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Nouvelles formes des représentations unitaires irréductibles
du groupe de Poincaré

I

par J. C. Guillot1) et J. L. Petit1)
Institut de Physique Théorique, Université de Genève, Suisse

(29 I 66)

Abstract. In this paper we study different forms of representations of the Poincaré group and
establish their interrelations. Starting with the induced representations by Mackey, we construct
explicitly the isomorphisms to the forms preferred by physicist defined on the space of functions
on a homogeneous space. As a particular case we find the representations of Wigner and specify
the arbitrary parameters involved. We then give different possible forms of representations defined
on either the Poincaré group or the Lorentz group. Finally, we specify the different conventions
which are used for different physical situations.

I. Introduction

Wigner, dans son célèbre article [1]2), a classé toutes les représentations unitaires
irréductibles du groupe de Poincaré ou groupe de Lorentz inhomogène. Elles sont
repérées par deux nombres : la masse et le spin. La manière dont ces représentations
sont réalisées est importante, par exemple dans les problèmes de cinématique relativiste,
car on sait qu'une particule libre de masse m et de spin / se transforme suivant une
représentation irréductible repérée par m et j. Wigner considéra une réalisation
particulière dans un espace d'Hilbert de fonctions définies sur l'hyperboloïde de masse
p2 m2, à valeur dans l'espace de spin. Une autre réalisation s'exprime à l'aide de
fonctions d'ondes tensorielles ou spinorielles satisfaisant des équations d'onde (par
exemple l'équation de Dirac et l'équation de Klein-Gordon). Mackey [2] a ensuite
généralisé à une grande classe de groupes la théorie de Wigner en définissant la
notion de représentations induites et nous nous proposons, à l'aide de cette théorie,
d'étudier une nouvelle forme des représentations irréductibles du groupe de Poincaré
réalisée dans un espace d'Hilbert de fonction définies sur le groupe. Plus précisément
les fonctions sont définies soit sur le groupe de Poincaré soit sur le groupe de Lorentz.

Cette forme nouvelle présente un certain nombre d'avantages. D'abord elle fait
jouer un rôle plus «dynamique» au spin, ce qui fournirait peut-être une introduction
naturelle à la théorie des pôles de Regge : cette idée a été développée par F. Lurçat
[3]. Ensuite elle permet d'effectuer des opérations mathématiques caractéristiques des

fonctions définies sur un groupe. Ainsi Wigner [12], pour traiter un problème de
diffusion multiple, considère une équation définie non dans l'espace des états de la
particule mais sur un groupe pour obtenir une équation comportant un produit de

x) Boursiers O.T.A.N.
2) Les chiffres entre crochets renvoient à la Bibliographie, page 299.
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convolution. De plus Toller [13] définit les amplitudes de diffusion sur un groupe afin
de pouvoir faire de l'analyse harmonique sur ce groupe et généraliser ainsi les

développements en ondes partielles. Enfin signalons que Moussa et Stora [14] considèrent
les représentations définies sur le groupe de Poincaré lorsqu'ils décomposent les
produits tensoriels des représentations irréductibles de ce groupe.

Nous commençons par donner un résumé de la théorie des représentations induites
basé sur plusieurs exposés auxquels nous renvoyons pour une étude mathématiquement

plus détaillée, [2, 15-18]. Néanmoins notre exposé diffère des précédents par le

fait que le groupe opère à gauche sur l'hyperboloïde (pß -> Aß p"), convention choisie
habituellement par les physiciens et surtout par la forme générale des isomorphismes
entre les représentations équivalentes. Nous donnons la définition de Mackey des

représentations induites. Nous montrons ensuite explicitement l'isomorphisme qui
lie la forme des représentations sur le groupe à celle des représentations sur l'hyperboloïde,

ainsi que la liaison avec la forme canonique de Wigner. Nous avons insisté
sur les arbitraires dont dépend l'écriture des représentations unitaires irréductibles,
arbitraires dont certains correspondent à une convention physique comme, par
exemple, le choix d'une base pour l'ensemble des états d'une particule. Enfin, dans le

cas du groupe de Poincaré nous avons explicité les différentes conventions possibles

pour les masses positives et les masses nulles.
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II. Notations

Nous allons donner quelques formules utiles pour la suite. (Pour plus de détails,
cf. [6]). Nous nous plaçons dans le système d'unités où % c 1.

La métrique employée est

g"r 0 si pt + v ; g00 - g11 - g22 - g33 + 1

et nous posons
7" fv, v); Vp= fv0; - v)

La représentation utilisée pour les matrices de Pauli est :

fA AA
Ainsi au quadri-vecteur p1' nous associons la matrice hermitienne p définie par

p° -p3; - fp1 - ip2)\

-CD

p p xß
" \- fp1 + i p%) ; p° + p* j (l-l)
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Donnons maintenant quelques propriétés des rotations et des transformations de

Lorentz pures.
Rotations: Nous noterons Rfn; 6) une rotation d'axe n et d'angle 0 quand elle

agit dans l'espace de Minkowski et A fn ; 6) une matrice 2x2 qui lui correspond dans

l'homomorphisme entre le groupe de Lorentz et S L(2; C).

cos ^ i sin y n3; — i sin — (n1 — i n2)

A (n; 6) \

i sin — fn1 + i n2) ; cos + — + i sin -=¦ n3

6 d
cos - — i sin — fn r)

x' — cos 6 x + (1 — cos B) fn x) n + sin 8 (n /\ x)

x'° x°

La formule donnant le conjugué d'une rotation est:

Rfn; 6) Rfnx; 6X) R-fn; d) RfRfn; 6) nx; df)

Lorentz pure: Nous noterons L(%;m) la transformation de Lorentz pure d'axe m
et de vitesse v th i dans l'espace de Minkowski et A (% ; m) une matrice 2x2 qui lui
correspond dans S Lf2; C).

ch -| — sh A m3; — sh "j- (m1 — i
A. (%; m) =-, j

" "
=- ch \ _ sa A. (m T)

sh A- (m1 + i m2) ; ch ~- + sh -j- m3
2

x' x — (1 — eli x) (xm) m + xa sh xm.
x'° ch x x° + (m x) sh x

Nous utiliserons aussi les formules suivantes :

A(n; 6) Af%; m) Afx; Rfn; 6) m) Afn; d)

Afx; m) Afn; 6) Afn; 6) A(%; R~\n; 6) m) (1-2)

Donnons maintenant quelques définitions pour les opérateurs de l'algèbre de Lie.
Si L est une rotation infinitésimale de paramètres fn; 6), on posera:

UfL) l-idnJ
si L' est une Lorentz pure infinitésimale de paramètres fx; m) :

UfL') 1 -ixmN
Si a est une translation infinitésimale de paramètres ax :

Ufa) l + i Pa aa

Définissons maintenant l'opérateur «de spin» introduit par Pauli

W= l-e»vs*PvMeÀ
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où nous avons posé

tfk MkO Ji __ Mkl

ce qui nous donne en explicitant

W° P-J W=P0J-PAN
Les opérateurs 5* sont les générateurs des transformations infinitésimales de la
représentation D1-^ du groupe des rotations.

Si Rk est une rotation infinitésimale d'angle 0 autour du /Veme axe, nous avons:

LW fRk) 1 - i 6 Sk.

Donnons pour finir une relation utile liant les matrices Z)(î) et les opérateurs Sk.

Z Djb (R) St Dfd (Ä-i) Z (R-Y1 Slad (I-2bis)
-)<b,c<+j l-l

III. Résumé de la théorie de Wigner-Mackey

A. Notion de représentations induites

Quelques rappels concernant les groupes localement compacts

a) Mesure de Haar invariante à gauche sur G

Les groupes que nous considérons par la suite seront tous des groupes de Lie, donc
à fortiori des groupes localement compacts ; ils sont caractérisés par l'existence d'une
mesure positive, non nulle et invariante à gauche, définie sur les boréliens de G. En
fait, cette mesure n'est pas caractérisée uniquement, et deux mesures invariantes
à gauche sont proportionnelles. Il existe aussi des mesures invariantes à droite.
On fera le choix d'une mesure invariante à gauche (qu'on appellera alors mesure
de Haar invariante à gauche, soit dg).

On a donc :

ff(g0g)dg=ff(g)dg V ,eG.

Mais dg n'est pas en général invariante à droite et on a par définition de AG(g)

J ffg gf1) dg AGfgo) Jffg) dg.
G G

Cette égalité peut s'écrire plus symboliquement

dfg gf AAgf dg

Acfg0) est la fonction modulaire de G qui vérifie:

Mgi) Msè Mgi gè # (^Zteo) e R+)
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Si g —^ ffg) est sommable, g ->/(g-1) l'est aussi et on a:

//fe-1) dg /7(g) ziGfeZ rfg

G G

qu'on peut aussi écrire :

dfg-i)=AGfg)-1dg.

Si A 1, c'est-à-dire si dg est invariante à droite et à gauche, le groupe est dit uni-
modulaire. Comme exemples il y a les groupes discrets, abéliens, compacts, les groupes
de Lie semi-simples. En particulier le groupe de Lorentz et le groupe des rotations sont
des groupes unimodulaires.

b) Notion d'espace homogène

Soit G un groupe topologique, r un sous-groupe fermé contenu dans G; l'espace
homogène X G/F, ensemble des classes à droite modulo F, est muni de la topologie
quotient (i.e. U C X est ouvert si et seulement si n^fU) est ouvert dans G), n est

l'application canonique qui à g associe sa classe d'équivalence g F qu'on notera aussi x.
Le système (G, F, X) est muni des propriétés suivantes :

A) X est un espace topologique sur lequel «G opère à gauche», c'est-à-dire qu'à
g e G, on fait correspondre un automorphisme de X sur lui-même noté g x où gfx)
tel que

gî fgi A (g2 gi) (x)

et (x, g) ->¦ g x soit continue.

B) G opère transitivement sur X, c'est-à-dire, quels que soient xx etx2eX il existe
au moins un élément g e G, tel que

x2 g xx

C) Il existe au moins un^eZ dont le stabilisateur (c'est-à-dire le sous-groupe de
G tel que g x0 x0) soit r.

Il suffit de faire opérer G par translation à gauche : g0 r g-> (g g0) F et de prendre
pour x0 la classe de l'identité pour vérifier trivialement A, B, C.

La réciproque est très importante : Si G, r et X vérifient A, B, C, il est clair qu'on
peut définir un isomorphisme canonique 0 de G/T sur X tel que

0(nfg)) gxo

Ceci signifie que g e x est équivalent à g0 x0 x. 0 est continu, lorsque G//1 est muni
de la topologie quotient.

En particulier si G et X sont localement compacts et si G est separable, 0 est alors
un homéomorphisme de GjF sur X. On sera toujours dans ce cas par la suite.

Remarques: 1. SiG,r,X vérifient les 3 conditions A, B, C ; G, g r g-1, X les vérifient
aussi et X est alors isomorphe à G/g r g-1. Nous voyons donc que pour déterminer cet
isomorphisme, nous avons le libre choix du point x0 et de son stabilisateur, car par
suite de la condition B, les stabilisateurs de deux points distincts sont deux sous-

groupes conjugués, donc isomorphes.
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II. G n'opère pas toujours transitivement, dans ce cas on considère la partition
de X en classes d'intransitivité ou orbites. Une orbite est l'ensemble des éléments de

la forme g x pour g parcourant G, x étant un élément fixe de X.

c) Mesure quasi-invariante sur un espace homogène

Si X est un espace homogène, on définit le translaté à gauche d'un sous-ensemble
A par g e G, comme l'ensemble des éléments g x où x e A et on le note g A. On

supposera désormais A" et G localement compacts et séparables.
Soit dptfx) une mesure positive sur X, la mesure dptfg x) sera définie par:

f ffx) dptfg x) J/(g_1 x) dptfx) pour toute fonction continue à support compact.
X X

En général, il n'existe pas de mesures invariantes sur X, aussi est-on contraint
d'introduire la notion de mesure quasi-invariante par G définie sur X: une mesure
positive dptfx) sur X est dite quasi-invariante si elle est non nulle et si dptfg x) est

équivalente à dpt(x) pour tout g e G. dptfg x) et dptfx) ont les mêmes ensembles de

mesure nulle, ou ce qui revient au même, il existe une fonction f(x) > 0, localement
sommable par rapport à dpt(x), différente de zéro dptfx)-presque partout et telle que

dptfg x) =f(x) dfifx).

Le théorème suivant nous permet de déterminer les mesures quasi-invariantes:
Théorème: G étant un groupe localement compact separable, r un sous-groupe

fermé de G et X GjT, il existe sur X des mesures quasi-invariantes. Deux mesures
quasi-invariantes sont équivalentes et on les obtient toutes de la manière suivante:
soit g(g) une fonction définie sur G, borélienne, strictement positive, localement
sommable et vérifiant pour tout y E F

où AG et Ar sont les fonctions modulaires des groupes G et r. A q (g) est associée une

mesure quasi-invariante et une seule dptfx) sur X définie par:

fffg) Q(g) dg j dptfx) j ffg y) dy
G X f

et vérifiant :

dptfg' x) -e{JJ dptfx)

où g appartient à la classe x.

Remarque: Tout élément g peut s'écrire g A-y avec y g J1 et la solution générale
de l'équation fonctionnelle définissant q est :

Il peut néanmoins exister des mesures invariantes sur certains espaces homogènes et le
corollaire suivant précise les conditions de l'existence de telle mesures.
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Corollaire: Pour qu'il existe sur X une mesure invariante, il faut et il suffit que
A rfy) AGfy) pour tout y e T. Cette mesure est unique à une constante près. Dans
ce cas, on peut prendre q rl.

Remarque: Dans le cas des groupes de Poincaré et de Galilée, nous aurons toujours
une mesure invariante sur GjT car G et F seront des groupes unimodulaires ; ainsi la
fonction Q(g) n'apparaîtra jamais. Par contre, cette fonction peut apparaître dans des

cas très importants, comme celui, par exemple, de la série fondamentale du groupe
de Lorentz.

B. Représentation unitaire induite

Soient G un groupe localement compact separable, r un sous-groupe fermé et

y -> L(y) une représentation unitaire de F dans un espace d'Hilbert .§ separable.
Considérons l'ensemble des fonctions /(g) définies sur G, à valeurs dans §> vérifiant

les conditions suivantes:
1) Pour tout v g 9), la fonction g -> < /(g), v > est mesurable pour dg;
2) f(g y) L-i (y) f(g) pour tout y G T et tout g g G ; (1-3)
3) S II f(g) II2 dpt(x) < + oo où dpt(x) est une mesure quasi-invariante; on démontre

Gir
très aisément à l'aide de la condition (1-3)2) que \\f(g) ||2 est une fonction de classe.
On montre que l'ensemble de ces fonctions muni d'une structure d'espace vectoriel
évidente est un espace d'Hilbert (donc complet) pour le produit scalaire suivant :

<Â,fz> [<fifg).Ug)>drt*
Gir

Remarque: En fait, les éléments de l'espace d'Hilbert sont les classes d'équivalence
de fonctions presque partout égales: on note cet espace d'Hilbert £%..

On définit une représentation unitaire de G dans £,(§>%) de la manière suivante:
à go G G, on fait correspondre GUL(g0) transformation qui à tout élément /g§£ fait
correspondre: {Gc7L(g0) /} (g) pfe)"1'2 ßfeZ g)V2f(gf1 g) où g(g) est la fonction
associée à la mesure dpi. On vérifie immédiatement que GULfg0) f G §£ et que la
transformation ainsi définie est bien unitaire. Cette représentation qu'on note GUL
est appelée la représentation induite à G par L.

Cette forme des représentations induites n'est pas habituelle aux physiciens.
Nous allons étudier maintenant en détail l'isomorphisme qui permet de revenir à la
représentation définie «sur les fonctions d'onde» c'est-à-dire sur les fonctions définies
sur un espace homogène qui est, dans le cas du groupe de Poincaré, l'hyperboloïde de

masse p2 m2.

Pour cela, considérons l'espace L^fG/T; §) c'est-à-dire l'ensemble des fonctions
définies sur G/T, à valeurs dans .§ et vérifiant :

f \\F(x) \\2 dptfx) < +00.
GJr

L'isomorphisme de §£ sur L2ffG\F; §>) se construit de la manière suivante: soit
g -> Bfg) une fonction définie sur G à valeurs dans les opérateurs unitaires de §,
vérifiant la relation B(g y) L_1(y) Bfg) (1-4) pour tout y G F et tout g 6 G.

Si F g L^(G/.r;<5) la fonction ffg) définie par ffg) Bfg) Ffx) appartient à $£
comme on peut le vérifier, B(g) étant unitaire (g appartient à la classe x).
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De plus, cette correspondance est une isométrie, car

'dptfx) J ||/(g) \\2d/j,(x)Ffx) N2,

GIT GIL

Réciproquement, si fe jrjG, la fonction F définie par

F(x) ß(g)-Vfe)

est bien une fonction de classe et elle appartient à L2fiß\F; §). Ainsi, on a défini un
isomorphisme entre Srf: et L^fG/T; $), le transformé deGULfg0) par cet isomorphisme
est l'opérateur obtenu par le schéma suivant :

Ffx)
K-

-? Bfg) F(x)

uHge)
t t

ôfgA^Qfgf'gA'BfgA'Bfgf^g) F(g^x) < Qfg)-V2o(gfigA2Bfg0ig) Ffg^x)
B(g)-1

Va représentation induite s'écrit donc dans l'espace L2 fGjT; Sf)

fGuLfg0) F) fx) e(g)-wefg0igA2Bfg)-*s(g-ig) f^x). (i-5)

Cette formule devient dans le cas d'une mesure invariante (g 1) :

fGULfg0) F) fx) Bfg)-* Bfgf* g) F(g-i *) (1-6)

C'est sous cette forme que se présentent ordinairement les représentations unitaires
du groupe de Poincaré. C'est aussi cette forme qui apparaît dans les applications du
théorème fondamental concernant les systèmes d'imprimitivité. Nous nous limiterons
désormais au cas où sur X peut être définie une mesure invariante, c'est-à-dire que la
fonction q (g) sera désormais constante et normalisée à l'unité. Evidemment les
formules que nous écrivons ne seront que des cas particuliers d'un cas général qu'on
pourra aisément déterminer en se référant aux textes cités dans l'introduction.

Choix de la fonction B(g)

On peut très facilement préciser la forme de la fonction 23(g) vérifiant la condition :

B(gy) L-Hy)B(g); yeT
En effet, il suffit de remarquer que, par suite de cette condition, la valeur de la
fonction B(g) pour g e x est déterminée pour tous les éléments d'une classe
d'équivalence lorsqu'on connaît sa valeur pour un élément de la classe.

Plus précisément soit x0eGjF le point stabilisé (i.e. la classe de l'identité).
Notons Ax un élément du groupe qui à x0 fait correspondre x. En général, il y en a une
infinité, car tout élément de la classe possède cette propriété. Supposons donc que
pour tout x nous ayons fait un choix Ax. Alors tout élément g e x s'écrit d'une manière
unique sous la forme

g AAAAg).
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Or Af1 g est un élément du stabilisateur, donc

Bfg) L-i (/I-i g) B{A) L{g-iAx) BfAx)

Va. forme générale de la représentation induite est donc

Ffx) -> B-\AX) £(4,-i g0.4,-0 B(Ag-ix) F(g0*x) (1-7)

On vérifie immédiatement que 4Z g0Ag-ix est un élément du stabilisateur de x0.
Aussi l'écriture de cette forme de représentation induite dépend de deux

arbitraires :

1) Le choix d'un élément Ax, qui est un représentant de chaque classe d'équivalence.

2) Le choix de la fonction B(g) ou ce qui revient au même, de la valeur de Big) pour
le représentant choisi dans chaque classe d'équivalence. Dans tous les cas physiques,
le choix de Ax est équivalent au choix d'un axe de quantification pour le spin et ce
choix fait, on considère une fonction B(g) telle que

B(Af 1 pour tout x

Va représentation prend alors la forme plus simple

F(x) -> L(Af* g0 4,-0 F(g-i x) (1-8)

C'est la forme de Wigner ou forme standard associée au choix de Ax, qui n'est
qu'une particularisation de la forme générale.

Deux choix différents de fonctions 73(g) se traduisent par des représentations
unitairement équivalentes puisqu'une fois Ax fixé, toutes les représentations sont
équivalentes à la forme standard.

A cause de la condition (1-4), la représentation (1-6) est indépendante du représentant

choisi, soit de Ax, pourvu que l'on conserve la même fonction Bfg). Mais si l'on
veut conserver la forme standard, il est évident que l'on modifie la fonction Bfg),
lorsqu'on passe de 1AX à %AX et le passage d'une forme à l'autre se traduit par
l'isomorphisme suivant:

Ffx) -> £-1(14-12AX) Ffx) (1-9)

et la représentation passe de la forme

{GULfg0) F} (x) £(7l;ig0i4o-0 Ffgfix)
à la forme

{GULfg0) F} fx) £(Mji g0 VL-!,) F(g0-i x).

C. Système d'imprimitivité
Il est nécessaire d'avoir un critère qui permette de savoir si une représentation

unitaire est induite ou si elle est équivalente à une représentation induite. La notion
de système d'imprimitivité et le théorème fondamental de Machey répondent à un tel
besoin. Mais auparavant, il nous faut rappeler la notion de mesure spectrale:

19 H. P. A. 39, 4 (1966)
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Soit X un espace topologique localement compact. Une mesure spectrale sur X
associe à tout ensemble borélien E C X un sous-espace hilbertien d'un espace
d'Hilbert § noté PfE) ou encore le projecteur orthogonal sur le sous-espace (on
confondra les deux notions) avec les propriétés suivantes :

1) PfX) I.
2) Si Ex, En, sont disjoints deux à deux,

PfEx), PfEn), sont orthogonaux et on a

P fU En) =-Z P(En) ¦

n n

Si Ex, E2 sont deux boréliens quelconques, on a donc

PfEx n E2) PfEf PfE2) et Pfcf>) 0

où ^ est l'ensemble vide.
Ceci est le point de vue ensembliste. Le point de vue fonctionnel est le suivant:

Soient x et y des éléments de §, on définit une mesure bornée pi sur X en posant

^JE) < PfE) x, y >

pour tout borélien E Q X ; une telle mesure se prolonge aux fonctions boréliennes

complexes bornées sur X, ensemble qu'on notera BfX) ; on a évidemment

\h,y(E)\ < 11*11 IMI ¦

Pour toute fonction/g B(X), ptXi!/(f) S ffz) dptxy(z) définit une forme sesquilinaire
en x et y et bornée : x

\f*x,yff)\ < H/IL ||*|| IMI-

Il existe donc un opérateur linéaire continu P(f) défini sur tout <rj tel que

< P(f) x,y} ptxJf)

L'application / -> Pff) est linéaire et diminue les normes; elle est multiplicative,
c'est-à-dire que

Pff g) Pff) Pfg)

et P(T) Pf(f)

Notion de système d'imprimitivité

Soient G un groupe, U une représentation unitaire de G dans un espace d'Hilbert §>.

Un système d'imprimitivité de U est constitué par le couple (X, P) formé par un
espace localement compact X sur lequel G opère et d'une mesure spectrale P définie
sur X, à valeurs dans L (§) telle que :

Ufg) PfE) (7(g)"i Pfg E) (1-10)

pour tout g G G et tout borélien E. X est la base du système d'imprimitivité.
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Equivalence

Si U' est une autre représentation unitaire de G dans un espace d'Hilbert jrj' et si

fX, P') est un système d'imprimitivité de U', la paire fU, P) est dite équivalente à la
paire fU', P') s'il existe un isomorphisme 0 de § sur %>' transformant U en U' et
P en P', soit:

U'fg) 0 Ufg) 0-1 PfE) 0 PfE) 0-1.

Système d'imprimitivité canonique associé à une représentation induite

Soient G un groupe localement compact separable, F un sous-groupe fermé de G,

L une représentation unitaire de r dans §> et GUL la représentation induite à G, $>G

étant l'espace d'Hilbert de cette représentation. On associe à GUL un système
d'imprimitivité basé sur X Gjr en faisant correspondre à tout borélien de G/T le

P(E)
projecteur PfE) défini par f(g) e §>% P(E) ffg) fB(x) ffg) où tpE(x) est la
fonction caractéristique de E. On vérifie immédiatement l'égalité (1-10) pour U GUL
et PfE) ifEfx). C'est le système d'imprimitivité canonique associé à GUL. Or
G. Mackey a montré que réciproquement, toute représentation unitaire de G possédant
un système d'imprimitivité basé sur X Gjr sur lequel G opère transitivement est

équivalente à une représentation de la forme GUL où £ est une représentation unitaire
de£.

Plus précisément on a le théorème fondamental suivant :

Théorème: Soit G un groupe localement compact separable et r un sous-groupe
fermé de G. Soit U une représentation unitaire de G et P' une mesure spectrale basée

sur X Gjr, telle que fP', X) soit un système d'imprimitivité pour U, G opérant
transitivement sur X.

Il existe alors une représentation unitaire £ de F, telle que la paire fP', U) soit
équivalente à la paire (P, GUL) où P est la mesure spectrale du système d'imprimitivité
canonique de GUL.

Si Lx et £2 sont deux représentations unitaires de jTet PX,P2, les mesures spectrales
des systèmes d'imprimitivité canoniques de GULl et GUL2, les paires (Px, GULl) et
(P2, GUL2) sont équivalentes, si et seulement si Lx et £2 sont équivalentes.

D. Représentations unitaires irréductibles des groupes possédant
un sous-groupe abélien distingué

Nous allons considérer maintenant les groupes possédant un sous-groupe abélien
distingué et esquisser la théorie qui permet de montrer que toutes leurs représentations
unitaires irréductibles sont des représentations induites. Soient donc G un groupe
localement compact separable et H un sous-groupe abélien distingué et fermé de G.

Nous allons auparavant rappeler quelques résultats concernant les groupes abéliens
localement compacts.

On entend par caractère d'un groupe abélien H localement compact, toute fonction
continue h, définie sur H à valeurs dans les nombres complexes de module 1 et telle que

h(hxh2) h(hx)h(h2).
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L'ensemble des caractères d'un groupe, appelé le dual de H et qu'on notera H, est un

groupe qu'on peut rendre localement compact. Le dual de H s'identifie à H (i.e.

H H). On écrit hfh) ih, h y pour respecter la symétrie entre H et H.
En particulier, si H est isomorphe à R", il en est de même pour H, et si h

fxx, ,xfi et h= (yx, jjona
< h, h > exp i {xx yx + ¦•¦ + xn y„}

Le théorème concernant les représentations unitaires des groupes abéliens est le
suivant :

Théorème: Toute représentation unitaire U de H dans un espace d'Hilbert § est

définie par une mesure spectrale P sur H à valeur dans § de la manière suivante :

Ufh) Pfh).

Pfh) est unitaire, car | h | 1. Ceci signifie que Ufh) est l'opérateur correspondant

par P à la fonction de h -> < h, h >. Plus explicitement, si on désigne par pi la
mesure ptxAE) < PfE) x, y >, on a

< Ufh) x, y > f < h, h > ip (h) (Ml)

A toute représentation unitaire de G est associé un système d'imprimitivité basé sur H

Rappelons qu'un système d'imprimitivité est constitué d'un espace homogène
sur lequel G opère et d'une mesure spectrale basée sur cet espace homogène.

1) G opère dans H de la manière suivante: h ->¦ g h avec < g-1 h, h > (h, g h g-1 >

(1-12) et là intervient l'hypothèse fondamentale que H est distingué. (Remarque :

H opère trivialement dans H).

2) En tenant compte du théorème précédent qui nous fournit une mesure spectrale P
en restreignant la représentation U à. H, on vérifie immédiatement que

7(g) PfE) Ufg)-i Pfg E)

Mais on ne peut pas nécessairement identifier U à une représentation induite,
puisque le groupe G n'opère pas transitivement sur H. Ceci nous amène à considérer

de plus près les orbites de H sur lesquelles, par définition, G opère transitivement.
La théorie qui va suivre ne s'applique pas à tous les groupes possédant un sous-groupe
abélien distingué; il est nécessaire que celui-ci «opère régulièrement dans H» condition

supplémentaire sur les parties boréliennes de H vérifiée par le groupe de Galilée et le

groupe de Poincaré comme l'a montré G. Mackey.
Donnons maintenant un résultat très important :

Si U est irréductible, P est «portée)) par une orbite, c'est-à-dire que tout se passe comme
si, vis-à-vis de la mesure spectrale, H se réduit à cette orbite qu'on notera Qv.
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Maintenant, que du point de vue de la théorie de la mesure, H se réduit à une
orbite et que G opère transitivement sur Qv on peut appliquer le théorème de
G. Mackey.

Ainsi si h0 G Qv et si £ est le stabilisateur de h0, ÛL, est isomorphe à G/£. P peut
être considéré comme une mesure spectrale sur Qv et on a alors un système
d'imprimitivité basé sur un espace homogène. Le théorème fondamental de G. Mackey
nous apprend que fU, P) est isomorphe à fGUL, P') pour une représentation £ de £,
P' étant la mesure spectrale canonique associée à GUL. Comme U est irréductible,
il en est de même pour £.

La représentation £ n'est pas quelconque et on peut préciser sa restriction à H qui
doit être:

£(A) <Â0,A> (1-13)

ce qu'on traduit en disant que la restriction de L k H est un multiple de A0.

Evidemment la réciproque nous intéresse beaucoup pour la construction des

représentations irréductibles.
Théorème: Si û est une orbite de H, h0eQ et rie stabilisateur de A0, pour toute

représentation irréductible £ de £ dont la restrictive à H est un multiple de A0,

GUL est irréductible et l'orbite correspondante Qvl Q.
G

Nous allons considérer maintenant le cas plus particulier d'un produit semi-direct
d'un sous-groupe abélien distingué et d'un sous-groupe fermé K. Donc, par définition,
tout élément de G peut s'écrire d'une façon et d'une seule sous la forme h ¦ k avec
h e H et k g K.

Comme H opère identiquement dans H, l'action de G sur H se réduit à celle de K.
Ve stabilisateur de A„ est donc de la forme H Fx, Fx étant un sous-groupe fermé de K.
De plus les représentations unitaires de F dont la restriction à H est un multiple de A0

sont déterminées par les représentations unitaires de rx, c'est-à-dire ont la forme
suivante

L(y) - < K, h > Lfyf (M3)bis

où y h yx (yx e rx) et Lx est une représentation unitaire de rx. Donnons quelques

remarques qui nous aideront à préciser la forme de la représentation

1) Q ~ H KjH rx ~ Kjrx. ;

2) Une mesure p définie sur Q, invariante par K l'est aussi par G H K puisque H
opère trivialement sur Q.

3) Si on connaît la fonction B (k) pour le groupe K, elle est déterminée pour tout
élément du groupe. En effet:

B(g) B(h k) B(k k-1 hk) Lfk-1 h-1 k) Bfk) < k h\, h-1 > Bfk)

la fonction B (k) vérifiant la relation :

Bfkyx) L-fyx)B(k)YYxerx
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Ces remarques permettent de ramener le problème de la construction de la
représentation induite au problème correspondant sur la «partie homogène» K, c'est-à-dire
de lier GUL a KUL\ En effet, par définition de la représentation induite, nous avons:

{GULfgfi F} (h) £(g)-i /3(g0-i g) F(g-i h)

où

gh0=h.

Donc en posant g h k, k e K et g0 h0 k0, de l'égalité g h0 k h0 h nous tirons

{GUjg0) F} fh) Bfk)-^Bfkf^h^k) F(k^h)

(h,h0y Bfk)-1 Bfkr i k) F(A0-1 A)

< i h0 > fKULfk0) F) fh)

Nous obtenons ainsi la formule importante suivante :

{GuLfgo) f) (h) < h,k> (KuHh) F) fh)

avec

g0 h0 k0

On voit que pour écrire les représentations unitaires irréductibles d'un groupe
possédant un sous-groupe abélien distingué, il est nécessaire de suivre les étapes
suivantes :

1) Chercher toutes les orbites de H.

2) Pour chaque orbite, faire un choix du point stabilisé et déterminer le stabilisateur
correspondant.

3) Ensuite déterminer les représentations irréductibles du stabilisateur dont la
restriction H est la forme (1-13).

4) Induire ces représentations au groupe G.

Mais au lieu de réaliser les représentations irréductibles dans l'espace L^(G/£, §),
on peut revenir à la première forme et les réaliser dans l'espace jrjg auquel cas elles

s'écrivent très simplement

/fe) So^Z^feo)/}fe)=/feo1g)-

Mais dans le cas d'un produit semi-direct, le comportement de la fonction ffg) est

connu dès que l'on connaît cette fonction sur le groupe K par suite de la condition
imposée à ces fonctions, en effet :

/fe) /(â k) f(k A-i h k) £(A-i Â-i k) f(k) < k Â0, Â-i >/(£)

évidemment ffk kx) Lx1fkf ffk).
Ceci nous amène à nous restreindre à l'espace $>^ au lieu de considérer §£.
Montrons en effet qu'il existe une correspondance biunivoque entre les représentations

GUL et KULl: dans §£, la représentation s'écrit ffg) ->/(g<Z g). Si on veut
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considérer §|> on doit faire apparaître le comportement des fonctions / sur la partie
homogène K en s'aidant de la condition, soit plus précisément :

< k Â0, A-i >/(£) »-*»*"->/(&-* A"1 A k) /(A"1 k A-i A-i A k)

< A A~0, A0 Â-i >/(A0-i A) < A Ao, A"1 >< * Â0, Â0 >/(A~i A)

Nous en déduisons que la fonction /(A) se transforme de la manière suivante:

ffk) »-** ><AÂo,A0)/(A-iA)

qui n'est autre que la forme de la représentation #£/7 Ainsi l'isomorphisme entre
cl7 et X(7Ll s'écrit-il:

/(*)-*/(¦?) <*Âo.A-1.>/(A) /fe)-*/(*) =<**o. * >/fe). I1"15)

E. Le groupe de Poincaré

Le groupe de Lorentz £ est l'ensemble des transformations linéaires réelles qui
laissent invariante la forme bilinéaire de R4

x y x° y0 — x y
qu'on notera

y A x ou y A% x".

On se limite aux transformations de déterminant égal à 1 et telles que A% > 1,

c'est-à-dire à la composante connexe du groupe. Le groupe de Lorentz inhomogène
ou groupe de Poincaré, que nous noterons G, est formé des transformations y11

A% xv + a1* et il est muni de la loi de composition suivante :

fa; A) fa'; A') (a + A a', A A').

C'est le produit semi-direct du groupe de Lorentz restreint par un sous-groupe
abélien distingué à 4 paramètres H.

G Hx fi.
Dans le cadre de la mécanique quantique, la nécessité d'obtenir des représentations

projectives, c'est-à-dire avec «facteur», nous oblige à considérer non le groupe de

Poincaré lui-même, mais son recouvrement universel qu'on appellera encore groupe de

Poincaré. Ce groupe n'est autre que le produit semi-direct du recouvrement universel
du groupe de Lorentz, soit S £(2, C) par H, le sous-groupe abélien distingué des

translations de l'espace-temps.
Le dual de H est constitué par l'ensemble des vecteurs p de R4 munis du produit

scalaire,

pp' p°p'° - p p'
et

< h, A> e'i>a.
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Le groupe des translations de l'espace opère trivialement dans H; seul S £(2, C) opère
de la manière suivante :

A p on associe la matrice 2x2 hermitienne

/ po _ p3. _ (£1 _ i pi) \

\- fp^ + ip2); po + p3 )'
Si A g S £(2, C), A p est le vecteur correspondant à la matrice hermitienne

/ P°-P3; -fp1-ip2)\
A[ 4

y-fp^ + ip2); p« + p3 J

où A^ désigne la matrice adjointe (transposée, conjuguée).
Les orbites de H et les stabilisateurs correspondants, déterminés à un isomorphisme

près, sont bien connus, (cf. par ex. [1]). Nous ne considérerons que les orbites P2 > 0

et nous commencerons par étudier l'orbite P2 m2 fm2 > 0) ; P° > 0. Le stabilisateur
0

de fm, 0, 0,0) p est 5 [7(2, C) et à chaque représentation irréductible unitaire de
S U(2, C) indexée par un entier ou demi-entier j, est associée une représentation
unitaire irréductible du groupe de Poincaré qu'on notera [m, j]. On désignera D('"'

la représentation unitaire de S U(2, C) qui opère dans un espace §2j+i de dimension
2 j + 1. Cette représentation décrit une particule élémentaire de masse m et de spin j.

L'orbite p2 m2 s'identifie au quotient S £(2, C)/S (7(2, C) ; c'est l'hyperboloïde
de masse.

La mesure (déterminée à une constante près) d3pjpa dpfp) est une mesure
invariante par S £(2, C).

Si l'on écrit les représentations dans l'espace L2(Q fp2 m2), §>2j+i) on doit se

donner à priori un champ de transformations de Lorentz qui à tout p associe une
0

transformation Ap telle que App p.
Jusqu'ici deux choix ont été considérés principalement

o

1) Ap est la transformation de Lorentz pure qui fait passer de p à p ce qui correspond
à la base canonique ou au formalisme canonique cf. (6, 11) soit:

mAP

f2 m (m A p")

où p est défini par (I-l).

4 -rrJJJJ^rr (1-16)

2) Ap est le produit d'une transformation de Lorentz pure qui fait passer de p à

(p0, 0, 0, | p |) et d'une rotation dans le plan (0 z, p) d'angle (0 z, p) qui à

(p°, 0, 0, | p |) fait correspondre le vecteur (p°, p).
Soit:

2

f2 m (m A- p0)

cos "- fm + p° — p) ; — sin — e~'v fm + p° + p)

^--,„ ; 1

„ „ (1-17)

e'f fm + p° -p); cos -J- fm + p°
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où (p, 6, cp) sont les coordonnées sphériques de p. Ce choix correspond à la base
d'hélicité (cf. [7], [8] et [9]). La forme bien connue des représentations considérées par
Wigner (ou forme standard) est :

(U(a, A) F) (p) e'*' DJ (Af1 A AA^p) FfA-1 p) (1-18)

le Ap correspond soit à un choix soit à l'autre. Considérons la représentation dans
l'espace §^' des fonctions ffA) définies sur S £(2, C), à valeurs dans §)2J+X telles que:

ffAA) DJfA-1) ffA) V A g S U (2, C) (1-19)

Sur un tel espace, la représentation s'écrit :

fUfa0, Afi f) (4 é^ffAf1 A). (1-20)

Si on considère maintenant les fonctions ffa, A) définies sur G, à valeurs dans

§2j-+1 et telles que:

fffa,A) fa', A)) e'"'^ D^fA-1) ffa, A) (1-21)

(cf. (1-3) et (1-13) bis) la représentation s'écrit alors simplement :

Ufa,, A,) f) fa, A)=f [fa,, A0) -1 fa, A)] (1-22)

Explicitons les isomorphismes dans ce cas: on passe de (1-18) à (1-20) par

ffA) D'fA-1Ap)Ffp)
0

où A appartient à la classe p fi.e. Ap p) et de (1-20) à (1-18) par

Ffp) DAAf1A)ffA)

on passe de (1-20) à (1-22) par

ffa,A) e-ia-A"ffA)

et de (1-22) à (1-20) par

f(A) eia-A$f(a,A).

Si Qp est un opérateur quelconque opérant dans L^fü fp2 m2); §>2j+i)-

Si QA est un opérateur quelconque opérant dans <rjg'.

Si Q0,A est un opérateur quelconque opérant dans $£».

On a ainsi les correspondances suivantes entre opérateurs qui nous seront très utiles
par la suite :

Qp Duy(A-1Ap)QADU)(A-1Ap) où Ap p

QA DU)-1 (Af1 A) Qp DU) (Af1 A) ; QaA r*-A* QA é"A*

Qa eia-Ap°
Qa.A e-ia-p°

; Qa>A e-"-A° DU)-1 (Af1 A) Qp DU) (Af1 A) eia-^

Qp f-Jf DU)-1 (A-1 Ap) QaA DU) (A-1 Ap) e-ia-A°p (1-23)
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Notons que, dans les formes (1-20) et (1-22) la masse apparaît par l'intermédiaire
de p2 m2 et de la condition imposée.

Remarque: Nous appellerons formalisme canonique la forme standard associée au
premier choix de Ap et formalisme d'hélicité celle associée au second choix.

L'orbite correspondant au cas m 0 est le cône épointé fp2 0; p #= 0; p0 > 0).
0

On choisit comme point stabilisé, le point p (1, 0, 0, 1) (c'est-à-dire la matrice
0

hermitienne p (q jj)). Le stabilisateur associé est le groupe spinoriel correspondant
à £2: le groupe des déplacements du plan. Dans la deuxième partie, nous considérerons
en détail les représentations de ce groupe. Rappelons seulement ici qu'il en existe
deux types: le premier qu'on notera U-> est indexé par un nombre / entier ou demi-
entier positif, négatif ou nul, et le second C7(e'r> par un nombre réel r > 0 et par
e= + lfe= + l sert à distinguer les représentations «single-valued» des représentations

«double-valued»). Le premier type permet de décrire les particules de masses
nulles et de spin fini. Le second type donne les représentations dites à «spin continu».

Comme dans le cas des masses positives, nous avons deux choix pour la trans-
0

formation Ap amenant le point stabilisé p sur p.

1) Le choix fait par A. S. Wightman (cf. [1]).

J/J p1-ip2
yp"ApA\=\ '"- V2J^P* j (1-24)

ypypf
1/7

dn

4 =1 1 (!-25)

2) /cos JJ p-1'2 ; - sin J- fp)1'2 e-"?

sinp-^e""; cos J- P+1'2

où (p, 6X cp) sont les coordonnées sphériques de p. Cette transformation n'est rien
d'autre que le produit d'une transformation de Lorentz pure qui fait passer de (1,0,0,1)
à (p, 0, 0, p) soit Lp\

\ 0 P+1!2)

suivie d'une rotation d'axe u A p (où u est le vecteur unitaire de 0 z) et d'angle 0.

C'est la généralisation de la transformation de M. Jacob et G. C. Wick, au cas des

masses nulles. A noter que la transformation Ap n'a pas besoin d'être définie sur tout
l'hyperboloïde et qu'elle peut être non définie sur un ensemble de mesure nulle.

Si l'on induit Uf l'espace d'Hilbert de la représentation est formé des fonctions
définies sur le cône, à valeurs scalaires et telles que:

*-y | F(p) \2 < + oo

et la représentation du groupe de Poincaré s'écrira simplement :

{Ufa, A) F) fp) e'P' WfAf1 A AA.lp) FfA-1 p) (1-26)
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Par contre si l'on induit la représentation U^'ï avec r > 0, l'espace d'Hilbert de la
représentation est l'ensemble des fonctions définies sur le cône, à valeurs dans l'espace
d'Hilbert de la représentation induite (qui n'est plus un espace de dimension finie),
et telles que:

f^-\\F(p)\\%<+oo
où § est l'espace d'Hilbert des fonctions périodiques, telles que:

in

f\f(6)\2JJ<+oo.
0

La forme de la représentation est alors :

{Ufa, A) F} fp) fe'P" U^ fAf1 A AA.lp) F) fA-1 p) (1-27)

La structure des représentations et les isomorphismes entre les différentes formes
sont les mêmes que dans le cas des masses positives, à condition de remplacer les

représentations Z)(,) par les représentations W ou U1-"-^ suivant le cas.
Dans la seconde partie, nous allons étudier plus particulièrement la forme (1-20)

des représentations du groupe de Poincaré.

Bibliographie
[1] E. Wigner, Ann. Math. 40, 149 (1939).

A. S. Wightman, Les Houches, Relations de dispersion et particules élémentaires (1961).
[2] G. Mackey, Ann. Math. 55, 101 (1952).
[3] F. LuRçat, Physics 7, 95 (1964).
[4] P. A. M. Dirac, La théorie quantique des champs (Solvay meeting 1961), pp. 93 et 167.

[5] P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962).
[6] A. J. Mac-Farlane, JMP 3, 1116 (1962); JMP 4, 490 (1963).
[7] L. Michel et A. S. Wightman, Phys. Rev. 98, 1190 (1955).
[8] M. Jacob et C. G. Wick, Ann. Phys. 7, 404 (1959).
[9] C. G. Wick, Ann. Phys. 7, 65 (1962).

[10] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthiers-Villars (1957).
[11] A. Chakrabarti, Thèse, Faculté des Sciences d'Orsay, Mai 1965.
[12] E. Wigner, Phys. Rev. 94, 17 (1954).
[13] M. Töller, Nuo.Cim. 37, 631 (1965).
[14] P. Moussa et R. Stora, Boulder (1964).
[15] G. Mackey, Notes de Chicago (1955).
[16] Séminaire J. M. Jauch, CERN (1959).
[17] G. Emch, Helv. phys. Acta 36, 739 (1963).
[18] Seminaire George Rideau, Institut Henri Poincaré, Année 1964-1965.


	Nouvelles formes des représentations unitaires irréductibles du groupe de Poincaré. I

