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Nouvelles formes des représentations unitaires irréductibles
du groupe de Poincaré

I

par J. C. Guillot!) et J. L. Petit?)
Institut de Physique Théorique, Université de Genéve, Suisse

(29 1 66)

Abstract. In this paper we study different forms of representations of the Poincaré group and
establish their interrelations. Starting with the induced representations by Mackey, we construct
explicitly the isomorphisms to the forms preferred by physicist defined on the space of functions
on a homogeneous space. As a particular case we find the representations of Wigner and specify
the arbitrary parameters involved. We then give different possible forms of representations defined
on either the Poincaré group or the Lorentz group. Finally, we specify the different conventions
which are used for different physical situations.

I. Introduction

WIGNER, dans son célébre article [1]2), a classé toutes les représentations unitaires
irréductibles du groupe de Poincaré ou groupe de Lorentz inhomogéne. Elles sont
repérées par deux nombres: la masse et le spin. La maniére dont ces représentations
sontréaliséesest importante, par exemple dans les problémes de cinématique relativiste,
car on sait qu'une particule libre de masse m et de spin 7 se transforme suivant une
représentation irréductible repérée par m et j. WIGNER considéra une réalisation
particulieére dans un espace d’Hilbert de fonctions définies sur I'hyperboloide de masse
P? = m?, a valeur dans 'espace de spin. Une autre réalisation s’exprime a 'aide de
fonctions d’ondes tensorielles ou spinorielles satisfaisant des équations d’onde (par
exemple I'équation de Dirac et I'équation de Klein-Gordon). MACKEY [2] a ensuite
généralisé a une grande classe de groupes la théorie de WIGNER en définissant la
notion de représentations induites et nous nous proposons, a I'aide de cette théorie,
d’étudier une nouvelle forme des représentations irréductibles du groupe de Poincaré
réalisée dans un espace d'Hilbert de fonction définies sur le groupe. Plus précisément
les fonctions sont définies soit sur le groupe de Poincaré soit sur le groupe de Lorentz.

Cette forme nouvelle présente un certain nombre d’avantages. D’abord elle fait
jouer un réle plus «dynamique» au spin, ce qui fournirait peut-étre une introduction
naturelle a la théorie des pbles de REGGE: cette idée a été développée par I. LURCAT
[3]. Ensuite elle permet d’effectuer des opérations mathématiques caractéristiques des
fonctions définies sur un groupe. Ainsi WIGNER [12], pour traiter un probléme de
diffusion multiple, considére une équation définie non dans l'espace des états de la
particule mais sur un groupe pour obtenir une équation comportant un produit de

1) Boursiers O.T.A.N.
%) Les chiffres entre crochets renvoient 4 la Bibliographie, page 299.
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convolution. De plus ToLLER [13] définit les amplitudes de diffusion sur un groupe afin
de pouvoir faire de I'analyse harmonique sur ce groupe et généraliser ainsi les déve-
loppements en ondes partielles. Enfin signalons que Moussa et STora [14] considérent
les représentations définies sur le groupe de Poincaré lorsqu’ils décomposent les pro-
duits tensoriels des représentations irréductibles de ce groupe.

Nous commencgons par donner un résumé de la théorie des représentations induites
basé sur plusieurs exposés auxquels nous renvoyons pour une étude mathématique-
ment plus détaillée, [2, 15-18]. Néanmoins notre exposé différe des précédents par le
fait que le groupe opére a gauche sur ’hyperboloide (p* - A* $”), convention choisie
habituellement parles physiciens et surtout par la forme générale des isomorphismes
entre les représentations équivalentes. Nous donnons la définition de MACKEY des
représentations induites. Nous montrons ensuite explicitement l'isomorphisme qui
lie Ia forme des représentations sur le groupe a celle des représentations sur I'hyper-
boloide, ainsi que la liaison avec la forme canonique de WIGNER. Nous avons insisté
sur les arbitraires dont dépend 1'écriture des représentations unitaires irréductibles,
arbitraires dont certains correspondent a une convention physique comme, par
exemple, le choix d’une base pour 'ensemble des états d’une particule. Enfin, dans le
cas du groupe de Poincaré nous avons explicité les différentes conventions possibles
pour les masses positives et les masses nulles.
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II. Notations

Nous allons donner quelques formules utiles pour la suite. (Pour plus de détails,
cf. [6]). Nous nous placons dans le systéme d’unités ou # = ¢ = 1.
La métrique employée est

g =0 sl u=w; g0 = — gl g2 g3 ]

et nous posons

V¥ = (99 9] ; V,= (vo; —¥)

La représentation utilisée pour les matrices de PAULI est:

= 77 =

0 1) 0 —1z 1 0
T =
) i 0 0 —1

10
Alnsi au quadri-vecteur p# nous associons la matrice hermitienne $ définie par
( PO =% — (i)

p = pﬂ = ' .
P +ip%); PO+ PP (I-1)

~
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Donnons maintenant quelques propriétés des rotations et des transformations de
Lorentz pures.

Rotations: Nous noterons R(n; 6) une rotation d’axe n et d’angle 6 quand elle
agit dans 'espace de MINKOWSKI et A (n; 6) une matrice 2 X 2 qui lui correspond dans
I’homomorphisme entre le groupe de Lorentz et S L(2; C).

6 .. 6 . o Bas 5 g
Cos = — 1 sin — #¥; —zsm—zw(n 1 n?)

A(n; 0) = p ’ p
*z'siné«(nl—{uz'nz); cos+?+isin7n3

—cos—e-- - 'sinE (n 1)
- g — *alty;

’

&' == cosfa+ (1 —cosf) (nx) n+sinf (n A\ %)

20 — 50
La formule donnant le conjugué d’une rotation est:
R(n; 0) R(ny; 0,) R-'(n; 0) = R(R(n; 0) ny; 0,)

Lorentz pure: Nous noterons L(y;m) la transformation de Lorentz pure d’axe m
et de vitesse v = th y dans I'espace de Minkowski et 4 (y; m) une matrice 2 X 2 qui lui
correspond dans S L(2; C).

ch —é —sh }25— m?; — sh /zf, (mt — 7 m?) A
Ay, m) = = ch%—sh%(mr)
— sh % (m* + 2 m?); ch %f + sh ‘925— m?
¥ =%x—(1—chy) (xm)m+ x°sh ym
x'%=chyx®+ (ma«)sh y.
Nous utiliserons aussi les formules suivantes:
A(n; 0) A(y; m) = A(y; R(n; 0) m) A(n; 0)
A(y; m) A(n; 6) = A(n; 6) A(x; R (n; 0) m) (I-2)
Donnons maintenant quelques définitions pour les opérateurs de l'algébre de Lie.
Si L est une rotation infinitésimale de paramétres (n; ), on posera:
UL)=1—70nJ
si L’ est une Lorentz pure infinitésimale de paramétres (y;m):
UL)=1—-iymN
Si a est une translation infinitésimale de parameétres a*:
Ula) = 1+1P*a,
Définissons maintenant I'opérateur «de spin» introduit par Pauli

1
o - pvel
Wk — - g P, M,
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oll nous avons posé :
NE — \fk0 Ji = Mk

ce qui nous donne en explicitant
woe=p-.J W=PJ_PAN

Les opérateurs S* sont les générateurs des transformations infinitésimales de la
représentation D7) du groupe des rotations.
Si R* est une rotation infinitésimale d’angle 6 autour du A" axe, nous avons:

DY (R¥) =1 — 4 § Sk,

Donnons pour finir une relation utile liant les matrices D et les opérateurs S.
3

5 D) (R) SE DY (R = 3 (R4 S, (12519

— i< b +j I=1

III. Résumé de la théorie de Wigner-Mackey
A. Notion de représentations induites
Quelques rappels concernant les groupes localement compacts
a) Mesure de Haar invariante a gauche sur G

Les groupes que nous considérons par la suite seront tous des groupes de Lie, donc
afortiorides groupes localement compacts; ils sont caractérisés par l'existence d’une
mesure positive, non nulle et invariante a gauche, définie sur les boréliens deG. En
fait, cette mesure n’est pas caractérisée uniquement, et deux mesures invariantes
a gauche sont proportionnelles. Il existe aussi des mesures invariantes a droite.
On fera le choix d’une mesure invariante a gauche (qu'on appellera alors mesure
de Haar invariante a gauche, soit dg).

On a donc:

ff(gog) dg*ff(g) dg N geG.
G G

Mais dg n’est pas en général invariante a droite et on a par définition de A;(g)
[ fleer) dg—Aqlew) [ fie) de-
¢ G

Cette égalité peut s’écrire plus symboliquement

(g go) = Aclgo) dg

Ai(g,) est la fonction modulaire de G qui vérifie:

As(gy) Aglge) = Algy g2) # (AG(gO) € R+)
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Sig — f(g) est sommable, g > f(g~1) 'est aussi et on a:

[ 1™ dg= [ 1@ Acte™ dg
G

G
qu’on peut aussi écrire:
d(g™) = dglg) ™ dg.

Sid =1, c’est-a-dire si dg est invariante 4 droite et a gauche, le groupe est dit uni-
modulaire. Comme exemples il y a les groupes discrets, abéliens, compacts, les groupes
de Lie semi-simples. En particulier le groupe de Lorentz et le groupe des rotations sont
des groupes unimodulaires.

b) Notion d’espace homogéne

Soit G un groupe topologique, 1" un sous-groupe fermé contenu dans G; l'espace
homogene X = G/I", ensemble des classes & droite modulo I, est muni de la topologie
quotient (i.e. U C X est ouvert si et seulement si 7z=1(U) est ouvert dans G). 7 est
I'application canonique qui & g associe sa classe d’équivalence g I” qu’on notera aussi %.

Le systéme (G, I', X) est muni des propriétés suivantes:

A) X est un espace topologique sur lequel «G opére a4 gauche», c’est-a-dire qu’a
g €G, on fait correspondre un automorphisme de X sur lui-méme noté g x ou g(x)
tel que

g2 (g1 %) = (8281 ()

et (x, g) > g x soit continue.

B) G opére transitivement sur X, c’est-a-dire, quels que soient x, et x, € X il existe
au moins un élément g € G, tel que

Xo = £ %1

C) Il existe au moins un x, € X dont le stabilisateur (c’est-a-dire le sous-groupe de
G tel que g x, = x,) soit I.

I1 suffit de faire opérer G par translation & gauche: g, I" %> (g g,) I" et de prendre
pour x, la classe de I'identité pour vérifier trivialement A, B, C.

La réciproque est trés importante: Si G, I' et X vérifient A, B, C, il est clair qu’on
peut définir un isomorphisme canonique @ de G/I" sur X tel que

D(n(g)) = g %

Cecl signifie que g € x est équivalent a g, x, = x. @ est continu, lorsque G/I" est muni
de la topologie quotient.

En particulier si G et X sont localement compacts et si G est séparable, @ est alors
un homéomorphisme de G/I" sur X. On sera toujours dans ce cas par la suite.

Remarques: 1. SiG, I', X vérifient les 3 conditions A, B,C; G,g I" g1, X les vérifient
aussi et X est alors isomorphe 4 G/g I" g1. Nous voyons donc que pour déterminer cet
isomorphisme, nous avons le libre choix du point %, et de son stabilisateur, car par
suite de la condition B, les stabilisateurs de deux points distincts sont deux sous-
groupes conjugués, donc isomorphes,
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II. G n’opére pas toujours transitivement, dans ce cas on considére la partition
de X en classes d'intransitivité ou orbites. Une orbite est 'ensemble des éléments de
la forme g x pour g parcourant G, x étant un élément fixe de X.

c) Mesure quasi-invariante sur un espace homogéne

S1 X est un espace homogéne, on définit le translaté a gauche d’un sous-ensemble
A par ge G, comme l'ensemble des éléments g x ot x€ 4 et on le note g 4. On
supposera désormais X et G localement compacts et séparables.

Soit du(x) une mesure positive sur X, la mesure du(gx) sera définie par:
I f(%) du(g x) = [ f(g* x) du(x) pour toute fonction continue a support compact.
X g

En général, il n’existe pas de mesures invariantes sur X, aussi est-on contraint
d’introduire la notion de mesure quasi-invariante par G définie sur X: une mesure
positive du(x) sur X est dite quasi-invariante si elle est non nulle et si du(g x) est
équivalente a du(x) pour tout geG. du(g x) et du(x) ont les mémes ensembles de
mesure nulle, ou ce qui revient au méme, il existe une fonction f(x) > 0, localement
sommable par rapport a du(x), différente de zéro du(x)-presque partout et telle que

du(g x) = f(x) du(x).

Le théoréme suivant nous permet de déterminer les mesures quasi-invariantes:

Théoreme: G étant un groupe localement compact séparable, I" un sous-groupe
fermé de G et X = G/I', il existe sur X des mesures quasi-invariantes. Deux mesures
quasi-invariantes sont équivalentes et on les obtient toutes de la maniére suivante:
soit p(g) une fonction définie sur G, borélienne, strictement positive, localement
sommable et vérifiant pour tout y € I

_ Ar®)

ot A; et A sont les fonctions modulaires des groupes G et I'. A p(g) est associée une
mesure quasi-invariante et une seule du(x) sur X définie par:

[1© @) dg = [ dutx) [ fley) dy

X
et vérifiant:

ou g appartient a la classe x.
Remarque: Tout élément g peut s’écrire g = /1.y avecy € I' et la solution générale
de I'équation fonctionnelle définissant o est:

A
@) = 4o o).

I1 peut néanmoins exister des mesures invariantes sur certains espaces homogénes et le
corollaire suivant précise les conditions de 'existence de telle mesures.
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Corollaire: Pour qu’il existe sur X une mesure invariante, il faut et il suffit que
Ap(y) = Ag(y) pour tout y € I'. Cette mesure est unique A une constante prés. Dans
ce cas, on peut prendre g = 1.

Remarque: Dans le cas des groupes de Poincaré et de Galilée, nous aurons toujours
une mesure invariante sur G/I” car G et " seront des groupes unimodulaires; ainsi la
fonction p(g) n’apparaitra jamais. Par contre, cette fonction peut apparaitre dans des

cas tres importants, comme celui, par exemple, de la série fondamentale du groupe
de Lorentz.
B. Représentation unitaire induite

Soient G un groupe localement compact séparable, I" un sous-groupe fermé et
y = L(y) une représentation unitaire de /" dans un espace d’Hilbert § séparable.
Considérons I'ensemble des fonctions f(g) définies sur G, a valeurs dans § vérifiant
les conditions suivantes:
1) Pour tout v € §, la fonction g > < f(g), v » est mesurable pour dg;
2) flgy) = L7X(y) f(g) pour tout y € I" et tout g € G; (I-3)

3) 'l f(g) ||? du(x) << + oo ol du(x) est une mesure quasi-invariante; on démontre
G/

trés aisément A I'aide de la condition (I-3)2) que || f(g) ||? est une fonction de classe.
On montre que I'ensemble de ces fonctions muni d'une structure d’espace vectoriel
évidente est un espace d'Hilbert (donc complet) pour le produit scalaire suivant:

<hofe = [ CHlR), o) > du).
6/r

Remarque: En fait, les éléments de 'espace d’Hilbert sont les classes d’équivalence
de fonctions presque partout égales: on note cet espace d’Hilbert $L.

On définit une représentation unitaire de G dans £($%) de la maniére suivante:
a gy € G, on fait correspondre (U’ (g,) transformation qui & tout élément fe HL fait
correspondre: {U*(go) f} (8) = 0(8) " 0(g5 " €)% flgs ' g) ol o(g) est la fonction
associée a4 la mesure du. On vérifie immédiatement que ;U%(g,) fe HE et que la
transformation ainsi définie est bien unitaire. Cette représentation qu’'on note ;U”
est appelée la représentation induite a G par L.

Cette forme des représentations induites n’est pas habituelle aux physiciens.
Nous allons étudier maintenant en détail I'isomorphisme qui permet de revenir a la
représentation définie «sur les fonctions d’onde» c’est-a-dire sur les fonctions définies
sur un espace homogene qui est, dans le cas du groupe de Poincarg, I’hyperboloide de
masse p? = m?. '

Pour cela, considérons I'espace L%(G/I"; §) c’est-a-dire I'ensemble des fonctions
définies sur G/I", & valeurs dans § et vérifiant:

[ 11FG) | dute) < + oo,
G/T
L'isomorphisme de $f sur L%(G/I"; §) se construit de la maniére suivante: soit
g > B(g) une fonction définie sur G A valeurs dans les opérateurs unitaires de ¥,
vérifiant la relation B(g y) = L~Y(y) B(g) (I-4) pour tout y € I" et tout g e G.
SiF e L%(G/I";$) la fonction f(g) définie par f(g) = B(g) F(x) appartient & $7
comme on peut le vérifier, B(g) étant unitaire (g appartient a la classe x).
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De plus, cette correspondance est une isométrie, car
[ 1P |12t = [ 11 7(@) 12 dute)
G/"P G/L

Réciproquement, si f € $H%, la fonction F définie par

F(x) = B(g) f(g)

est bien une fonction de classe et elle appartient a L%(G/I"; ). Ainsi, on a défini un
isomorphisme entre $Z et L3(G/I7; ), le transformé de ;U*(g,) par cet isomorphisme
est l'opérateur obtenu par le schéma suivant:

F(x) ad L —> B(g) F(x)

l lGUL(gu)

0(g)™"olg, ") B(g) ™ Blgy *¢) Flgg * ) e olg)™olgy &) Blg, *g) Flgy ')
-~

La représentation induite s’écrit donc dans 'espace L% (G/I"; §)

(cU"(go) F) (%) = olg) ™M 0(gy * )" Blg)™* Blgy * g) Flgg * %). (I-5)
Cette formule devient dans le cas d’'une mesure invariante (p = 1):
(cU™(g0) F) (x) = B(g)™ Blgy* g) Flgg* %) . (I-6)

C'est sous cette forme que se présentent ordinairement les représentations unitaires
du groupe de Poincaré. C'est aussi cette forme qui apparait dans les applications du
théoréeme fondamental concernant les systémes d’imprimitivité. Nous nous limiterons
désormais au cas ol sur X peut étre définie une mesure invariante, c’est-a-dire que la
fonction g(g) sera désormais constante et normalisée a l'unité. Evidemment les
formules que nous écrivons ne seront que des cas particuliers d’un cas général qu’on
pourra aisément déterminer en se référant aux textes cités dans l'introduction.

Choix de la fonction B(g)

On peut trées facilement préciser la forme de la fonction B(g) vérifiant la condition:

Blgy) = L7Xy) Blg); vel’
En effet, il suffit de remarquer que, par suite de cette condition, la valeur de la
fonction B(g) pour g€ x est déterminée pour tous les éléments d'une classe d’équi-
valence lorsqu’on connait sa valeur pour un élément de Ia classe.

Plus précisément soit x,€ G/I” le point stabilisé (i.e. la classe de l'identité).
Notons A, un élément du groupe qui A x, fait correspondre x. En général, il y en a une
infinité, car tout élément de la classe posséde cette propriété. Supposons donc que
pour tout x nous ayons fait un choix /,. Alors tout élément g € xs’écrit d’'une maniere
unique sous la forme

g=A,(A;g.
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Or A1 g est un élément du stabilisateur, donc
Bg) = L7 (A *g) B(d,) = L{g* 4,) B(4,).
La forme générale de la représentation induite est donc
F(x) = B=NA,) L(A; 1 go Ay-1,) B(d,-1,) Flegg %) (I-7)

On vérifie immédiatement que /A;1 g, Ago—lx est un élément du stabilisateur de x,.
Aussi I'écriture de cette forme de représentation induite dépend de deux arbi-

traires:
1) Le choix d'un élément A, , qui est un représentant de chaque classe d’équivalence.

2) Le choix de la fonction B(g) ou ce qui revient au méme, de la valeur de B(g) pour
le représentant choisi dans chaque classe d’équivalence. Dans tous les cas physiques,
le choix de /1, est équivalent au choix d'un axe de quantification pour le spin et ce
choix fait, on considére une fonction B(g) telle que

B(A4,) =1 pour tout x
La représentation prend alors la forme plus simple
F(x) = L(A; gy Ay1,) Flgg* %) (1-8)

C’est la forme de WIGNER ou forme standard associée au choix de A,, qui n’est
qu'une particularisation de la forme générale.

Deux choix différents de fonctions B(g) se traduisent par des représentations
unitairement équivalentes puisqu’'une fois /A, fixé, toutes les représentations sont
équivalentes a la forme standard.

A cause de la condition (I-4), la représentation (I-6) est indépendante du représen-
tant choisi, soit de A,, pourvu que 'on conserve la méme fonction B(g). Mais si I'on
veut conserver la forme standard, il est évident que l'on modifie la fonction B(g),
lorsqu’on passe de /1, 4 24, et le passage d'une forme a l'autre se traduit par l'iso-
morphisme suivant:

F(x) = L1((A7124,) F(x) . (I-9)

et la représentation passe de la forme

{cUMeo) F} () = LA g A,1,) Flgg™ %)
a la forme
{cU (o) F} (x) = L(2A; g, A1) Flgo * x).

C. Systéme d’imprimitivité

Il est nécessaire d’avoir un critére qui permette de savoir si une représentation
unitaire est induite ou si elle est équivalente & une représentation induite. La notion
de systéme d’imprimitivité et le théoréme fondamental de Machey répondent & un tel
besoin. Mais auparavant, il nous faut rappeler la notion de mesure spectrale:

19 H.P. A. 39, 4 (1966)
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Soit X un espace topologique localement compact. Une mesure spectrale sur X
assocle a tout ensemble borélien E C X un sous-espace hilbertien d'un espace
d’'Hilbert § noté P(E) ou encore le projecteur orthogonal sur le sous-espace (on
confondra les deux notions) avec les propriétés suivantes:

1) P(X)= 1.

2) SiE,, ..., E,, ... sont disjoints deux & deux,
PE), ..., P(E), ... sont orthogonaux et on a

P(UE,) =) PE,).
Si E,, E, sont deux boréliens quelconques, on a donc

P(E, O Ey) = P(E;) P(Ey) et P(g) =0

ou ¢ est 'ensemble vide.
Ceci est le point de vue ensembliste. Le point de vue fonctionnel est le suivant:
Soient x et y des éléments de §, on définit une mesure bornée u, , sur X en posant

por (E) = P(E) x, 9 5

pour tout borélien E C X; une telle mesure se prolonge aux fonctions boréliennes
complexes bornées sur X, ensemble qu’'on notera B(X); on a évidemment

| (B <[] %]] [[]]-

Pour toute fonction fe B(X), u, ,(f) = [ f(2) du,,(2) définit une forme sesquilinaire
en x et y et bornée: o

|t (D] <1 f oo 12| [11]]-

Il existe donc un opérateur linéaire continu P(f) défini sur tout § tel que

CP(f)x,y > = pu, (f)

L’application f - P(f) est linéaire et diminue les normes; elle est multiplicative,
¢’est-a-dire que

P(fg) = P(f) Plg)
et P(f) = P'(f)

Notion de systeme d’imprimativite

Soient G un groupe, U une représentation unitaire de G dans un espace d’Hilbert §.
Un systéme d’imprimitivité de U est constitué par le couple (X, P) formé par un
espace localement compact X sur lequel G opére et d'une mesure spectrale P définie
sur X, a valeurs dans L($)) telle que:

Ulg) P(E) Ulg)™ = P(g E) (I-10)

pour tout g € G et tout borélien E. X est la base du systéme d’imprimitivité.
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Equivalence

Si U’ est une autre représentation unitaire de G dans un espace d’Hilbert §’ et si
(X, P’) est un systeme d'imprimitivité de U’, la paire (U, P) est dite équivalente a la
paire (U’, P’) s’il existe un isomorphisme @ de § sur §’ transformant U en U’ et
P en P, soit:

U'lg) =® Ulg) &  P'(E) = @ P(E) &1,

Systeme d’imprimitivité canonique associé @ une représentation induite

Soient G un groupe localement compact séparable, I" un sous-groupe fermé de G,
L une représentation unitaire de I" dans §) et (U’ la représentation induite & G, $F
étant I'espace d’Hilbert de cette représentation. On associe a ;U* un systéme d’im-
primitivité basé sur X = G/I" en faisant correspondre a tout borélien de G/I" le

projecteur P(E) défini par f(g) € H5——> P(E) f(g) = pu(x) f(g) ol wp(x) est la
fonction caractéristique de E. On vérifie immédiatement I’égalité (I-10) pour U = ;U*
et P(E) = wg(x). Cest le systtme d’imprimitivité canonique associé a ;UL Or
G. MACKEY a montré que réciproquement, toute représentation unitaire de G possédant
un systéme d'imprimitivité basé sur X = G/I" sur lequel G opére transitivement est
équivalente 4 une représentation de la forme ;U* o L est une représentation unitaire
de I".
Plus précisément on a le théoréme fondamental suivant:

Théoréme: Soit G un groupe localement compact séparable et /" un sous-groupe
fermé de G. Soit U une représentation unitaire de G et P’ une mesure spectrale basée
sur X = G/I', telle que (P, X) soit un systéme d’imprimitivité pour U, G opérant
transitivement sur X.

Il existe alors une représentation unitaire L de I, telle que la paire (P’, U) soit
équivalente a la paire (P, ;U*) ot P est la mesure spectrale du systéme d’imprimitivité
canonique de ;UE,

SiL, et L,sont deux représentations unitaires de I"et P, , P, les mesures spectrales
des systémes d’imprimitivité canoniques de ;UM et (U2 les paires (P, ;U™)et
(Ps, cUT?) sont équivalentes, si et seulement si L, et L, sont équivalentes.

D. Représentations unitaires irréductibles des groupes possédant
un sous-groupe abélien distingué

Nous allons considérer maintenant les groupes possédant un sous-groupe abélien
distingué et esquisser la théorie qui permet de montrer que toutes leurs représentations
unitaires irréductibles sont des représentations induites. Soient donc G un groupe
localement compact séparable et H un sous-groupe abélien distingué et fermé de G.
Nous allons auparavant rappeler quelques résultats concernant les groupes abéliens
localement compacts.

On entend par caractére d’un groupe abélien H localement compact, toute fonction

continue %, définie sur H a valeurs dans les nombres complexes de module 1 et telle que

~

Ry hs) = h(hy) hihy).
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L’ensemble des caractéres d’un groupe, appelé le dual de H et qu’on notera H, est un
groupe qu’on peut rendre localement compact. Le dual de H s’identifie & H (i.e.

H=H ). On écrit h(k) Chyh> pour respecter la symétrie entre H et H.
En particulier, si H est isomorphe a R” il en est de méme pour H,etsih=

. Ak et h = (M 5 s 2 ) B0 8

Le théoréme concernant les représentations unitaires des groupes abéliens est le
suivant:

Théoréme: Toute représentation unitaire U de H dans un espace d’Hilbert § est
définie par une mesure spectrale P sur H a valeur dans § de la maniére suivante:

U(h) = P(h).
P(};) est unitaire, car | h | = 1. Ceci signifie que U(h) est 'opérateur correspondant

par P a la fonction de h = Ch h>. Plus explicitement, si on désigne par u,, la
mesure u, (E) = ¢ P(E) %,y >, on a

CUB) 2y > = [ <y du, (B, (-11)
H

A toute représentation unitaive de G est associé un systéeme d’imprimativité basé sur H

Rappelons qu'un systéme d’imprimitivité est constitué d’un espace homogene
sur lequel G opére et d'une mesure spectrale basée sur cet espace homogéne.
1) G opére dans H de la maniére suivante: /1 - g h avec < g hohy=<h, ghg>
(I-12) et la intervient I'hypothése fondamentale que H est distingué. (Remarque:
H opére trivialement dans H).

2) En tenant compte du théoréme précédent qui nous fournit une mesure spectrale P
en restreignant la représentation U a H, on vérifie immédiatement que

Ulg) P(E) Ulg)™ = Plg E).

Mais on ne peut pas nécessairement identifier U a une représentation induite,

puisque le groupe G n’opeére pas transitivement sur H. Ceci nous ameéne a considérer

de plus prés les orbites de H sur lesquelles, par définition, G opére transitivement.
La théorie qui va suivre ne s’applique pas a tous les groupes possédant un sous-groupe
abélien distingué; il est nécessaire que celui-ci «opére réguliérement dans H» condition
supplémentaire sur les parties boréliennes de H vérifiée par le groupe de Galilée et le
groupe de Poincaré comme I’a montré G. MACKEY.

Donnons maintenant un résultat trés important:
St U est irréductible, P est «portéen par une orbite, c’est-a-dire que tout se passe comme

s1, vis-a-vis de la mesure spectrale, H se réduit a cette orbite qu’'on notera Q.
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Maintenant, que du point de vue de la théorie de la mesure, H se réduit 4 une
orbite et que G opére transitivement sur £, on peut appliquer le théoreme de
G. MACKEY.

Ainsi si I;o € 2, et si I est le stabilisateur de hAO, 2, est isomorphe & G/I'. P peut
étre considéré comme une mesure spectrale sur 2U et on a alors un systéme d’'im-
primitivité basé sur un espace homogéne. Le théoréme fondamental de G. MACKEY
nous apprend que (U, P) est isomorphe & (;U%, P’) pour une représentation L de [,
P’ étant la mesure spectrale canonique associée & ;U”. Comme U est irréductible,
il en est de méme pour L.

La représentation L n’est pas quelconque et on peut préciser sa restriction a H qui
doit étre:

~

L(k) = ho, B (1-13)

ce qu’on traduit en disant que la restriction de L a H est un multiple de 4,.
Evidemment la réciproque nous intéresse beaucoup pour la construction des
représentations irréductibles.

Théoréme: Si Q2 est une orbite de H, ho €2 et I' le stabilisateur de }20, pour toute

représentation irréductible L de I'" dont la restrictive a H est un multiple de };0,
cU" est irréductible et 1'orbite correspondante .%UL = i,

Nous allons considérer maintenant le cas plus particulier d’un produit semi-direct
d’un sous-groupe abélien distingué et d’un sous-groupe fermé K. Donc, par definition,

tout élément de G peut s’écrire d’une fagon et d'une seule sous la forme % - & avec
heHetkeK.

Comme H opére identiquement dans H, T'action de G sur H se réduit a celle de K.
Le stabilisateur de 4, est donc de la forme H [}, I'; étant un sous-groupe fermé de K.

De plus les représentations unitaires de I" dont la restriction & H est un multiple de l;o
sont déterminées par les représentations unitaires de [}, c’est-a-dire ont la forme
suivante

L{y) = {hgy b Lylyy) (I-13)bis

oluy = hy, (y,€l) et L, est une représentation unitaire de /. Donnons quelques
remarques qui nous aideront & préciser la forme de la représentation

1) Q~HK/HIT, ~K|I.;

2) Une mesure y définie sur £, invariante par K l'est aussi par G = H K puisque H
opére trivialement sur £.

3) Si on connait la fonctionB (k) pour le groupe K, elle est déterminée pour tout
élément du groupe. En effet:

B(g) = B(hk)=BkE1hER) = LE 1A 1E) BR) =k ];0’ h=1> B(k)
la fonction B (%) vérifiant la relation:

B(ky,) = L7(y1) B(k) ¥ yr€ 17
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Ces remarques permettent de ramener le probléme de la construction de la repré-
sentation induite au probléme correspondant sur la «partie homogéne» K, c’est-a-dire
de lier ;U* & U™, En effet, par définition de la représentation induite, nous avons:

-~

{,U"(go) F} (W) = B(g)™ B(g; ' ¢) Flgy* h)

olt
g hy=h.
Doncenposantg =hk, ke Ketg,= hyk,, del'égalité g h; =k h; — K nous tirons

-~

{cU"(go) F} (W) = B(R)™ Blky*ho ' k) F(kg* h)
= Chyhyy BR)™ Bllg *R) Fky 2 h)
= (h by (KUL(ko) F) (h) .
Nous obtenons ainsi la formule importante suivante:

(cUgo) F) () = C I g > (5. U (ko) F) ()
avec
go= Ny ko .

On voit que pour écrire les représentations unitaires irréductibles d'un groupe
possédant un sous-groupe abélien distingué, il est nécessaire de suivre les étapes
sulvantes:

1) Chercher toutes les orbites de H.

2) Pour chaque orbite, faire un choix du point stabilisé et déterminer le stabilisateur
correspondant.

3) Ensuite déterminer les représentations irréductibles du stabilisateur dont la
restriction H est la forme (I-13).

4) Induire ces représentations au groupe G.

Mais au lieu de réaliser les représentations irréductibles dans 'espace L%(G/I, §),
on peut revenir a la premiére forme et les réaliser dans l'espace $ auquel cas elles
s'écrivent trés simplement

flg) 5> {cU(go) f} (8) = flga " &) -

Mais dans le cas d’un produit semi-direct, le comportement de la fonction f(g) est
connu deés que 'on connait cette fonction sur le groupe K par suite de la condition
imposée a ces fonctions, en effet:

(@) = FUrB) = flk k21 k) = L= 12 ) f(B) = C R, B2 ) f(R)

évidemment f(k &) = L Y(k,) f().
Ceci nous améne a nous restreindre 4 I'espace & au lieu de considérer HL.
Montrons en effet qu'il existe une correspondance biunivoque entre les représen-
tations ;U" et xU": dans $E, la représentation s’écrit f(g) - f(g; ! g). Si on veut
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considérer $% on doit faire apparaitre le comportement des fonctions f sur la partie
homogene K en s’aidant de la condition, soit plus précisément:

Ck I;O, By f(R) 8tk o fheVhgth k) = flkg LR R Ao B k)
— (Rl by S FRTVR) = C kg, B> C kg, o > FETLR) .
Nous en déduisons que la fonction f(%) se transforme de la maniére suivante:
Sy Sy g, B > ST R)

qui n’est autre que la forme de la représentation xU™. Ainsi 'isomorphisme entre
UL et UM s’écrit-il:

) > f(&) = < R b, b7 > f(R) lg) > F(k) = kb, 1y f(g) - (I-15)

E. Le groupe de Poincaré

Le groupe de Lorentz € est 'ensemble des transformations linéaires réelles qui
laissent invariante la forme bilinéaire de R*

xy=%x%90—xy
qu’on notera
y=Ax ou y* =Ax".

On se limite aux transformations de déterminant égal 4 1 et telles que A > 1,
c’est-a-dire & la composante connexe du groupe. Le groupe de Lorentz inhomogéne
ou groupe de Poincaré, que nous noterons G, est formé des transformations y* =
A# x¥ + a* et il est muni de la loi de composition suivante:

(a;A) (@A) =(a+Aa’, AA".

C’est le produit semi-direct du groupe de Lorentz restreint par un sous-groupe
abélien distingué a 4 paramétres H.

G=Hx Q.

Dans le cadre de la mécanique quantique, la nécessité d’obtenir des représentations
projectives, c’est-a-dire avec «facteur», nous oblige & considérer non le groupe de
Poincaré lui-méme, mais son recouvrement universel qu’on appellera encore groupe de
Poincaré. Ce groupe n’est autre que le produit semi-direct du recouvrement universel
du groupe de Lorentz, soit S L(2, C) par H, le sous-groupe abélien distingué des
translations de 1'espace-temps.

Le dual de H est constitué par I'ensemble des vecteurs p de R* munis du produit
scalaire, '

pp =p'P"—ppP
et

by = eibe.
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Le groupe des translations de 'espace opére trivialement dans H;seul S L(2, C) opére
de la manieére suivante:
A $ on associe la matrice 2 x 2 hermitienne

( PO — p% —(pl—z‘pz))
— @ ipy; o+t |

SideS L2 C), Apestle vecteur correspondant 4 la matrice hermitienne

( po—p3  — (?1—1'152))
A At
— (pr+ip?); PO+ P

ou A" désigne la matrice adjointe (transposée, conjuguée).

Les orbites de H et les stabilisateurs correspondants, déterminés a un isomorphisme
pres, sont bien connus, (cf. par ex. [1]). Nous ne considérerons que les orbites P* > 0
et nous commencerons par étudier 'orbite P? = m? (m? > 0); P° > 0. Le stabilisateur

de (m, 0, 0,0) = 7,3 est S U(2, C) et & chaque représentation irréductible unitaire de
S U(2, C) indexée par un entier ou demi-entier §, est associée une représentation
unitaire irréductible du groupe de Poincaré qu’on notera [, ]. On désignera D0
la représentation unitaire de S U(2, C) qui opére dans un espace $),;., de dimension
27+ 1. Cette représentation décrit une particule élémentaire de masse m et de spin 5.

L’orbite $? = m? s’identifie au quotient S L(2, C)/S U(2, C); c’est 'hyperboloide
de masse.

La mesure (déterminée a4 une constante prés) d®p/p® = du(p) est une mesure
invariante par S L(2, C).

Si I'on écrit les représentations dans l'espace LZ(£2 (p? = m?), §,;,,) on doit se
donner a priori un champ de transformations de Lorentz qui a tout # associe une

0
transformation A, telle que A, p = p.
Jusqu'ici deux choix ont été considérés principalement

0
1) A, est la transformation de Lorentz pure qui fait passer de $ a p ce qui correspond
a la base canonique ou au formalisme canonique cf. (6, 11) soit:

A, — —"FE (1-16)

Y2 m (m+p0)

ou p est défini par (I-1).

0
2) A, est le produit d'une transformation de Lorentz pure qui fait passer de p a

($0,0,0,| p|) et d’une rotation dans le plan (0z p) d’angle (0z p) qui a
($°, 0,0, | p|) fait correspondre le vecteur (9%, p).
Soit:
4 _ 0, .
1 €os = (m + p° — p); —sin—-e7'¥ (m + p° + p)
Ay =~ (I-17)

” —
V2m (m+ o sin%e""’(m—}—p“—p); cos%(m—%fbo—l—;b)
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ou (p, 0, p) sont les coordonnées sphériques de p. Ce choix correspond a la base
d’hélicité (cf. [7], [8] et [9]). La forme bien connue des représentations considerées par
WIGNER (ou forme standard) est:

(U, A) F) (p) = ¢i#% D3 (A, A Ay,) F(A $) (1-18)

le A, correspond soit & un choix soit & l'autre. Considérons la représentation dans
'espace $¢7 des fonctions f(A) définies sur S L(2, C), a valeurs dans §,;, telles que:

A A)=DiA™) flA) s+ Ae S U (2, C) (I-19)
Sur un tel espace, la représentation s’écrit:
. 0
(Ulag, Ag) f) (A) = 47 flAg* A) . (I-20)

Si on consideére maintenant les fonctions f(a, A) définies sur G, a valeurs dans
Ha;11 €t telles que:

flla, A) (@', 4)) = e’””"’“'f’an(A—l) fla, A) (I-21)
(cf. (I-3) et (I-13) bis) la représentation s’écrit alors simplement : |
(Ulag, Ay) f) (a, A) = f [(ao, Ag) ™" (2, A)] . (I-22)
Explicitons les isomorphismes dans ce cas: on passe de (I-18) a (I-20) par
J(4) = Di(A= 4,) F(p)
ou /1 appartient a la classe p (i.e. A 72 = p) et de (I-20) & (I-18) par
F(p) = Di(A4,* A) f(4)
on passe de (I-20) a (I-22) par
fla, 4) = e=+-4% f4)
et de (I-22) a (I-20) par
F(d) = 4% f(a, 4)

SiQ, est un opérateur quelconque opérant dans L2(£2 (p2 = m?); §, 1)
SiQ, est un opérateur quelconque opérant dans $H57.

Si Q.4 est un opérateur quelconque opérant dans $H27.

On a ainsi les correspondances suivantes entre opérateurs qui nous seront trés utiles
par la suite:

0, = DU (A2 A) 0, DD (A A) o Ap—p

Qu = DI (4514 QDO (A5 A); Qg = e 4 0 63

Q=¥ Qe 1 Q= 47 DUt (A714) Q, DV (A1 4) £}

0, = 6747 DU (A1 A,) Q, 4 DV (A1 A) e~ie- 45 (1-23)
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Notons que, dans les formes (I-20) et (I-22) la masse apparait par l'intermédiaire
de $2 = m? et de la condition imposée.

Remarque: Nous appellerons formalisme canonique la forme standard associée au
premier choix de A, et formalisme d’hélicité celle associée au second choix.

L’orbite correspondant au cas m = 0 est le cOne épointé (p2 = 0; p + 0; p, > 0).

0
On choisit comme point stabilisé, le point p = (1,0, 0, 1) (c’est-a-dire la matrice

hermitienne po = (9 9)). Le stabilisateur associé est le groupe spinoriel correspondant
a E,: le groupe des déplacements du plan. Dans la deuxiéme partie, nous considérerons
en détail les représentations de ce groupe. Rappelons seulement ici qu'il en existe
deux types: le premier qu'on notera U/ est indexé par un nombre 7 entier ou demi-
entier positif, négatif ou nul, et le second U®” par un nombre réel » > 0 et par
e =41 (e = 4+ 1 sert a distinguer les représentations «single-valued» des représen-
tations «double-valued»). Le premier type permet de décrire les particules de masses
nulles et de spin fini. Le second type donne les représentations dites a «spin continu».

Comme dans le cas des masses positives, nous avons deux choix pour la trans-

0
formation /1, amenant le point stabilisé p sur .

1) Le choix fait par A. S. WicHTMAN (cf. [1]).

Ve . pr—ip?
A | VP V2 Veer (I-24)
P - 0 ) ]/P0+¢)3
) Vé_
2) COS % p=12 . _ sin % (p)V2 =i
./1125 = ‘ ; (I-25)
sin p—12 ¢'?; €oS —- pH1I2

ou (p, 6, ¢) sont les coordonnées sphériques de p. Cette transformation n’est rien
d’autre que le produit d’une transformation de Lorentz pure qui fait passer de (1,0,0,1)

a(p, 0,0, p)soit L,:
p—1{2 0
L,=
0 pti2

suivie d'une rotation d’axe «# A p (ol u est le vecteur unitaire de 0 2) et d’angle 0.
C’est la généralisation de la transformation de M. JacoB et G. C. WICK, au cas des
masses nulles. A noter que la transformation /1, n’a pas besoin d’étre définie sur tout
I'hyperboloide et qu’elle peut étre non définie sur un ensemble de mesure nulle.

Si l'on induit U7, I'espace d’Hilbert de la représentation est formé des fonctions
détinies sur le cone, & valeurs scalaires et telles que:

3
[ ZP R < + oo
et la représentation du groupe de Poincaré s’écrira simplement:

(Ula, 4) F} (p) = eite U3(A71 A Ay,) F(A p) (1-26)
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Par contre sil'on induit la représentation U®” avecr > 0, 'espace d’Hilbert de la
représentation est I'ensemble des fonctions définies sur le cone, a valeurs dans 1'espace
d’Hilbert de la représentation induite (qui n’est plus un espace de dimension finie),
et telles que:

2R < + 00

ou § est I'espace d'Hilbert des fonctions périodiques, telles que:

2

f\f(9)|2%<+oo.

0

La forme de la représentation est alors:
{U(a, A) F} (p) = (elte U®" (A7 A A,,) F) (A7 p) . (I-27)

La structure des représentations et les isomorphismes entre les différentes formes
sont les mémes que dans le cas des masses positives, & condition de remplacer les
représentations D) par les représentations U’ ou U®" suivant le cas.

Dans la seconde partie, nous allons étudier plus particuliérement la forme (I-20)
des représentations du groupe de Poincaré.
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