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Nouvelles formes des représentations unitaires irréductibles
du groupe de Poincaré

I1

par J. C. Guillot?) et J. L. Petit?)
Institut de Physique Théorique, Université de Genéve, Suisse

(29 1 66)

Abstract I1. A new form of representations of the Poincaré group (considered in I) is studied
in detail by means of functions defined on the Lorentz group. We consider several parametrizations
of this group which allow us to construct representations of the Poincaré group and its Lie algebra
for the cases m > 0. Some of these parametrizations define forms corresponding to the canonical
and to the helicity formalisms. We use mainly two methods for calculating the infinitesimal
operators: the one is related directly to the mass hyperboloid and the other one is constructed by
replacing the spin matrices by differential operators.

Introduction

Nous nous proposons d’étudier une nouvelle forme des représentations unitaires
irréductibles du groupe de Poincaré a 1'aide des résultats obtenus explicitement dans
«Nouvelles formes des représentations unitaires irréductibles du groupe de Poincaré I»
article auquel on se referera dans la suite par I. Les avantages d'une telle forme ont
déja été partiellement exploités (cf. I et [1]). Dans la premiére partie de cet article
nous considérons le cas des masses positives et nous écrivons les opérateurs infinitési-
maux correspondant a différentes paramétrisations du groupe de Lorentz et ceci a
I'aide de plusieurs méthodes de calcul. Dans la deuxiéme partie nous traitons le cas
des masses nulles. Dans ce qui suit I'opérateur W# (cf. I) sera considéré comme
I'opérateur du spin relativiste.

I. Cas des masses positives

Nous allons maintenant étudier les représentations irréductibles [m; 7] (avec
m > 0) et la forme correspondante des opérateurs infinitésimaux pour différentes
paramétrisations du groupe de Lorentz. Parmi toutes les paramétrisations possibles,
celles qui comportent une rotation sont plus simples a calculer car le stabilisateur des
masses positives est le groupe des rotations. Considérons en effet une décomposition
dutype A = L R ou R est une rotation dépendant de 3 parameétres. La transformation
L dépend aussi de 3 paramétres et paramétrise donc le quotient S L(2, C)/S U(2, C),
c’est-a-dire l’hyperboloide p? = m?. Cette correspondance se réalise a partir de

1'équation p = L p qui permet d’associer biunivoquement un p a chaque L. A1n51 cet
élément est la transformation /A, employée dans I pour

1) Boursiers O.T.A.N.
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induites. Nous emploierons deux méthodes de calcul pour obtenir ces opérateurs
infinitésimaux correspondant a la partie homogéne et nous allons les schématiser ici
car elles se retrouveront tout au long de cet article. Pour calculer ces opérateurs nous
avons a évaluer des quantités du type ;' A4, R ot1A,est une transformation homogene
infinitésimale. Pour calculer les variations des parameétres de A, et de R sous l'effet
d’une telle transformation nous devons redécomposer A, ' 4, R sous la forme 4, R’ et
comme cette décomposition est unique, la solution est:

AP A, R=A A7 ATTANR.
0 b Ao_l b ( Ao—lp 0 P)
A/: ' Ayt A, étant un élément du stabilisateur de 4. La nous avons deux possibilités.
0 P
Premiere méthode:

On utilise directement la condition (I-19), soit:
- | _—_— .
f(457 4, R) = D'"(R) DI(A;" Ay Ay-1,) DI(R) f(A,-1,R).

La partie f(A 4710 R) nous fournit la contribution correspondante aux termes p A 0p et
$° 0p sur 'hyperboloide.
Deuxiéme méthode.:

On compose les 2 rotations (A A, A aglp) et R et on calcule la variation des

parametres de /1, et de R, ce qui nous introduit des dérivations par rapport a ces
parametres, Les opérateurs calculés ainsi, que nous noterons J’, N’, ne sont pas ceux
désirés car nous n’avons pas tenu compte de la condition (I-19); ce sont ceux de la
représentation «régulidre»: f(A) Zo» f(A, ' A). Nous pouvons maintenant tenir compte
de la condition (I-19) par l'égalité suivante:

f4, RA A, Ay-1,) = DiTH AT A, A4-1,) (4, R).

Les modifications apportées par cette équation nous permettent de corriger les
opérateurs J' et N’ afin d’obtenir les opérateurs J et N. Nous montrerons, dans
I'é¢tude des différentes paramétrisations, comment on démontre I'équivalence entre
les formes calculées par les deux méthodes. Notons que tout ceci se transpose au cas
des masses nulles a condition de remplacer le groupe des rotations par le groupe E,;
ainsi pour m = 0, les paramétrisations simples sont celles de la forme

A=A, E ou E€E,.

Comme les opérateurs calculés ne sont pas bornés, nous devons préciser leur domaine

de définition. Le théoréme de L. GArDING (cf. [2]2)) nous assure l'existence pour

chaque représentation considérée d'un domaine de définition commun des opérateurs

infinitésimaux, dense dans l'espace d'Hilbert et sur lequel ces opérateurs sont

essentiellement auto-adjoints. Le domaine de L. GARDING est formé par I'ensemble

des vecteurs de la forme [ T(g) ¢(g) ¥ dg ou T(g) est la représentation considérée
G

%) Les chiffres entre crochets renvoient 2 la Bibliographie, page 324.
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opérant dans §, ¥ un vecteur dans §), ¢(g) une fonction indéfiniment différentiable a
support compact et dg la mesure de Haar. Signalons que dans chaque cas rencontré,
il sera préférable de substituer au domaine de L. GARDING un domaine de définition
plus adapté a la forme particuliére de la représentation.

A. Soit la décomposition du groupe de Lorentz en une transformation de Lorentz
pure /, et une rotation R qu’on écrira:

A= A(g; 1) A(m; 0) = (ch % — sh Z 17) (cos g —ising nt)=4,R

Ceci correspond a paramétrer I'hyperboloide (p2 = m?; p° > 0) par I'ensemble des
transformations A(y; I) et ce n’est rien d’autre que le formalisme canonique de
E. WIGNER (cf. [3]). Les fonctions sur lesquelles nous écrivons la représentation dépen-

dent ainsi des arguments (y; I; 6; n) et le produit scalaire dans I'espace P est
frg>=[f(4,R) g(4, R) m* (sh x)*o (| L[>~ 1) dldy.

Un domaine naturel de définition de I’ensemble des opérateurs infinitésimaux est
I'ensemble des fonctions des variables y, I, 6, n, indéfiniment différentiables et a
support compact.

Cette représentation s’écrit dans I'espace $2' d’aprés (I-20)

(U (@, Ay) F) (A) = %P f(A;* A) (I1-1)
c’est-a-dire
U ({ag; Aly's V) A(n'; 0)}) f1 (A(y; 1) A(n; 0))
— (AP FT A — 0) A(— o 1) A(y; 1) A(n; 0)] .

Nous allons maintenant calculer les opérateurs infinitésimaux associés a cette représen-
tation (Note: pour simplifier 1’écriture nous noterons D pour D).

Générateurs des translations d’espace-temps

Par définition A(y; I) est la transformation qui améne le point stabilisé ;g en p:
p= AP A ) =mAQ ;1)
d’ott
p=p°1"—pr=m(chy—shy(lr))
donc )

(P f) (A) = (mch x) f(A)  (Pf) (A) = (msh 1) f(A). (L1-2)

Génerateurs des rotations et des transformations de Lorentz pures.
Comme nous 'avons vu précédemment, le calcul des opérateurs infinitésimaux
fait intervenir la rotation A ' A4, -1, ol1 A, est successivement une rotation et une
0
transformation de Lorentz pure, infinitésimales toutes les deux. Si /4, est la rotation
infinitésimale 1 — ¢ «/2 ¢ T = R(q; «), alors

AP R(q; o) Ap—1 = R(q; «) .
(q;)
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cette égalité ne se limite pas d’ailleurs aux seules rotations infinitésimales. Par contre
si A, est une transformation de Lorentz pure; Ay = 1 — y,/2 g Ton a: (cf. [9))

/11;1 AOAAO“I:D == R(q”; O(.”)
avec
D(./lp"lAOAA(;lp) =D(R(q";a")=1—ia"q" §=1—1iy,q8"
la derniére égalité définissant §”, out

n_ PAQQ | 0" _IP/\Q|_ . ) o 2y —1/2. _
q_'lp/\ql) m_x0P0+m u_yv! V*(l 'V) ’ 14 %Oq

et par suite:

§"=—thZIAS.
Les formules générales écrites précédemment donnent le résultat suivant:
(Jf) (4) = [D7Y(A(n; 6)) S D(A(n; 6)) — i LA 0,1 f(A).
(Nf)(A) = — [D—l(A(n; 6)) th % I\ SD(A(n; 0)) + O] f4). (II-3)

On peut, en tenant compte de ’equation (I-2 bis), mettre ces opérateurs sous la
forme suivante:

(Jf) (A) =[cosO S+ (1 —cosB) (nS)n+sinf (n A S)—1i1A 0,]f(A)

(Nf) (A) = — [th%(cos@l/\ S+ (1—cos) (nS)LAn

C+sinBIA (n A S))+ o] F(A). (I1-3bis)
oll nous avons posé pour la partie orbitale O:
() W) =i [-10,+FL (- o+ 11 0))] fA). (L14)

On détermine aisément la forme de I’opérateur de spin W* = 1/2 ¢#*2? M, , P, soit:

(W f) (A) = msh y [D-Y(A(n; 0)) I § D(A(n; 6))] f(A)
(W f) (A) = m D-Y(A(n; 0)) {ch xS—2sh2 S IA (LA S)] D(A(n; 6)) F(A) .

Nous allons maintenant établir le lien entre cette forme de représentations et celle
de la forme Standard de E. WIGNER associée au champ A (y; I). En effet, les opérateurs
infinitésimaux que nous venons de calculer sont tous de la forme

(4.) (4) = (DX(A(n; 6) A’ D(A(n; 6))) f(4) . (11-5)

Or, A’ est la forme de 'opérateur A lorsqu’on «restreint» les fonctions f(/1) al’ensemble
des transformations de Lorentz pures A4 (y; I) et 12 on obtient une forme en correspon-
dance évidente avec la forme Standard habituelle. L’expression (II-5) exprime alors,
puisque D(A(n; 0)) est la fonction B(A) correspondante de la forme de E. WIGNER,
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que les opérateurs calculés sont bien les opérateurs associés par 'isomorphisme a ceux
de la théorie habituelle. En effet, on a

INO,=p A Op

ot P est I'opérateut scalaire de translation dans la forme Standard de E. WIGNER.
Ceci se calcule aisément a partir de (II-2).
De méme

—10,= P%0p.
On retrouve donc les expressions bien connues pour les opérateurs (cf. 4)
J=—iPNO0p+ S
N=—¢P0p,— (m+ PO 1 (P,S).

Signalons que cette paramétrisation est la seule qui nous fournisse une décomposi-
tion du moment angulaire total J en une partie orbitale et une partie spin, situation
qui ne se retrouvera pas avec les autres paramétrisations. Ceci est di au fait que pour
le A, choisi on a:

AP_I R AR_lP - R

pour toute rotation R.

Calcul des opérateurs J et N par la deuxiéme méthode

Calculons d’abord les opérateurs de la représentation f(A) 2&» f(A, ! A) ol f est
une fonction définie sur le groupe L et a valeur dans I'espace £,;,;.

cos > n (no,)— cos 2 0,

D= {=im 00t gy (o 2

—sin%n/\()n)—il/\(),}f(/l).

(N'/) (4) = {o FithE @AM, — 5 thZ L [cos 2 (LA n) (n0,)

—cos o LA 0, —sin o (n(l0,) — (In) 0,,]} FlA) .

A Taide de la forme infinitésimale de la condition (I-19), nous pouvons déduire
l'opérateur § dans cette paramétrisation:
A, RAS A A 1) = DA Ay A1) f(A) = (1 + i o q S) f(A)
ol
Ag=1—1 % qT,

c’est-a-dire en explicitant:

(SH ) = {110y~ 5ogr [c05 5 0 —sin 5 m A 0, —cos 5 n(n an)]} £(4) .
(I1-6)



Vol. 39, 1966 Nouvelles formes des représentations unitaires I1 305

Compte tenu de 'expression de §, nous déduisons les opérateurs J et N a partir de
J et N':
TN A) ={S =i (TN 09) —i(n A 0,)}/(4)

(NF) (A) = {— th2 LA S+0+ith% LA (n A On)}f(/l). (11-7)

ot O est définie par (IT-4).

Etablissons maintenant I'identité entre les formes (II-3) et (II-7) ce qui revient a
démontrer 1'égalité suivante:

(§ =7 (ny A\ 0,)) f(A) = (DY (A(n; 0)) § D(A(n;0))) f(A). (IL-8)

En effet considérons la rotation infinitésimale A(q; «) = 1 — ¢ «/2 q 7. Nous obtenons
a l'aide de la condition (I-19):

F(4, A(q; @) R) = D~Y(A(n; 0)) {1 + i« q 8} D(A(n; 6)) f(A)
=(1+4+7iaqs8)f(4,A(q;a) A(n; ) A7(q; «))

=(14+ixq8)(1+a(gAna,)f).
C.Q.F.D.

Remarque: On constate que deux méthodes de calcul ménent naturellement a deux
décompositions «canoniques» en spin et en moment orbital différentes, ce qui montre
bien que cette décomposition n’a aucun sens intrinseéque. Il est toujours possible de
faire sortir, 4 I'aide de la condition (I-19) une rotation de fagon a modifier cette
décomposition.

B. On peut aussi considérer la paramétrisation suivante légérement différente de la
précédente:

A= A(n; ) A(y; D).

Il est facile de trouver les opérateurs infinitésimaux a l'aide des précédents en
remplagant I par R(n; 6) I en vertu de I'égalité (I-2): d’ol par un calcul analogue au
précédent, les expressions suivantes des opérateurs infinitésimaux (par la premiére
méthode)

(POf) (A) =mch g f(A)  (Pf) (A) = mshy R(n; 0) LF(A)
(Jf) (A) = (D-Y(A(n; 0)) S D(A(n; 6)) — i (R(n; 0) 1) A\ 0,
(Nf) (4) = — |\ D(A(n, 0)) th % (R(n; ) 1) A S D(A(n; 6))

+iR(n; 0)10, + i 5% (+ 0, — R(n, 0) L (R(n; 0) 1 o,))}f(A). (I1-9)
on obtient la forme standard correspondant sur I’hyperboloide avec la fonction:

B(A) = D(A(n; 6)).

20 H. P. A. 39, 4 (1966)
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C. Formalisme d’hélicité.

Nous allons maintenant étudier la section associée a I’hélicité (cf. [6-8]). Le choix
de I'élément dans chaque classe, c’est-a-dire le choix de I'élément du groupe amenant

£ sur p est le produit des deux transformations suivantes
1) une Lorentz pure le long de 0z:
A% p= (m,0,0,0) > = (42,0,0, )
oup=I|pl;
2) une rotation RY amenant 4 sur $;
Ri': b= (%0,0,) ~p = (0% p}: 1% 9.

I1 est aisé d’écrire ces deux transformations

m+p°—p; 0
A = {2 (m+ p)} -
0; m+p'+p
cos i; — sin o et
2 2
R —
g L8 g, 6
sin - ¢'%; cos —

ou nous avons posé
1 = psinf cosg

p% = psinf sing
p3 = p cosf

et k pour le vecteur unitaire de I’axe 0z. Nous obtenons ainsi pour la section

cos%(m—}—po—p); —sinﬂge‘i"’(m+¢’°+]5)

Al = {2m (m + p0)}-112 0 o
sin .y et (m + p° — p); cos T (m + p° + $)
Nous paramétrons ainsi I'’hyperboloide $2 = m? par (p, 0, ¢). Le produit scalaire dans
I'espace $HP est ainsi:
py p2sin @ dp df d
8> = [ Al B gl B EREE D

Calculons les opérateurs infinitésimaux de la représentation [m, 7].

Générateurs des translations d’espace-temps

0
De I'équation A p = p o A = A R = AJ(p; 0, ¢) R(n,; 0;) nous déduisons les
opérateurs P:

(PO f)(A) = (8°)) (A);  (P1f) (A) = psinB cosg f(A)
(P2 f) (A) = p cosBf(A);  (PPf) (A) = p sin B sing f(A). (11-10)



Vol. 39, 1966 Nouvelles formes des représentations unitaires II 307

Calcul des opérateurs J et N par la premiére méthode

Cette paramétrisation différe de la paramétrisation canonique par le fait que
(A%) et . A4 Sl,n ‘est pas égal a A, si A, est une rotation; c’est une rotation d’axe 0z

comme on peut le vérifier aisément. Aussi allons-nous préciser nos calculs pour cette
paramétrisation.

Dans les autres paramétrisations (pour m > 0 et m = 0) la situation sera trés
similaire au cas de 1'hélicité aussi nous nous contenterons d’indiquer le résultat des
calculs. Définissons la rotation R(q’; «') et 'opérateur §’ par les égalités suivantes:

=1 reo \ ;
Ay A Al = R(q5a) ob Ay=1—i ) q7T.
DA™ A, A1) = D(R(g; ) =1—io' ¢ S=1—iagF.

Nous obtenons explicitement pour la matrice R(q’; «’) les expressions suivantes:
Si A, est une rotation autour de 0x (c.a d. g2 = ¢3 = 0)

g =k o=_22 (1—cost9)ioc

sin

Si A, est une rotation autour de 0y (c.a.d. ¢* = ¢* = 0)

sing
sin 6

g =k; o= (1 — cosf) a

Si A, est une rotation autour de 0z (c.4 d. ¢! = ¢* = 0)

’

qg =k o=ua
Nous obtenons ainsi pour 'opérateur §’

" cos Pl i sin P2
S = g L —c0sh) 1= & S T0 (1 cosh) S'= gy S°

S8 — S8,

Posons de méme dans le cas d'une transformation Lorentz pure Ag=1=y/2q7
(A Ao M52, = R(q"; ")

DA™ Ay A1) = D(R(q"; o) =1—ia" ¢" S=1—iagq§’
ces égalités nous définissant la rotation R(q”; «") et 'opérateur §”. Nous obtenons

pour la matrice R(q"; «”):
Si A, est une transformation de Lorentz pure le long de Ox

a' g = — % sin2 —z— sin2pa o' g, =— - (1 — 2 sin? % cos2q:r)
b/ 7 0
o gy = — £ tg— singa.

p
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Si A, est une transformation de Lorentz pure le long de Oy

von m . 0 . non m. . 6 .
o g :—(1 ——251n2751n2<p)<x g =y sm2731n2<pa

P
PU
o' g3 = » tg —2- cos@a.

Si A, est une transformation de Lorentz pure le long de 02
"o " non

o qlz—-%sin(psinﬁ o qg:lgcosqasinﬁ x g; =0

Nous obtenons ainsi:

S = — % sin? _g sin2 ¢ S — ﬂ;— (1 — 2 sin® % cos2¢)} 5% — % g 7 sing S%.
se— 2 (1-2sin? z sing) S+ - sin? 2 sin2g 52+ % tg 5 cosp S°.
§"3 = — % sing sin § St + ’;ﬁ cosg sin S2.
Nous trouvons ainsi pour les opérateurs J et N:
(Jf) (4) = (D7Y(R) 8" D(R) + 0’) f(A) . (IT-11)
(Nf) (A) = (DYR) 8" D(R) + O") f(A) . (I1-12)

ou nous avons posé pour les parties orbitales:
0’1 =ising 0, + i " cosqg 0 0'2=—1cosQOy+ 1 — 0 sing 0,
@ Ug sin ' P Uy 4

0'3=—1id,.

jJ“ Sln(p 0

5 S — ¢ p%sinfl cosg 0,,.

0" = —1,'1;0 cosf cosp 0y + 7 -

9 : . PO cosg_p

0112: . 'L' }, COSBS]H(}‘Q 03_ z—p- Sinﬂ lp_ Z;bOSiIlGSian 0])

0
= 4 Pp— sinfl 0y — ¢ p°cos b 0,,.

Nous voyons bien que dans ce formalisme nous n’avons pas obtenu une décomposition
de J en L+ § car 'opérateur S’ ne peut étre assimilé a un opérateur de spin.
Cependant dans l'opérateur J nous voyons apparaitre une partie orbitale O qui est
I'opérateur de moment angulaire de la représentation réguli¢re du groupe des rotations
(cf. [5]). A T'aide de ces opérateurs, nous déduisons l'opérateur de spin W# (cf. I):

We — p D-Y(R) S* D(R)
W1t = D=Y(R) {m (sin®p + cos 0 cos?p) S + m sing cosgp (cosf — 1) S% 4
P cosp sinfl S3} D(R)
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W2 = D7YR) {m cosp sing (cos§ — 1) St 4+ m (cos?p + cos f sinZ¢p) S% +

PO sing sinf S3} D(R) .
W3 = D-YR) {— msin 0 cosp S* — m sin O singp S 4 p° cosO S3} D(R) .

L’isomorphisme avec la forme standard associée & A est obtenu par la fonction B(A)
suivante:

B(A) = D(R) = D(AZ " A).

Cet isomorphisme met en correspondance la forme des opérateurs infinitésimaux
précédents avec celle déterminée par V. J. Ritus (cf. [9]).

Calcul des opérateurs J et N par la deuxiéme méthode

Nous pouvons calculer les opérateurs J’, N’ de la représentation «réguliere»:
f(A) i 1 f(451 A) a laide des identités suivantes:

(1—iaqJ)f(A) :f(/lH—I. R(q'; - &) R).

/]0 b2

(I —dixgqN)f(d)=f(A5:1, R(q"; — o) R).

{nous ne les expliciterons pas ici).
Calculons maintenant les opérateurs S’ et S” en fonction des paramétres n, et 6,,
de la rotation R(n,; 0,). Des identités suivantes:

fAY RR(g ;o)) = (1 +iaq8')f(A).
f(A] RR(q"; ")) = (1+iaqS")f(A).

nous tirons:

’

o4

i (q8) f(A) = (w(ma @) O, + m g A Om) S(A)

10.(q8") f(A) = (" (11" q") O, + 5570 A" a,,l) f4). (II-13)
Oll Nous avons posé
4 81 ’ 61 ’ : 61 '
A :—COST(nlq)n1+cos~§— q' +sin > n A g

(et une expression semblable pour A” ou q” remplace q’).

On peut aisément expliciter les composantes de S’ et de §” a I'aide des expressions
précédentes de (q'; ') et de (q”; «").

A l'aide de ces expressions et des opérateurs J' et N’, nous obtenons ainsi les
opérateurs J et N suivants:

(0 g J) f(A) ={x q (8 + O0) —ia' (¢ A\ n) 0} f(A).
(x g N) f(4) = {x q (8" + 0") —ia" (¢" A1) 0} f(4) - (I1-14)
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Nous pouvons faire le lien entre les deux formes a 1'aide de l'identité suivante:

JAF AE Ay %=1, R) = D-Y(R) (1 + 1« ¢ §) D(R) f(A)
= (1+10q8)f(ATAT Ag AT-1,) RAZ Ag A1)

qui nous fournit, en prenant pour /1, une rotation infinitésimale puis une transforma-
tion de Lorentz pure, les deux résultats suivants:

a DY R)qS DR)=aq8 —ia' (q N\ n, Onl .
«DMR)qS"DR)=0q 8" —ia" (¢" A1y 0, .

A T'aide de ces formules on etablit I'équivalence entre les formes (II-14) et (II-11),
(IT-12).

Remarque: Une autre méthode équivalente de réaliser 'isomorphisme est de partir
de l'identité:

fldy Ay R) = DYR) (1 +ia q 8) D(R) f(A4)
qui nous fournit en explicitant
D-YR)SD(R) =8 —i(n, A 0p,)-

Ceci prouve qu’il revient au méme de transformer les matrices § ou les matrices S’

et §7.

D. Considérons maintenant la décomposition suivante:

Y RS

avec |a |2+ | b |2 =1 (cf. [10]).
On obtient les relations suivantes pour les parameétres:

[

; b=-—

Y

A=yl oy a-

a

[3“3“_13 pour a = 0
M:
l _._% pour a = 0.

L’unicité de la décomposition provient de notre choix de 4 réel.

Remarque: Nous ne pouvons employer des parameétres complexes dans ces dé-
compositions car dans l'espace d’Hilbert de la représentation $P, les opérateurs
infinitésimaux doivent étre définis sur une partie dense commune. L’emploi de para-
metres complexes nous obligerait pour calculer J et N a considérer des fonctions
analytiques de ces parametres. Or I'on voit aisément que les opérateurs P font sortir
de ce domaine car ils contiennent les modules et les conjugués des parametres (les
fonctions z > | z | et z - z ne sont évidemment pas analytiques). Pour éviter cette



Vol. 39, 1966 Nouvelles formes des représentations unitaires 11 311

difficulté, nous n'imposerons que 'analycité réelle, c’est-a-dire nous considérerons
des parameétres réels. Le produit scalaire dans 'espace $? est ainsi:

fe>=[f(L,R) gL, R)2m2 A didp duy ou p=p,+1ps.

Calculons les opérateurs infinitésimaux pour la représentation [, 1].

Génerateurs des translations d’espace-temps
0
De l'égalité A p = p nous tirons:

(PO (A) =5 B+ 22+ | p [ f(4).

(P3f) () = 5 22— 22— | [BAA) -

(PY) (A) = —m i f(A4) .
(P2f) (A) = mApy f(A) . (I1-15)

Calcul des opérateurs J et N par la premiére méthode

Posons, comme pour I'hélicité
= 7 7 \ 4
LAy Lyst, = R(5a) ot Ag=1—i—gqT.
DIL;'AgLyst,)=1—ia’' ¢ S=1—iag¥§.
Nous obtenons pour la matrice R(q’; «')

o ¢ = AP A% AT (g — e 9]

d’ou
’ o . mw _Pl
ST=2 S =27 S = e ' o S
St o ey P
M2 PO p3 POt P8

S8 §3
De méme, pour une transformation de Lorentz pure A, = 1 — x/2 q T posons:
Lp_l Aﬁ LAO_IP — R(qﬂ, Of.”) )

DL, AyLyst,)=1—da"q¢"S=1—iag$§".
Nous obtenons:

o @' = {A g% — gl — A (P s+ P )}

d’ou
P2
Pl __ 9-2 2 o w 2 3
S = — A S‘”Zlﬂzsa——*ms—?ﬁpss
iy _ m p1
S = 2. 2 Sl - ;L 1{[,“ 53 = 7.P0+7P3ﬂ Sl + PO-{-E 53

Sh’3= 0
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Nous en déduisons la valeur des opérateurs J et N:
(/) (4) = {D-Y(R) §" D(R) + O} f(A)
(Nf) (A4) = {D~YR) §" D(R) + O’} f(4) (IT-16)
ol nous avons posé pour les parties orbitales:

Ol = —ipy 0, + ¢ A~ M1M20u1+ill(uz+1(l “—IM)%
O%= — iy 0; + 247 (M? + % 2—22—|u ‘2))01”14‘ A7 o Opts
03 = — 7 (s Opty — 4y Opts)

@ = %#103+%1_1 (124‘}724“#3) 0#1_%1_1.“1.“2 Oty
0’2=—%u2 01+%1*1M1u2 0#1—%1"1 (22 + 272 + ) Ops

03 = — —;- A0, + % (p41 Oy =+ p Opts).

Nous obtenons ainsi pour les opérateurs de spin W#:
Wo= D-YR)P 8" D(R)
Wt =m D7Y(R) (S — A u, S3) D(R)
W2 =m D7YR) (5% + A uy S?) D(R)
Ws—mDR) (5 G2+ 272 — |8 S* = A7 (g S* = $Y) D(R).

La fonction B(/) permettant de retrouver la forme standard associée est:
B(A) = D-Y(R) = DL, ' A).

Le calcul des opérateurs J et N par la deuxiéme méthode est identique au cas de
I'hélicité & condition de remplacer R(q’; &) et R(q"; ") par leurs valeurs dans cette
paramétrisation.

Remarque: Cette paramétrisation ne semble pas avoir un intérét physique direct
dans le cas des masses positives. En effet «]’axe de quantification du spin» est #3(p) =
L,(0,0,0,1) = («9 22, «2, x3) avec

|pP=p°p° pt

xo — ( 9 . .,35_ . xl — T
3 p? m 9 Pt
= U 08 2 =

Mais nous pouvons remarquer que la présence d'un terme nul dans L, entraine des
calculs beaucoup plus simples que dans le cas de I'hélicité.
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D’un autre c6té, cette paramétrisation permet un passage direct au casm = O et en
particulier de retomber sur la représentation obtenue a partir de la section choisie
par A. S. WIGHTMAN (cf. partie IT de cet article).

E. Pour terminer I'étude du cas m > 0 considérons la paramétrisation:
o« fB
A= avec ad—fy=1
y 0

Dans cette paramétrisation n’apparait pas de décomposition 4, R; aussi la forme
standard associée sur 1'hyperboloide n’existe-t-elle plus. Ainsi la représentation
correspondante est plus originale que les précédentes.

Calculons les opérateurs infinitésimaux correspondant a la représentation [m; 1]
c’est-a-dire la représentation suivante:

o p .
{U(u,( ))f} (o, B/, 9y, 8) =e“ VP fla'd—y' BB -8B —a'y +9 a

y 0
al ﬁl
da—pfy) ou A’:( .
7}’ 6!

Générateurs des translations d’espace-temps

De I'équation A ;)5 = 4 nous tirons:
PR A) =y B+ 1012+ alP+]| BB f(A)

PR A) =T {y P+ 0= |al2—|B 2} f(4)
(PLf) (A) = — m Re (xy + §6)

PPf)(A) =mIm (ay + B9). : (I1-17)
D’apres une remarque précédente, nous savons qu’il nous faut employer des

variables réelles. Ainsi en posant: o = ot; + 2 oty; B = B + ¢ fy .. .. etc., les opérateurs
P s’écrivent:

(PA)(A) =T 3+ 5+ 8+ 5+ ol + of + £7 + B3 f(A)
Pf) (M) =F A +vs+ 8+ 8 —al — s — B — B} /(AD

(P f) (A4) = — m{ay Y1+ % Ys + f1 0, + ﬂzaz}f(/l)
(P f) (A) =m @ey1 — % ye + B0, — By 52}f(/1)
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Calcul des opérateurs J et N

Nous devons employer la deuxiéme méthode de calcul car la premiére n’a pas de
sens ici (AAo—pl ne peut étre défini). Calculons les opérateurs de la représentation

réguliere f(A) "> f(A-1 A):

(J'1f)(A) = ‘; {“ V2 0oy + 91 0oy — 8, 0By + 8, 0y — ap Oyy + &y Oyp — B 00; +

By 005} f(A)

(J'2f) (A) = & {2 Oty + 75 Oy + 8y 0By + B, 0By — a1y Oy — ot Oy — By 00 —
Ba 005} f(A)

(J'3) (A) = & {— s Oy + y Oaty — By 0By + B OB + 72 Oyr — 12 Opa + 85 00, —
8, 085} £(A) (I1-18)

(N1 1) (A) = *; {?’1 0oy + Ve 0oy + oy 07’1 + oy 07’2 + 0, 0/81 + Oy oﬁz + B1 06,
+ B 005} f(A)

(N2 f) (4) = % {72 0oty — Yy 0%y — oty 0’)’1 +‘°‘1 0yy + 05 0B — 6, 0B, — B2 00,
+ B 005} f(A)

(N3 f) (A) = % {0‘1 0oy + &y 0ty — 1 Opy — Yo Oys + By 0By + B3 0B — 0, 00,
— 0y 085} f(A)

Pour obtenir les opérateurs J et N, il faut tenir compte de la condition (I-19)
vérifiée par les fonctions f. Ceci nous fournit en explicitant cette condition du point
de vue infinitésimal:

(S1S) (A) = — - {By 0oy — By Oty + aty OBy — 0ty 0By + 8y Opy — 65 Oy + p, 06,
— y1 085} f(A)

(S2f)(A) = — % {B1 0oy + By Oty — oty Oy — &ty OBy + 0, 0yy + 05 Oy — ¥4 06,
— yp 00,5} f(A)

(S3f) (A) = — % {ot Ooty — oty Doty — By Ofy + By 0Bz + 2 Oyy — 1 Oyy — 8, 00,
+ 0y 005} f(A) (I1-19)

L’absence de décomposition A, R dans cette paramétrisation ne permet pas
d’introduire d'une maniére analogue aux cas précédents ces conditions dans les opé-
rateurs J' et N'.
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Le calcul de l'opérateur de spin W# nous fournit:

; PO 4 ) '
we == 2 NG Wéz (0z Oaty -+ Oy Oay — yo 0y — vy 0B — B2 Oy — B1 0y

+ oty 08, + &y 00,)

> pl

W %PZA + 1 (= By Oay — By Oy + g 0By + 0y 0By + 85 Oy + 6, Oy,
— Ve 051"?1 00,)
. 2

W2 — ’PZA. i (— By 0oy + B 0oy + oty 08, — oty 0y — 8y Opy -+ O3 Oy,
+ 7 061_'}’2 005)
ps 4 ‘

ws =2 2 + W;Z (0 0oty + 0y Oty — 5 Oy — 1 0f2 + B 0y1 + By Oy,

- OC2 051 - Otl 062)
o1 nous avons posé:

A = oty Oty — 0y 0ty + B3 0By — By 0By + 5 Oyy — 1 Oy + 02 00, — 0y 00,

II. Cas des masses nulles

Nous allons maintenant étudier les représentations irréductibles et unitaires de
masse nulle et comme dans le cas des masses positives nous considérons la forme
correspondante des opérateurs infinitésimaux a 'aide de différentes paramétrisations
du groupe de Lorentz. Auparavant nous étudierons la forme habituelle des représenta-
tions (c’est-a-dire les formes (I-26) et (I-27)) et surtout la représentation de l'algebre
de Lie associée A ces formes. Pour cela il nous faut préciser les représentations UV et
Us" du groupe spinoriel associé & E, qu’on 1ndu1t ensuite a S L(2; C) pour obtenir
des représentations du groupe de Poincaré.

Le groupe spinoriel attaché a E, est le groupe des matrices 2 x 2 suivantes:

e~ 92 0 1 0\ /e %
=(g;25) = . _
2 ei?? (¢ z et®? 1/) 0 gt #2

muni de la loi de groupe suivante:

(e; 21) (das 29) = () + s 2, 67142 4 2, e T

L, est I'ensemble des transformations du plan de la forme
u=R,v+a

ol Ry désigne une rotation d’angle ¢ autour de I'origine. Cet ensemble est muni de la
loi de groupe suivante:

(Ry s @) (Ry,;89) = (Ry 140 6+ Ry ay)
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L’homomorphisme 2 - 1 du groupe spinoriel sur le groupe euclidien est:
(¢; 2) — (Ry; a(z '?1))

olt a(Z ¢'?%) désigne le vecteur (Re(z e*#?); Im (ze%%)). (Les éléments (¢; 2) et (¢ +7;
— z) ont ainsi la méme image). Le sous-groupe (0; z) est un sous-groupe abelien dis-
tingué, la détermination explicite des représentations U" et U®”) reléve donc aussi
de la théorie de G. MACKEY.

- Représentations unitairves irréductibles du groupe spinoriel associé a E,

Le dual H de H est ici I'ensemble des vecteurs du plan. Soit a € H:; H agit tri-

vialement sur H et seules les rotations autour de 0: (¢; 0) opérent sur H par:a > Ry a
(cf. I-12); ot R, désigne la rotation d’angle ¢ associée a la matrice 2 x 2 précédente
par 'homomorphisme. Les orbites sont donc 'ensemble des cercles de rayon » > 0
centrés a 'origine. Pour tout » > 0 on stabilisera le point d’intersection de 'axe 0 x
et du cercle, soit 4 ce point. On passe du point 4 a un point quelconque M du cercle
par la rotation (6; 0) ou 6 = (0 4, 0 M). Le stabilisateur de 4 est le centre du groupe
spinoriel c’est-a-dire le sous-groupe constitué par (0; 0) et (2 zz; 0). Le stabilisateur de
'origine (» = 0) est 'ensemble des matrices (¢; 0). Dans le cas ¥ > 0 les représenta-
tions unitaires irréductibles du stabilisateur sont la représentation triviale et la
représentation alternée qu’on distinguera par ¢ = + 1 pour la premiére et pare = — 1
pour la deuxiéme, soit V°. La représentation opeére sur I'espace d’Hilbert des fonctions
définies sur le cercle, a valeurs dans C et telles que:

1701 5, <+eo

cette représentation s’écrit:

{UED ((4:2)) [} (O) = e " V(A" Ay Ay_y) f(0 — @)

avec
jul=7
u = Re u, ol uy, est le point stabilisé (7, 0)
a = (Re(z ¢'%); Im(z ¢'%/%)).

La représentation U s’écrit simplement
Uwm ((é, z)) — 3”"1".’@5

avec 7 entier ou 1/2 entier, positif négatif ou nul. On désignera par S, T les générateurs
de E,. Ainsi e~ * %S représente une rotation d’angle 6 et ¢~ “ T une translation de vec-
teur a.

Nous sommes maintenant en mesure de donner les différentes représentations
irréductibles de 'algébre de Lie du groupe de Poincaré pour les masses nulles.

Les représentations UY) fournissent le cas «du spin discret» et les représentations
U7 le cas «du spin continuy.
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Cas des spins discrets

Il importe de remarquer que, dans ce cas, la représentation de I'algebre de Lie
qu’on obtient est la méme pour les deux champs de transformations choisis (cf. (I-24)

et (I-25)). En effet, comme nous I'avons montré dans [ (cf. (I-9)) la transformation
unitaire qui permet de passer du choix A au choix A}, est UY (Am L AR ou UY)
est la représentation du petit groupe qu’on 1ndu1t Dans notre cas /1 D=1 appartlent
au petit groupe, plus précisément:

i 0
M-1 4(2) _
.?g g 2

Mais dans la représentation UY considérée, les translations sont représentées tri-
vialement (T = 0), ainsi la transformation unitaire permettant de passer de A} a A
se réduit a I'identité. Il suffit de se placer dans le cas le plus simple, c’est-a-dire dans
la représentation correspondant & A}’ et on obtient les expressions suivantes pour les
opérateurs infinitésimaux associés a la représentation [0; 7]:

1) #) == (o A 0p)* + 25 S} /@)
(20 @) = =i (p A 0p2 + 555 Shp) (11-20)
(J2f) @) ={=7(p A 0p)* + S}f(p)

avec (S /) (B) = f(¢)
1) (8 == ipopr— 25 S| F)
(N2f) (p):{—z'p()pu?iﬁ |7 (11-20)
(N*f) (p) = {— i p 0%} [ (2)

(Ces expressions sont bien connues cf. [12] par exemple.)

Cas des spins continus

Dans ce cas, par contre, les translations étant représentées dans la représentation
Uil nous faut distinguer les deux A (¢ = 1, 2). Avec le choix du premier A nous
obtenons les expressions suivantes:

PN @ ={=i@Aopr+ 20 s - b s

(2N ) = {= 10 A opr + 55 S+ 5 251 1)

(J2) () = {~ i (p A 0P + S}/(#) T2
V) ) = {=ipop = S S = 515 1)

(N2f) (9) = {= i p op* + 5 S — 15| SB)

(N2f) (p) = {— i p 0p*} f(P)

(ces expressions semblent n’avoir jamais été données).
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En choisissant A% nous obtenons:

N ®) = =i @ A op) + 2 s 7ip)

(720 @) = |- i 0 A op + 25 s} s

(J21) () = {~ i (p A 0p)? + S}/ (#)
V1) (p) =\~ i p op*

ey
p+:b3 S+ﬁ (p(p+p3) 1) x Iy L2
11-22
*];7 Pl pz (

i 2p p(p+pY) Tz}f@)

2 _ | 2 1 i B P1P2
) () = ~ipopr+ i S+ 55 P x Ty

1 (p*)?
25 (epy — 1) T4
3 _ s P T P T
() () = {— i op + L b+ L 2L )

Ce ne sont pas les expressions données par J. S. LomoNT et M. E. MosEgs (cf. [11])
mais on passe des notres aux leurs en échangeant les indices 1 et 3. Ceci provient du
fait que J. S. LomonT et M. E. MosEs ont stabilisé le point (1, 1, 0, 0) alors que nous
avons stabilisé (1, 0, 0, 1).

Nous allons maintenant étudier les représentations qui correspondent aux masses
nulles dans un espace d’Hilbert de fonctions sur le groupe d’'une maniére identique au
cas des masses positives. Nous considérons des paramétrisations du groupe de Lorentz
adaptées a notre probléme (c’est-a-dire contenant un élément de E,). Nous ne cal-
culerons pas les opérateurs de spin W# car dans le cas physiquement intéressant (spin
discret) il est bien connu que

W =g P~

A. Soit la décomposition du groupe de Lorentz suivante:

o A1 A
A= (" (M ) A
y 0 0 1/ \z ¢t #12 ’

AER;, z=2x4+1Yy;, u=p+1u,

avec

Cette décomposition est unique par les transformations telles que 6 & 0 comme le
montre les formules suivantes

a=A"te "Ly B=uet? p=1z S=Ad""
et réciproquement A= |d| u=pf|6|6 z=y|d6|*.

% f

Pour 6 = 0, suivant M. A. MaimMarxk (cf. [10]), ( ) sera représenté par le point a

4
I'infini du plan.
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Nous sommes donc amenés 4 considérer des fonctions de 6 variables f(4; u;; ta;
&; x; ) telles que

A )l A

UY notant la représentation de E, que 'on induit (c’est-a-dire U% ou U®"). Cal-
culons maintenant les opérateurs infinitésimaux associés a cette représentation.
Générateurs des translations d’espace-temps

0 .
On sait que si p est le point stabilisé, la représentation associée aux translations
d’espace-temps a* est alors

F(A) = é N f()

Dans notre cas, puisque par définition les transformations

192 0
2 g #12
0

stabilisent » = (1, 0, 0, 1) on a donc

(G-
Ap = _ =
e 0 A/ \O 2/ \p 4 Ty A
Donc on obtient pour les opérateurs P
PN (A) = (=24m) f(A)  (P)(A) = (22 pg) f(A)
(P2fY(A) = (22— [pu D F(A) (P S) (A) = (22 + | u [P S(A).

On remarque que si on fait le changement de variables suivant:

pt=—2Au P*=2Au, Paz]*z“‘ﬂ'z P°=A2+‘M|2

} (I1-23)

A1 u
la transformation 51 s’écrit alors:

las

l/‘? L Pipt
prp V2 (p+1p%)
0

et on retrouve ainsi A;” et 1)

Ainsi la forme standard associée a cette paramétrisation est celle ot ’on choisit
pour champ de transformations A, celui fait par A. S. WIGHTMAN c’est-a-dire A3,
L’opérateur unitaire permettant d’effectuer ce passage entre les deux formes est la
fonction B(A):

B(A) = UV (AP~ A) = UV ((¢; 2)).
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Calcul des opérateurs J et N par la premiére méthode

H. P. A.

Donnons les résultats dans le cas du spin discret et du spin continu; nous avons:

(/1) () = {01 — p 271 S} f(4)
(J2f) (4) = {0y + p 471 S} f(A)
(J21) (4) = {05 + S} f(4)
(N 1) (A) = {0; — pp A7 S} F(A)
(N2 f) (4) = {0, — tul A7 S}f(A)
(N2 ) (4) = {05} f(4

pour le cas du spin discret. Nous avons posé pour les parties «orbitales»:
Or= —ifus 05+ @ g py 271 Oy + 5 (A — uf A7) Op
Op=— iy 0y + ¢ (A — pz A7) Opay + & g pay 27" Oy
O3 = — 1 (y 0#1 — phy Ous)

’

i = 2 1“1 0, + & (7“ + pg A7Y) Opy — 2 .“1 fa A7 Oty

QS

!

b e Oy oty pa A7 Oy — - (A 2 A7) Ot
b= = o A0+ o ( Oy + g Opts)

Pour le cas du spin continu, nous avons:

(JOP) () = {0, = 271 U707 (g2) [ A S + 5 To] U 2} ()

(o) (A) = {05+ 272U (613) [y A S + 5 T US(4: 2} £

(3)) ()= {05+ U 1" (g:2) S U 9} F(A) .

MNOS) (W) = {01 = 272U 710 (g4) [ 2 S + 5 T| U D) (A

(N® f) (A) = {0' — AR U (4 2) [MIA S+ % T] (A (¢;z)}f(/1)

(N®£) (4) = {0} /(4

(I1-24)

(11-25)

On peut mettre ces opérateurs sous une forme équivalente a (II-3bis) a I'aide des

relations suivantes:

U™ (4 2) SUS($;2) = S + T, (x sin i — Y €OS %)

+ T, (x cos (’é + y sin ;il)
U107 (5 2) Ty U5 2) = Ty cosg — T, sing

e (b; 2) T, U (; 2) = T, sing + T, cosd.

™
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Calcul des opérateurs J et N par la deuxiéme méthode

Tout d’abord nous devons calculer les opérateurs infinitésimaux pour la représen-

tation «régulierey f(A) 22» f(A; ' A). Ces opérateurs sont les mémes pour le cas du
spin discret et du spin continu.

(J0F) () ={0r+ i 27 0+ 5 [372sin G =2y y] x 0,
4 [reos & 4 4 4] 0 ()
(J'® 1) () = [0y = 127y Oy + 7 [~ A% c0s G+ 27 py] % 0,
4 ;— [l~2 sin % — A, x] Oy}f(/l)
(J'® ) (A) = {03 —i0,+ % [y 0, — % Oy]}f(/l) :
(V'O f) () = [0} + 137y 0, + 7 [A2 c0s G =47 ] x 0,
to[-amsin $ 4 it a] 0 £(0)
(N'@ f) () = {0 +i A" 1y10¢+~[ﬂr2sm L —r lﬂly] X 0,
+ i [rreos S r it o) £y
(V'@ ) (4) = {03} /().

En utilisant la condition (I-19) nous pouvons modifier ces opérateurs (cf. par exemple
les équations (II-13) et (II-14)):

(JO£) () = {01 — A S — IR Ty (32 sin <y 25 ) x 0,
i Ay x 0, f(A)

J2) (4) = {00 + g 371 S T iy,
i (atsin S g, x) ay} f(A)

(JO) (4) = {05+ S+ (y 0, — £0) Y () -

(NOf) (A) = {o; A1 S — AT — A gy 0,
4 (-~ 2-2sin S, x) oy} F(A)

) (A) = [0 — i 2 S — AR Ty i (A2 sin Gy — 27y y) x 0,
+M4meﬂm

(N® f) (4) = {03} f(A4

21 H.P. A. 39, 4 (1966)
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Nous n’avons écrit ces opérateurs que pour le cas du spin continu car les résultats
obtenus par les deux méthodes sont identiques dans le cas du spin discret (ceci
provenant du fait que U~ 0(4; 2) S U (¢; z) = S).

Montrons I'identité des résultats obtenus par les deux méthodes. Des égalités
suivantes:

FIAD(G 5 2) (h2) = UGN (g5 2) U@ (g5 2) UG 2) f(AV(S; 2))
= U e 2) f(AD(G; 2) (B;2) (452)71).

Uplle? SUBN =S —ixd, +iy0,

nous tirons

-1 (e, 7 &7 ;2 d’
U((ﬁ?z(): YT, UEJ;;) = T,+ 2isin = a9, (I1-27)

~1, ) o P

A l'aide de ces formules il est aisé de passer d'une forme & l'autre (il importe de re-
marquer, pour la suite, que ces identités sont indépendantes de la transformation /4,
choisie).

B. Considérons maintenant la décomposition du groupe de Lorentz suivante:

- =A7 (§;2) =A.

o 0 b
y 0 sin % p=12 6% ; cos 2 pu z VAl

Le principe de calcul des opérateurs infinitésimaux reste le méme, aussi nous nous

contenterons de donner les résultats:

Générateurs des translations d’espace-temps

(POf) (A) = (pf) (A) (P3f) (A( = (p cosB) f(A)
(PLf) (4) = (psinO cosg) f(A) (P2f) (A) = (psinOsing) f(4)  (I1-28)

Opérateurs J et N obtenus par la premiére methode
0 - &, ¥ &, ¥
(JO) () = {0, + cosp tg 5 Ul S UG/l 1)

(J2F) (A) = {0y + sing tg ; U7 (§52) S U= (45 9} (4
(JP)(A) = {05+ U&7 (b;2) SUS (§; 2)} f(A) (I1-29)

(V1) (A) = {0] + U107 (g 5) [~ sing tg 5 S+ (2sin2 5 costp — 1) Ty

1
5

s 11) sin2 2 sing cosg Tz] U®(¢; Z)} S(A4)
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(V2 f) () = {0, + U7 (g;2) [cosptg 5 S+ sin? o sing cosg Ty
1 : g B 5 7 |
+ 55 (2sin? 5 sin?p — 1) Ty) UG/ F(A)
; o tod . T : . T o
(N3 f) (A) = {03 + U 16N (4 2) [smB cosg -2—;— + sin f sing ﬁ U&;: ;)}f(/l) .
Nous avons posé pour les parties orbitales:

. . cos @
0, =ising 0y + ¢ ——5 cosg 0,

0, = —icos<p()e+i:?7§gsincp0¢

03 == — i 0(])

0; = —1cosf sing 0, + ¢ f:z(g Ow — ¢ sinf sing ()p
O, = —1icosfcosp 0y — 1 Z?r?(g 0, — i sinf cosgp 0,

Oy =1isinf 0y — i cosf 0,

Pour obtenir les opérateurs dans le cas du spin discret il suffit de faire 7, = T, =0
dans ces formules et de remplacer U~ (" S U par S.

Opérateurs J et N obtenus par la deuxiéme méthode
(71 (4) = [0, + cosg tg &[S = 120, + i3 0]} £l
(721) () = {0, + sing tg 5 [S — i %0, + iy 0]} £(4)
(J2N) (A) ={0; + S—ix 0, +iy0,;f(4)

(N1 f) (A) = {0; —sing tg 5 (S—ix0,+4y0,) + 5 (2sin? 9 costg — 1)

2p 2
# (T1 + 27 sin fg— Oy) + % sin? % sing cosg (T2 — 24 sin % Ox)} fa) (11-30)

(N2f) (A) = {Oé + cosg tg g (S—ix0,+4y0,) + ; sin? % sing cosg

% (T1 + 27 sin -?25 ()y) + —22—5— (2 sin? —g sin?p — 1) (T2 — 21sin —2 Ox)}f(/l)
1. L [
——- sin f cosg (T1 + 27 sin - Oy) + 25 sin § sing

(V2 1) (4) = {05 + 5, s

x (Ty—2isin L 0y)} flA) .

I1 est facile de voir, a I'aide des formules (I1-27), I'équivalence des formes (11-29) et
(IT-30). |
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C. Pour terminer, comme dans le cas des masses positives, considérons la paramé-
trisation

% f
A= ] avec ad—fy=1
y 0

Il n’apparait pas d’éléments de E, dans cette décomposition, aussi nous ne pouvons
pas tenir compte de la condition pour modifier les opérateurs de la représentation
_ «régulieére» d’'une maniére analogue aux cas précédents. Donnons les opérateurs
infinitésimaux de la représentation [0, 7]:

(POSf) (A) = (|8 2+ | B ) f(4

(P1f) (A) = (— 2 Re B9) f(4

(P2f) (4) = (2Im B 6—)f(/l)

(PP () =(|8]>— B f (I1-31)

Les opérateurs J’ et N’ sont les mémes que ceux donnés par les formules (I1-18).
Le seul changement dans notre cas est I’expression de la condition qui nous fournit
les relations suivantes que doivent vérifier les fonctions f:

(SH(A) = 5 {— 0 0, + &, 0, + B2 0, — B1 0p, — y2 0, + 710,

+ 02 05, — 0, 0,,} /(4

(T1/) (4 =_“{ ﬁx _ﬁz 520}f
(T2 /) ( {/32 — B10,, + 9,0, — 0, 0,.} f(4) (I1-32)
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