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Nouvelles formes des représentations unitaires irréductibles
du groupe de Poincaré

II

par J. C. Guillot1) et J. L. Petit1)
Institut de Physique Théorique, Université de Genève, Suisse

(29 I 66)

Abstract II. A new form of representations of the Poincaré group (considered in I) is studied
in detail by means of functions defined on the Lorentz group. We consider several parametrizations
of this group which allow us to construct representations of the Poincaré group and its Lie algebra
for the cases m ^ 0. Some of these parametrizations define forms corresponding to the canonical
and to the helicity formalisms. We use mainly two methods for calculating the infinitesimal
operators : the one is related directly to the mass hyperboloid and the other one is constructed by
replacing the spin matrices by differential operators.

Introduction

Nous nous proposons d'étudier une nouvelle forme des représentations unitaires
irréductibles du groupe de Poincaré à l'aide des résultats obtenus explicitement dans
«Nouvelles formes des représentations unitaires irréductibles du groupe de Poincaré I»
article auquel on se référera dans la suite par I. Les avantages d'une telle forme ont
déjà été partiellement exploités (cf. I et [1]). Dans la première partie de cet article
nous considérons le cas des masses positives et nous écrivons les opérateurs infinitésimaux

correspondant à différentes paramétrisations du groupe de Lorentz et ceci à

l'aide de plusieurs méthodes de calcul. Dans la deuxième partie nous traitons le cas
des masses nulles. Dans ce qui suit l'opérateur W (cf. I) sera considéré comme
l'opérateur du spin relativiste.

I. Cas des masses positives

Nous allons maintenant étudier les représentations irréductibles [m; j] (avec
m > 0) et la forme correspondante des opérateurs infinitésimaux pour différentes
paramétrisations du groupe de Lorentz. Parmi toutes les paramétrisations possibles,
celles qui comportent une rotation sont plus simples à calculer car le stabilisateur des

masses positives est le groupe des rotations. Considérons en effet une décomposition
du type A — L R où R est une rotation dépendant de 3 paramètres. La transformation
£ dépend aussi de 3 paramètres et parametrise donc le quotient S £(2, C)jS Uf2, C),
c'est-à-dire l'hyperboloïde p2 m2. Cette correspondance se réalise à partir de

l'équation p Lp qui permet d'associer biunivoquement un p à chaque £. Ainsi cet
élément est la transformation Ap employée dans / pour jjjéforjq>içs représentations

Boursiers O.T.A.N.
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induites. Nous emploierons deux méthodes de calcul pour obtenir ces opérateurs
infinitésimaux correspondant à la partie homogène et nous allons les schématiser ici
car elles se retrouveront tout au long de cet article. Pour calculer ces opérateurs nous
avons à évaluer des quantités du type4Z4 ^ ou4> est une transformation homogène
infinitésimale. Pour calculer les variations des paramètres de Ap et de R sous l'effet
d'une telle transformation nous devons redécomposer Afx Ap R sous la forme 4>' R' e*

comme cette décomposition est unique, la solution est :

^o-14^ 4-i,(40-i/o~1^) R.

A j Ag1 Ap étant un élément du stabilisateur de Z Là nous avons deux possibilités.
Af P

Première méthode:

On utilise directement la condition (1-19), soit:

,--iffAf'Ap R) D'-\R) D^Af1 A0AA-ip) Di(R)f(AA-ipR).

Va. partie f(AA -ipR) nous fournit la contribution correspondante aux termes p A dp et

p° dp sur l'hyperboloïde.
Deuxième méthode:

On compose les 2 rotations fAr1 A0 AA-i J-1 et R et on calcule la variation des

paramètres de Ap et de R, ce qui nous introduit des dérivations par rapport à ces

paramètres. Les opérateurs calculés ainsi, que nous noterons J', N', ne sont pas ceux
désirés car nous n'avons pas tenu compte de la condition (1-19) ; ce sont ceux de la
représentation «régulière»:/(4 —*-/(AZ ^)- Nous pouvons maintenant tenir compte
de la condition (1-19) par l'égalité suivante :

ffApRAp^AüAA~ip) DJ-'fAf'A.A^-ip) f(Ap R).

Les modifications apportées par cette équation nous permettent de corriger les

opérateurs J' et N' afin d'obtenir les opérateurs J et N. Nous montrerons, dans
l'étude des différentes paramétrisations, comment on démontre l'équivalence entre
les formes calculées par les deux méthodes. Notons que tout ceci se transpose au cas
des masses nulles à condition de remplacer le groupe des rotations par le groupe £2;
ainsi pour m 0, les paramétrisations simples sont celles de la forme

A Ap E où E g E2.

Comme les opérateurs calculés ne sont pas bornés, nous devons préciser leur domaine
de définition. Le théorème de L. Garding (cf. [2]2)) nous assure l'existence pour
chaque représentation considérée d'un domaine de définition commun des opérateurs
infinitésimaux, dense dans l'espace d'Hilbert et sur lequel ces opérateurs sont
essentiellement auto-adjoints. Le domaine de L. Garding est formé par l'ensemble
des vecteurs de la forme J" T(g) 95(g) x dg où T(g) est la représentation considérée

Les chiffres entre crochets renvoient à la Bibliographie, page 324.
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opérant dans §), x un vecteur dans §, tp(g) une fonction indéfiniment differentiable à

support compact et dg la mesure de Haar. Signalons que dans chaque cas rencontré,
il sera préférable de substituer au domaine de L. Garding un domaine de définition
plus adapté à la forme particulière de la représentation.

A. Soit la décomposition du groupe de Lorentz en une transformation de Lorentz

pure Ap et une rotation R qu'on écrira:

A Afx; l) Afn; 0) (ch f - sh -f-1 t) (cos -| - i sin ± nrj=ApR.
Ceci correspond à paramétrer l'hyperboloïde fp2 m2; p" > 0) par l'ensemble des

transformations Afx; l) et ce n'est rien d'autre que le formalisme canonique de
E. Wigner (cf. [3]). Les fonctions sur lesquelles nous écrivons la représentation dépendent

ainsi des arguments (x; l; d; n) et le produit scalaire dans l'espace §D' est

</, g y j[(Ap R) g(Ap R) m- (sh %Y ô f\ l \2 - 1) dl dx

Un domaine naturel de définition de l'ensemble des opérateurs infinitésimaux est
l'ensemble des fonctions des variables x> l> Ö, n, indéfiniment différentiables et à

support compact.
Cette représentation s'écrit dans l'espace §D' d'après (1-20)

{GU»\a0, Afif) (4 é^PffA^A) (II-l)
c'est-à-dire

[GU°K{a0; Afx'; V) Afn'; 0')})/] (A(X; l) Afn; d))

eia°A{x;l)ïf[Afn'; - 0) Af- x'; V) A(x; l) Afn; d)]

Nous allons maintenant calculer les opérateurs infinitésimaux associés à cette représentation

(Note: pour simplifier l'écriture nous noterons D pour Z)(,)).

Générateurs des translations d'espace-temps

Par définition A fx ; l) est la transformation qui amène le point stabilisé p en p:

p Afx;l)pAfx;l) mAf2x;l)
d'où

p po x° — p r m (ch x — sh % fl r)
donc

(PV) fA) fm ch x) ffA) fPf) (4 (m sh x l) ffA). (II-2)

Générateurs des rotations et des transformations de Lorentz pures.

Comme nous l'avons vu précédemment, le calcul des opérateurs infinitésimaux
fait intervenir la rotation A r1 A0AA -ip où A0 est successivement une rotation et une

transformation de Lorentz pure, infinitésimales toutes les deux. Si A0 est la rotation
infinitésimale 1 — i a/2 q T Rfq; a), alors

A;1 Rfq; a) AR-i Rfq; a)r («; a)
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cette égalité ne se limite pas d'ailleurs aux seules rotations infinitésimales. Par contre
si Aa est une transformation de Lorentz pure; A0= 1 — Xoj2 qr on a: (cf. [9])

Ap1A0AA-ip Rfq";A')
avec

DfAf1 A0AA^p) DfRfq"; A')) 1 - i a" q" S 1 - i Xo q S"

la dernière égalité définissant S", où

q" lp^ql ; oc" xo £ A * '

u y v; y fl - v2)-1'2; V %0q

et par suite :

S" - th J-1 A -S1.

Les formules générales écrites précédemment donnent le résultat suivant:

fjf) (4 [D-i(4n; d)) S DfAfn; d)) - i l A d,]f(A)

fNf) (4 - [D^fAfn; Ô))th-§- / A S DfAfn; 0)) + o]/(4 (II-3)

On peut, en tenant compte de l'équation (1-2 bis), mettre ces opérateurs sous la
forme suivante:

fjf) (A) [cosdS + (1 - coso) fnS)n + sin0 fn /\ S) - i l A dt]ffA)

(Nf) (A) - [th A (cosö i A S + (1 - COS0) (n S) l A n

+ sin 0 l A (n A £)) + o] /(yl). (II-3bis)

où nous avons posé pour la partie orbitale O :

(O f)(A) i[-ldx + JJA(-dl + lfl d,) )] ffA) (II-4)

On détermine aisément la forme de l'opérateur de spin W 1/2 e'"'Qa Mre Pa soit :

fW°f) (/1) m sh x [D-\A fn;6))lS DfA fn; 0) )] ffA)

fWf) (4 m D^fAfn; d)) [ch X S - 2 sh2 A ï A (| A 5)] £(/4(n; 0))/(4

Nous allons maintenant établir le lien entre cette forme de représentations et celle
de la forme Standard de E. Wigner associée au champ A fX ; t?). En effet, les opérateurs
infinitésimaux que nous venons de calculer sont tous de la forme

fAf) (4 (D^fAfn; B) A' DfAfn; 8)))ffA) (II-5)

Or, A' est la forme de l'opérateur A lorsqu'on «restreint» les fonctions ffA) à l'ensemble
des transformations de Lorentz pures A fx ; l) et là on obtient une forme en correspondance

évidente avec la forme Standard habituelle. L'expression (II-5) exprime alors,
puisque DfAfn; 6)) est la fonction BfA) correspondante de la forme de E. Wigner,
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que les opérateurs calculés sont bien les opérateurs associés par l'isomorphisme à ceux
de la théorie habituelle. En effet, on a

l A d, p A dP

où P est l'opérateut scalaire de translation dans la forme Standard de E. Wigner.
Ceci se calcule aisément à partir de (H-2).

De même

-ld,-P°dP.
On retrouve donc les expressions bien connues pour les opérateurs (cf. 4)

J - i p A dP + S

N=-iP"dP-(m+ P0)-1 (PA S).

Signalons que cette parametrisation est la seule qui nous fournisse une décomposition

du moment angulaire total J en une partie orbitale et une partie spin, situation
qui ne se retrouvera pas avec les autres paramétrisations. Ceci est dû au fait que pour
le Ap choisi on a :

AflRAR.,p R

pour toute rotation R.

Calcul des opérateurs J et N par la deuxième méthode

Calculons d'abord les opérateurs de la représentation f(A) —^->f(Af1 A) où/est
une fonction définie sur le groupe L et à valeur dans l'espace §>2J+X.

(J'f) (A) {- i n de + 2sJfl/2 (cos 4 n (n dn) - cos | dn

-sin|n AdB)-*lAd,}/(4).

(N'f) (A) [o + i th | fl A n)de - y th -f —Z/2- [cos | (I A n) (n dn)

lAdn- sin { (nfl dn) - fl n) dn]}f(A)- cos
2

A l'aide de la forme infinitésimale de la condition (1-19), nous pouvons déduire
l'opérateur S dans cette parametrisation :

ffApRA^A.A^p) D-fAf^A^fiffA) (1 + ic, q S) ffA)
ou

4> - * y Q t
c'est-à-dire en explicitant:

fSf) (/1) \[-inde- yZ-g^ [cos A d" ~ sin A "A()»~ cos I "(" dn)])/(^4) •

(II-6)
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Compte tenu de l'expression de S, nous déduisons les opérateurs J et N à. partir de
J' et N':

fjf) (4 {S - i fl A d,) - i fn A dn)}ffA)

(Nf) (4 {- th f- Z A S + O + ithf l A (n A d„)j/(4 (II-7)

où O est définie par (II-4).

Etablissons maintenant l'identité entre les formes (II-3) et (II-7) ce qui revient à
démontrer l'égalité suivante :

(S-i (nA A dn))f(A) (D^fAfn; d)) S DfAfn; 8))) ffA). (II-8)

En effet considérons la rotation infinitésimale Afq; a) 1 — i a/2 q x. Nous obtenons
à l'aide de la condition (1-19) :

ffApAfq; a) R) D^fAfn; Q)) {1 + i a q S) DfAfn; 8)) ffA)

(1 + i a q S) f(Ap A(q; a) Afn; 8) A~fq; a))

(1 + i a q S) (1 + a fq A n) dn)/(4
C.Q.F.D.

Remarque: On constate que deux méthodes de calcul mènent naturellement à deux
décompositions «canoniques» en spin et en moment orbital différentes, ce qui montre
bien que cette décomposition n'a aucun sens intrinsèque. Il est toujours possible de
faire sortir, à l'aide de la condition (1-19) une rotation de façon à modifier cette
décomposition.

B. On peut aussi considérer la parametrisation suivante légèrement différente de la
précédente :

A Afn; 8) Afx; l).

Il est facile de trouver les opérateurs infinitésimaux à l'aide des précédents en
remplaçant Z par Rfn; 8) l en vertu de l'égalité (1-2) : d'où par un calcul analogue au
précédent, les expressions suivantes des opérateurs infinitésimaux (par la première
méthode)

(PV) (4 m ch xffA) fPf) (4 mshx Rfn; 8) IffA)

fjf) (4 fD-l(A(n; B)) SD(A(n; 8)) - i (Rfn; 8) l) A d,

(Nf) (A) - \D~\Afn, 0))th| (R(n; 8) l) A S DfAfn; 8))

+ i Rfn; 8)ldx + i^A (+ ôj _ R{n> Q) t {R(n- e) d,))}f(A). (H-9)

on obtient la forme standard correspondant sur l'hyperboloïde avec la fonction:

B(A)=D(A(n; 8)).

20 H. P. A. 39, 4 (1966)
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C. Formalisme d'hélicité.

Nous allons maintenant étudier la section associée à l'hélicité (cf. [6-8]). Le choix
de l'élément dans chaque classe, c'est-à-dire le choix de l'élément du groupe amenant
o

p sur p est le produit des deux transformations suivantes

1) une Lorentz pure le long de Oz:

y
où p | p | ;

Ap; p= (m, 0, 0, 0) -> p (p°, 0, 0, p)

2) une rotation Rp amenant p sur p ;

R": p (pot o,0,p)-^p= (p°; p1; p2; p3).

Il est aisé d'écrire ces deux transformations

/m + p° - p; 0\
A" {2mfm + p0)}-1l2(

\0; m + p0 + pj

/cosT; -sinT*
\ d im 0
\ sin —- e 7 cos —

où nous avons posé

p1 p sin 0 coscp

p2 p sin0 siny

p3 p cos 0

et fe pour le vecteur unitaire de l'axe Oz. Nous obtenons ainsi pour la section

JosJfm + p0-p); -sinJe~i,f (m+ p° +
A% {2 m fm + p0)}-1'2 [

sin ~ e+i9 (m + p° - p); cos ~ (m + p° + p)

Nous paramétrons ainsi l'hyperboloïde p2 m2 par fp, 0, cp). Ve produit scalaire dans

j'espace §>D est ainsi:

</. g > ff(A» R) gfAf R) fJ^li±.
Calculons les opérateurs infinitésimaux de la représentation [m, f].

Générateurs des translations d'espace-temps
o

De l'équation Ap p où A Ap R Apfp; 8, cp) Rfnx; 8X) nous déduisons les

opérateurs P:

(PV) (4 fP°f) fA) ; (P1/) (-4) P sin 9 cosy/(4
(P3/) (4 P cos 0/(4 ; (P2/) (4 / sin 0 siny/(4- (11-10)
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Calcul des opérateurs J et N par la première méthode

Cette parametrisation diffère de la parametrisation canonique par le fait que
(Ap)~~ A0 AA-ipn'est pas égal kA0, si A0 est une rotation; c'est une rotation d'axe Oz

comme on peut le vérifier aisément. Aussi allons-nous préciser nos calculs pour cette
parametrisation.

Dans les autres paramétrisations (pour m > 0 et m 0) la situation sera très
similaire au cas de l'hélicité aussi nous nous contenterons d'indiquer le résultat des
calculs. Définissons la rotation Rfq'; a') et l'opérateur 5" par les égalités suivantes:

A»'1 A0AHA^p Rfq'; a') où A0 1 - i\ qr
DfA^-1 4>^0-y D(R(*'- a')) l-i*'q'S=l-iatqSA

Nous obtenons explicitement pour la matrice Rfq'; a') les expressions suivantes:
Si A0 est une rotation autour de Ox (c.à d. q2 q3 0)

/ cosqj a,(1 — cos 0) asino

Si 4) est une rotation autour de Oy (c.à.d. q1 q3 0)

i i_ / sings „,q fe ; a „ (1 — cos 0 a* smô v

Si A0 est une rotation autour de Oz (c.à d. q1 q2 0)

q' fe; a' a

Nous obtenons ainsi pour l'opérateur S'

S'1= -A^ (i _ cos0) S3 —J~ S3 S'2 4^2- (1 - cos0) S3 -jJ~ S3
sino v ' P+P3 sin© v ' FAPà

S'3 S3

Posons de même dans le cas d'une transformation Lorentz pure A0 1 Xj2 q T

fAHp)-1A0AHA-1p Rfq";A')

DfAf-1 A0AHA-ip) DfRfq"; a")) 1 - i a" q" S 1 - i a q S"

ces égalités nous définissant la rotation Rfq"; a") et l'opérateur S". Nous obtenons

pour la matrice Rfq"; a") :

Si A0 est une transformation de Lorentz pure le long de 0 %

a qx — sm2 — sm2 ya a q2 —11 — 2 sir -y cos^y I a

n n p° 6
a q3 - — tg — smya.
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Si A0 est une transformation de Lorentz pure le long de Oy

//;/ m /.. _ „ 6 „ \ ii n m o Ö _
a qx -— Il — 2 sir — sm2yl a a <72 - sin' -— sinzya

« » p° e
a ?3 -J tg y cosya.

Si A0 est une transformation de Lorentz pure le long de Oz

a. qx — siny sin 0 a q2 -r- cosy sin 0 a q3 O

Nous obtenons ainsi:

S"1 — A- sin2 — sin2 cp S1 — A- i\ — 2 sin2 — cos2y) S2 — ~ tg — siny S3
p 2 p \ 2 ,- p 2

S"2 — Il — 2 sin2 — sin2y) S1 + — sin2 — sin2 y S2 + -—- tg — cosy S3

S"3 — sino? sin 0 Si H cosœ sin 0 S2
P P

Nous trouvons ainsi pour les opérateurs J et N:

fjf) (4 fD-fR) S' D(R) + OfffA) (11-11)

fNf) (A) - (D-ifR) S" DfR) + O'fffA) (11-12)

où nous avons posé pour les parties orbitales :

„,. COSÒ i „,, s COSÔ ^O i % smcp Of, + i -— „ COS09 om O 2 — i coscp 0fi + t n smcp 0,„

0'3=-id(p.
O"1 — i f- cos 0 cos cp dn + i S1-Z c) — i p° sin 0 cosœ dh

p T » p smg <p r r p

O"2 — i -- cos 0 sin» d„ — i — -°-f, dm — i p° sin 0 sinœ Ô„
p P sm 9 f r t p

O"3 i pJ- sin 0 de - i p° cos 0 dp

Nous voyons bien que dans ce formalisme nous n'avons pas obtenu une décomposition
de J en L + S car l'opérateur S' ne peut être assimilé à un opérateur de spin.
Cependant dans l'opérateur J nous voyons apparaître une partie orbitale O qui est

l'opérateur de moment angulaire de la représentation régulière du groupe des rotations
(cf. [5]). A l'aide de ces opérateurs, nous déduisons l'opérateur de spin W (cf. I):

W° p D-i(R) S3 DfR)

W1 £>-i(i?) {m (sin2y + cos 0 cos2y) S1 + m siny cosy (cos 0 — 1) S2 +

/>°cosysin0S3}D(R)
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W2 £>-i(i?) {m cosy siny (cos 0 — 1) S1 + m (cos2y + cos 8 sin2y) S2 +

po siny sin 0 S3} D(R)

W3 £>-i(Ä) {- m sin 0 cosy S1 - m sin 0 siny S2 + £° cos 0 S3} £>(#)

L'isomorphisme avec la forme standard associée à Ap est obtenu par la fonction BfA)
suivante :

B(A) D(R) D(AHp~1 A)

Cet isomorphisme met en correspondance la forme des opérateurs infinitésimaux
précédents avec celle déterminée par V. J. Ritus (cf. [9]).

Calcul des opérateurs J et N par la deuxième méthode

Nous pouvons calculer les opérateurs J', N' de la représentation «régulière»:

ffA) —?-*¦ ffAf1 A) à l'aide des identités suivantes:

(i-iaq j')f(A) =f(AHA-A Rfq'; - A) R)

fl-iotq N')ffA) =f(AHA-1p Rfq"; - a") R)

(nous ne les expliciterons pas ici).
Calculons maintenant les opérateurs S' et S" en fonction des paramètres nx et 8X,

de la rotation R(nx; 8X). Des identités suivantes:

ffA» RRfq';A))=fl + iotqS')ffA).

ffAf R Rfq"; a")) (1 + * a q S") ffA)
nous tirons :

i a fq S') ffA) (a'(nx- q') \ + -^Aôfï A' Ö»>) f{A) '

ta (g S") ffA) (a"K • q") d8i + j^^ A" dn)ffA) (11-13)

•où nous avons posé

A' - cos -j- (nx q') nx + cos -± q' + sin yo^g'
(et une expression semblable pour A" où q" remplace q').

On peut aisément expliciter les composantes de S' et de S" à l'aide des expressions
précédentes de fq'; a') et de fq"; A').

A l'aide de ces expressions et des opérateurs J' et N', nous obtenons ainsi les

opérateurs J et N suivants :

(a q J)ffA) {ag fS' + O') - i a' fq' A «i) <U/(4 •

(a q N)ffA) {a q (S" + O") - i a" (q" A "i) ànff(A) (11-14)



310 J. C. Guillot et J. L. Petit H. P. A.

Nous pouvons faire le lien entre les deux formes à l'aide de l'identité suivante:

ffAHp A»'1 4, ABA-ip R) D-fR) (1 + ,'ag S') DfR) ffA)

(l + ic,q S') ffAHpfAHp-1 A0AHA^p) RfAf'1 A.Af-1^1).
qui nous fournit, en prenant pour A0 une rotation infinitésimale puis une transformation

de Lorentz pure, les deux résultats suivants :

a £>-i(i?) q S' D(R) a q S' - i a' (q' A »i) d„t

a D-^R) q S" D(R) a q S" - i a" (q" A «i) <*„, •

A l'aide de ces formules on établit l'équivalence entre les formes (H-14) et (11-11),
(11-12).

Remarque: Une autre méthode équivalente de réaliser l'isomorphisme est de partir
de l'identité :

/(4*4, R) D-fR) fl + iaqS) DfR) ffA)

qui nous fournit en explicitant

D-\R) S DfR) S - i fnx A àn).

Ceci prouve qu'il revient au même de transformer les matrices S ou les matrices S'
et S".

D. Considérons maintenant la décomposition suivante:

/a ß\ IX-1 /A/ a b

Vy
ôl \0 x)\-b a

A=-{ 1 1 W - \ LpR

-c | a |2 + [ b |2 1 (cf. [10]).
On obtient les relations suivantes pour les paramètres :

*= (lrl2+ H2}1'2; a jr] b ~A
ß-yy pour a 4= 0

a

pour a 0.

L'unicité de la décomposition provient de notre choix de A réel.

Remarque: Nous ne pouvons employer des paramètres complexes dans ces

décompositions car dans l'espace d'Hilbert de la représentation §D, les opérateurs
infinitésimaux doivent être définis sur une partie dense commune. L'emploi de
paramètres complexes nous obligerait pour calculer J et N k considérer des fonctions
analytiques de ces paramètres. Or l'on voit aisément que les opérateurs P font sortir
de ce domaine car ils contiennent les modules et les conjugués des paramètres (les
fonctions z -> [ z | et z -> z ne sont évidemment pas analytiques). Pour éviter cette
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difficulté, nous n'imposerons que l'analycité réelle, c'est-à-dire nous considérerons
des paramètres réels. Le produit scalaire dans l'espace §D est ainsi:

<fg> ff(LpR)gfLpR)2m2XdXdpixdpi2 ou /u pix + ipi2.
Calculons les opérateurs infinitésimaux pour la représentation [m, f].

Générateurs des translations d'espace-temps
o

De l'égalité Ap p nous tirons :

(PV) (4 ~ W + x~2+\pi j2}/(4 •

(P3/) (4 f- {A2 - A-2 - | pt |2}/(4 •

fP1f)fA) -mXpixffA).

fP2f)fA) mXpi2ffA). (II-15)

Calcul des opérateurs J et N par la première méthode

Posons, comme pour l'hélicité

Lp1 A0LA-1p R(q';tx.') où A0 1 - i y q T

D(Lfl 4, £vg 1 - i oc' q' S 1 - * a q S'.

Nous obtenons pour la matrice R(q'; a')

a' q' a {X-2 q1; X~2 q2; q3 - Xr1 (ptx q1 - pt2 q2)}
d'où

c'i _ ;-2 ci _ ;-i C3 m ci i El S3O — A O A ftJ - p)+pj ¦' T p0+p, J

Ç'2 _ 1-2 Ç2 i l-l „ Ç3 _ _A Ç2 j -93O — A O-f-A fj,2 J ~ p0+p3 ° "T" po_|_p3 °
S'3= S3

De même, pour une transformation de Lorentz pure A0 1 — Xj2 q T posons :

Lf1A0LA-ip R(q";A').

D(L-pxA, LA-ip) l-iz"q"S=l-ixq S"

Nous obtenons :

a" q" a {X~2 q2; - X~2 q1; - X-1 fq1 pt2 + q2 pif)}
d'où

P2

PO _|_ p3 " pÖT|Tp3
S'1 - Â"2 S2 - a~>2 53 - ^ZZv,- 52 - ^Z~^r S3

ç»2 _ j-2 ci _ ;-i C3 _ m ci i
pl _ Ç3O A O A pix J — p0 p3 O -f p0 + p3 J

S"3 0
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Nous en déduisons la valeur des opérateurs J et N:

fjf) fA) {D-fR) S' DfR) + 0}/(4
fNf) (4 {D-fR) S" DfR) + 0'}/(4 (11-16)

où nous avons posé pour les parties orbitales :

01= -i pi2 àA + i X'1 pix pi2 dpix + i A-i [pt\ + y (a2 - X-2-\pt |2) W2

02 - ipix dK + i A-i (pi\ + — (a2 - a"2 - | pi \2)}dpix + i A-i ptx pt2 dpt2

03 — i fpi2 dptx — ptx dpi2)

0'1 Jptxà, + J A-l (A2 + X-2 + f4) dfix - J X-1 pixpt2 àpt2

0'2=- J pt2dx + J X-1 ptx pt2 dptx - J X-1 fX2 + X-2 + f4) dpt2

0'3=-A^dx + A(/Â1d/ux + ^2àfi2).

Nous obtenons ainsi pour les opérateurs de spin W :

W° £)-i(i?) P S' DfR)

W1 m D-fR) (S1 -Xptx S3) D(R)

W2 m D-i(i?) (S2 + Xpi2 S3) D(R)

W3 m D^R) (Z (f? + X-2 - | pi |2) S3 - A-i fpi2 S2 - pix S1)) DfR).

Va fonction BfA) permettant de retrouver la forme standard associée est:

BfA) D-1fR) D-1fL-p1A).

Le calcul des opérateurs J et N par la deuxième méthode est identique au cas de

l'hélicité à condition de remplacer Rfq'; a') et Rfq" ; a") par leurs valeurs dans cette
parametrisation.

Remarque: Cette parametrisation ne semble pas avoir un intérêt physique direct
dans le cas des masses positives. En effet «l'axe de quantification du spin» est n3fp)

£^(0, 0, 0, 1) fx°, x1, x2, x3) avec

\P\2-P°P3.
m(p°Ap3) ' X1 Pf

m

p3 m
X2 Af

m
~^~

p° + p3 ' m

Mais nous pouvons remarquer que la présence d'un terme nul dans Lp entraîne des

calculs beaucoup plus simples que dans le cas de l'hélicité.
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D'un autre côté, cette parametrisation permet un passage direct au cas m 0 et en

particulier de retomber sur la représentation obtenue à partir de la section choisie

par A. S. Wightman (cf. partie II de cet article).

E. Pour terminer l'étude du cas m > 0 considérons la parametrisation:

A I avec eco — ßy 1

\y ô)

Dans cette parametrisation n'apparaît pas de décomposition Ap R; aussi la forme
standard associée sur l'hyperboloïde n'existe-t-elle plus. Ainsi la représentation
correspondante est plus originale que les précédentes.

Calculons les opérateurs infinitésimaux correspondant à la représentation [m; f]
c'est-à-dire la représentation suivante :

tf(«.( )/ (<*¦', ß', y', à') eia-A'°p f(A Ô - y' ß; ß' ô - ô' ß; - a' y + y' a;

/a ß'
d'à.-8' y) où A'

V ôf

Générateurs des translations d'espace-temps

o

De l'équation Ap p nous tirons :

(PV) (4 f {\y I2 + I ô |2 + | « |2 + | ß |2}/(4

(P3/) (A) f {| y |2 + | ô |2 - | a |2 - | ß |2}/(4

(Pi/) (4 - wRe(ay + ßo)

(P2/) (4 m Im (xy + ß ô). (11-17)

D'après une remarque précédente, nous savons qu'il nous faut employer des

variables réelles. Ainsi en posant: a a, + i a2; ß ßx + i ß2 etc., les opérateurs
P s'écrivent :

(P°/) (A) m2 {y2 + yl + ô\ + ôl + a2 + 4 + ß\ + ß*}f(A)

(P3/) (A) f {yt + yl + ôl + ôl - a2 - a2. - ß2x - ßlfffA)

fP'f) fA) -m K yx + a2 y2 + ßx ôx + ß2 ô2}f(A)

(P2/) (A) m {a2 yx -ocxy2 + ß2 ôx - ßx ò2}f(A)
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Calcul des opérateurs J et N

Nous devons employer la deuxième méthode de calcul car la première n'a pas de

sens ici (AA -1 ne peut être défini). Calculons les opérateurs de la représentation

régulière f(A) —->f(Af1 A) :

(/'V) (A) ~ {- y2 àax + yx àx2 - ô2 dßx + ôx dß2 - a2 àyx + otx dy2 - ß2 dôx +

ßi dô2}f(A)

(f'2f) (A) A {yx da.x + y2 da2 + ôx dßx + ô2 dß2 - ocx àyx - a2 ày2 - ßx àôx -
ß* dô2}f(A)

(f'3f) (A) A {_ a2 d*x + a, àot2 - ß2 dßx + ßx dß2 + y2 dyx - yx dy2 + ô2 dôx -
ôx dô2}f(A) (11-18)

(iV'i/) (A) -2 {yx àu.x + y2 da2 + ax dyx + a2 ày2 + ôx dßx + ô2 dß2 + ßx dôx

+ ß2 dô2}f(A)

(N'2f) (A) A {y2 dct.x - yx da2 - a2 dyx + ax dy2 + è2 dßx - ôx dß2 - ß2 dôx

+ ßx àô2}f(A)

(N'3f) (4 A fa dccx + a2 da2 - yx dyx - y2 dy2 + ßx dßx + ß2 dß2 - ôx dôx

- ô2 àô2}ffA)

Pour obtenir les opérateurs J et N, il faut tenir compte de la condition (1-19)
vérifiée par les fonctions / Ceci nous fournit en explicitant cette condition du point
de vue infinitésimal :

(S1/) fA) -\ {ß2 dcnx - ßx t>a2 + a2 dßx - xx dß2 + ô2 dyx - ôx ày2 + y2 dôx

- yx dô2}ffA)

(52/) (4 - A {ßi ö% + ß^ âoC2 _ Kl dßx - aa dß2 + ôx àyx + ô2 dy2 - yx àôx

- 72 dò,} ffA)

(S3/) (4 - A {a2 dct.x - Kl da2 - ß2 dßx + ßx dß2 + y2 dyx - yx dy2 - ô2 dòx

+ òx dò,} f(A) (11-19)

L'absence de décomposition Ap R dans cette parametrisation ne permet pas
d'introduire d'une manière analogue aux cas précédents ces conditions dans les
opérateurs J' et N'.
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Le calcul de l'opérateur de spin W nous fournit :

w° -y- + "y- ^2 fa + ôl fa - ?2 fa - ri fa ~ ß2 fa - ßi fa
+ a2 dôx + ax àô2)

i P A wt iW1 -y— + -y- (- ß2 dax - ßx àa2 + a2 dßx + qcx dß2 + ô2 dyx + ôx ày2

- 7% dòx - yx dô2)

W2 /PM + _m£ (_ ^ ^ + ^ ^ + ^ d^ _ ^ ^ _ ^ ^ + ^ ^
+ Vi dôx - y2 dô2)

W3 ^JJ + AAj {S2 àax + ôx àa2 - y2 dßx - yx dß2 + ß2 Òyx + ßx ày2

— a2 àôx — OLx dô2)

où nous avons posé :

A a2 dax - ax doc2 + ß2 dßx - ßx dß2 + y2 dyx - yx ày2 + ô2 àôx - ôx dô2

II. Gas des masses nulles

Nous allons maintenant étudier les représentations irréductibles et unitaires de

masse nulle et comme dans le cas des masses positives nous considérons la forme
correspondante des opérateurs infinitésimaux à l'aide de différentes paramétrisations
du groupe de Lorentz. Auparavant nous étudierons la forme habituelle des représentations

(c'est-à-dire les formes (1-26) et (1-27)) et surtout la représentation de l'algèbre
de Lie associée à ces formes. Pour cela il nous faut préciser les représentations f/*'' et
jj^r) ,ju groupe spinoriel associé à £2 qu'on induit ensuite à S £(2; C) pour obtenir
des représentations du groupe de Poincaré.

Le groupe spinoriel attaché à £2 est le groupe des matrices 2x2 suivantes :

\z A^J \ze^12 l/\0 c^1}
muni de la loi de groupe suivante :

ffc *i) (fc h) (h + fc zi e~ié'"1 + zy+tUh)

E2 est l'ensemble des transformations du plan de la forme

u= R^p + a

où R$ désigne une rotation d'angle cf> autour de l'origine. Cet ensemble est muni de la
loi de groupe suivante :

(Rif"i) (Ry.a*) fR^+t>Aai+R<p, a*)
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L'homomorphisme 2 -> 1 du groupe spinoriel sur le groupe euclidien est :

fcp; z) ^ fR^; afz e'^))

oùa(Ze'*) désigne le vecteur fRefz e1*12) ; Im (ze'*12)). (Les éléments f<f> ; z) et ftp" + n ;

— z) ont ainsi la même image). Le sous-groupe (0 ; z) est un sous-groupe abélien
distingué, la détermination explicite des représentations U® et U1-8^ relève donc aussi
de la théorie de G. Mackey.

Représentations unitaires irréductibles du groupe spinoriel associé à E2

Le dual H de H est ici l'ensemble des vecteurs du plan. Soit a e H; H agit
trivialement sur H et seules les rotations autour de 0 : fcf> ; 0) opèrent sur H par : a -> R# a
(cf. 1-12) ; où R0 désigne la rotation d'angle cp' associée à la matrice 2x2 précédente

par l'homomorphisme. Les orbites sont donc l'ensemble des cercles de rayon r > 0

centrés à l'origine. Pour tout r > 0 on stabilisera le point d'intersection de l'axe 0 x
et du cercle, soit A ce point. On passe du point A à un point quelconque M du cercle

par la rotation (0 ; 0) où 0 (0 A, 0 M). Ve stabilisateur de A est le centre du groupe
spinoriel c'est-à-dire le sous-groupe constitué par (0; 0) et (2 xc; 0). Ve stabilisateur de

l'origine fr 0) est l'ensemble des matrices (cf>; 0). Dans le cas r > 0 les représentations

unitaires irréductibles du stabilisateur sont la représentation triviale et la

représentation alternée qu'on distinguera par e + 1 pour la première et par e — 1

pour la deuxième, soit Ve. Va représentation opère sur l'espace d'Hilbert des fonctions
définies sur le cercle, à valeurs dans C et telles que:

2 31

/"|/(0)|2^<+oo
0

cette représentation s'écrit :

{U^ (fcj>;z))f}f8) e-îauVAAf1 A^Ag_fiff8-i)
avec

\u\ r

u Re u0 où u0 est le point stabilisé fr, 0)

a= (Refze'*12); lm(z e^12)).

Va représentation Î7(,) s'écrit simplement

U^ffcß;z)) e-1''-

avec / entier ou 1/2 entier, positif négatif ou nul. On désignera par S, T les générateurs
de £2. Ainsi e~ '6 s représente une rotation d'angle 0 et e~ * " T une translation de vecteur

a.
Nous sommes maintenant en mesure de donner les différentes représentations

irréductibles de l'algèbre de Lie du groupe de Poincaré pour les masses nulles.
Les représentations l7> fournissent le cas «du spin discret» et les représentations

JJ^r) ie cas <((ju Spjn continu».
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Cas des spins discrets

Il importe de remarquer que, dans ce cas, la représentation de l'algèbre de Lie
qu'on obtient est la même pour les deux champs de transformations choisis (cf. (1-24)
et (1-25)). En effet, comme nous l'avons montré dans / (cf. (1-9)) la transformation
unitaire qui permet de passer du choix Ap2) au choix Ap\ est U^fAf'1 Af]) où ï/('>

est la représentation du petit groupe qu'on induit. Dans notre cas Ap] "1 Ap] appartient
au petit groupe, plus précisément :

/i; o\
Al xAf Jt te

Mais dans la représentation U{,) considérée, les translations sont représentées
trivialement (T =0), ainsi la transformation unitaire permettant de passer deA{p] a.Af]
se réduit à l'identité. Il suffit de se placer dans le cas le plus simple, c'est-à-dire dans
la représentation correspondant à A-A et on obtient les expressions suivantes pour les

opérateurs infinitésimaux associés à la représentation [0 ; j] :

(/V) (2*) j- *' (P A dp)1

fPf)fP) {-i(P A dp)2

fPf) fP) {- i fP A dp)3

avec fSf) fp) jffp)

(A/i /) (P) {- i p dp1

fN2f)fp) \-ipdp2

-ptw S}J»

p+p3

S}ffP)

(11-20)

}m
s\f(P) (11-20)

P*

p + p3

P1

P + p3

(N3f)(p) {~tpàp3}f(p).
(Ces expressions sont bien connues cf. [12] par exemple.)

Cas des spins continus

Dans ce cas, par contre, les translations étant représentées dans la représentation
C7(e'r) il nous faut distinguer les deux Af (i 1,2). Avec le choix du premier Af nous
obtenons les expressions suivantes :

(/V) fp) {- i (P A dp)1 +

(Pf) fP) {- * (P A dp)2 +

(/V) fP) {- i (P A dp)3 +

fN1f)fp) i[-ipdp1

(N2f)(p) [-ipdp2

P1
S

.,- s + -

p+p
_p
p+p

- S}ffp)
2 T11

p+t
T.,

p+p3

A_
p + p3

}ffP)

ffP)

S

s

p+p
P1

P+p3 ° p+p3\

fN3f)fp) {-ipàp3}ffp)
(ces expressions semblent n'avoir jamais été données).

ffP)

ffP)

(11-21)
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En choisissant A{2) nous obtenons :

(/V) (P) --{- * (P A dp)1 +
P1

P+P3 s}f(P)

(Pf) (p) ¦{- i fp A dp)2 +
P2

P+P3 s}f(P)

(Pf) (p) {-- i (p A dp)3 + S}ffP

(Wf) fP) "Z
A2

f f p+p3-s +
1 (P1)2

2p \p(p+ p3)

H. P. A.

+
P1 P2

2p P(P + 1
TlM

fN2f) fP) i p dp2
P1

P+P3
PXP2

~P (P+P3)

A

x Tx

x T,

zp (".
(P2)2

l) T2]ffp)

(11-22)

Zp \P(P + P3)

{N3f) (p) {-ip dp3 + £ T; + {J Jp2)ffp)

Ce ne sont pas les expressions données par J. S. Lomont et M. E. Moses (cf. [11])
mais on passe des nôtres aux leurs en échangeant les indices 1 et 3. Ceci provient du
fait que J. S. Lomont et M. E. Moses ont stabilisé le point (1, 1, 0, 0) alors que nous
avons stabilisé (1, 0, 0, 1).

Nous allons maintenant étudier les représentations qui correspondent aux masses
nulles dans un espace d'Hilbert de fonctions sur le groupe d'une manière identique au
cas des masses positives. Nous considérons des paramétrisations du groupe de Lorentz
adaptées à notre problème (c'est-à-dire contenant un élément de £2). Nous ne
calculerons pas les opérateurs de spin W car dans le cas physiquement intéressant (spin
discret) il est bien connu que

WM j Pß.

A. Soit la décomposition du groupe de Lorentz suivante:

/a A /A-i fi\ /e-^12 0 \"Arsi-io % .A-W
avec

Xe R; z x + i y; pi

Jtl2

¦¦Ih. '¦ (J-2-

Cette décomposition est unique par les transformations telles que ò + 0 comme le

montre les formules suivantes

t 0/2a X~1e-""lz + piz ß^pie1*'2 y Xz à=Xé

et réciproquement A | ô \ pi ß \ò\ ô-1 z — y | ô |_1.

/a ß\
Pour ò 0, suivant M. A. Maimark (cf. [10]), I I sera représenté par le point à

Vr °/
l'infini du plan.
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Nous sommes donc amenés à considérer des fonctions de 6 variables /(A ; pix; pi2;
cf>; x; y) telles que

/V^'2 0 \\
[/-K)

[7° notant la représentation de £2 que l'on induit (c'est-à-dire U® ou U^'A-
Calculons maintenant les opérateurs infinitésimaux associés à cette représentation.

Générateurs des translations d'espace-temps
o

On sait que si p est le point stabilisé, la représentation associée aux translations
d'espace-temps a1" est alors

f'A)->J«**f(4)
Dans notre cas, puisque par définition les transformations

le"*12 0 \

[z e'*12}
o

stabilisent p (1, 0, 0, 1) on a donc

o /A-i u\ /0 0

Ap=[
~ \0 A/ \0 2

Donc on obtient pour les opérateurs P

(PV) (4 (- 2 A pif ffA) (P2/) (4 (2 A pifi ffA)

fP3f) (4 (A2 - | pt |2)/(4 (PV) 0) (A2 + | ^ |2)/(4-
On remarque que si on fait le changement de variables suivant :

p1 -2Xptx p2 2Xpt2 p3 X2-\pi\2 p° X2+\pi\2
/A-i pt\

la transformation I s'écrit alors:
\0 X)

p1 - i p2

Jlip+pA

]/T+¥

A-i o

pt X

(11-23)

\>
P + P

\ 2

et on retrouve ainsi Ap1] (cf. I).
Ainsi la forme standard associée à cette parametrisation est celle où l'on choisit

pour champ de transformations Ap celui fait par A. S. Wightman c'est-à-dire Ap].
L'opérateur unitaire permettant d'effectuer ce passage entre les deux formes est la
fonction BfA) :

BfA) c7<Z41>~14 W((tf>;z)).
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(11-24)
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Calcul des opérateurs J et N par la première méthode

Donnons les résultats dans le cas du spin discret et du spin continu ; nous avons :

(/V)(4 {o1-^1A-is}/(4
(Pf)fA) {02 + ^2X-1S}f(A)

fPf) (A) {03 + S}ffA)
fN1f)fA) {0'x-pi2X-1S}ffA)
fN2f)fA) {0'2-pixX-1S}ffA)
(iV3/) (A) {0'Af(A)

pour le cas du spin discret. Nous avons posé pour les parties «orbitales»:

Ox — i pi2 dA + i pi2 ptx A"i àpix + i (X — pt\ A"i) dpt2

02= — i (xx d^ + i fX — p4 A-1) dpix + i pi2 ptx X-1 dpi2

03= -i ffi2 dfit - pt! àfi2)

°'i y /"i dx + y (A + p4 A-1) dfix - y /j,x /x2 A"1 àfi2

02 - y (J-2 Z + y Vl ,"2 ^_1 dptx - y (A + fj2 A"1) d^a

A d, + ^ (/^ dfix + pi2 dpi2)

(11-25)

2 À ' 2

Pour le cas du spin continu, nous avons :

(/<«/) (4 {0X - A-1 U-1^ (<f>;z) [ptxXS + J £2] U^; z)}f(A)

(ß2)f) (A) {02 + X~2 U-1^ (cß; z)[pi2XS + J Tx] U^(cf>; z)}f(A)

fpf) (A) {o3 + rr^" (^; *) s <y<^; *)}M) •

(iVd)/) (J) {o; - A-2 f/ -1<^) (cß; z) [pt2X S + J Tx] U^'\cf>; z)}f(A)

(N^f)(A) {0'2-X-2U-1^ff>y) \^XS + Jt2] U^\cp;z)]ffA)

(A7<3>/) (yl) m ffA).

On peut mettre ces opérateurs sous une forme équivalente à (II-3bis) à l'aide des

relations suivantes:

U~1{e-r) fcp; z) S U{e-r)fcf>; z) S+Tx(x sin J - y cos y)
+ £2 (x cos y + y sin y)

U~ 1{e-r) fcp!; z) Tx UM(tf>; z) Tx coscß - T2 sin^

U~1(e'r) (cf>; z) T2 Uie'r)(cf>; z) Tx siny' + T2 cosy'
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Calcul des opérateurs J et N par la deuxième méthode

Tout d'abord nous devons calculer les opérateurs infinitésimaux pour la représentation

«régulière»/(4 ™->- f(Af 1 A). Ces opérateurs sont les mêmes pour le cas du
spin discret et du spin continu.

(/'d'/) (A) [0X + i A-i ptxd, + J [A-2 sin y - A-i pcx y] x dx

+ J[x-2cosJ+X-1ptxx\ dg}f(A)

(/'<2>/) (A) JO,-* A-i pi2 d0 + y [- X-2 cos J + A-i pt2 y] x dK

+ A [X-2 sin i- -A-V^jdJ /(4

(/'<3>/) (4 |o3 - i d, + i [y d, - x dJ}/(4 •

(#'«/) (/1) (o; + » A-i //2 d^ + 7. [a-2 cos i - A-i pt2 y] x dx

+ J [- A"2 sin 4 + A-i ^ x] d,}f(A)

(N'Vf) (A) [o2 + ,¦ A-i ptx d^ + A [A-2 sin ± - X-1 pix y] x dx

+ 4[A-2cos|-+A-V1^dï}/(4
(AT<3>/) (A) {O'AffA).

En utilisant la condition (1-19) nous pouvons modifier ces opérateurs (cf. par exemple
les équations (11-13) et (11-14)):

(/d»/) (4 {Oi - Mi A-i S - Z A"2 T2 + i (A"2 sin J - X-1 pix y) x dx

+ iX~1ptxxd^f(A)

(/<2>/) (4 {02 + pt^ A-i S + y A"2 Tx +i A-i ^ y d,

+ ;(A-2sin|--A-V2*)d,}/(4
(/<«/) (/1) {03 + S+i(ydx-x df }ffA)

(2V«/) (4 {o; - /*2 A-i S - J A"2 Tx - i A-i ^2 y d,

+ »(-A-2sin | +A-V2^)dyj/(4

(A/®/) (/1) (o; - ptx A-i 5 - y A"2 T2 + * (A-2 sin J - A"1 ^ y) x d,

+ U-V1*d9}/(4
(W3>/) (4 {o'AffA).

(11-26)

21 H.P.A. 39, 4 (1966)
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Nous n'avons écrit ces opérateurs que pour le cas du spin continu car les résultats
obtenus par les deux méthodes sont identiques dans le cas du spin discret (ceci

provenant du fait que U~ l {l)(cß; z) S U®(<f>; z) S).
Montrons l'identité des résultats obtenus par les deux méthodes. Des égalités

suivantes :

/(4Zf ;Z 0;*))= ir1"-" f<t>;z) iri^/rZZ u^'\^,z)ffApï)f<j>;z))

U-'^'fcp";z')f(Af(<p";z') (cj>;z) (f;/)"1).
nous tirons

U£$r) SU^ S-ixdy + iydx

UjJ'r) Tx cZZ> Tx + 2 isin ± dy

TT-l(e,r) -p Tj{e,r) _ j- _ 9 / ojn A dU(<t>\ 2)
J 2 u(0;») - J! * l bm

2 "x

(11-27)

A l'aide de ces formules il est aisé de passer d'une forme à l'autre (il importe de

remarquer, pour la suite, que ces identités sont indépendantes de la transformation Ap
choisie).

B. Considérons maintenant la décomposition du groupe de Lorentz suivante:

H\hJ- -*4*".-<y~o \_^
Le principe de calcul des opérateurs infinitésimaux reste le même, aussi nous nous
contenterons de donner les résultats :

Générateurs des translations d'espace-temps

(P°f) (A) (Pf) (A) (P3f) (A( (p cos 0) ffA)

(P1/) (4 fP sin 0 coscp) ffA) fP2f) (/1) (p sin 0 siny) ffA) (11-28)

Opérateurs J et N obtenus par la première méthode

0
(/<i>/) (4 (Oi + cosy tg| Urffr'l S Uf^Af(A)

(/<2>/) (A) [02 + sincp tg \ U"1 <*'> 0; S [/<*•" (cb; z)}f(A)

(Pf) (A) {03 + U-1 C'» (0; z) 5 [/<«¦" (ci; z)}/(4 (11-29)

(A/1/) (yl) {OJ + t/" x <*" 0; t) [- siny tg y S + -1- (2 sin2 | cos2y - l) 2\

siny cosy T2Ì U[e'r)fcb; z)\f(A)l 2
6

- sur - suit
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(N2f) (4 \o'2 + U-1 [e'r) ftf>; z) [cosy tg y S + j sin2y siny cosy Tx

+ Ap (2 sin2 A sin> - X) T2i U^lrffW

fN3f) (4 \0'3 + U-1 <«>" (cb; z) [sin0 cosy ZZ + sin 0 siny ZZ ^^}/(4
Nous avons posé pour les parties orbitales :

„ • ¦ ^ • cosò -,
Ox i sino; d„ + t cosy dw

323

„ coso
02 - i cosy de + i -sIny smy dv

03 -i dv

0'x — i cos 0 siny d„ A- i sino smy dp

0' t cos ö cose

; Sm9> A
sint) f
coso? -, - • r\ àî o d„ — î sm 0 cosy 0.

O3 i sin 8 de — i cos 0 d^

Pour obtenir les opérateurs dans le cas du spin discret il suffit de faire ^ £2 0

dans ces formules et de remplacer t/"1 (£'r) S U^'^ pax S.

Opérateurs J et N obtenus par la deuxième méthode

(/V) (4 \0X + cosy tg 4 [S - ix dy + i y dJ}/(4

(Z2/) (4 {02 + siny tg | [S - ix dy + i y dJ}/(4

ff3f) (/1) {03+S-ixdy + iy dJ/(4
- * y dj + -2y (2 sin2 y cos2y - l)

x (tx + 2 i sin y d,) + -J- sin2 y siny cosy (r2 - 2 t sin y d,)}/(4

fN2f) (yl) J02 + cosy tg y (S — i x ày + i y dx) + sin2 y siny cosy

x (tx + 2 i sin | ày) + ~ (2 sin2 \ sin2y - l) (T2 - 2 i sin \ d,))/(4

(2V3/) (4 \p'3 + Jp sin 0 cosy (tx+2ì sin | dj + ~ si:

x(£2-2isin| d,)}/(4-

(iVV) (yl) \0'x - siny tg °- (S - i x

sm ö sine

(11-30)

Il est facile de voir, à l'aide des formules (11-27), l'équivalence des formes (11-29) et
(11-30).
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C. Pour terminer, comme dans le cas des masses positives, considérons la
parametrisation

/a ß\
A I I avec cnô — ß y 1

\y ôj

Il n'apparaît pas d'éléments de £2 dans cette décomposition, aussi nous ne pouvons
pas tenir compte de la condition pour modifier les opérateurs de la représentation
«régulière» d'une manière analogue aux cas précédents. Donnons les opérateurs
infinitésimaux de la représentation [0, f] :

(PV)(4 (|Z2+!/Z2)M)

fP1f)fA) f-2 1\eß'a)ffA)

(P2f)(A) (2 1mßo)f(A)

(P3f)(A) (\o\2-\ß\2)f(A) (11-31)

Les opérateurs J' et N' sont les mêmes que ceux donnés par les formules (11-18).
Le seul changement dans notre cas est l'expression de la condition qui nous fournit
les relations suivantes que doivent vérifier les fonctions/:

fSf) (4=2 {- a2 dai + Oi da2 + ß2 dßi - ßx dßi - y2 dn + yx dYi

+ öt ddi - öx ddfffA)

fTif) (4 y {- ßi dai - ßt das - ôx dri - ô2 dvfffA)

(TJ) (4 y \ß* < ~ ßi < + ô2 dYi - Z dyJ/(yl) (11-32)
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