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The Unitarity of the S Matrix for Multichannel Scattering

by J. M. Jauch and J.-P. Marchand
Institute of Theoretical Physics, University of Geneva and CERN, Geneva

(22. II. 66)

Abstract. The usual proofs for the unitarity of the S matrix are based on the assumption that
the wave functions in different channels are orthogonal to each other. This is not the case in
rearrangement collisions where the colliding particles and the collision products are composite
fragments (overlapping channels).

A correct proof for the usual unitarity property of the S matrix is given for the case of
overlapping channels. The proof is greatly facilitated by a systematic use of the spectral representation
for a complete system of commuting observables.

Each channel defines as a consequence of the asymptotic condition a pair of wave operators.
These are partial isométries with orthogonal ranges for different channels. This orthogonality
property, which was proved in an earlier paper, is the essential property which implies unitarity
for the S matrix in the usual sense. Unitarity is then shown to be a direct consequence of the
asymptotic condition and nothing more.

I. Introduction
The unitarity of the S matrix for general reaction and scattering processes is

generally postulated as a basic property in all treatments of such processes. It would
therefore be of the greatest interest to know the physical foundation for this property.
In the case of simple scattering systems (one channel only) the unitarity of the
S matrix can indeed be thus related to the asymptotic condition which expresses the
fundamental property of any scattering system that the interaction between the
scattered particles is described by an energy operator which differs from the kinetic
energy of the particles only in a finite region of space. Thus for one-channel systems
one has a perfectly satisfactory explanation, in physical terms, for the unitarity
property of the S matrix.

One has tried, by an obvious adaptation of this reasoning to extend this explanation
to the case of many-channel scattering. However all of these reasonings are either
based on the assumption that the wave functions in different channels are orthogonal
to each other [1] i) or they use reasonings which are mathematically insufficient and
have therefore only an exploratory significance [2].

The difficulty has been noted by many people and has been discussed in numerous
publications, of which we cite a representative selection [3-7].

Let us examine in this introduction a commonly used "proof" for the unitarity
of the 5 matrix, such as it is found for instance in Ref. [1].

Numbers in brackets refer to References, page 337.
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Consider the situation sketched schematically in Figure 1.

M
r>

M (b)

Figure 1

Schematic representation of a three channel scattering process.
a) Situation before scattering : incident wave in channel a approaches scattering region (shaded area).
b) Situation after scattering : outgoing waves in the three channels escape from scattering region.

Initially, the system is supposed to be in channel a. After the reaction has occurred
the system is distributed over all the open channels and the probability amplitude in
channel ß is Sag. Thus the probability of finding the system after the collision in
channel ß (when it was in channel a. before the collision) is therefore given by | Sa « |2.

Using now the constancy of the norm of the wave function W one concludes that

(W,W) l=Z\Saß |7 (1.1)
ß

A slight generalization of this same argument, using the constancy of the scalar
product of any pair of wave functions leads to

2JStßSyß=0*7 ¦ I1-2)
ß

If this relation is written as an operator relation, interpreting Sap as the matrix
element of an operator S, it becomes

S* S I, (1.3)

which is one half of the unitarity relation. The other half

S S* I (1.3)*

is usually assumed to be also true, although it is in fact a new and independent
relation.

The validity of this "proof" for the relation (1.3) depends in an essential way on the
assumption that the different channels are orthogonal to one another. Indeed, if we
have a superposition of normalized wave functions Wo in different channels of the
form W 2f Sa g Wo, then the norm of this function is given by

fV,W)=£s:fi.Safi,i(Wßl,Wßi,). (1.4)
ß'ß"

This is only equal to the right-hand side of (1.1) if (Wp, Wß„) òppi.
It is easy to see with simple examples that this assumed orthogonality is not

always satisfied. Let us for instance examine the scattering of a deuteron on a fixed
centre of force. If the incident energy is larger than the binding energy of the deuteron
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then there are two open channels for the final states, namely the deuteron, or the free
proton-neutron (cf. Figure 2).

d / d

-> A —3-

(fl) lb)

Figure 2

An example of a two-channel reaction with non-orthogonal channels : the final states of reaction (a)

are linear combinations of the final states of reaction (b).

Since the deuteron is a composite particle, containing as its constituents a proton
and a neutron, we cannot assume these channels to be orthogonal. Indeed, in the
elementary theory of the deuteron, one calculates precisely the matrix element of the
deuteron in an orthogonal proton-neutron system. This matrix element is the wave-
function of the deuteron.

On the other hand there are cases where the assumed orthogonality may be
satisfied, for instance always then when transitions from one system of elementary
particles to another system of such particles are considered. The problem occurs only
for transitions involving composite particles. Such transitions are often more explicity
denoted as rearrangement collisions.

The question then reduces to this : is the S matrix unitary also for rearrangement
collisions

It was pointed out by Ekstein [3] that in general there does not exist a linear
operator the matrix elements of which are the S matrix elements for a multichannel
system. Subsequently, Jauch [8] has shown that for simple scattering systems one can
define two different unitary operators which can be related to the S matrix elements
in a simple way. Only one of these operators can be generalized to the multichannel
case and again the S matrix elements are related easily to this operator. It will be seen
in the following that the consideration of this operator will be very useful in the proof
of the unitarity property of the S matrix for rearrangement collisions.

It should be remarked that the distinction whether certain particles are composite
or elementary is notoriously difficult to answer, be it from the experimental or
theoretical point of view. This difficulty has incited some to declare it as meaningless,
or at least irrelevant, and to replace it by a self-consistent formalism ("bootstrap"
calculations) where each particle is in a sense elementary and composite at the same
time.

We point out here that if the S matrix for rearrangement collisions were not
exactly orthogonal, but satisfied instead a relation such as (1.4), this procedure would
be doomed to failure from the start, since the relation (1.4) would permit us to make
a clear distinction between elementary and composite particles.

The result of this paper will thus be that unitarity in the usual form is generally
valid, even for overlapping channels, and it is not possible to distinguish elementary
from composite particles by a consideration of the S matrix alone.
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In the course of the proof we have made extensive use of an important
mathematical tool, the spectral representation, established in a previous publication [9].
This tool enables us to dispense entirely with the expansion in non-normalizable
eigenfunctions of the energy operator. This expansion procedure is almost exclusively
used by physicists today and it is a source of major mathematical difficulties. Because
there are not sufficiently strong theorems available concerning such expansions, most
of the results obtained so far with such methods are open to questions.

For the convenience of the reader, not familiar with Ref. [9], we shall briefly
recapitulate in Section 2, in elementary terms and without proofs, the results obtained
therein. They are slightly generalized and adapted to the needs of the problem on
hand. In Section 3 we give then with the aid of this tool, the proof of the unitarity
condition for the multichannel scattering matrix.

II. The Spectral Representation for a Complete System
of Commuting Observables (CS.CO.)

In this Section we shall review some of the basic notions of mathematical nature
needed for the subsequent part of this paper. All results will be stated without proof.
The necessary proofs for establishing the spectral representation in sufficient generality
were given in Ref. [9]. Here we merely state some selected results from this paper for
convenience, as well as some easy corollaries and generalizations not mentioned in this
paper.

Let Ax, A2, An be a C.S.C.O. They are a set of n self-adjoint operators in a
Hilbert space ?/, which commute pairwise and generate a maximal Abelian algebra
of operators in ?/. We shall assume that the spectrum ylr of the operator Ar is a

(closed) segment of the real line. There are thus no discrete eigenvalues and no
eigenvectors in Ti for 4. (This is the situation encountered in scattering theory.) We denote
by yl 4 xyl2 X • • ¦ Xyl„ the Cartesian product of the spectra. An element A e yl is

thus the w-tupel of numbers X fXx,X2, Xn), with XreAr.
The theorem on the spectral representation affirms the existence of a uniquely

determined measure class [o] on yl (which will contain Lebesgue measure in our
applications) and an isomorphism between the abstract Hilbert space ?/ and the
function space L2fA) of square integrable functions over yl which associates with
each element x e "U a function/(A) e L2fA).

In order to facilitate the statement of the properties of this isomorphism we
introduce the following slight generalization of Dirac's bra-ket notation.

The function ffX), image of x e ll in the above-mentioned isomorphism, will be
denoted by <A | x). The complex conjugate of this function will be denoted by
fx [ Xy s <A j x)*. The isomorphism is then expressed by the following relations

< X | x + y) < X | x) + < X | y) for all x, y e "H

< X I 0 x) 0 < X I x) for all complex 0 (2.1)

fx,y)=f (x\X><X\y)do(X). (2.2)
A

The measure dqfX) in this last equation will be the Lebesgue measure on the Cartesian
product space for all applications of this paper and will be denoted simply by dX

in the following.
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The usefulness of this isomorphism is due to the fact that it can be so constructed
that the operators 4 (r 1, n) are multiplication operators:

< X | 4 x) Xr < X \x) (2.3)

provided that they satisfy a condition stated in Ref. [9] which characterizes them as

"independent".
If B u (4 yl J is a function of the operators Ar then we have

<X | Bx) =ufXx... ,Xn) <X \x). (2.4)

Operators of this kind are said to be "diagonalized" in the spectral representation.
They are then multiplication operators in L2fA).

An important class of more general operators are those which can be represented
as integral operators in L2fA). For such an operator T we may thus write

< X | T x) / < X | T | X' > < X' \x) dX'. (2.5)

Here (X | T \ X' > is the kernel of the integral operator. We shall also call it the
representation of the operator T in the spectral representation. However not all operators
T are of this kind. An equation such as (2.5) is often interpreted in the literature as a

symbolic equation for a distribution. Since this extended symbolic meaning of the
Equation (2.5) can cause mathematical difficulties we shall avoid it in this paper and
restrict the use of Equation (2.5) to bona fide integral operators.

Of special interest in the following will be operators which commute with some
function of the Ar. Vet T be such an operator and H H (Ax Af the function of
the 4 with which T commutes. We can then always choose (in many ways) a new set
of commuting operators, containing H as a member, and such that they are again
a new C.S.C.O. We change the notation here and designate from now on this system
with H, Ax, An. The Cartesian product of the spectra Ar of 4 will be denoted as

before by A AxxA2x...xAn, and a general point of yl will be denoted by X.

We designate with E a point in the spectrum of H which we assume also to be

continuous. The isomorphism of the spectral representation takes then the form
x -> <E X j x).

An operator T which commutes with H is diagonal with respect to the variable E
so that it may be written in the form

< E X \ T x) J < X | T(E) | X' >< E X' \x) dX'. (2.6)

In the subsequent applications the operator H will be an energy operator and the
operator T of (2.6) is then said to be an operator "on the energy shell".

For every fixed value of E and every xe"U the functions <E X \ x) are square
integrable over the variables X. They are thus themselves a Hilbert space which we
denote by "UfE). The function <£ X J x) is then the spectral representation of a vector
xfE) e UfE). Thus we have explicitly constructed a "direct integral" of Hilbert spaces
x {xfE)} with \\ x ||2 J |[ xfE) \\2 QfE) dE, where q(E) is some density function
proportional to the volume of the energy shell.

In this representation the operator T which commutes with H may also be written
as a direct integral by setting

T{x(E)} {T(E)x(E)}. (2.7)
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This is the abstract version of (2.6), but it is correct even for the more general case
that T(E) is not an integral operator on the energy shell.

In the following applications we also need the formulae for a change of the spectral
representation. These are the obvious generalizations of the formulae for the change
of a coordinate system.

We begin with the simplest special case which suffices as a point of departure for
the more general formulae needed in multichannel scattering theory.

Let us assume first that there exist two energy operators H0 and H which are

unitarily equivalent so that their spectra are identical. There exists then a unitary
operator Q which has the intertwining property

HQ QH0. (2.8)

This is the situation for the simple scattering systems without bound states, which
we examine here first for the purpose of introducing the concept of the transformation
of the spectral representation. The generalization to the multichannel situation will
the be easy and will be made later on.

For this special case the operator Ü is unitary

Q*Q= L QQ* (2.9)

so that Ü* Q-1.
The operator Ü is not unique if the spectra of H and H0 axe degenerate. It can

thus be subjected to additional restrictions which in scattering theory are dictated
by the physical situation of a scattering process. For the moment we shall not need to
specify these conditions.

Just as in finite-dimensional spaces, we can, here too, interpret the operator û in
two ways. We can consider it as a transformation of the vector space ?/ which assigns
to any xell the transformed Q x. We can also interpret Ü as a change of the reference

system in a particular representation of the space. Thus Q will induce a change of the
spectral representation.

Let us denote by „<£ X \ x) the spectral representation of the vector x with respect
to H0 and a certain number of additional operators Ax, An needed to obtain a

complete system of observables. We define then a new spectral representation
<E X\ x) by setting

<.EX\x)=0<EX\Q*x). (2.10)0

We claim that fE X \ x) is the spectral representation of x with respect to H. In fact

< EX | Hx) 0< EX | Ü* Hx) 0< EX \ H0Q*x) E 0<[ E X \ Û* x) E < E X \x). (2.11)

Substituting Ü x for x we obtain the reverse relation to (2.10)0

0<EX\x) <EX\Qx) (2.10)!

The representation which we have constructed here is the spectral representation
with respect to the new C.S.C.O. {H, Ü ArQ*} (r 1, ,n), in fact

< E X | Q 4 Û* x) 0< E X | 4 Û* x) Xr o< E X | Û* x) Xr < E X \ x)
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We now proceed to generalize first to the case where the intertwining operator Q
is no longer unitary but only an isometry. Instead of the relation (2.9) we have then

Q*Q=L QQ* F< L (2.12)

where F is the projection operator onto the range of Û. Equation (2.11) is then still
valid for all x in the range of Û, that is all x which satisfy F x x. The equation is

valid for all xe tl ii we replace in (2.11) the operator H by FH HF FHF.
It is thus the spectral representation of the operator F H F.

Let us now examine the transformation of operators under change of the spectral
representation. Let T be an operator which commutes with H0 and assume further
that in the spectral representation 0<£ X \ x) it is a bona fide integral operator, so that
we may write

0<EX | Tx) J 0<X | TfE) \X'y00<EX' \x) dX'. (2.13)

It follows then from

< E X | Ü T Ü* x) 0< E X | T Q* x) j 0< X | TfE) \ X' >0 0< E X' \ Q* x) dX'

f 0<X\ TfE) \X'\<EX' \x)dX'

that Q T Q* is an integral operator in the /^-representation with the kernel

<EX\ÛTÛ* | EX'y 0<X | TfE) \X'y0.

Thus the operator Q T Q* is on the energy-shell in the new representation which is

conform to the fact that Q T Q* commutes with H, and we may use the notation

(EX\QTQ*\EX'y=<X\QT Q*(E) \ X' > 0< X \ T(E) \ X' >0. (2.14)

For the treatment of multichannel scattering problems we need to generalize these
results still further. We must deal with situations where we have not just one energy
operator H0 but a whole sequence of "channel operators" Ha (a 1,2, The
channel index a distinguishes the different channels. The domain of a may be finite or
infinite, but it is always countable [8]. The channel operators H^ are the energy
operators for the free particles in channel a.

If the system is a multichannel scattering system then there exist sequences of

intertwining operators ß(a) (a 1, 2, with the properties

HQW Q^Ha (2.15)
and

QmQm* Fa. (2.16)

The projection operators Ea and Fa are in general different from the unit operator.
Hence the i2(ot) are in general no longer unitary, they are only partial isométries.

Corresponding to this notion of partial isométries we may introduce the notion of
the partial spectral representation. While the ordinary spectral representation so far
considered furnishes an isomorphic mapping of the entire Hilbert space "U onto an L2

space of functions, the partial spectral representation maps only a proper subspace
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M C ?/ onto such a function space. In order to formulate this situation properly
we revert for a moment to the one-channel formalism, the generalization to the
multichannel being then obtained by adding in the subsequent formulae a channel
index at the proper place.

We assume then that we are given a free evolution operator H0 together with a
C.S.C.O. Ax, A„, all of which leave a proper subspace M C 7/ invariant. This
means that the projection operator E with range M commutes with H0 and all Ar.
We say M (or E) reduces the operators H0 and Ar. Instead of the operators H0 and Ar,
we may then consider their reductions to the subspace M, that is the operators
H0E E H0, and Ar E E Ar. These operators, if they are complete, generate a
maximal Abelian algebra in M. The theorem of the spectral representation can now
be taken over word for word by substituting the subspace M for the space ?/ in the
previous formulation.

This leads to the following results :

There exists a uniquely defined measure class [g] on the product space of the
spectra of H0 E and ArE and an isomorphism of M to the Hilbert space L2 of
functions over the spectra of these operators. If we denote by „<£ X | x) the function
in L2 which corresponds to the vector x e M then we have for this function again the
relations (2.1) and (2.2) of this section with the only change that M must be substituted
for ?/ in these formulae.

A change of the spectral representation can now be induced not only by a unitary
operator as before ; but more generally by a partial isometry. Indeed let û be a partial
isometry with initial projection E and final projection F, so that E Q* Q and
F Q Q*. Let M E "U be the range of E and JV F "U the range of F. The operator
Q furnishes then an isometric mapping of M onto N. Unlike the previous case, these

two subspaces may be situated arbitrarily : M may have a common part with N or it
may be entirely outside of N. In any case this partial isometry defines a transformed
spectral representation which attributes to every y e N, (that is every y of the form
y Ü x, x e M) the function

< E X I Ü x) =0<EX\x).

It is seen that this formula is identical with (2.10)0. The only difference is that in the
last formula the vectors x and y Q x range only over M and N respectively.

Returning now to the situation encountered in multichannel scattering we may for
channel oc assume the existence of a C.S.C.O. and thus define for each a a partial
spectral representation a<£ Xa \ x) for xeEa"H, (Ea ß(a)* ß(ot)). The partial
isometry induces then a transformation of the spectral representation given by the
formula

<EXa\QWx)=yEXa\x). (2.10).

It follows then from the intertwining property (2.15) that for each y e F^li, that is
each y of the form y Q^ x ; x e Ea "U we have

<EXx\Hy) E<EXa\y) (2.11)a

The transformed spectral representation {E Xa \ y) is thus diagonal for the
operator H Fa.



Vol. 39, 1966 The Unitarity of the S Matrix for Multichannel Scattering 333

In the case of the multichannel scattering theory the projections Fa onto the range
of ß(o<) are all orthogonal and their sum is the unit operator [8] :

FaFß oaßFfi ZFa=I. (2.17)
a

In this case the isomorphism from the elements y e Fa "U to the space L2(yl(a))
defined by (2.10) can be extended to an isomorphism of the entire space as follows:
to every x we associate a sequence of functions iE Xa | x) (a 1, 2, in Z.2(yl(a)) by
setting

<E Xa\x) <E Xa \Fax) yE Xa | ß<a>* x) (2.10)

Any linear operator can then be represented and studied in this extended spectral
representation.

<EA/yj

rx

Figure 3

Illustration of the transformation of a partial spectral representation by a partial isometry.

In the following we shall be primarily interested in operators Ta ß which have the
intertwining property

H«Taß=TctßHß. (2.18)

This gives rise to the new notion of the mixed spectral representation of an operator.
The operator Taß maps a subspace Mß — Eß li into the subspace Ma Ea 11. We
shall consider the special case that the mapping is onto and is expressible as an integral
operator such that

A E K I T*p x) J A E Xa | Taß [ E Xß yß ß<EXß\ x) dXß

valid for all x e Mß. We have already implied with the notation that the operator
Taß is diagonal in the variable E as it follows from the intertwining property (2.18).
In fact

a<EXa\ Ha Taß \E'Xßyß=Ea<EXa\ Taß \ E'Xß yß

a<EXa\TaßHß\E'Xßyß=E'x<EXa\Taß\E'Xßyß
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therefore

a<EXx\Taß\E'Xßyß Oiox E * E'

We shall use the notation

AK I TaßfE) \Xßyß a<EXx\ Taß \EXßyß (2.19)

for the integral operator "on the energy shell". This representation of an intertwining
operator is an example of a mixed spectral representation.

If Taß has the intertwining property (2.18) then one verifies easily with the help
of (2.15) that the operator ß(a) Iûm* commutes with H so that we may transform
it to the spectral representation of H in analogy to the formula (2.14)

a<K I TaßfE) I Xß yß <Xa | flw Taß Q**'E) \Xßy. (2.20)

In the following we shall also need the formula

Aa I Tafi Fy I Xßy <Xa | Taß | Xßy òf7 (2.21)

for any bona fide integral operator Tœ ß which maps the range of Fß onto the range of
Fa and which commutes with H. Similarly, we may also affirm

<Xa | Fy Taß | Xß y <Xa | Taß | Xß y ôay (2.22)

These formulae are easy consequences of the defining property of the spectral
representations used here, and the orthogonality relations (2.17).

III. The Multichannel Scattering Matrix
For this section we shall need some of the results of a paper on the "Theory of the

Scattering Operator II" [8], which will be briefly reviewed here.
A multichannel system is defined by a total energy operator H, together with

some system of channel operators Ha which represent the kinetic energy of the free

fragments in channel a.
The characteristic property of a scattering system is the asymptotic condition which

affirms the existence of the limits

Qf lim V* Uf (3.1)
t—>Too

where

Vt e-iHf Uf e~iHA

The limit (3.1) is understood in the strong topology of the Hilbert space. It will in
general only exist on some subspace Da C "U with projection operator Ea. It can
however be proved that the dimension of Da is infinite [8]. The operators Qf axe

partial isométries and £a is defined by

Qf*Qf Ea. (3.2)

The notation inaidentally implies that Ea is independent of the sign -j-. The ranges
Rf of Qf axe closed linear subspaces and are also defined as the ranges of the
projections

Ff QfQf*. (3.3)
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The matrix element for the scattering from channel oc (with energy E and channel
variables Xf) into channel ß (energy E and channel variables Xf) is given by the matrix
element of the operator Saß Q{^*Qf. This matrix element does not exist in the
usual sense with respect to the energy variable since Sxß is an intertwining operator
for the operators Hx and Hß (cf. Ref. [5])

HaSaß=SaßHß. (3.4)

The mixed representation of SœjS contains a "ô-iunction-like" kernel, and we can
write a correct equation only if we use the diagonal spectral representation not for the
operator Saß but for Ra ß Sa ß — Ea oaß. For this operator we may in fact write
(Equation (2.19))

a< E K I Kß \EXfiyß a<Xa\ Raß(E) \xßyß. (3.5)

In all scattering problems of physical interest this operator is a bona fide integral
operator.

The unitarity condition for the S matrix can now be expressed by the following
relation

z41 Kß(E) \xßyß + ßaß i Rßa(E) Ixa>: + 27dK«<*«I *«r(£) IZ>r
v

xß<Xß\Rßy(E)\Xyy; 0 (3.6)

This relation is the unitarity condition in the multichannel case. We shall now
examine under what condition it is correct.

We first translate this relation into another equivalent form by using formula
(2.20) of the preceding section

y 4 | Raß(E) | Xß yß <Xa | Qm Raß Q^*(E) \Xßy. (3.7)

For the ß(a) which appear in this equation, we may choose any of the intertwining
operators defined by (3.1). Let us choose for instance Qf. We then find

a<Xa | Raß(E) I Xf yß <Xa | Qf (Qf*QW - oaß) Qf* | Xß y

< Xa I Qf Qf * Ff - da „ Ff \Xßy. (3.8)

By using formula (2.20) we can drop the projection onto the range of F{^ on the
right. Furthermore since Qf* Ff oaßQf* we can replace the term Qf Qf*
by the sum over the channel index. In this way we obtain (using (2.21) and (2.22))

(-K I s+ — oaß | xß y yXa | Raß | xßyß
where

S+=]TQ{+Ql-* (3-9)
ô

and where we define

<k\S+\Xßy <Xx\FaS+Fß\Xßy.
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It is now easy to verify Equation (3.6), because it expresses the fact that the operator
S+ is unitary in the subspace F "U with F fff Ff. It is thus equivalent with the

equation a

S*+S+ S+S*+ F=2JFÏ±)- (3-10)
a

In order to verify this relation we substitute (3.9) into (3.10) and use the relations
(3.2) and (3.3). Thus we obtain for instance

sl s+ =ZQ(- ®f*Zül+ Q{ß)*
a ß

=2JQ{f oaß Ea ß>«* =2JQ{X) Q{-]* =ZFJ F
<x,ß oc a

and similarly

s+ s*a =ZQ(+ Qf*£&j Qf*
a ß

ZÜJ Za Ea ûif * ZQA QJ* EF+ F ¦

a, ß a a

Thus relation (3.10) is proved and with it the unitarity relation (3.6).
In order to obtain this last result we have used two properties of multichannel

systems contained in the following two equations

2JFf=£Ff (3.11)
a a

and

Ff Ff oaß Ff (3.12)

The property (3.11) is an essential hypothesis which scattering systems must
satisfy if the 5 matrix is to be unitary [8]. It is independent of the asymptotic condition
(3.1). The second relation (3.12) which states that the ranges for the different channels
are pairwise orthogonal, on the other hand, is a consequence of the asymptotic
condition and the fact that the spectra of the channel operators are continuous. This
theorem was stated and proved in Ref. [8] (cf. Theorem on page 617).

We note here that the projections Ea do not satisfy any orthogonality relations.
In fact one of these projections may be the identity operator as it is the case for
instance in the example discussed in the first section. This lack of any orthogonality
relation for the Ex is the cause of the overlapping channels.

Instead of working with the operator S+ (3.9) we could also have used the operator
5_ defined by

s_=2JQlô-Q{+* <3-13)
6

which would have appeared instead of S+ if we had chosen the spectral representation
(3.7) with the operators Q[f> instead of Qf as we have done from Equation (3.8) on.
Although the ranges of Ff axe different for the two signs, the result would have been
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identical, since we would have obtained again a spectral representation of the operator
relation

S*_ S_ S_ S*_ F (3.14)

which is proved similarly to (3.10).
The unitarity of the S matrix is thereby proved even for rearrangement collisions

with overlapping channels.

IV. Conclusion

We have succeeded in proving the unitarity relation of the S matrix for rearrangement

collisions on the basis of the following three hypotheses :

(1) There exists a self-adjoint evolution operator H for the entire scattering system
which generates the unitary group Vt e-tHt:

(2) Each channel is characterized by an asymptotic condition, which defines a self-
adjoint channel operator Ha, representing the kinetic energy of the channel fragments,
and which implies the existence of the limits

Qf lim V* Uf
with

Uf e-iH«-t.

(3) The projections Ff onto the ranges of the operators Qf satisfy

y pm _ y F{ai.
ce a

The physical interpretations of these conditions is the following : (1) says that the
evolution of the states is the unfolding of a continuous symmetry transformation of the
system. It is equivalent with the existence of a Schrödinger equation; (2) expresses
the physical content of a scattering process and (3) says that every state in the
continuum part of H is a scattering state.
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