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Phénomènes de transport dans les structures en couches

par R. Fivaz
Cyanamid European Research Institute, Cologny/Genève

(26 II 66)

Résumé. Certains composés semiconducteurs consistent en un empilement lâche de couches
planes dans lesquelles les atomes sont fortement liés. Une structure de ce genre a de nombreux
effets sur les propriétés des porteurs de charges, notamment sur leur spectre d'énergie, leur
extention spatiale et leur comportement dans le cristal élastique. On montre en particulier que les

porteurs ont tendance à être localisés dans les couches, mais qu'ils exercent en contre partie des
forces tendant à élargir les couches pour y diminuer l'énergie de localisation. Il en résulte une
interaction spécifique avec le réseau cristallin qui engendre les processus de relaxation dominants
à haute température. Des mesures de résistance électrique et d'effet Hall relevées sur plusieurs
composés ayant la structure envisagée confirment l'existence de cette interaction avec les modes de
vibration optique qui décrivent l'épaisseur variable des couches.

Introduction

Parmi les cristaux semi-conducteurs connus, il existe une famille de composés
binaires dont la structure cristalline peut se décrire comme un empilement lâche de
couches planes distinctes, elles-mêmes formées de quelques feuillets monoatomiques
superposés. Comme exemple typique nous donnons à la figure 1 une vue perspective
de la structure d'un de ces composés, le GaSe, où la couche centrale est nettement
discernable des deux couches adjacentes. Dans ces couches minces, les atomes sont
étroitement liés par covalence, et les distances interatomiques ont les faibles valeurs
correspondantes (2,3 à 2,5 angstroms). En revanche, les atomes les plus voisins de deux
couches adjacentes ont entre eux de grandes distances supérieures à 3 angstroms et les
forces de cohésion, du type van der Waals, sont beaucoup plus faibles que dans les
couches. De la sorte, les composés cristallisant dans cette structure, que nous appelons
«en couches», se caractérisent à la fois par la bonne stabilité thermique découlant des

grandes forces de cohésion par covalence, et une extrême fragilité puisque la moindre
sollicitation mécanique tend à les cliver parallèlement aux couches.

Avec des modes de liaison aussi différents selon la direction, les atomes du cristal
s'entourent, à l'état fondamental, de distributions de charge locales extrêmement
asymétriques. Cette asymétrie concrétise le fait que les différentes directions de

l'espace dans les structures en couches sont loin d'être équivalentes comme elles le

sont approximativement dans les corps envisagés habituellement en physique du
solide. Cette non-équivalence requiert une représentation explicite dont la description
de la structure comme un empilement de couches discernables suggère une formulation
élémentaire: dans des couches assimilables à des films conducteurs homogènes,
l'énergie potentielle d'une particule est la somme d'une composante «verticale»,
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dépendant de la variable z selon la normale à la couche, et d'une composante
«horizontale», dépendant de deux variables équivalentes x et y selon deux axes
normaux dans le plan des couches. Nous supposons donc que la séparation des

variables est possible même dans les solides en couches réels et justifierons cette
hypothèse en confrontant avec l'expérience ses conséquences spécifiques sur les

propriétés de transport.

o^

ar

\ï\

Figure 1

Vue en perspective de la structure du GaSe

Dans les solides réels, le potentiel est en fait plus complexe que dans le modèle
ci-dessus: reflétant l'empilement caractéristique des couches les unes sur les autres,
il est alternativement bas dans les couches, où prévalent les forces de cohésion intenses
dues au partage des électrons de valence, et pratiquement nul entre les couches où les

liaisons ne proviennent que de relations de phase entre électrons distants. Il se

présente donc en gros comme une suite de puits profonds, juxtaposés dans la direction
verticale et séparés par des barrières élevées. Le fond des puits est en outre perturbé
périodiquement dans les directions horizontales par la présence des noyaux atomiques.

V(x,y,z)

x.-y

Figure 2

Représentation schématique du potentiel effectif
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Quelque peu idéalisé, ce potentiel aurait l'allure représentée à la figure 2 pour un cristal
ne comprenant qu'une paire d'atomes par cellule primitive; il n'est donc qu'approxi-
mativement assimilable à la somme de deux composantes séparées : l'une dépendant
de la variable verticale, z, a les grands gradients locaux nécessaires pour décrire la
suite des puits alternant avec les barrières, et l'autre, en x et y, préserve la périodicité
du potentiel exact dans le plan des couches avec des gradients locaux relativement bas.

Bien que les variables ne soient en fait pas strictement séparables, l'anisotropie du
milieu en couches conduit à un spectre d'énergie rappelant celui d'un modèle separable
car l'hamiltonien se compose de parties qui commutent au moins approximativement
entre elles. Il ressort ainsi des propriétés générales des fonctions d'onde d'intérêt
fondamental pour l'interprétation des propriétés physiques. Par ailleurs, la séparation
des variables permet de distinguer aisément les conditions de propagation des particules

qui diffèrent selon les directions : les mouvements dans les directions horizontales
relèvent de la dynamique des particules libres à masse effective comme dans les

arrangements atomiques serrés; dans la direction verticale, en revanche, l'opacité des

barrières de potentiel restreint considérablement la propagation des particules de

couche en couche ; ce mouvement vertical se prête plutôt à une formulation de tight-
binding avec très faible interaction mutuelle entre niveaux locaux contigus. Les

porteurs tendent en conséquence à se comporter dans le cristal en couches comme des

particules mobiles dans un empilement de couches indépendantes.
A la limite, les porteurs se trouvent donc confinés dans les puits de potentiel

portés par les atomes des couches. La mécanique quantique enseigne que, dans

l'approximation adiabatique, une particule localisée dans un puits exerce des forces

expansives tendant à écarter les parois du puits pour y diminuer la densité d'énergie.
Comme les couches sont en réalité déformables, en largeur notamment, par distorsion
élastique du réseau cristallin, le jeu de ces forces de nature quantique donne lieu à une
interaction porteur-réseau imputable à la structure même du solide en couches. Cette
interaction spécifique que nous appelerons «interaction quantique» est dominante par
rapport à celles liées à d'autres déformations du réseau puisqu'elle fait intervenir les

plus hauts gradients de potentiel disponibles. Elle engendre donc des processus de

relaxation spécifiques et identifiables dans des mesures de conductibilité en fonction
de la température.

En vue de comparaisons détaillées avec l'expérience, nous établirons théoriquement
les propriétés de transport spécifiques des structures en couches. Nous ferons ensuite
état des mesures de conductivité électrique et d'effets galvanomagnétiques relevées

sur divers composés de cette structure. Enfin, nous montrerons que la représentation
à variables séparées et le nouveau mécanisme d'interaction suggéré offrent une
interprétation cohérente des résultats expérimentaux.

1. Partie théorique

Dans cette partie, nous présentons un modèle basé sur l'hypothèse que le potentiel
effectif des porteurs dans les solides en couches autorise une représentation à variables
séparées des états propres de l'hamiltonien à un électron du cristal. Ces développements
théoriques sont uniquement destinés à faire ressortir les propriétés spécifiques des

structures en couches, à l'exclusion d'influences accidentelles liées aux variantes
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mineures de la structure des cristaux réels. C'est pourquoi nous considérerons dans
cette partie théorique le modèle d'un cristal en couches «idéal» où ne sont retenues que
les caractéristiques essentielles communes à tous les composés en couches réels que
nous examinerons.

Ce cristal modèle est défini comme l'empilement de couches planes identiques,
elles-mêmes formées d'une rangée unique de cellules unitaires juxtaposées sur un plan.
Les couches constituent l'élément primitif de symétrie de translation selon leur
normale de direction z, dite «verticale», et le pas dans cette direction est dz. Le réseau
des couches sera supposé carré, de pas dx dy selon les axes cartésiens du plan x y,
dénoté aussi par * et dit «horizontal». Sur une hauteur L sont empilées Nz L couches
de surface S contenant Ns S cellules primitives, de sorte que la densité des cellules
est N Ns Nz et le volume du cristal est V S L. Les cellules unitaires ont un plan
médian de symétrie horizontal et contiennent des atomes en petit nombre (2, 3 ou 4
suivant les cas), qui forment la base du réseau de Bravais défini par le vecteur de
réseau d. Ces atomes sont situés soit sur le plan de symétrie, soit par paires de même
espèce de part et d'autre de ce plan, et leur position dans la cellule est dénotée par des

vecteurs de base b.

Pour les vecteurs tels que n, position des cellules, ou p, impulsion, nous adoptons
la convention suivante, avec i, j, k les vecteurs unitaires sur trois axes cartésiens :

a, i ax+ j ay, az= k az, a asA- az ¦

Le vecteur position lui-même est décomposé suivant r s + z ix+jy+ k z.

Enfin la première zone de Brilloin du cristal idéal ainsi défini est un parallélépipède
rectangle de hauteur 2 tc %jdz suivant l'axe pz, à base carrée dans le plan ps, de côté
2 Tt %\ds selon les axes pz et p

2. Etats propres des porteurs

2.1. Postulat de séparation des variables

L'hamiltonien à un électron

n

a, comme de coutume, des états propres compatibles avec la symétrie de translation
du potentiel effectif, c'est-à-dire des états délocalisés de Bloch représentant la
propagation de la particule dans le cristal :

Bn | P > AP) IP > • (2-2)

Ces états, ainsi que les valeurs propres associées, ont une multiplicité correspondant
aux diverses bandes permises dans le spectre, que nous omettons ici afin d'alléger la
notation.

Comme nous le décrivons dans l'introduction, les effets spécifiques que nous
cherchons à représenter proviennent de la manière dont les hauts gradients de

potentiel locaux affectent les distributions locales de charge. Il convient donc de
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remonter au niveau cellulaire, ce qui peut se faire en toute généralité par le recours
à la transformation de Wannier [1]x) :

l">= ]/wZeipnlH\py- {23)
y p

Ces états | n >, qui constituent la description la plus localisée compatible avec la
symétrie de translation, sont des combinaisons orthonormalisées d'états subcellulaires,
c'est-à-dire des diverses orbites créées par la réunion des atomes constitutifs du cristal.
Nous explicitons le caractère asphérique de ces orbites en supposant que leurs
combinaisons cellulaires anfr) sont représentables au premier ordre par des produits
de fonctions à variables séparées :

\ny=anfr) ansfs)-anzfz). (2.4)

Cette forme séparée, qui approche les solutions exactes de l'hamiltonien, s'impose
naturellement comme une structure fonctionnelle d'essai convenant à l'évaluation
variationnelle des énergies propres. Le problème variationnel consiste à isoler dans le

potentiel cellulaire une composante Z dépendant seulement de z et une composante
v(r) dépendant des 3 coordonnées, mais dont la dependence en z est plus faible que
celle de Z :

Vfr) vfr) + Zfz) (2.5)

En fonction de ce mode de partition à priori arbitraire et considéré comme un
paramètre ajustable, on peut évaluer l'énergie sur la base d'essai (2.4), qui conduit
successivement à la séparation des états de Bloch :

I P > | Ps> | Pz >

\psy Nt-vt£e-*p,*J* \ny
"s

\pz> N-w]Ae-ip*n'ln \ nz > (2.6)

puis à la séparation de l'hamiltonien et de l'équation de Schrödinger:

H« - - [Ä] VÎ+Z~vfs- nf ; W„ | Ps > sfpf \ps>, (2.7a)
"s

^-[Äil+^f^"«); H"p*> =e^ \p>>> (2-7b>

ou

»(*)= <Pz \2JV(r-ni) \P*>- (2-8)^

Le calcul variationnel aboutit à une énergie totale

AP) efpz) + sfpf (2.9)

J) Les chiffres entre crochets renvoient à la Bibliographie, page 261.
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somme des valeurs propres des équations (2.7), qui prend une valeur minimale pour
un certain mode de partition que l'on peut appeler autocohérent dans cette formulation
à variables séparées. Cette somme reproduit les valeurs propres de l'hamiltonien
initial (2.1) avec une exactitude d'autant plus grande que le potentiel est plus proche
d'une superposition de composantes séparées. Il est donc clair que la partition
autocohérente du potentiel cellulaire attribue à la partie verticale Z(z) la forme d'un puits
profond absorbant la majeure partie du potentiel négatif disponible dans les couches.
L'autre partie non séparée v(r) contient essentiellement les fluctuations périodiques
détaillées du potentiel au voisinage des atomes (pseudopotentiels), ainsi que les

fluctuations du potentiel réel autour des parois moyennes décrites par la partie
verticale; puisqu'elle dépend peu de z, elle a, selon (2.8), une moyenne vfs) qui ne
dépend pratiquement pas de pz. Cette moyenne constitue avec Zfz) la définition
optimale de la superposition de composantes considérée dans l'introduction.

Même sans préciser davantage le mode de partition autocohérent, on voit que le
calcul des variations aboutit à une énergie optimale qui a, suivant (2.7) et (2.9),
l'expression formelle suivante :

sfp)= <p\HApy es + ez + e(p)

e, < ns\ Ha I ns >

«z < nz | H'a | nz >

\-i T 'P (" -n')/n \--i Te(p) Zl 7»,»;e s s s + Z Inzn
p (n -ti')lh x^i t iP (n -ft'J/Ä" * '

Q Z Z z

Insn's <"' \H% | ns>

Inzn'z= <n'JH% |»»>- (2.10)

On reconnaît dans ces formules les éléments de matrice qui sont l'extension sur la base
de Wannier des concepts de l'approche de tight-binding: les constantes es + ez sont
des énergies locales voisines des niveaux cellulaires dégénérés, tandis que / représente
des énergies de recouvrement entre cellules dans les différentes directions gouvernant
l'élargissement de ces niveaux en bandes de conduction.

2.2. Structure du spectre d'énergie

Si l'on tient compte maintenant de la double multiplicité des solutions complètes
provenant de la résolution séparée des deux équations aux valeurs propres (2.7), nous
sommes à même de constituer le spectre complet des états propres des porteurs dans le
cristal en couches. D'une part, l'équation (2.7b) a des valeurs propres formant un
système de bandes e"fpf, auxquelles correspondent des états propres | />* >. Chaque
valeur de l'indice v détermine une moyenne horizontale du potentiel différente selon

(2.8), vv(s). L'équation (2.7a) a donc d'autre part des valeurs propres à double indice
s^vfps), dont les états propres correspondants sont j p^" >. Complétées par ces indices,
les équations (2.6) et (2.9) s'écrivent:

e"r(P) efpfi + e?'(p,) (2.11)

Ip">Hä">ip:>. (2-12)
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Les états ont bien les propriétés d'orthogonalité voulues pour former un système de
bandes à double multiplicité :

<P""*'\p»*y ôpp,ôflfi,ovvl

<n'^'\n»y ònn,ò^,ovv, (2.13a)

Dans cette approximation de premier ordre, les fonctions d'états verticales sont
mutuellement orthogonales

<PJ \pvy àPzKòrv, (2.13b)

mais les horizontales ne le sont pas nécessairement :

<P?V |pr>*<W<^, (2.13c)

puisqu'elles sont solutions d'équations de Schrödinger différentes lorsque v' 4= v.
Ce défaut d'orthogonalité apparaît comme l'unique effet du premier ordre de la

partie non séparée du potentiel sur les états propres des porteurs; il joue un rôle
important seulement dans les propriétés physiques liées aux transitions des porteurs
entre différentes bandes du semiconducteur (par exemple dans les règles de sélection

pour l'absorption optique). En revanche, pour ce qui concerne les propriétés de

transport dans les bandes permises, la représentation séparée reste valable au premier
ordre même si le potentiel effectif comporte un reste irréductible à une superposition
de composantes à variables séparées.

2.3 Spectre d'énergie des bandes de conduction

Dans le spectre formel (2.10), des contributions séparées en ps et en pz définissent
les bandes partielles horizontales et verticales respectivement. C'est la forme requise
pour appliquer les différentes approximations caractérisant la propagation des porteurs
dans les structures en couches: les contributions horizontales relèvent de l'approximation

de la masse effective, qui est isotrope dans le plan des couches du cristal idéal,
tandis que la contribution verticale se prête à une formulation de tight-binding
classique. Explicitement nous écrivons

e(p) - 4 Is + (pl + pl)j2 ms-2Iz cos (pz djïï) (2.14)

Ici 4 Is et 2 Iz figurent les contributions séparées à l'élargissement des niveaux
cellulaires en bande et la somme — 4 Is — 2 Iz situe le fond de la bande de conduction,
où ms représente la résistance effective à l'accélération des porteurs parallèlement aux
couches.

L'approximation de masse effective se justifie aisément pour les problèmes de

transport parallèlement au plan des couches, car les liaisons fortes par covalence
donnent lieu à des bandes de grande largeur (quelques eV), bien supérieures aux
énergies d'excitation des particules dans le solide. En revanche, nous avons retenu
l'expression intégrale de tight-binding pour la contribution verticale au spectre, car
l'élargissement décrit par ce terme est très petit : en raison de la faible transparence
des barrières de potentiel entre les couches, cette énergie peut en effet être inférieure
aux énergies d'excitation des porteurs résultant, entre autres, de l'agitation thermique.
Il peut même arriver que Iz soit suffisamment petit pour que l'énergie ne dépende



254 R. Fivaz H. P. A.

pratiquement plus de l'impulsion verticale, ce qui représente le cas limite de couches
indépendantes où une approche purement bidimensionnelle suffirait à rendre compte
des propriétés de propagation des porteurs.

Au spectre (2.14) caractéristique des structures en couches est associée une
distribution spécifique des états dans les bandes :

D(s)
2 ms Nz arc cos (1 - e'/2 Iz)jh2 pour g' < 4 Iz (2.15)

2nmsNfh2 D2 » e'>4lz (2.16)

où e' est l'énergie d'excitation telle que e' 0 pour p 0 (Figure 3). Pour e' << 4 Iz,

D2 ^**'
¦^

0(e)/ /yo,

\ // °3 isotrope

«2
Energie e

Figure 3

Densité d'états au fond des bandes de conduction

la densité d'états a la forme en J/V bien connue dans la physique des corps «quasi-
isotropes» et représentée par D3 dans la figure; mais pour e' >4/2, elle prend le

comportement caractéristique d'une géométrie bidimensionnelle où la densité d'états
D2 est constante avec l'énergie. Cette limite «bidimensionnelle» sera considérée comme
valable pour la majeure partie du spectre d'énergie entrant en ligne de compte dans
les problèmes de transport à température élevée. On peut noter que cette densité est

numériquement élevée, et telle que, dans une bande de largeur Ae, D2Ae x N.
Comme indiqué dans la figure, elle est supérieure à la densité d'états Z)3 isotrope
habituellement attribuée aux solides. Cette différence montre que la structure a
tendance à réduire à l'épaisseur des couches la dimension verticale des particules
réelles (au sens de l'extension d'un paquet d'onde compatible avec le principe
d'incertitude).

En résumé, la limite «bidimensionnelle» que nous considérerons comme caractéristique

des bandes de conduction dans les structures en couches est définie par les
relations approchées:

D(e) * D2; s(p) * e(ps D2Ae N. (2.17)

3. Interaction quantique des porteurs avec le réseau

Le système composite d'un porteur de charge de coordonnée r dans un réseau

élastique, décrit par les déviations t]nb des atomes par rapport à la configuration
d'équilibre, est régi par l'hamiltonien

H Hj, + Hint +H. (3.1)
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Ha est l'hamiltonien du porteur dans le réseau parfait, Hrés est celui du réseau isolé et
Hint a la forme «linéarisée»

Hint =Zn«*àVfr-n,... t]nb.. .)ldVnb. (3.2)
nb

Il a sur la base de Wannier des éléments de matrice diagonaux dominants, et les

composantes verticales du gradient dVldrjbz sont les plus importantes. En raison de

l'asymétrie du potentiel autour des atomes, ces composantes changent de signe pour
les deux partenaires + et — d'une paire i d'atomes de part et d'autre du plan de symétrie
de la couche; la somme sur les atomes de la cellule dans (3.2) n'est donc finie que pour
les modes optiques tels que rj+ + rjr =0. Nous appellerons ces modes «homo-

polaires» puisqu'ils ne créent pas de champ de polarisation même si les atomes sont
chargés. En raison du plan de symétrie, ils sont des modes propres de Hrés, de fréquence
ca que l'on peut considérer comme constante avec le nombre d'onde fe du phonon
optique ; Hint prend dès lors la forme de 2e quantification :

Hlnt SZ W2 M N °>)W (£» K eikn + cc) (3.3)
k

où ak et af sont les opérateurs d'annihilation et de création du phonon d'état fe.

Dans cette expression, la combinaison

eja ]/Mo>= Z (2/AÇ" co)1'2 < n \ dV fr - n)jdrjf \ n > (3-4)
i

caractérise un oscillateur cellulaire équivalent vibrant à la fréquence homopolaire co

et de masse réduite M, combinaison de masses effectives Mf d'un partenaire de la
ie paire dépendant des conditions d'équilibre de la cellule; le mouvement de cet
oscillateur équivalent affecte l'énergie des porteurs par le potentiel de déformation sd
mesuré pour la déformation unité de sa dimension linéaire à l'équilibre a. Ces définitions

font visiblement le pont entre la présente description atomique de la couche et
celle de l'introduction, qui dotait la couche d'un potentiel en forme de puits de largeur
variable.

En résumé, le système couplé a pour hamiltonien effectif

H ^%2V2ßm+ £V fr - n) + £fVkaketk" + c c) + Z^oyafak (3.5)
n k k

avec
Vk= (S/2 M N œA2 feja)

La version équivalente dans l'approximation de la masse effective s'écrit

H ss - 4 I, - h2 V\\2 m+2JZfz-nz) + fpl + #)/2 m,
nz

+ Z^ak *k{S ~nz) + cc)+Z%™ < H (3-6)
* k

puisque, dans les structures en couches, l'énergie peut être développée en série de px
et p seulement.
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Les valeurs propres inférieures de ce type d'hamiltonien peuvent être évaluées par
une méthode variationnelle qui a jusqu'ici trouvé ses applications principales dans
le problème du polaron [2] : des fonctions d'essai de même symétrie de translation que
l'hamiltonien sont construites de façon à représenter une particule arbitrairement
distribuée dans un réseau vide lui-même arbitrairement déformé; cette excitation
globale a un vecteur quasi-impulsion p et peut s'écrire [3] :

ipnlh

mn y iN

Un exp {£ (/I eikn ah - af fk ,-'*»)} (3.7)

Les qmn, tels que S q\n 1, sont les paramètres variationnels décrivant la particule,
m

et les \fk |2, paramètres variationnels du réseau, dénombrent, dans l'approximation de

Tomonaga [4], les quanta virtuels d'état fe décrivant des distorsions élastiques et
réversibles du réseau isolé vide | 0 >. Enfin les niveaux inférieurs du système couplé
et les états propres correspondants sont donnés au premier ordre par les minima en
fonction des qmn et fh de l'espérance mathématique

E < W 1 H | W y (3.8)

L'application de cette méthode variationnelle à l'interaction quantique dans les

structures en couches conduit aux résultats d'intérêt physique suivants :

a) A la limite de couplage faible, l'excitation globale se comporte comme une quasi-
particule libre dotée d'une selfénergie et d'une résistance accrue à l'accélération.
En termes d'une constante de couplage

g2 K/4 n M Nf (efa % co)2 < 1 (3.9)

représentant le nombre total de phonons virtuels accompagnant la particule, le spectre
de la quasi-particule s'écrit :

E es + ez - 4 I, - g2%to • ln (1 + Aej%cA) + fp\ + #)/2 ms (1 + g2)

- 2 Iz (1 - g2) cos fpz dfft) (3.10)

où Zie est la largeur de la bande de conduction dans le cristal rigide.
b) A la limite de couplage fort, l'excitation représente une particule frappée par le

réseau dans l'espace d'une cellule primitive; celle-ci subit alors une distorsion
considérable décrite par y2 phonons virtuels, où

y2 e2J2M a2œ2Hœp- 1 (3.11)

Le spectre devient
E e, + ez-y2%co- e~ 7* e fp) (3.12)

et caractérise une quasi-particule de selfénergie comparable à la largeur de bande
originelle, mais qui ne peut se mouvoir par propagation de Bloch qu'avec la faible
vitesse de groupe correspondant à une masse effective exponentiellement grande. La
mobilité de telles particules est extrêmement petite [5] (< IO-2 cm2/v.sec).
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c) La transition d'une limite de couplage à l'autre est discontinue ; elle se produit à

une valeur critique du couplage (g2 1/2 dans l'approximation de tight-binding)
situant la condition où l'autotrappe dans une cellule est énergétiquement plus
favorable que la délocalisation dans le cristal entier. Toute localisation intermédiaire
représente un état instable du système, ce qui est une propriété spécifique des
interactions par forces à courte portée [6].

4. Mobilités des particules libres

Dans le cas de forces à courte portée, le formalisme du temps de relaxation suffit
pour décrire la distribution des porteurs en équilibre dans un champ électrique [7] ;

ce temps est donné par
T"1 (T+)-1 + (T")"1

(t*)-1 =Z(2 n\%) | Q%,k \2 ô {ep, _ (e, ± R «,)} (4.1)
k,p'

où + et — se réfèrent aux processus de relaxation faisant intervenir l'absorption ou
l'émission de phonons. QPP'k sont les éléments de matrice de l'énergie d'interaction
(3.2) entre états du système non perturbés. Tenant compte des évaluations (2.17,
3.3, 3.9), on trouve aisément que l'interaction quantique détermine un temps de

relaxation indépendant de l'énergie, par exemple:

(t+) -1 4 n m g2 fen mlk T - 1) -1 (4.2)

Enfin, pour k T < U co la mobilité des porteurs dans un champ parallèle aux couches
et transportant un courant parallèle à ce champ a la valeur

fi= fe\msm) fenmlkT - 1)14 n g2

S 9 fmfmf fen,olkT - 1)1g2 fi œ [cm2/v.sec] (4.3)

où me est la masse électronique et % co et k T sont exprimés en centièmes d'électronvolt.
Le même calcul pour l'interaction avec les phonons acoustiques dans les structures

en couches aboutit à une dépendance de la mobilité en T-1 (au lieu de T~3'2 dans les
solides semiconducteurs quasi-isotropes non dégénérés, différence due aux comportements

différents de la densité d'états en fonction de l'énergie).
Enfin, si les cristaux en couches réels présentent une polarisabilité ionique due à la

présence de « charges résiduelles » sur les atomes, l'interaction dite « polaire » des porteurs
avec le champ de polarisation peut limiter leur mobilité [8] ; dans ce cas, le comportement

de cette grandeur avec la température est décrit par fk Tj% cop) fe mP — 1)

où top est la fréquence des vibrations optiques longitudinales créant le champ de

polarisation. Ces différences quantitatives du comportement de la mobilité suivant
l'interaction en jeu nous serviront de test pour identifier l'interaction dominante dans
les résultats expérimentaux.

5. Conclusions de l'étude théorique

Ainsi se terminent les investigations théoriques indispensables pour confronter
notre modèle à variables séparées à l'expérience. Dans cette perspective, nos conclu-

17 H. P. A. 39, 3 (1966)
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sions sur la conduction électrique dans les structures en couches se résument en
4 points :

a) parmi les interactions par forces à courte portée, l'interaction quantique est la
plus forte.

b) elle détermine les processus de relaxation dominant à haute température. Elle
dote la mobilité des porteurs libres d'un comportement caractéristique, essentiellement
déterminé par la variation de la population des phonons optiques.

c) ce comportement diffère de celui que déterminerait l'interaction polaire, unique
moyen de distinguer ces deux interactions dont il est difficile de prédire l'intensité
relative.

d) la mobilité des particules libres et couplées au réseau par l'interaction quantique
a une borne numérique inférieure correspondant au couplage critique à partir duquel
les particules sont piégées dans le réseau.

Nous nous attendons en conséquence à pouvoir mesurer aisément l'interaction
quantique couplant les particules libres au réseau des cristaux en couches. Si l'interaction

polaire intervient par accident, nous avons le moyen de le reconnaître par
l'analyse du comportement thermique de la mobilité.

6. Résultats expérimentaux
Les figures 4, 5 et 6 représentent en fonction de la température les mobilités des

porteurs libres relevées dans des séries d'échantillons monocristallins de GaSe, MoS2,
MoSe2 et WSe2. Ces données résultent de mesures à quatre points de la résistivité et de

l'effet Hall sur des échantillons minces où le champ électrique est parallèle aux
couches et le champ magnétique normal à celles-ci.
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On constate que dans les quatres composés, la mobilité expérimentale /a des

porteurs tend à haute température vers un comportement décroissant et représentable
pax /n ~ T~n avec n compris entre 2 et 3. Puisque ce comportement asymptotique est

commun à plusieurs échantillons, il s'agit du comportement intrinsèque tel que le

déterminent les processus de relaxation dûs à l'interaction des porteurs avec le réseau
cristallin.

Aux températures plus basses interviennent en outre des processus extrinsèques
d'effet variable suivant l'échantillon ; ils sont vraisemblablement liés à des désordres
structurels et seront laissés de côté.
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Figure 6

Mobilité des porteurs négatifs dans les échantillons de MoSe2 et WSe2

7. Interprétation
Les 4 composés testés ont la structure caractéristique en couches peu liées [9];

les anions occupent les bords des couches et font avec les cations internes des liaisons
asymétriques pyramidales. Ce mode de liaison caractéristique est physiquement dû
au fait que les anions possèdent plus d'électrons que nécessaire pour les liaisons
covalentes avec les cations. De ce fait, ils en gardent une paire non partagée qui
interdit une direction de l'espace aux liaisons covalentes, direction où prévalent
seulement les forces van der Waals assurant la cohésion intercouche. Cette cohésion
est assez faible pour que le mode d'empilement des couches, qui varie suivant le
composé, n'ait pas d'influence significative sur la mobilité horizontale des porteurs.

La figure 7 résume les résultats théoriques et expérimentaux en comparant les

exposants de la température qui décrivent les comportements des mobilités autour de
300° K. Les valeurs théoriques du §3 sont reportées en fonction du quantum de
vibration optique, paramètre qui caractérise les propriétés dynamiques du réseau,

pour l'interaction acoustique, courbe A, l'interaction polaire, courbe B, et l'interaction
quantique, courbe C.
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Cette figure montre nettement que les interactions avec les modes acoustiques ou
polaires n'expliquent pas les comportements mesurés. En effet, d'une part, les

exposants expérimentaux sont nettement supérieurs à l'unité, et l'interaction acoustique
ne peut être tenue pour dominante comme prévu plus haut. D'autre part,
l'interprétation par l'interaction polaire impliquerait des énergies de vibration incompatibles
avec les valeurs rencontrées dans des semiconducteurs surtout covalents (tels que les

composés cités en marge à gauche de la figure) et plutôt réservées aux oxydes métalliques

à caractère ionique prépondérant (tels que ceux mentionnés à droite). On peut
par ailleurs relever que la structure en couches exige des liaisons peu ioniques, puisque
l'attraction van der Waals domine la répulsion coulombienne entre charges résiduelles
sur les anions de couches adjacentes. Cet argument structurel suggère, en accord avec
l'expérience, que l'interaction polaire est faible et ne domine pas la conduction.
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InSJ.GaAs.CdS
I II

H.O 2nD

I I

0,02 Ofl! 0,04 0,05 0,06 0,07 0.08 0,09 0,1

Quantum de vibration optique [eV]

Figure 7

Comportements théoriques et expérimentaux de la mobilité avec la température

En revanche, l'interaction quantique explique aisément les résultats expérimentaux

: elle implique des fréquences de vibration optique typiques de semiconducteurs
covalents. Dans le cas du GaSe, l'analyse dynamique du réseau montre que la vibration
homopolaire verticale a une fréquence proche de celle de la vibration polaire
horizontale, que l'on a mesurée autour de 0,04 eV comme fréquence du rayon restant à

l'incidence normale aux couches; la figure montre que l'interaction quantique donne
lieu à un excellent accord entre les mesures indépendantes de fréquence et de mobilité.

Le comportement des mobilités expérimentales désigne donc nettement l'interaction

quantique comme responsable des processus de relaxation dominants. Quant
aux valeurs absolues de ces mobilités, elles indiquent, selon la formule (4.3), que le

couplage des particules libres est assez fort : à un facteur près dépendant des masses
effectives encore inconnues, la constante de couplage g2 est de l'ordre de 0,1 et le

potentiel de déformation de 5 eV/Â. Cette valeur indique - comme on peut s'y attendre
au vu des distributions des potentiels horizontaux et verticaux d'une part, et de

l'autre au vu de la symétrie plan miroir des couches - que les particules détectées ont
toutes leur fonction d'onde verticale formée des combinaisons symétrique ou anti-
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symétrique des mêmes orbitales de liaison anion-cation de chaque côté du plan de

symétrie. Il est alors aisé de voir, à partir du modèle du puits profond, que le potentiel
de déformation déduit des mesures correspond à des extentions verticales des fonctions
d'onde de l'ordre de 4 Â. Cette distance est proche de l'épaisseur des couches mesurée
comme distance totale entre anions selon la verticale.

L'interprétation est donc également compatible avec les données cristallogra-
phiques, tout en laissant des marges raisonnables aux valeurs numériques que
peuvent prendre les paramètres encore inconnus. Nous en concluons que l'interaction
quantique fournit une interprétation cohérente de nos mesures dans le cadre de
connaissances dont nous disposons aujourd'hui sur les cristaux examinés.

Il reste à noter que les constantes de couplage suggérées par les mobilités des

particules libres sont remarquablement proches de la constante critique pour
l'autotrappe indiquée au § 3. Cette proximité montre que dans les structures en couches,
le couplage quantique est fort, et éventuellement susceptible de provoquer l'autotrappe
des particules. Ces structures constituent donc un milieu physique favorable à

l'observation de ce phénomène dont la démonstration expérimentale fait encore
défaut.

8. Conclusions

Le présent travail résoud le problème du mouvement des porteurs de charges dans
les cristaux en couches semiconducteurs et propose une interprétation cohérente des

propriétés électriques mesurées dans ce genre de cristaux. A partir d'un formalisme
permettant de représenter simplement les effets de la structure, cette étude a mis en
évidence un mécanisme d'interaction entre porteur et réseau inédit et déterminant
les propriétés de transport. A ce titre elle constitue une base éprouvée qui permettra
d'aborder l'étude d'autres phénomènes physiques qui s'associent aux structures en
couches.
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