ¢ in (22) substituiert werden. Dabei entsteht

Xg(P)(L+ [[P|P)r o= (C(W) g) (P) X A+ |[P|[¥) s - (28)
Sei schliesslich & € Oy, dann existiert » € Z so, dass
g =hI(1+ |[&]?) (29)

mit allen Ableitungen bis zur Ordnung N — 1 beschrinkt ist. Substituiert man (29)
in (28), so findet man

X 1(P) g, = (C(P) g) (P) X (1 + [[P|[})" 1. (30)

Dabei ist supp % = supp g. Damit sind wir vorbereitet auf den

Satz: Seien k, € Oy und beschrinkt, « = 1, 2 und sei ¢ € D, dann ist 4,(P) ¢ € 4(X)
fir jedes ¢+ X € I'(g). Falls weiter supp 4, O supp %, = & dann gilt

h(P) X ho(P) ¢ = ho(P) X 1y(P) p = 0. (31)

Beweis: Es sei g, gemiss (29) aus /4, konstruiert. Offenbar ist dann
supp A, Nsupp C(V) g, = @, also ist 4, C(J) g = 0 und

hi(P) X ho(P) @ = (b C(V) o) (P) X (1 + | P[?)p = 0.

5. Anwendung des Satzes

Zur Anwendung der Formel (31) beniitzen wir die

Definition: Zwei abgeschlossene Mengen IR, C R, o = 1, 2 heissen O-separiert,
falls &, € Oy so existieren, dass

1. 0<h,k) <1,
2. hy(k)=1falls ke M,
3. supph,Osupphy, = &.

Nun ergibt (31) leicht den

Satz: Falls das Spektrum von P: supp 4E, erfiillt supp dE C Wi, U Wi, wobei W; und
M, Oy-separiert sind, dann gilt fiir

E,= [ dE(®) (32)
gjéa

(33)
fiir jedes g € ®.
Beweis: Seien h, die Oy-Funktionen zu den Mengen 9, gemdss Definition, dann ist
E,= [ h(k) dE(R),
also gilt nach (31)
EiXE,p=E,XE,¢=0. (34)
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Ausserdem aber ist E; + E, = I, also

Sei nun p € A(X) dann existiert nach 1V’ eine Folge {g,, ¢, € D} fiir die ¢, =>
und X ¢, >Xy also E; X¢, >E, Xy und demnach wegen (35) auch
X E, ¢ > E; X . Daher ist E, y e A(X) und

E,Xyp=XEy (36)

oder

E,XCXE,. (37)

Diese letzte Formel ist aber notwendig und hinreichend dafiir, dass E; mit jeder
Funktion von X vertauscht [8], dass also

E.¢® <g¥FE, teRl . (38)
richtig ist. Da ® zusammenhingend ist, folgt (33).

Nun setzen wir, weil unser Resultat doch etwas mit Physik zu tun haben sollte,
voraus, dass das Spektrum von P in {0} y V. enthalten sei. Weiter sei

M —|(P, P) = [ | (r, k) dE(}) (39)

der Massenoperator. Falls M einen ¢solierten Eigenwert m; > 0O besitzt, dann zerfallt
das Spektrum von P in das «Massenhyperboloid» {k; &k, > 0, (k, k) = m?} und den
Rest. Das Massenhyperboloid ist aber, wie man leicht sieht, vom Rest des Spektrums
Oy-separiert. Ist §, der Eigenraum zu m,, dann ist §, invariant unter /'(®). Eine

Massenaufspaltung kann also nicht auftreten. Das ist der Satz, der in der Einleitung
zitiert ist.
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